blk-mq.c 67.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
35
#include "blk-stat.h"
J
Jens Axboe 已提交
36
#include "blk-wbt.h"
37
#include "blk-mq-sched.h"
38 39 40 41

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

42 43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

45 46 47
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
48
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49
{
50 51 52
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
53 54
}

55 56 57 58 59 60
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
61 62
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 64 65 66 67
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
68
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 70
}

71
void blk_mq_freeze_queue_start(struct request_queue *q)
72
{
73
	int freeze_depth;
74

75 76
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
77
		percpu_ref_kill(&q->q_usage_counter);
78
		blk_mq_run_hw_queues(q, false);
79
	}
80
}
81
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
82

83
void blk_mq_freeze_queue_wait(struct request_queue *q)
84
{
85
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86
}
87
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88

89 90 91 92 93 94 95 96
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111 112 113
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

165 166 167 168 169 170 171 172
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
173 174 175 176 177 178 179

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
180 181
}

182 183 184 185 186 187
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

188 189
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
190
{
191 192 193
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
194
	rq->mq_ctx = ctx;
195
	rq->cmd_flags = op;
196 197
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
198 199 200 201 202 203
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
204
	rq->start_time = jiffies;
205 206
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
207
	set_start_time_ns(rq);
208 209 210 211 212 213 214 215 216 217 218 219
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
220 221
	rq->timeout = 0;

222 223 224 225
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

226
	ctx->rq_dispatched[op_is_sync(op)]++;
227
}
228
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229

230 231
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
232 233 234 235
{
	struct request *rq;
	unsigned int tag;

236
	tag = blk_mq_get_tag(data);
237
	if (tag != BLK_MQ_TAG_FAIL) {
238 239 240
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
241

242 243 244 245
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
246 247 248 249
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
250 251
			rq->tag = tag;
			rq->internal_tag = -1;
252
			data->hctx->tags->rqs[rq->tag] = rq;
253 254
		}

255
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 257 258 259 260
		return rq;
	}

	return NULL;
}
261
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262

263 264
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
265
{
266
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
267
	struct request *rq;
268
	int ret;
269

270
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 272
	if (ret)
		return ERR_PTR(ret);
273

274
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275

276 277 278 279
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
280
		return ERR_PTR(-EWOULDBLOCK);
281 282 283 284

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
285 286
	return rq;
}
287
EXPORT_SYMBOL(blk_mq_alloc_request);
288

M
Ming Lin 已提交
289 290 291
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
292
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
293
	struct request *rq;
294
	unsigned int cpu;
M
Ming Lin 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

313 314 315 316
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
317 318 319 320
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
321
	}
322 323
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
324

325
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326

327
	blk_mq_put_ctx(alloc_data.ctx);
328
	blk_queue_exit(q);
329 330 331 332 333

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
334 335 336
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

337 338
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
339
{
340
	const int sched_tag = rq->internal_tag;
341 342
	struct request_queue *q = rq->q;

343
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
344
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
345 346

	wbt_done(q->rq_wb, &rq->issue_stat);
347
	rq->rq_flags = 0;
348

349
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
350
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
351 352 353 354
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
355
	blk_mq_sched_restart_queues(hctx);
356
	blk_queue_exit(q);
357 358
}

359
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
360
				     struct request *rq)
361 362 363 364
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
365 366 367 368 369 370
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
371 372 373 374
}

void blk_mq_free_request(struct request *rq)
{
375
	blk_mq_sched_put_request(rq);
376
}
J
Jens Axboe 已提交
377
EXPORT_SYMBOL_GPL(blk_mq_free_request);
378

379
inline void __blk_mq_end_request(struct request *rq, int error)
380
{
M
Ming Lei 已提交
381 382
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
383
	if (rq->end_io) {
J
Jens Axboe 已提交
384
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
385
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
386 387 388
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
389
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
390
	}
391
}
392
EXPORT_SYMBOL(__blk_mq_end_request);
393

394
void blk_mq_end_request(struct request *rq, int error)
395 396 397
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
398
	__blk_mq_end_request(rq, error);
399
}
400
EXPORT_SYMBOL(blk_mq_end_request);
401

