blk-mq.c 77.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98 99 100 101 102 103 104 105 106
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
107 108 109 110 111 112 113
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

114
	inflight[0] = inflight[1] = 0;
115 116 117
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

137
void blk_freeze_queue_start(struct request_queue *q)
138
{
139
	int freeze_depth;
140

141 142
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
143
		percpu_ref_kill(&q->q_usage_counter);
144 145
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
146
	}
147
}
148
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149

150
void blk_mq_freeze_queue_wait(struct request_queue *q)
151
{
152
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155

156 157 158 159 160 161 162 163
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164

165 166 167 168
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
169
void blk_freeze_queue(struct request_queue *q)
170
{
171 172 173 174 175 176 177
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
178
	blk_freeze_queue_start(q);
179 180
	if (!q->mq_ops)
		blk_drain_queue(q);
181 182
	blk_mq_freeze_queue_wait(q);
}
183 184 185 186 187 188 189 190 191

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
192
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193

194
void blk_mq_unfreeze_queue(struct request_queue *q)
195
{
196
	int freeze_depth;
197

198 199 200
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
201
		percpu_ref_reinit(&q->q_usage_counter);
202
		wake_up_all(&q->mq_freeze_wq);
203
	}
204
}
205
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206

207 208 209 210 211 212
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
213
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 215 216
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

217
/**
218
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 220 221
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
222 223 224
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
225 226 227 228 229 230 231
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

232
	blk_mq_quiesce_queue_nowait(q);
233

234 235
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
236
			synchronize_srcu(hctx->srcu);
237 238 239 240 241 242 243 244
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

245 246 247 248 249 250 251 252 253
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
254
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255

256 257
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
258 259 260
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

261 262 263 264 265 266 267 268 269 270
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

271 272 273 274 275 276
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

277 278
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
279
{
280 281
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
282
	req_flags_t rq_flags = 0;
283

284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
289
			rq_flags = RQF_MQ_INFLIGHT;
290 291 292 293 294 295 296
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

297
	/* csd/requeue_work/fifo_time is initialized before use */
298 299
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
300
	rq->rq_flags = rq_flags;
301
	rq->cpu = -1;
302
	rq->cmd_flags = op;
303 304
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
305
	if (blk_queue_io_stat(data->q))
306
		rq->rq_flags |= RQF_IO_STAT;
307
	INIT_LIST_HEAD(&rq->queuelist);
308 309 310 311
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
312
	rq->start_time = jiffies;
313
	rq->io_start_time_ns = 0;
314 315 316 317 318 319 320
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
321
	rq->__deadline = 0;
322 323

	INIT_LIST_HEAD(&rq->timeout_list);
324 325
	rq->timeout = 0;

326 327 328 329
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

330 331 332
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
	set_start_time_ns(rq);
333
	rq->cgroup_io_start_time_ns = 0;
334 335
#endif

336 337
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
338 339
}

340 341 342 343 344 345
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
346
	unsigned int tag;
347
	bool put_ctx_on_error = false;
348 349 350

	blk_queue_enter_live(q);
	data->q = q;
351 352 353 354
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
355 356
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
357 358
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
359 360 361 362 363 364 365 366

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
367 368
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
369 370
	}

371 372
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
373 374
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
375 376
			data->ctx = NULL;
		}
377 378
		blk_queue_exit(q);
		return NULL;
379 380
	}

381
	rq = blk_mq_rq_ctx_init(data, tag, op);
382 383
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
384
		if (e && e->type->ops.mq.prepare_request) {
385 386 387
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

388 389
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
390
		}
391 392 393
	}
	data->hctx->queued++;
	return rq;
394 395
}

396
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
397
		blk_mq_req_flags_t flags)
398
{
399
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
400
	struct request *rq;
401
	int ret;
402

403
	ret = blk_queue_enter(q, flags);
404 405
	if (ret)
		return ERR_PTR(ret);
406

407
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
408
	blk_queue_exit(q);
409

410
	if (!rq)
411
		return ERR_PTR(-EWOULDBLOCK);
412

413 414
	blk_mq_put_ctx(alloc_data.ctx);

415 416 417
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
418 419
	return rq;
}
420
EXPORT_SYMBOL(blk_mq_alloc_request);
421

422
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
423
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
424
{
425
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
426
	struct request *rq;
427
	unsigned int cpu;
M
Ming Lin 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

442
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
443 444 445
	if (ret)
		return ERR_PTR(ret);

446 447 448 449
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
450 451 452 453
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
454
	}
455
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
456
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
457

458
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
459
	blk_queue_exit(q);
460

461 462 463 464
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
465 466 467
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

468
void blk_mq_free_request(struct request *rq)
469 470
{
	struct request_queue *q = rq->q;
471 472 473 474 475
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

476
	if (rq->rq_flags & RQF_ELVPRIV) {
477 478 479 480 481 482 483
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
484

485
	ctx->rq_completed[rq_is_sync(rq)]++;
486
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
487
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
488

489 490 491
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

492
	wbt_done(q->rq_wb, rq);
493

S
Shaohua Li 已提交
494 495 496
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

497
	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
498 499 500
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
501
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
502
	blk_mq_sched_restart(hctx);
503
	blk_queue_exit(q);
504
}
J
Jens Axboe 已提交
505
EXPORT_SYMBOL_GPL(blk_mq_free_request);
506

507
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
508
{
M
Ming Lei 已提交
509 510
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
511
	if (rq->end_io) {
512
		wbt_done(rq->q->rq_wb, rq);
513
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
514 515 516
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
517
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
518
	}
519
}
520
EXPORT_SYMBOL(__blk_mq_end_request);
521

