blk-mq.c 69.3 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46

47 48 49 50
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
51
	ddir = rq_data_dir(rq);
52 53 54 55 56 57 58 59 60 61 62 63
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

64 65 66
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
67
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68
{
69 70 71
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
72 73
}

74 75 76 77 78 79
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
80 81
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 83 84 85 86
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
87
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 89
}

90
void blk_freeze_queue_start(struct request_queue *q)
91
{
92
	int freeze_depth;
93

94 95
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
96
		percpu_ref_kill(&q->q_usage_counter);
97
		blk_mq_run_hw_queues(q, false);
98
	}
99
}
100
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101

102
void blk_mq_freeze_queue_wait(struct request_queue *q)
103
{
104
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105
}
106
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107

108 109 110 111 112 113 114 115
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116

117 118 119 120
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
121
void blk_freeze_queue(struct request_queue *q)
122
{
123 124 125 126 127 128 129
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
130
	blk_freeze_queue_start(q);
131 132
	blk_mq_freeze_queue_wait(q);
}
133 134 135 136 137 138 139 140 141

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
142
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143

144
void blk_mq_unfreeze_queue(struct request_queue *q)
145
{
146
	int freeze_depth;
147

148 149 150
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
151
		percpu_ref_reinit(&q->q_usage_counter);
152
		wake_up_all(&q->mq_freeze_wq);
153
	}
154
}
155
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

171
	__blk_mq_stop_hw_queues(q, true);
172 173 174 175 176 177 178 179 180 181 182 183

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

184 185 186 187 188 189 190 191
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
192 193 194 195 196 197 198

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
199 200
}

201 202 203 204 205 206
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

207 208
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
209
{
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

226 227
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
228 229
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
230
	rq->cmd_flags = op;
231
	if (blk_queue_io_stat(data->q))
232
		rq->rq_flags |= RQF_IO_STAT;
233 234 235 236 237 238
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
239
	rq->start_time = jiffies;
240 241
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
242
	set_start_time_ns(rq);
243 244 245 246 247 248 249 250 251 252 253
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
254 255
	rq->timeout = 0;

256 257 258 259
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

260 261
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
262 263
}

264 265 266 267 268 269
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
270
	unsigned int tag;
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
		data->ctx = blk_mq_get_ctx(q);
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
286 287
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
288 289
	}

290 291
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
292 293
		blk_queue_exit(q);
		return NULL;
294 295
	}

296
	rq = blk_mq_rq_ctx_init(data, tag, op);
297 298
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
299
		if (e && e->type->ops.mq.prepare_request) {
300 301 302
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

303 304
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
305
		}
306 307 308
	}
	data->hctx->queued++;
	return rq;
309 310
}

311 312
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
313
{
314
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
315
	struct request *rq;
316
	int ret;
317

318
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
319 320
	if (ret)
		return ERR_PTR(ret);
321

322
	rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
323

324 325 326 327
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
328
		return ERR_PTR(-EWOULDBLOCK);
329 330 331 332

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
333 334
	return rq;
}
335
EXPORT_SYMBOL(blk_mq_alloc_request);
336

M
Ming Lin 已提交
337 338 339
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
340
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
341
	struct request *rq;
342
	unsigned int cpu;
M
Ming Lin 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

361 362 363 364
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
365 366 367 368
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
369
	}
370 371
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
372

373
	rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
374 375

	blk_queue_exit(q);
376 377 378 379 380

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
381 382 383
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

384
void blk_mq_free_request(struct request *rq)
385 386
{
	struct request_queue *q = rq->q;
387 388 389 390 391
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

392
	if (rq->rq_flags & RQF_ELVPRIV) {
393 394 395 396 397 398 399
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
400

401
	ctx->rq_completed[rq_is_sync(rq)]++;
402
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
403
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
404 405

	wbt_done(q->rq_wb, &rq->issue_stat);
406
	rq->rq_flags = 0;
407

408
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
409
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
410 411 412
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
413
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
414
	blk_mq_sched_restart(hctx);
415
	blk_queue_exit(q);
416
}
J
Jens Axboe 已提交
417
EXPORT_SYMBOL_GPL(blk_mq_free_request);
418