402
static void __blk_mq_complete_request_remote(void *data)
403
{
404
	struct request *rq = data;
405

406
	rq->q->softirq_done_fn(rq);
407 408
}

409
static void blk_mq_ipi_complete_request(struct request *rq)
410 411
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
412
	bool shared = false;
413 414
	int cpu;

C
Christoph Hellwig 已提交
415
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
416 417 418
		rq->q->softirq_done_fn(rq);
		return;
	}
419 420

	cpu = get_cpu();
C
Christoph Hellwig 已提交
421 422 423 424
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
425
		rq->csd.func = __blk_mq_complete_request_remote;
426 427
		rq->csd.info = rq;
		rq->csd.flags = 0;
428
		smp_call_function_single_async(ctx->cpu, &rq->csd);
429
	} else {
430
		rq->q->softirq_done_fn(rq);
431
	}
432 433
	put_cpu();
}
434

435 436 437
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
438 439
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
440 441 442
	}
}

443
static void __blk_mq_complete_request(struct request *rq)
444 445 446
{
	struct request_queue *q = rq->q;

447 448
	blk_mq_stat_add(rq);

449
	if (!q->softirq_done_fn)
450
		blk_mq_end_request(rq, rq->errors);
451 452 453 454
	else
		blk_mq_ipi_complete_request(rq);
}

455 456 457 458 459 460 461 462
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
463
void blk_mq_complete_request(struct request *rq, int error)
464
{
465 466 467
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
468
		return;
469 470
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
471
		__blk_mq_complete_request(rq);
472
	}
473 474
}
EXPORT_SYMBOL(blk_mq_complete_request);
475

476 477 478 479 480 481
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

482
void blk_mq_start_request(struct request *rq)
483 484 485
{
	struct request_queue *q = rq->q;

486 487
	blk_mq_sched_started_request(rq);

488 489
	trace_block_rq_issue(q, rq);

490 491 492
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
493
		wbt_issue(q->rq_wb, &rq->issue_stat);
494 495
	}

496
	blk_add_timer(rq);
497

498 499 500 501 502 503
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

504 505 506 507 508 509
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
510 511 512 513
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
514 515 516 517 518 519 520 521 522

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
523
}
524
EXPORT_SYMBOL(blk_mq_start_request);
525

526
static void __blk_mq_requeue_request(struct request *rq)
527 528 529 530
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
531
	wbt_requeue(q->rq_wb, &rq->issue_stat);
532
	blk_mq_sched_requeue_request(rq);
533

534 535 536 537
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
538 539
}

540
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
541 542 543 544
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
545
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
546 547 548
}
EXPORT_SYMBOL(blk_mq_requeue_request);

549 550 551
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
552
		container_of(work, struct request_queue, requeue_work.work);
553 554 555 556 557 558 559 560 561
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
562
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
563 564
			continue;

565
		rq->rq_flags &= ~RQF_SOFTBARRIER;
566
		list_del_init(&rq->queuelist);
567
		blk_mq_sched_insert_request(rq, true, false, false, true);
568 569 570 571 572
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
573
		blk_mq_sched_insert_request(rq, false, false, false, true);
574 575
	}

576
	blk_mq_run_hw_queues(q, false);
577 578
}

579 580
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
581 582 583 584 585 586 587 588
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
589
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
590 591 592

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
593
		rq->rq_flags |= RQF_SOFTBARRIER;
594 595 596 597 598
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
599 600 601

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
602 603 604 605 606
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
607
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
608 609 610
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

611 612 613 614 615 616 617 618
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

639 640
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
641 642
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
643
		return tags->rqs[tag];
644
	}
645 646

	return NULL;
647 648 649
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

650
struct blk_mq_timeout_data {
651 652
	unsigned long next;
	unsigned int next_set;
653 654
};

655
void blk_mq_rq_timed_out(struct request *req, bool reserved)
656
{
J
Jens Axboe 已提交
657
	const struct blk_mq_ops *ops = req->q->mq_ops;
658
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
659 660 661 662 663 664 665 666 667 668

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
669 670
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
671