522
void blk_mq_end_request(struct request *rq, blk_status_t error)
523 524 525
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
526
	__blk_mq_end_request(rq, error);
527
}
528
EXPORT_SYMBOL(blk_mq_end_request);
529

530
static void __blk_mq_complete_request_remote(void *data)
531
{
532
	struct request *rq = data;
533

534
	rq->q->softirq_done_fn(rq);
535 536
}

537
static void __blk_mq_complete_request(struct request *rq)
538 539
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
540
	bool shared = false;
541 542
	int cpu;

543
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
T
Tejun Heo 已提交
544
	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
545

546 547 548 549 550 551 552
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
553
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
554 555 556
		rq->q->softirq_done_fn(rq);
		return;
	}
557 558

	cpu = get_cpu();
C
Christoph Hellwig 已提交
559 560 561 562
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
563
		rq->csd.func = __blk_mq_complete_request_remote;
564 565
		rq->csd.info = rq;
		rq->csd.flags = 0;
566
		smp_call_function_single_async(ctx->cpu, &rq->csd);
567
	} else {
568
		rq->q->softirq_done_fn(rq);
569
	}
570 571
	put_cpu();
}
572

573
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
574
	__releases(hctx->srcu)
575 576 577 578
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
579
		srcu_read_unlock(hctx->srcu, srcu_idx);
580 581 582
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
583
	__acquires(hctx->srcu)
584
{
585 586 587
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
588
		rcu_read_lock();
589
	} else
590
		*srcu_idx = srcu_read_lock(hctx->srcu);
591 592
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
{
	unsigned long flags;

	/*
	 * blk_mq_rq_aborted_gstate() is used from the completion path and
	 * can thus be called from irq context.  u64_stats_fetch in the
	 * middle of update on the same CPU leads to lockup.  Disable irq
	 * while updating.
	 */
	local_irq_save(flags);
	u64_stats_update_begin(&rq->aborted_gstate_sync);
	rq->aborted_gstate = gstate;
	u64_stats_update_end(&rq->aborted_gstate_sync);
	local_irq_restore(flags);
}

static u64 blk_mq_rq_aborted_gstate(struct request *rq)
{
	unsigned int start;
	u64 aborted_gstate;

	do {
		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
		aborted_gstate = rq->aborted_gstate;
	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));

	return aborted_gstate;
}

623 624 625 626 627 628 629 630
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
631
void blk_mq_complete_request(struct request *rq)
632
{
633
	struct request_queue *q = rq->q;
634 635
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
636 637

	if (unlikely(blk_should_fake_timeout(q)))
638
		return;
639

640 641 642 643 644 645 646 647 648 649 650
	/*
	 * If @rq->aborted_gstate equals the current instance, timeout is
	 * claiming @rq and we lost.  This is synchronized through
	 * hctx_lock().  See blk_mq_timeout_work() for details.
	 *
	 * Completion path never blocks and we can directly use RCU here
	 * instead of hctx_lock() which can be either RCU or SRCU.
	 * However, that would complicate paths which want to synchronize
	 * against us.  Let stay in sync with the issue path so that
	 * hctx_lock() covers both issue and completion paths.
	 */
651
	hctx_lock(hctx, &srcu_idx);
652
	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
653
		__blk_mq_complete_request(rq);
654
	hctx_unlock(hctx, srcu_idx);
655 656
}
EXPORT_SYMBOL(blk_mq_complete_request);
657

658 659
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
660
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
661 662 663
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

664
void blk_mq_start_request(struct request *rq)
665 666 667
{
	struct request_queue *q = rq->q;

668 669
	blk_mq_sched_started_request(rq);

670 671
	trace_block_rq_issue(q, rq);

672
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
673 674 675 676
		rq->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		rq->throtl_size = blk_rq_sectors(rq);
#endif
677
		rq->rq_flags |= RQF_STATS;
678
		wbt_issue(q->rq_wb, rq);
679 680
	}

681
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
682

683
	/*
684 685 686 687
	 * Mark @rq in-flight which also advances the generation number,
	 * and register for timeout.  Protect with a seqcount to allow the
	 * timeout path to read both @rq->gstate and @rq->deadline
	 * coherently.
688
	 *
689 690 691 692
	 * This is the only place where a request is marked in-flight.  If
	 * the timeout path reads an in-flight @rq->gstate, the
	 * @rq->deadline it reads together under @rq->gstate_seq is
	 * guaranteed to be the matching one.
693
	 */
694 695 696 697 698 699 700 701
	preempt_disable();
	write_seqcount_begin(&rq->gstate_seq);

	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
	blk_add_timer(rq);

	write_seqcount_end(&rq->gstate_seq);
	preempt_enable();
702 703 704 705 706 707 708 709 710

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
711
}
712
EXPORT_SYMBOL(blk_mq_start_request);
713

714
/*
T
Tejun Heo 已提交
715 716 717
 * When we reach here because queue is busy, it's safe to change the state
 * to IDLE without checking @rq->aborted_gstate because we should still be
 * holding the RCU read lock and thus protected against timeout.
718
 */
719
static void __blk_mq_requeue_request(struct request *rq)
720 721 722
{
	struct request_queue *q = rq->q;

723 724
	blk_mq_put_driver_tag(rq);

725
	trace_block_rq_requeue(q, rq);
726
	wbt_requeue(q->rq_wb, rq);
727

T
Tejun Heo 已提交
728
	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
729
		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
730 731 732
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
733 734
}