419
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
420
{
M
Ming Lei 已提交
421 422
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
423
	if (rq->end_io) {
J
Jens Axboe 已提交
424
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
425
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
426 427 428
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
429
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
430
	}
431
}
432
EXPORT_SYMBOL(__blk_mq_end_request);
433

434
void blk_mq_end_request(struct request *rq, blk_status_t error)
435 436 437
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
438
	__blk_mq_end_request(rq, error);
439
}
440
EXPORT_SYMBOL(blk_mq_end_request);
441

442
static void __blk_mq_complete_request_remote(void *data)
443
{
444
	struct request *rq = data;
445

446
	rq->q->softirq_done_fn(rq);
447 448
}

449
static void __blk_mq_complete_request(struct request *rq)
450 451
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
452
	bool shared = false;
453 454
	int cpu;

455 456 457 458 459 460 461
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
462
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
463 464 465
		rq->q->softirq_done_fn(rq);
		return;
	}
466 467

	cpu = get_cpu();
C
Christoph Hellwig 已提交
468 469 470 471
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
472
		rq->csd.func = __blk_mq_complete_request_remote;
473 474
		rq->csd.info = rq;
		rq->csd.flags = 0;
475
		smp_call_function_single_async(ctx->cpu, &rq->csd);
476
	} else {
477
		rq->q->softirq_done_fn(rq);
478
	}
479 480
	put_cpu();
}
481 482 483 484 485 486 487 488 489

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
490
void blk_mq_complete_request(struct request *rq)
491
{
492 493 494
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
495
		return;
496
	if (!blk_mark_rq_complete(rq))
497
		__blk_mq_complete_request(rq);
498 499
}
EXPORT_SYMBOL(blk_mq_complete_request);
500

501 502 503 504 505 506
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

507
void blk_mq_start_request(struct request *rq)
508 509 510
{
	struct request_queue *q = rq->q;

511 512
	blk_mq_sched_started_request(rq);

513 514
	trace_block_rq_issue(q, rq);

515
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
516
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
517
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
518
		wbt_issue(q->rq_wb, &rq->issue_stat);
519 520
	}

521
	blk_add_timer(rq);
522

523 524 525 526 527 528
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

529 530 531 532 533 534
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
535 536 537 538
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
539 540 541 542 543 544 545 546 547

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
548
}
549
EXPORT_SYMBOL(blk_mq_start_request);
550

551 552
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
553
 * flag isn't set yet, so there may be race with timeout handler,
554 555 556 557 558 559
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
560
static void __blk_mq_requeue_request(struct request *rq)
561 562 563 564
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
565
	wbt_requeue(q->rq_wb, &rq->issue_stat);
566
	blk_mq_sched_requeue_request(rq);
567

568 569 570 571
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
572 573
}

574
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
575 576 577 578
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
579
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
580 581 582
}
EXPORT_SYMBOL(blk_mq_requeue_request);

583 584 585
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
586
		container_of(work, struct request_queue, requeue_work.work);
587 588 589 590 591 592 593 594 595
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
596
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
597 598
			continue;

599
		rq->rq_flags &= ~RQF_SOFTBARRIER;
600
		list_del_init(&rq->queuelist);
601
		blk_mq_sched_insert_request(rq, true, false, false, true);
602 603 604 605 606
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
607
		blk_mq_sched_insert_request(rq, false, false, false, true);
608 609
	}

610
	blk_mq_run_hw_queues(q, false);
611 612
}

613 614
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
615 616 617 618 619 620 621 622
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
623
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
624 625 626

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
627
		rq->rq_flags |= RQF_SOFTBARRIER;
628 629 630 631 632
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
633 634 635

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
636 637 638 639 640
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
641
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
642 643 644
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

645 646 647 648 649 650 651 652
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

653 654
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
655 656
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
657
		return tags->rqs[tag];
658
	}
659 660

	return NULL;
661 662 663
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

664
struct blk_mq_timeout_data {
665 666
	unsigned long next;
	unsigned int next_set;
667 668
};