672
	if (ops->timeout)
673
		ret = ops->timeout(req, reserved);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
689
}
690

691 692 693 694
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
695

696 697 698 699 700
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
701 702 703 704
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
705
		return;
706
	}
707

708 709
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
710
			blk_mq_rq_timed_out(rq, reserved);
711 712 713 714
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
715 716
}

717
static void blk_mq_timeout_work(struct work_struct *work)
718
{
719 720
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
721 722 723 724 725
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
741 742
		return;

743
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
744

745 746 747
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
748
	} else {
749 750
		struct blk_mq_hw_ctx *hctx;

751 752 753 754 755
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
756
	}
757
	blk_queue_exit(q);
758 759 760 761 762 763 764 765 766 767 768 769 770 771
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
772
		bool merged = false;
773 774 775 776 777 778 779

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

780 781 782 783
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
784
			break;
785 786 787
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
788
			break;
789 790
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
791
			break;
792 793
		default:
			continue;
794
		}
795 796 797 798

		if (merged)
			ctx->rq_merged++;
		return merged;
799 800 801 802 803
	}

	return false;
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

822 823 824 825
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
826
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
827
{
828 829 830 831
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
832

833
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
834
}
835
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
836

837 838 839 840
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
841

842
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
843 844
}

845 846
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
847 848 849 850 851 852 853 854 855 856 857 858 859 860
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

861 862 863
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

864 865
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
866 867 868 869
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
870 871 872 873 874 875 876
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

877 878
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
879 880 881 882 883 884 885 886 887 888
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

971
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
972 973 974
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
975 976
	LIST_HEAD(driver_list);
	struct list_head *dptr;
977
	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
978

979 980 981 982 983 984
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

985 986 987
	/*
	 * Now process all the entries, sending them to the driver.
	 */
988
	queued = 0;
989
	while (!list_empty(list)) {
990
		struct blk_mq_queue_data bd;
991

992
		rq = list_first_entry(list, struct request, queuelist);
993 994 995
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
996 997

			/*
998 999
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1000
			 */
1001 1002 1003 1004 1005 1006 1007 1008 1009
			if (blk_mq_dispatch_wait_add(hctx)) {
				/*
				 * It's possible that a tag was freed in the
				 * window between the allocation failure and
				 * adding the hardware queue to the wait queue.
				 */
				if (!blk_mq_get_driver_tag(rq, &hctx, false))
					break;
			} else {
1010
				break;
1011
			}
1012
		}
1013

1014 1015
		list_del_init(&rq->queuelist);

1016 1017
		bd.rq = rq;
		bd.list = dptr;
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1031 1032

		ret = q->mq_ops->queue_rq(hctx, &bd);
1033 1034 1035
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1036
			break;
1037
		case BLK_MQ_RQ_QUEUE_BUSY:
1038
			blk_mq_put_driver_tag_hctx(hctx, rq);
1039
			list_add(&rq->queuelist, list);
1040
			__blk_mq_requeue_request(rq);
1041 1042 1043 1044
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1045
			rq->errors = -EIO;
1046
			blk_mq_end_request(rq, rq->errors);
1047 1048 1049 1050 1051
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1052 1053 1054 1055 1056

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
1057
		if (!dptr && list->next != list->prev)
1058
			dptr = &driver_list;
1059 1060
	}

1061
	hctx->dispatched[queued_to_index(queued)]++;
1062 1063 1064 1065 1066

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1067
	if (!list_empty(list)) {
1068 1069 1070 1071 1072 1073 1074
		/*
		 * If we got a driver tag for the next request already,
		 * free it again.
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1075
		spin_lock(&hctx->lock);
1076
		list_splice_init(list, &hctx->dispatch);
1077
		spin_unlock(&hctx->lock);
1078

1079 1080 1081 1082 1083 1084 1085 1086
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1087
		 *
1088 1089
		 * If RESTART or TAG_WAITING is set, then let completion restart
		 * the queue instead of potentially looping here.
1090
		 */
1091 1092
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1093
			blk_mq_run_hw_queue(hctx, true);
1094
	}
1095