735
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
736 737 738
{
	__blk_mq_requeue_request(rq);

739 740 741
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

742
	BUG_ON(blk_queued_rq(rq));
743
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
744 745 746
}
EXPORT_SYMBOL(blk_mq_requeue_request);

747 748 749
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
750
		container_of(work, struct request_queue, requeue_work.work);
751 752 753
	LIST_HEAD(rq_list);
	struct request *rq, *next;

754
	spin_lock_irq(&q->requeue_lock);
755
	list_splice_init(&q->requeue_list, &rq_list);
756
	spin_unlock_irq(&q->requeue_lock);
757 758

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
759
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
760 761
			continue;

762
		rq->rq_flags &= ~RQF_SOFTBARRIER;
763
		list_del_init(&rq->queuelist);
764
		blk_mq_sched_insert_request(rq, true, false, false);
765 766 767 768 769
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
770
		blk_mq_sched_insert_request(rq, false, false, false);
771 772
	}

773
	blk_mq_run_hw_queues(q, false);
774 775
}

776 777
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
778 779 780 781 782 783
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
784
	 * request head insertion from the workqueue.
785
	 */
786
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
787 788 789

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
790
		rq->rq_flags |= RQF_SOFTBARRIER;
791 792 793 794 795
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
796 797 798

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
799 800 801 802 803
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
804
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
805 806 807
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

808 809 810
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
811 812
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
813 814 815
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

816 817
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
818 819
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
820
		return tags->rqs[tag];
821
	}
822 823

	return NULL;
824 825 826
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

827
struct blk_mq_timeout_data {
828 829
	unsigned long next;
	unsigned int next_set;
830
	unsigned int nr_expired;
831 832
};

833
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
834
{
J
Jens Axboe 已提交
835
	const struct blk_mq_ops *ops = req->q->mq_ops;
836
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
837

838
	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
839

840
	if (ops->timeout)
841
		ret = ops->timeout(req, reserved);
842 843 844 845 846 847

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
848 849 850 851 852 853
		/*
		 * As nothing prevents from completion happening while
		 * ->aborted_gstate is set, this may lead to ignored
		 * completions and further spurious timeouts.
		 */
		blk_mq_rq_update_aborted_gstate(req, 0);
854 855 856 857 858 859 860 861
		blk_add_timer(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
862
}
863

864 865 866 867
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
868 869
	unsigned long gstate, deadline;
	int start;
870

871
	might_sleep();
872

T
Tejun Heo 已提交
873
	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
874
		return;
875

876 877 878 879
	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
	while (true) {
		start = read_seqcount_begin(&rq->gstate_seq);
		gstate = READ_ONCE(rq->gstate);
880
		deadline = blk_rq_deadline(rq);
881 882 883 884
		if (!read_seqcount_retry(&rq->gstate_seq, start))
			break;
		cond_resched();
	}
885

886 887 888 889 890 891
	/* if in-flight && overdue, mark for abortion */
	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
	    time_after_eq(jiffies, deadline)) {
		blk_mq_rq_update_aborted_gstate(rq, gstate);
		data->nr_expired++;
		hctx->nr_expired++;
892 893
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
894 895
		data->next_set = 1;
	}
896 897
}

898 899 900 901 902 903 904 905 906 907
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	/*
	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
	 * completions that we lost to, they would have finished and
	 * updated @rq->gstate by now; otherwise, the completion path is
	 * now guaranteed to see @rq->aborted_gstate and yield.  If
	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
	 */
908 909
	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
910 911 912
		blk_mq_rq_timed_out(rq, reserved);
}

913
static void blk_mq_timeout_work(struct work_struct *work)
914
{
915 916
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
917 918 919
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
920
		.nr_expired	= 0,
921
	};
922
	struct blk_mq_hw_ctx *hctx;
923
	int i;
924

925 926 927 928 929 930 931 932 933
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
934
	 * blk_freeze_queue_start, and the moment the last request is
935 936 937 938
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
939 940
		return;

941
	/* scan for the expired ones and set their ->aborted_gstate */
942
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
943

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	if (data.nr_expired) {
		bool has_rcu = false;

		/*
		 * Wait till everyone sees ->aborted_gstate.  The
		 * sequential waits for SRCUs aren't ideal.  If this ever
		 * becomes a problem, we can add per-hw_ctx rcu_head and
		 * wait in parallel.
		 */
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->nr_expired)
				continue;

			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
				has_rcu = true;
			else
960
				synchronize_srcu(hctx->srcu);
961 962 963 964 965 966 967 968 969 970

			hctx->nr_expired = 0;
		}
		if (has_rcu)
			synchronize_rcu();

		/* terminate the ones we won */
		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
	}

971 972 973
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
974
	} else {
975 976 977 978 979 980
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
981 982 983 984 985
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
986
	}
987
	blk_queue_exit(q);
988 989
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
1003
	sbitmap_clear_bit(sb, bitnr);
1004 1005 1006 1007
	spin_unlock(&ctx->lock);
	return true;
}

1008 1009 1010 1011
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1012
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1013
{
1014 1015 1016 1017
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1018

1019
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1020
}
1021
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1022

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1062 1063 1064 1065
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1066

1067
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1068 1069
}

1070 1071
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
1072 1073 1074 1075 1076 1077 1078
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

1079 1080
	might_sleep_if(wait);

1081 1082
	if (rq->tag != -1)
		goto done;
1083

1084 1085 1086
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1087 1088
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1089 1090 1091 1092
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1093 1094 1095
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1096 1097 1098 1099
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1100 1101
}