669
void blk_mq_rq_timed_out(struct request *req, bool reserved)
670
{
J
Jens Axboe 已提交
671
	const struct blk_mq_ops *ops = req->q->mq_ops;
672
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
673 674 675 676 677 678 679

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
680
	 * both flags will get cleared. So check here again, and ignore
681 682
	 * a timeout event with a request that isn't active.
	 */
683 684
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
685

686
	if (ops->timeout)
687
		ret = ops->timeout(req, reserved);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
703
}
704

705 706 707 708
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
709

710
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
711
		return;
712

713 714 715 716 717 718 719 720 721 722 723 724 725
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
726 727
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
728
			blk_mq_rq_timed_out(rq, reserved);
729 730 731 732
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
733 734
}

735
static void blk_mq_timeout_work(struct work_struct *work)
736
{
737 738
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
739 740 741 742 743
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
744

745 746 747 748 749 750 751 752 753
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
754
	 * blk_freeze_queue_start, and the moment the last request is
755 756 757 758
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
759 760
		return;

761
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
762

763 764 765
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
766
	} else {
767 768
		struct blk_mq_hw_ctx *hctx;

769 770 771 772 773
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
774
	}
775
	blk_queue_exit(q);
776 777
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

796 797 798 799
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
800
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
801
{
802 803 804 805
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
806

807
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
808
}
809
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
810

811 812 813 814
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
815

816
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
817 818
}

819 820
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
821 822 823 824 825 826 827
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

828 829
	might_sleep_if(wait);

830 831
	if (rq->tag != -1)
		goto done;
832

833 834 835
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

836 837
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
838 839 840 841
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
842 843 844
		data.hctx->tags->rqs[rq->tag] = rq;
	}

845 846 847 848
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
849 850
}

851 852
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
853 854 855 856 857 858 859 860 861 862
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

945
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
946
{
947
	struct blk_mq_hw_ctx *hctx;
948
	struct request *rq;
949
	int errors, queued;
950

951 952 953
	if (list_empty(list))
		return false;

954 955 956
	/*
	 * Now process all the entries, sending them to the driver.
	 */
957
	errors = queued = 0;
958
	do {
959
		struct blk_mq_queue_data bd;
960
		blk_status_t ret;
961

962
		rq = list_first_entry(list, struct request, queuelist);
963 964 965
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
966 967

			/*
968 969
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
970
			 */
971 972 973 974 975 976 977 978 979
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
980
				break;
981
		}
982

983 984
		list_del_init(&rq->queuelist);

985
		bd.rq = rq;
986 987 988 989 990 991 992 993 994 995 996 997 998

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
999 1000

		ret = q->mq_ops->queue_rq(hctx, &bd);
1001
		if (ret == BLK_STS_RESOURCE) {
1002
			blk_mq_put_driver_tag_hctx(hctx, rq);
1003
			list_add(&rq->queuelist, list);
1004
			__blk_mq_requeue_request(rq);
1005
			break;
1006 1007 1008
		}

		if (unlikely(ret != BLK_STS_OK)) {
1009
			errors++;
1010
			blk_mq_end_request(rq, BLK_STS_IOERR);
1011
			continue;
1012 1013
		}

1014
		queued++;
1015
	} while (!list_empty(list));
1016

1017
	hctx->dispatched[queued_to_index(queued)]++;
1018 1019 1020 1021 1022

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1023
	if (!list_empty(list)) {
1024
		/*
1025 1026
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1027 1028 1029 1030
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1031
		spin_lock(&hctx->lock);
1032
		list_splice_init(list, &hctx->dispatch);
1033
		spin_unlock(&hctx->lock);
1034

1035
		/*
1036 1037 1038
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1039
		 *
1040 1041 1042 1043
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1044
		 *
1045 1046 1047 1048 1049 1050 1051
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1052
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1053
		 *   and dm-rq.
1054
		 */
1055 1056
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1057
			blk_mq_run_hw_queue(hctx, true);
1058
	}
1059