1096
	return queued != 0;
1097 1098
}

1099 1100 1101 1102 1103 1104 1105 1106 1107
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1108
		blk_mq_sched_dispatch_requests(hctx);
1109 1110 1111
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1112
		blk_mq_sched_dispatch_requests(hctx);
1113 1114 1115 1116
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1117 1118 1119 1120 1121 1122 1123 1124
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1125 1126
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1127 1128

	if (--hctx->next_cpu_batch <= 0) {
1129
		int next_cpu;
1130 1131 1132 1133 1134 1135 1136 1137 1138

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1139
	return hctx->next_cpu;
1140 1141
}

1142 1143
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1144 1145
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1146 1147
		return;

1148
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1149 1150
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1151
			__blk_mq_run_hw_queue(hctx);
1152
			put_cpu();
1153 1154
			return;
		}
1155

1156
		put_cpu();
1157
	}
1158

1159
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1160 1161
}

1162
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1163 1164 1165 1166 1167
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1168
		if (!blk_mq_hctx_has_pending(hctx) ||
1169
		    blk_mq_hctx_stopped(hctx))
1170 1171
			continue;

1172
		blk_mq_run_hw_queue(hctx, async);
1173 1174
	}
}
1175
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1197 1198
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1199
	cancel_work(&hctx->run_work);
1200
	cancel_delayed_work(&hctx->delay_work);
1201 1202 1203 1204
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1215 1216 1217
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1218

1219
	blk_mq_run_hw_queue(hctx, false);
1220 1221 1222
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1243
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1244 1245 1246 1247
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1248 1249
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1250 1251 1252
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1253
static void blk_mq_run_work_fn(struct work_struct *work)
1254 1255 1256
{
	struct blk_mq_hw_ctx *hctx;

1257
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1258

1259 1260 1261
	__blk_mq_run_hw_queue(hctx);
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1274 1275
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1276

1277
	blk_mq_stop_hw_queue(hctx);
1278 1279
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1280 1281 1282
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1283 1284 1285
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1286
{
J
Jens Axboe 已提交
1287 1288
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1289 1290
	trace_block_rq_insert(hctx->queue, rq);

1291 1292 1293 1294
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1295
}
1296

1297 1298
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1299 1300 1301
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1302
	__blk_mq_insert_req_list(hctx, rq, at_head);
1303 1304 1305
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1306 1307
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1319
		BUG_ON(rq->mq_ctx != ctx);
1320
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1321
		__blk_mq_insert_req_list(hctx, rq, false);
1322
	}
1323
	blk_mq_hctx_mark_pending(hctx, ctx);
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1360 1361 1362 1363
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1380 1381 1382
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1383 1384 1385 1386 1387 1388
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1389

1390
	blk_account_io_start(rq, true);
1391 1392
}

1393 1394 1395 1396 1397 1398
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1399 1400 1401
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1402
{
1403
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1404 1405 1406 1407 1408 1409 1410
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1411 1412
		struct request_queue *q = hctx->queue;

1413 1414 1415 1416 1417
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1418

1419
		spin_unlock(&ctx->lock);
1420
		__blk_mq_finish_request(hctx, ctx, rq);
1421
		return true;
1422
	}
1423
}
1424

1425 1426
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1427 1428 1429 1430
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1431 1432
}

1433
static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1434
				      bool may_sleep)
1435 1436 1437 1438 1439 1440 1441
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1442 1443 1444
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1445

1446
	if (q->elevator)
1447 1448
		goto insert;

1449 1450 1451 1452 1453
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1454 1455 1456 1457 1458 1459
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1460 1461
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1462
		return;
1463
	}
1464

1465 1466 1467 1468 1469 1470
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1471
		return;
1472
	}
1473

1474
insert:
1475
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1476 1477
}

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
		unsigned int srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1492
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1493
{
1494
	const int is_sync = op_is_sync(bio->bi_opf);
1495
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1496
	struct blk_mq_alloc_data data = { .flags = 0 };
1497
	struct request *rq;
1498
	unsigned int request_count = 0;
1499
	struct blk_plug *plug;
1500
	struct request *same_queue_rq = NULL;
1501
	blk_qc_t cookie;
J
Jens Axboe 已提交
1502
	unsigned int wb_acct;
1503 1504 1505 1506