1102 1103
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1104 1105 1106 1107 1108
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1109
	list_del_init(&wait->entry);
1110 1111 1112 1113
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1114 1115
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1116 1117
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1118 1119 1120 1121
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1122
{
1123
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1124
	struct sbq_wait_state *ws;
1125 1126
	wait_queue_entry_t *wait;
	bool ret;
1127

1128
	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1129 1130 1131
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);

1132 1133 1134 1135 1136 1137 1138 1139 1140
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return blk_mq_get_driver_tag(rq, hctx, false);
1141 1142
	}

1143 1144 1145 1146 1147 1148 1149 1150
	wait = &this_hctx->dispatch_wait;
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
1151 1152
	}

1153 1154 1155
	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1156
	/*
1157 1158 1159
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1160
	 */
1161
	ret = blk_mq_get_driver_tag(rq, hctx, false);
1162
	if (!ret) {
1163
		spin_unlock(&this_hctx->lock);
1164
		return false;
1165
	}
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);

	return true;
1177 1178
}

1179 1180
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1181
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1182
			     bool got_budget)
1183
{
1184
	struct blk_mq_hw_ctx *hctx;
1185
	struct request *rq, *nxt;
1186
	bool no_tag = false;
1187
	int errors, queued;
1188
	blk_status_t ret = BLK_STS_OK;
1189

1190 1191 1192
	if (list_empty(list))
		return false;

1193 1194
	WARN_ON(!list_is_singular(list) && got_budget);

1195 1196 1197
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1198
	errors = queued = 0;
1199
	do {
1200
		struct blk_mq_queue_data bd;
1201

1202
		rq = list_first_entry(list, struct request, queuelist);
1203 1204 1205 1206 1207 1208

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1209
			/*
1210
			 * The initial allocation attempt failed, so we need to
1211 1212 1213 1214
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1215
			 */
1216
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1217
				blk_mq_put_dispatch_budget(hctx);
1218 1219 1220 1221 1222 1223
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1224 1225 1226 1227
				break;
			}
		}

1228 1229
		list_del_init(&rq->queuelist);

1230
		bd.rq = rq;
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1242 1243

		ret = q->mq_ops->queue_rq(hctx, &bd);
1244
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1245 1246
			/*
			 * If an I/O scheduler has been configured and we got a
1247 1248
			 * driver tag for the next request already, free it
			 * again.
1249 1250 1251 1252 1253
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1254
			list_add(&rq->queuelist, list);
1255
			__blk_mq_requeue_request(rq);
1256
			break;
1257 1258 1259
		}

		if (unlikely(ret != BLK_STS_OK)) {
1260
			errors++;
1261
			blk_mq_end_request(rq, BLK_STS_IOERR);
1262
			continue;
1263 1264
		}

1265
		queued++;
1266
	} while (!list_empty(list));
1267

1268
	hctx->dispatched[queued_to_index(queued)]++;
1269 1270 1271 1272 1273

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1274
	if (!list_empty(list)) {
1275 1276
		bool needs_restart;

1277
		spin_lock(&hctx->lock);
1278
		list_splice_init(list, &hctx->dispatch);
1279
		spin_unlock(&hctx->lock);
1280

1281
		/*
1282 1283 1284
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1285
		 *
1286 1287 1288 1289
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1290
		 *
1291 1292 1293 1294 1295 1296 1297
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1298
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1299
		 *   and dm-rq.
1300 1301 1302 1303
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1304
		 */
1305 1306
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1307
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1308
			blk_mq_run_hw_queue(hctx, true);
1309 1310
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1311
	}
1312

1313
	return (queued + errors) != 0;
1314 1315
}

1316 1317 1318 1319
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1320 1321 1322
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1336
	 */
1337 1338 1339 1340 1341 1342 1343
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1344

1345 1346 1347 1348 1349 1350
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1351
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1352

1353 1354 1355
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1356 1357
}

1358 1359 1360 1361 1362 1363 1364 1365 1366
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1367 1368 1369 1370 1371 1372 1373 1374
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1375
	bool tried = false;
1376
	int next_cpu = hctx->next_cpu;
1377

1378 1379
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1380 1381

	if (--hctx->next_cpu_batch <= 0) {
1382
select_cpu:
1383
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1384
				cpu_online_mask);
1385
		if (next_cpu >= nr_cpu_ids)
1386
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1387 1388 1389
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1390 1391 1392 1393
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1394
	if (!cpu_online(next_cpu)) {
1395 1396 1397 1398 1399 1400 1401 1402 1403
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1404
		hctx->next_cpu = next_cpu;
1405 1406 1407
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1408 1409 1410

	hctx->next_cpu = next_cpu;
	return next_cpu;
1411 1412
}

1413 1414
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1415
{
1416
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1417 1418
		return;

1419
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1420 1421
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1422
			__blk_mq_run_hw_queue(hctx);
1423
			put_cpu();
1424 1425
			return;
		}
1426

1427
		put_cpu();
1428
	}
1429

1430 1431
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1432 1433 1434 1435 1436 1437 1438 1439
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1440
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1441
{
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1453 1454 1455 1456
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1457 1458

	if (need_run) {
1459 1460 1461 1462 1463
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1464
}
O
Omar Sandoval 已提交
1465
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1466

1467
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1468 1469 1470 1471 1472
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1473
		if (blk_mq_hctx_stopped(hctx))
1474 1475
			continue;

1476
		blk_mq_run_hw_queue(hctx, async);
1477 1478
	}
}
1479
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1501 1502 1503
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1504
 * BLK_STS_RESOURCE is usually returned.
1505 1506 1507 1508 1509
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1510 1511
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1512
	cancel_delayed_work(&hctx->run_work);
1513

1514
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1515
}
1516
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1517

1518 1519 1520
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1521
 * BLK_STS_RESOURCE is usually returned.
1522 1523 1524 1525 1526
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1527 1528
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1529 1530 1531 1532 1533
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1534 1535 1536
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1537 1538 1539
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1540

1541
	blk_mq_run_hw_queue(hctx, false);
1542 1543 1544
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1565
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1566 1567 1568 1569
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1570 1571
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1572 1573 1574
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1575
static void blk_mq_run_work_fn(struct work_struct *work)
1576 1577 1578
{
	struct blk_mq_hw_ctx *hctx;

1579
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1580

1581
	/*
M
Ming Lei 已提交
1582
	 * If we are stopped, don't run the queue.
1583
	 */
M
Ming Lei 已提交
1584
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1585
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1586 1587 1588 1589

	__blk_mq_run_hw_queue(hctx);
}

1590 1591 1592
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1593
{
J
Jens Axboe 已提交
1594 1595
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1596 1597
	lockdep_assert_held(&ctx->lock);

1598 1599
	trace_block_rq_insert(hctx->queue, rq);

1600 1601 1602 1603
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1604
}
1605

1606 1607
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1608 1609 1610
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1611 1612
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1613
	__blk_mq_insert_req_list(hctx, rq, at_head);
1614 1615 1616
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1617 1618 1619 1620
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1621
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1622 1623 1624 1625 1626 1627 1628 1629
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1630 1631
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1632 1633
}

1634 1635
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1647
		BUG_ON(rq->mq_ctx != ctx);
1648
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1649
		__blk_mq_insert_req_list(hctx, rq, false);
1650
	}
1651
	blk_mq_hctx_mark_pending(hctx, ctx);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1688 1689 1690 1691
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1708 1709 1710
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1711 1712 1713 1714 1715
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1716
	blk_init_request_from_bio(rq, bio);
1717

S
Shaohua Li 已提交
1718 1719
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1720
	blk_account_io_start(rq, true);
1721 1722
}

1723 1724 1725 1726 1727 1728 1729
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1730
}
1731

1732 1733
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1734 1735 1736 1737
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1738 1739
}

1740 1741 1742
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1743 1744 1745 1746
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1747
		.last = true,
1748
	};
1749
	blk_qc_t new_cookie;
1750
	blk_status_t ret;
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1765
	case BLK_STS_DEV_RESOURCE:
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
		__blk_mq_requeue_request(rq);
		break;
	default:
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1778 1779
						blk_qc_t *cookie,
						bool bypass_insert)
1780 1781
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1782 1783
	bool run_queue = true;

1784 1785 1786 1787
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1788
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1789 1790
	 * and avoid driver to try to dispatch again.
	 */
1791
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1792
		run_queue = false;
1793
		bypass_insert = false;
M
Ming Lei 已提交
1794 1795
		goto insert;
	}
1796

1797
	if (q->elevator && !bypass_insert)
1798 1799
		goto insert;

1800
	if (!blk_mq_get_dispatch_budget(hctx))
1801 1802
		goto insert;

1803 1804
	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
		blk_mq_put_dispatch_budget(hctx);
1805
		goto insert;
1806
	}
1807

1808
	return __blk_mq_issue_directly(hctx, rq, cookie);
1809
insert:
1810 1811
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1812

1813
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1814
	return BLK_STS_OK;
1815 1816
}

1817 1818 1819
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1820
	blk_status_t ret;
1821
	int srcu_idx;
1822

1823
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1824

1825
	hctx_lock(hctx, &srcu_idx);
1826

1827
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1828
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1829
		blk_mq_sched_insert_request(rq, false, true, false);
1830 1831 1832
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1833
	hctx_unlock(hctx, srcu_idx);
1834 1835
}

1836
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1849 1850
}

1851
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1852
{
1853
	const int is_sync = op_is_sync(bio->bi_opf);
1854
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1855
	struct blk_mq_alloc_data data = { .flags = 0 };
1856
	struct request *rq;
1857
	unsigned int request_count = 0;
1858
	struct blk_plug *plug;
1859
	struct request *same_queue_rq = NULL;
1860
	blk_qc_t cookie;
J
Jens Axboe 已提交
1861
	unsigned int wb_acct;
1862 1863 1864

	blk_queue_bounce(q, &bio);

1865
	blk_queue_split(q, &bio);
1866

1867
	if (!bio_integrity_prep(bio))
1868
		return BLK_QC_T_NONE;
1869

1870 1871 1872
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1873

1874 1875 1876
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1877 1878
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1879 1880
	trace_block_getrq(q, bio, bio->bi_opf);

1881
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1882 1883
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1884 1885
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1886
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1887 1888
	}

1889
	wbt_track(rq, wb_acct);
1890

1891
	cookie = request_to_qc_t(data.hctx, rq);
1892

1893
	plug = current->plug;
1894
	if (unlikely(is_flush_fua)) {
1895
		blk_mq_put_ctx(data.ctx);
1896
		blk_mq_bio_to_request(rq, bio);
1897 1898 1899 1900

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1901
	} else if (plug && q->nr_hw_queues == 1) {
1902 1903
		struct request *last = NULL;