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1507
		bio_io_error(bio);
1508
		return BLK_QC_T_NONE;
1509 1510
	}

1511 1512
	blk_queue_split(q, &bio, q->bio_split);

1513 1514 1515
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1516

1517 1518 1519
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1520 1521
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1522 1523 1524
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1525 1526
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1527
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1528 1529 1530
	}

	wbt_track(&rq->issue_stat, wb_acct);
1531

1532
	cookie = request_to_qc_t(data.hctx, rq);
1533 1534

	if (unlikely(is_flush_fua)) {
1535 1536
		if (q->elevator)
			goto elv_insert;
1537 1538
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
1539
		goto run_queue;
1540 1541
	}

1542
	plug = current->plug;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	if (plug && q->nr_hw_queues == 1) {
		struct request *last = NULL;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

		if (!request_count)
			trace_block_plug(q);
		else
			last = list_entry_rq(plug->mq_list.prev);

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
		}

		list_add_tail(&rq->queuelist, &plug->mq_list);
		goto done;
	} else if (((plug && !blk_queue_nomerges(q)) || is_sync)) {
1573
		struct request *old_rq = NULL;
1574 1575 1576 1577

		blk_mq_bio_to_request(rq, bio);

		/*
1578
		 * We do limited plugging. If the bio can be merged, do that.
1579 1580
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1581
		 */
1582
		if (plug) {
1583 1584
			/*
			 * The plug list might get flushed before this. If that
1585 1586 1587
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1588 1589
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1590
				list_del_init(&old_rq->queuelist);
1591
			}
1592 1593 1594 1595
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
1596 1597
		if (old_rq)
			blk_mq_try_issue_directly(data.hctx, old_rq, &cookie);
1598
		goto done;
1599 1600
	}

1601
	if (q->elevator) {
1602
elv_insert:
1603 1604
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1605
		blk_mq_sched_insert_request(rq, false, true,
1606
						!is_sync || is_flush_fua, true);
1607 1608
		goto done;
	}
1609 1610 1611 1612 1613 1614 1615
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
1616
run_queue:
1617 1618 1619
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1620 1621
done:
	return cookie;
1622 1623
}

1624 1625
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1626
{
1627
	struct page *page;
1628

1629
	if (tags->rqs && set->ops->exit_request) {
1630
		int i;
1631

1632
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1633 1634 1635
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1636
				continue;
J
Jens Axboe 已提交
1637
			set->ops->exit_request(set->driver_data, rq,
1638
						hctx_idx, i);
J
Jens Axboe 已提交
1639
			tags->static_rqs[i] = NULL;
1640
		}
1641 1642
	}

1643 1644
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1645
		list_del_init(&page->lru);
1646 1647 1648 1649 1650
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1651 1652
		__free_pages(page, page->private);
	}
1653
}
1654

1655 1656
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1657
	kfree(tags->rqs);
1658
	tags->rqs = NULL;
J
Jens Axboe 已提交
1659 1660
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1661

1662
	blk_mq_free_tags(tags);
1663 1664
}

1665 1666 1667 1668
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1669
{
1670
	struct blk_mq_tags *tags;
1671
	int node;
1672

1673 1674 1675 1676 1677
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1678
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1679 1680
	if (!tags)
		return NULL;
1681

1682
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1683
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1684
				 node);
1685 1686 1687 1688
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1689

J
Jens Axboe 已提交
1690 1691
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1692
				 node);
J
Jens Axboe 已提交
1693 1694 1695 1696 1697 1698
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1712 1713 1714 1715 1716
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1717 1718 1719

	INIT_LIST_HEAD(&tags->page_list);

1720 1721 1722 1723
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1724
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1725
				cache_line_size());
1726
	left = rq_size * depth;
1727

1728
	for (i = 0; i < depth; ) {
1729 1730 1731 1732 1733
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1734
		while (this_order && left < order_to_size(this_order - 1))
1735 1736 1737
			this_order--;

		do {
1738
			page = alloc_pages_node(node,
1739
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1740
				this_order);
1741 1742 1743 1744 1745 1746 1747 1748 1749
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1750
			goto fail;
1751 1752

		page->private = this_order;
1753
		list_add_tail(&page->lru, &tags->page_list);
1754 1755

		p = page_address(page);
1756 1757 1758 1759
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1760
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1761
		entries_per_page = order_to_size(this_order) / rq_size;
1762
		to_do = min(entries_per_page, depth - i);
1763 1764
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1765 1766 1767
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1768 1769
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1770
						rq, hctx_idx, i,
1771
						node)) {
J
Jens Axboe 已提交
1772
					tags->static_rqs[i] = NULL;
1773
					goto fail;
1774
				}
1775 1776
			}

1777 1778 1779 1780
			p += rq_size;
			i++;
		}
	}
1781
	return 0;
1782

1783
fail:
1784 1785
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1786 1787
}

J
Jens Axboe 已提交
1788 1789 1790 1791 1792
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1793
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1794
{
1795
	struct blk_mq_hw_ctx *hctx;
1796 1797 1798
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1799
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1800
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1801 1802 1803 1804 1805 1806 1807 1808 1809

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1810
		return 0;
1811

J
Jens Axboe 已提交
1812 1813 1814
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1815 1816

	blk_mq_run_hw_queue(hctx, true);
1817
	return 0;
1818 1819
}

1820
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1821
{
1822 1823
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1824 1825
}

1826
/* hctx->ctxs will be freed in queue's release handler */
1827 1828 1829 1830
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1831 1832
	unsigned flush_start_tag = set->queue_depth;

1833 1834
	blk_mq_tag_idle(hctx);

1835 1836 1837 1838 1839
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1840 1841 1842
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1843 1844 1845
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1846
	blk_mq_remove_cpuhp(hctx);
1847
	blk_free_flush_queue(hctx->fq);
1848
	sbitmap_free(&hctx->ctx_map);
1849 1850
}

M
Ming Lei 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1860
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1861 1862 1863
	}
}

1864 1865 1866
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1867
{
1868
	int node;
1869
	unsigned flush_start_tag = set->queue_depth;
1870 1871 1872 1873 1874

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1875
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1876 1877 1878 1879 1880
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1881
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1882

1883
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1884 1885

	hctx->tags = set->tags[hctx_idx];
1886 1887

	/*
1888 1889
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1890
	 */
1891 1892 1893 1894
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1895

1896 1897
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1898
		goto free_ctxs;
1899

1900
	hctx->nr_ctx = 0;
1901

1902 1903 1904
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1905

1906 1907 1908
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1909

1910 1911 1912 1913 1914
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1915

1916 1917 1918
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1919
	return 0;
1920

1921 1922 1923 1924 1925
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1926
 free_bitmap:
1927
	sbitmap_free(&hctx->ctx_map);
1928 1929 1930
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1931
	blk_mq_remove_cpuhp(hctx);
1932 1933
	return -1;
}
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1953
		hctx = blk_mq_map_queue(q, i);
1954

1955 1956 1957 1958 1959
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1960
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1961 1962 1963
	}
}

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1986 1987 1988 1989 1990
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
1991 1992
}

1993 1994
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1995
{
1996
	unsigned int i, hctx_idx;
1997 1998
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1999
	struct blk_mq_tag_set *set = q->tag_set;
2000

2001 2002 2003 2004 2005
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2006
	queue_for_each_hw_ctx(q, hctx, i) {
2007
		cpumask_clear(hctx->cpumask);
2008 2009 2010 2011 2012 2013
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2014
	for_each_possible_cpu(i) {
2015
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2016
		if (!cpumask_test_cpu(i, online_mask))
2017 2018
			continue;

2019 2020
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2021 2022
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2023 2024 2025 2026 2027 2028
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2029
			q->mq_map[i] = 0;
2030 2031
		}

2032
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2033
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2034

2035
		cpumask_set_cpu(i, hctx->cpumask);
2036 2037 2038
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2039

2040 2041
	mutex_unlock(&q->sysfs_lock);