1904
		blk_mq_put_ctx(data.ctx);
1905
		blk_mq_bio_to_request(rq, bio);
1906 1907 1908 1909 1910 1911 1912

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1913 1914 1915
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1916
		if (!request_count)
1917
			trace_block_plug(q);
1918 1919
		else
			last = list_entry_rq(plug->mq_list.prev);
1920

1921 1922
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1923 1924
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1925
		}
1926

1927
		list_add_tail(&rq->queuelist, &plug->mq_list);
1928
	} else if (plug && !blk_queue_nomerges(q)) {
1929
		blk_mq_bio_to_request(rq, bio);
1930 1931

		/*
1932
		 * We do limited plugging. If the bio can be merged, do that.
1933 1934
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1935 1936
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1937
		 */
1938 1939 1940 1941 1942 1943
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1944 1945
		blk_mq_put_ctx(data.ctx);

1946 1947 1948
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1949 1950
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1951
		}
1952
	} else if (q->nr_hw_queues > 1 && is_sync) {
1953
		blk_mq_put_ctx(data.ctx);
1954 1955
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1956
	} else if (q->elevator) {
1957
		blk_mq_put_ctx(data.ctx);
1958
		blk_mq_bio_to_request(rq, bio);
1959
		blk_mq_sched_insert_request(rq, false, true, true);
1960
	} else {
1961
		blk_mq_put_ctx(data.ctx);
1962 1963
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1964
		blk_mq_run_hw_queue(data.hctx, true);
1965
	}
1966

1967
	return cookie;
1968 1969
}

1970 1971
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1972
{
1973
	struct page *page;
1974

1975
	if (tags->rqs && set->ops->exit_request) {
1976
		int i;
1977

1978
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1979 1980 1981
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1982
				continue;
1983
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1984
			tags->static_rqs[i] = NULL;
1985
		}
1986 1987
	}

1988 1989
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1990
		list_del_init(&page->lru);
1991 1992 1993 1994 1995
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1996 1997
		__free_pages(page, page->private);
	}
1998
}
1999

2000 2001
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
2002
	kfree(tags->rqs);
2003
	tags->rqs = NULL;
J
Jens Axboe 已提交
2004 2005
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2006

2007
	blk_mq_free_tags(tags);
2008 2009
}

2010 2011 2012 2013
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
2014
{
2015
	struct blk_mq_tags *tags;
2016
	int node;
2017

2018 2019 2020 2021 2022
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2023
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2024 2025
	if (!tags)
		return NULL;
2026

2027
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2028
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2029
				 node);
2030 2031 2032 2033
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2034

J
Jens Axboe 已提交
2035 2036
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2037
				 node);
J
Jens Axboe 已提交
2038 2039 2040 2041 2042 2043
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2044 2045 2046 2047 2048 2049 2050 2051
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

	seqcount_init(&rq->gstate_seq);
	u64_stats_init(&rq->aborted_gstate_sync);
2065 2066 2067 2068 2069 2070 2071
	/*
	 * start gstate with gen 1 instead of 0, otherwise it will be equal
	 * to aborted_gstate, and be identified timed out by
	 * blk_mq_terminate_expired.
	 */
	WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);

2072 2073 2074
	return 0;
}

2075 2076 2077 2078 2079
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2080 2081 2082 2083 2084
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2085 2086 2087

	INIT_LIST_HEAD(&tags->page_list);

2088 2089 2090 2091
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2092
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2093
				cache_line_size());
2094
	left = rq_size * depth;
2095

2096
	for (i = 0; i < depth; ) {
2097 2098 2099 2100 2101
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2102
		while (this_order && left < order_to_size(this_order - 1))
2103 2104 2105
			this_order--;

		do {
2106
			page = alloc_pages_node(node,
2107
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2108
				this_order);
2109 2110 2111 2112 2113 2114 2115 2116 2117
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2118
			goto fail;
2119 2120

		page->private = this_order;
2121
		list_add_tail(&page->lru, &tags->page_list);
2122 2123

		p = page_address(page);
2124 2125 2126 2127
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2128
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2129
		entries_per_page = order_to_size(this_order) / rq_size;
2130
		to_do = min(entries_per_page, depth - i);
2131 2132
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2133 2134 2135
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2136 2137 2138
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2139 2140
			}

2141 2142 2143 2144
			p += rq_size;
			i++;
		}
	}
2145
	return 0;
2146

2147
fail:
2148 2149
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2150 2151
}

J
Jens Axboe 已提交
2152 2153 2154 2155 2156
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2157
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2158
{
2159
	struct blk_mq_hw_ctx *hctx;
2160 2161 2162
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2163
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2164
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2165 2166 2167 2168 2169 2170 2171 2172 2173

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2174
		return 0;
2175

J
Jens Axboe 已提交
2176 2177 2178
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2179 2180

	blk_mq_run_hw_queue(hctx, true);
2181
	return 0;
2182 2183
}

2184
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2185
{
2186 2187
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2188 2189
}

2190
/* hctx->ctxs will be freed in queue's release handler */
2191 2192 2193 2194
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2195 2196
	blk_mq_debugfs_unregister_hctx(hctx);

2197 2198
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2199

2200
	if (set->ops->exit_request)
2201
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2202

2203 2204
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2205 2206 2207
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2208
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2209
		cleanup_srcu_struct(hctx->srcu);
2210

2211
	blk_mq_remove_cpuhp(hctx);
2212
	blk_free_flush_queue(hctx->fq);
2213
	sbitmap_free(&hctx->ctx_map);
2214 2215
}