2042
	queue_for_each_hw_ctx(q, hctx, i) {
2043
		/*
2044 2045
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2046 2047
		 */
		if (!hctx->nr_ctx) {
2048 2049 2050 2051
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2052 2053 2054
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2055
			hctx->tags = NULL;
2056 2057 2058
			continue;
		}

M
Ming Lei 已提交
2059 2060 2061
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2062 2063 2064 2065 2066
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2067
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2068

2069 2070 2071
		/*
		 * Initialize batch roundrobin counts
		 */
2072 2073 2074
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2075 2076
}

2077
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2078 2079 2080 2081
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2093 2094 2095

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2096
		queue_set_hctx_shared(q, shared);
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2107 2108 2109 2110 2111 2112
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2113 2114 2115 2116 2117 2118 2119 2120 2121
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2122 2123 2124 2125 2126 2127 2128 2129 2130

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2131
	list_add_tail(&q->tag_set_list, &set->tag_list);
2132

2133 2134 2135
	mutex_unlock(&set->tag_list_lock);
}

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2147 2148
	blk_mq_sched_teardown(q);

2149
	/* hctx kobj stays in hctx */
2150 2151 2152
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2153
		kobject_put(&hctx->kobj);
2154
	}
2155

2156 2157
	q->mq_map = NULL;

2158 2159
	kfree(q->queue_hw_ctx);

2160 2161 2162 2163 2164 2165
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2166 2167 2168
	free_percpu(q->queue_ctx);
}

2169
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2185 2186
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2187
{
K
Keith Busch 已提交
2188 2189
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2190

K
Keith Busch 已提交
2191
	blk_mq_sysfs_unregister(q);
2192
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2193
		int node;
2194

K
Keith Busch 已提交
2195 2196 2197 2198
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2199 2200
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2201
		if (!hctxs[i])
K
Keith Busch 已提交
2202
			break;
2203

2204
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2205 2206 2207 2208 2209
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2210

2211
		atomic_set(&hctxs[i]->nr_active, 0);
2212
		hctxs[i]->numa_node = node;
2213
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2214 2215 2216 2217 2218 2219 2220 2221

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2222
	}
K
Keith Busch 已提交
2223 2224 2225 2226
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2227 2228
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2242 2243 2244
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2245 2246 2247 2248 2249 2250 2251 2252 2253
	q->stats = blk_alloc_queue_stats();
	if (!q->stats)
		goto err_exit;

	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
					     blk_stat_rq_ddir, 2, q);
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2254 2255
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2256
		goto err_exit;
K
Keith Busch 已提交
2257

2258 2259 2260
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2261 2262 2263 2264 2265
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2266
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2267 2268 2269 2270

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2271

2272
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2273
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2274 2275 2276

	q->nr_queues = nr_cpu_ids;

2277
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2278

2279 2280 2281
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2282 2283
	q->sg_reserved_size = INT_MAX;

2284
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2285 2286 2287
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2288
	blk_queue_make_request(q, blk_mq_make_request);
2289

2290 2291 2292 2293 2294
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2295 2296 2297 2298 2299
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2300 2301
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2302

2303
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2304

2305
	get_online_cpus();
2306 2307
	mutex_lock(&all_q_mutex);

2308
	list_add_tail(&q->all_q_node, &all_q_list);
2309
	blk_mq_add_queue_tag_set(set, q);
2310
	blk_mq_map_swqueue(q, cpu_online_mask);
2311

2312
	mutex_unlock(&all_q_mutex);
2313
	put_online_cpus();
2314

2315 2316 2317 2318 2319 2320 2321 2322
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2323
	return q;
2324

2325
err_hctxs:
K
Keith Busch 已提交
2326
	kfree(q->queue_hw_ctx);
2327
err_percpu:
K
Keith Busch 已提交
2328
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2329 2330
err_exit:
	q->mq_ops = NULL;
2331 2332
	return ERR_PTR(-ENOMEM);
}
2333
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2334 2335 2336

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2337
	struct blk_mq_tag_set	*set = q->tag_set;
2338

2339 2340 2341 2342
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2343 2344
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2345
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2346 2347 2348
}