M
Ming Lei 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2225
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2226 2227 2228
	}
}

2229 2230 2231
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2232
{
2233 2234 2235 2236 2237 2238
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2239
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2240 2241 2242
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2243
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2244

2245
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2246 2247

	hctx->tags = set->tags[hctx_idx];
2248 2249

	/*
2250 2251
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2252
	 */
2253
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2254 2255 2256
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2257

2258 2259
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2260
		goto free_ctxs;
2261

2262
	hctx->nr_ctx = 0;
2263

2264 2265 2266
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2267 2268 2269
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2270

2271 2272 2273
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2274 2275
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2276
		goto sched_exit_hctx;
2277

2278
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2279
		goto free_fq;
2280

2281
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2282
		init_srcu_struct(hctx->srcu);
2283

2284 2285
	blk_mq_debugfs_register_hctx(q, hctx);

2286
	return 0;
2287

2288 2289
 free_fq:
	kfree(hctx->fq);
2290 2291
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2292 2293 2294
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2295
 free_bitmap:
2296
	sbitmap_free(&hctx->ctx_map);
2297 2298 2299
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2300
	blk_mq_remove_cpuhp(hctx);
2301 2302
	return -1;
}
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2322
		hctx = blk_mq_map_queue(q, i);
2323
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2324
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2325 2326 2327
	}
}

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2350 2351 2352 2353 2354
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2355 2356
}

2357
static void blk_mq_map_swqueue(struct request_queue *q)
2358
{
2359
	unsigned int i, hctx_idx;
2360 2361
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2362
	struct blk_mq_tag_set *set = q->tag_set;
2363

2364 2365 2366 2367 2368
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2369
	queue_for_each_hw_ctx(q, hctx, i) {
2370
		cpumask_clear(hctx->cpumask);
2371 2372 2373 2374
		hctx->nr_ctx = 0;
	}

	/*
2375
	 * Map software to hardware queues.
2376 2377
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2378
	 */
2379
	for_each_possible_cpu(i) {
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			q->mq_map[i] = 0;
		}

2393
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2394
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2395

2396
		cpumask_set_cpu(i, hctx->cpumask);
2397 2398 2399
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2400

2401 2402
	mutex_unlock(&q->sysfs_lock);

2403
	queue_for_each_hw_ctx(q, hctx, i) {
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2419

M
Ming Lei 已提交
2420 2421 2422
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2423 2424 2425 2426 2427
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2428
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2429

2430 2431 2432
		/*
		 * Initialize batch roundrobin counts
		 */
2433
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2434 2435
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2436 2437
}

2438 2439 2440 2441
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2442
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2443 2444 2445 2446
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2447
	queue_for_each_hw_ctx(q, hctx, i) {
2448 2449 2450
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2451
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2452 2453 2454
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2455
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2456
		}
2457 2458 2459
	}
}

2460 2461
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2462 2463
{
	struct request_queue *q;
2464

2465 2466
	lockdep_assert_held(&set->tag_list_lock);

2467 2468
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2469
		queue_set_hctx_shared(q, shared);
2470 2471 2472 2473 2474 2475 2476 2477 2478
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2479 2480
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2481 2482 2483 2484 2485 2486
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2487
	mutex_unlock(&set->tag_list_lock);
2488 2489

	synchronize_rcu();
2490 2491 2492 2493 2494 2495 2496 2497
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2498

2499 2500 2501 2502 2503
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2504 2505 2506 2507 2508 2509
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2510
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2511

2512 2513 2514
	mutex_unlock(&set->tag_list_lock);
}

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2527 2528 2529
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2530
		kobject_put(&hctx->kobj);
2531
	}
2532

2533 2534
	q->mq_map = NULL;

2535 2536
	kfree(q->queue_hw_ctx);

2537 2538 2539 2540 2541 2542
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2543 2544 2545
	free_percpu(q->queue_ctx);
}

2546
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2547 2548 2549
{
	struct request_queue *uninit_q, *q;

2550
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2562 2563 2564 2565
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2566
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2567 2568 2569 2570 2571 2572 2573 2574 2575
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2576 2577
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2578
{
K
Keith Busch 已提交
2579 2580
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2581

K
Keith Busch 已提交
2582
	blk_mq_sysfs_unregister(q);
2583 2584 2585

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2586
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2587
		int node;
2588

K
Keith Busch 已提交
2589 2590 2591 2592
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2593
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2594
					GFP_KERNEL, node);
2595
		if (!hctxs[i])
K
Keith Busch 已提交
2596
			break;
2597

2598
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2599 2600 2601 2602 2603
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2604

2605
		atomic_set(&hctxs[i]->nr_active, 0);
2606
		hctxs[i]->numa_node = node;
2607
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2608 2609 2610 2611 2612 2613 2614 2615

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2616
	}
K
Keith Busch 已提交
2617 2618 2619 2620
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2621 2622
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2623 2624 2625 2626 2627 2628 2629
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2630
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2631 2632 2633 2634 2635 2636
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2637 2638 2639
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2640
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2641 2642
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2643 2644 2645
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2646 2647
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2648
		goto err_exit;
K
Keith Busch 已提交
2649

2650 2651 2652
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2653 2654 2655 2656 2657
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2658
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2659 2660 2661 2662

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2663

2664
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2665
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2666 2667 2668

	q->nr_queues = nr_cpu_ids;

2669
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2670

2671
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2672
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2673

2674 2675
	q->sg_reserved_size = INT_MAX;