/* Basically redo blk_mq_init_queue with queue frozen */
2349 2350
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2351
{
2352
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2353

2354 2355
	blk_mq_sysfs_unregister(q);

2356 2357 2358 2359 2360 2361
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2362
	blk_mq_map_swqueue(q, online_mask);
2363

2364
	blk_mq_sysfs_register(q);
2365 2366
}

2367 2368 2369 2370 2371 2372 2373 2374
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2375 2376 2377 2378
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2379 2380 2381 2382 2383 2384 2385 2386 2387
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2388
	list_for_each_entry(q, &all_q_list, all_q_node)
2389 2390
		blk_mq_freeze_queue_wait(q);

2391
	list_for_each_entry(q, &all_q_list, all_q_node)
2392
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2393 2394 2395 2396

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2397
	mutex_unlock(&all_q_mutex);
2398 2399 2400 2401
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2402
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2418 2419 2420 2421
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2422 2423 2424 2425 2426 2427 2428
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2429 2430
}

2431 2432 2433 2434
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2435 2436
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2437 2438 2439 2440 2441 2442
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2443
		blk_mq_free_rq_map(set->tags[i]);
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2483 2484 2485 2486 2487 2488
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2489 2490
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2491 2492
	int ret;

B
Bart Van Assche 已提交
2493 2494
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2495 2496
	if (!set->nr_hw_queues)
		return -EINVAL;
2497
	if (!set->queue_depth)
2498 2499 2500 2501
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2502
	if (!set->ops->queue_rq)
2503 2504
		return -EINVAL;

2505 2506 2507 2508 2509
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2510

2511 2512 2513 2514 2515 2516 2517 2518 2519
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2520 2521 2522 2523 2524
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2525

K
Keith Busch 已提交
2526
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2527 2528
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2529
		return -ENOMEM;
2530

2531 2532 2533
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2534 2535 2536
	if (!set->mq_map)
		goto out_free_tags;

2537 2538 2539 2540 2541 2542 2543 2544 2545
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2546
		goto out_free_mq_map;
2547

2548 2549 2550
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2551
	return 0;
2552 2553 2554 2555 2556

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2557 2558
	kfree(set->tags);
	set->tags = NULL;
2559
	return ret;
2560 2561 2562 2563 2564 2565 2566
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2567 2568
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2569

2570 2571 2572
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2573
	kfree(set->tags);
2574
	set->tags = NULL;
2575 2576 2577
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2578 2579 2580 2581 2582 2583
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2584
	if (!set)
2585 2586
		return -EINVAL;

2587 2588 2589
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2590 2591
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2592 2593
		if (!hctx->tags)
			continue;
2594 2595 2596 2597
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2598 2599 2600 2601 2602 2603 2604 2605
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2606 2607 2608 2609 2610 2611 2612
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2613 2614 2615
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2616 2617 2618
	return ret;
}

K
Keith Busch 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;

	if (cb->stat[READ].nr_samples)
		q->poll_stat[READ] = cb->stat[READ];
	if (cb->stat[WRITE].nr_samples)
		q->poll_stat[WRITE] = cb->stat[WRITE];
}

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2685
	if (!blk_poll_stats_enable(q))
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
2696 2697 2698 2699
	if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
		ret = (q->poll_stat[READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
		ret = (q->poll_stat[WRITE].mean + 1) / 2;
2700 2701 2702 2703

	return ret;
}

2704
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2705
				     struct blk_mq_hw_ctx *hctx,
2706 2707 2708 2709
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2710
	unsigned int nsecs;
2711 2712
	ktime_t kt;

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2731 2732 2733 2734 2735 2736 2737 2738
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2739
	kt = nsecs;
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2762 2763 2764 2765 2766
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2767 2768 2769 2770 2771 2772 2773
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2774
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2775 2776
		return true;

J
Jens Axboe 已提交
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2820 2821 2822 2823
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2824 2825 2826 2827 2828

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2839 2840
static int __init blk_mq_init(void)
{
2841 2842
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2843

2844 2845 2846
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2847 2848 2849
	return 0;
}
subsys_initcall(blk_mq_init);