2676
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2677 2678 2679
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2680
	blk_queue_make_request(q, blk_mq_make_request);
2681 2682
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2683

2684 2685 2686 2687 2688
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2689 2690 2691 2692 2693
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2694 2695
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2696

2697
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2698
	blk_mq_add_queue_tag_set(set, q);
2699
	blk_mq_map_swqueue(q);
2700

2701 2702 2703 2704 2705 2706 2707 2708
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2709
	return q;
2710

2711
err_hctxs:
K
Keith Busch 已提交
2712
	kfree(q->queue_hw_ctx);
2713
err_percpu:
K
Keith Busch 已提交
2714
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2715 2716
err_exit:
	q->mq_ops = NULL;
2717 2718
	return ERR_PTR(-ENOMEM);
}
2719
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2720 2721 2722

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2723
	struct blk_mq_tag_set	*set = q->tag_set;
2724

2725
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2726
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2727 2728 2729
}

/* Basically redo blk_mq_init_queue with queue frozen */
2730
static void blk_mq_queue_reinit(struct request_queue *q)
2731
{
2732
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2733

2734
	blk_mq_debugfs_unregister_hctxs(q);
2735 2736
	blk_mq_sysfs_unregister(q);

2737 2738
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2739 2740
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2741
	 */
2742
	blk_mq_map_swqueue(q);
2743

2744
	blk_mq_sysfs_register(q);
2745
	blk_mq_debugfs_register_hctxs(q);
2746 2747
}

2748 2749 2750 2751
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2752 2753
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2754 2755 2756 2757 2758 2759
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2760
		blk_mq_free_rq_map(set->tags[i]);
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2800 2801
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2821
		return set->ops->map_queues(set);
2822
	} else
2823 2824 2825
		return blk_mq_map_queues(set);
}

2826 2827 2828 2829 2830 2831
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2832 2833
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2834 2835
	int ret;

B
Bart Van Assche 已提交
2836 2837
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2838 2839
	if (!set->nr_hw_queues)
		return -EINVAL;
2840
	if (!set->queue_depth)
2841 2842 2843 2844
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2845
	if (!set->ops->queue_rq)
2846 2847
		return -EINVAL;

2848 2849 2850
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2851 2852 2853 2854 2855
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2856

2857 2858 2859 2860 2861 2862 2863 2864 2865
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2866 2867 2868 2869 2870
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2871

K
Keith Busch 已提交
2872
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2873 2874
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2875
		return -ENOMEM;
2876

2877 2878 2879
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2880 2881 2882
	if (!set->mq_map)
		goto out_free_tags;

2883
	ret = blk_mq_update_queue_map(set);
2884 2885 2886 2887 2888
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2889
		goto out_free_mq_map;
2890

2891 2892 2893
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2894
	return 0;
2895 2896 2897 2898 2899

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2900 2901
	kfree(set->tags);
	set->tags = NULL;
2902
	return ret;
2903 2904 2905 2906 2907 2908 2909
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2910 2911
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2912

2913 2914 2915
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2916
	kfree(set->tags);
2917
	set->tags = NULL;
2918 2919 2920
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2921 2922 2923 2924 2925 2926
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2927
	if (!set)
2928 2929
		return -EINVAL;

2930
	blk_mq_freeze_queue(q);
2931
	blk_mq_quiesce_queue(q);
2932

2933 2934
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2935 2936
		if (!hctx->tags)
			continue;
2937 2938 2939 2940
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2941
		if (!hctx->sched_tags) {
2942
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2943 2944 2945 2946 2947
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2948 2949 2950 2951 2952 2953 2954
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2955
	blk_mq_unquiesce_queue(q);
2956 2957
	blk_mq_unfreeze_queue(q);

2958 2959 2960
	return ret;
}

2961 2962
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2963 2964 2965
{
	struct request_queue *q;

2966 2967
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2977
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2978 2979
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2980
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2981 2982 2983 2984 2985
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2986 2987 2988 2989 2990 2991 2992

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2993 2994
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2995 2996 2997 2998
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2999
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3021
	int bucket;
3022

3023 3024 3025 3026
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3027 3028
}

3029 3030 3031 3032 3033
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3034
	int bucket;
3035 3036 3037 3038 3039

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3040
	if (!blk_poll_stats_enable(q))
3041 3042 3043 3044 3045 3046 3047 3048
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3049 3050
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3051
	 */
3052 3053 3054 3055 3056 3057
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3058 3059 3060 3061

	return ret;
}

3062
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3063
				     struct blk_mq_hw_ctx *hctx,
3064 3065 3066 3067
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3068
	unsigned int nsecs;
3069 3070
	ktime_t kt;

J
Jens Axboe 已提交
3071
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3089 3090
		return false;

J
Jens Axboe 已提交
3091
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3092 3093 3094 3095 3096

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3097
	kt = nsecs;
3098 3099 3100 3101 3102 3103 3104

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3105
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3120 3121 3122 3123 3124
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3125 3126 3127 3128 3129 3130 3131
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3132
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3133 3134
		return true;

J
Jens Axboe 已提交
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3160
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3161 3162 3163
	return false;
}

3164
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3165 3166 3167 3168
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3169
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3170 3171 3172
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3173 3174
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3175
	else {
3176
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3177 3178 3179 3180 3181 3182 3183 3184 3185
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3186 3187 3188 3189

	return __blk_mq_poll(hctx, rq);
}

3190 3191
static int __init blk_mq_init(void)
{
3192 3193
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3194 3195 3196
	return 0;
}
subsys_initcall(blk_mq_init);