1060
	return (queued + errors) != 0;
1061 1062
}

1063 1064 1065 1066 1067 1068 1069 1070 1071
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1072
		blk_mq_sched_dispatch_requests(hctx);
1073 1074
		rcu_read_unlock();
	} else {
1075 1076
		might_sleep();

1077
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1078
		blk_mq_sched_dispatch_requests(hctx);
1079 1080 1081 1082
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1083 1084 1085 1086 1087 1088 1089 1090
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1091 1092
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1093 1094

	if (--hctx->next_cpu_batch <= 0) {
1095
		int next_cpu;
1096 1097 1098 1099 1100 1101 1102 1103 1104

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1105
	return hctx->next_cpu;
1106 1107
}

1108 1109
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1110
{
1111 1112
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1113 1114
		return;

1115
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1116 1117
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1118
			__blk_mq_run_hw_queue(hctx);
1119
			put_cpu();
1120 1121
			return;
		}
1122

1123
		put_cpu();
1124
	}
1125

1126 1127 1128
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1140
}
O
Omar Sandoval 已提交
1141
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1142

1143
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1144 1145 1146 1147 1148
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1149
		if (!blk_mq_hctx_has_pending(hctx) ||
1150
		    blk_mq_hctx_stopped(hctx))
1151 1152
			continue;

1153
		blk_mq_run_hw_queue(hctx, async);
1154 1155
	}
}
1156
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1178
static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1179
{
1180 1181 1182 1183 1184
	if (sync)
		cancel_delayed_work_sync(&hctx->run_work);
	else
		cancel_delayed_work(&hctx->run_work);

1185 1186
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
1187 1188 1189 1190 1191

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	__blk_mq_stop_hw_queue(hctx, false);
}
1192 1193
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1194
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1195 1196 1197 1198 1199
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
1200 1201 1202 1203 1204 1205
		__blk_mq_stop_hw_queue(hctx, sync);
}

void blk_mq_stop_hw_queues(struct request_queue *q)
{
	__blk_mq_stop_hw_queues(q, false);
1206 1207 1208
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1209 1210 1211
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1212

1213
	blk_mq_run_hw_queue(hctx, false);
1214 1215 1216
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1237
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1238 1239 1240 1241
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1242 1243
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1244 1245 1246
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1247
static void blk_mq_run_work_fn(struct work_struct *work)
1248 1249 1250
{
	struct blk_mq_hw_ctx *hctx;

1251
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1252

1253 1254 1255 1256 1257 1258 1259 1260
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1261

1262 1263 1264
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1265 1266 1267 1268

	__blk_mq_run_hw_queue(hctx);
}

1269 1270 1271

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1272 1273
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1274

1275 1276 1277 1278 1279
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1280
	blk_mq_stop_hw_queue(hctx);
1281 1282 1283 1284
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1285 1286 1287
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1288 1289 1290
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1291
{
J
Jens Axboe 已提交
1292 1293
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1294 1295
	trace_block_rq_insert(hctx->queue, rq);

1296 1297 1298 1299
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1300
}
1301

1302 1303
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1304 1305 1306
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1307
	__blk_mq_insert_req_list(hctx, rq, at_head);
1308 1309 1310
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1311 1312
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1324
		BUG_ON(rq->mq_ctx != ctx);
1325
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1326
		__blk_mq_insert_req_list(hctx, rq, false);
1327
	}
1328
	blk_mq_hctx_mark_pending(hctx, ctx);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1365 1366 1367 1368
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1385 1386 1387
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1388 1389 1390 1391 1392
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1393
	blk_init_request_from_bio(rq, bio);
1394

1395
	blk_account_io_start(rq, true);
1396 1397
}

1398 1399 1400 1401 1402 1403
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1404 1405 1406 1407 1408 1409 1410
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1411
}
1412

1413 1414
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1415 1416 1417 1418
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1419 1420
}

M
Ming Lei 已提交
1421 1422 1423
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1424 1425 1426 1427
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1428
		.last = true,
1429
	};
1430
	blk_qc_t new_cookie;
1431
	blk_status_t ret;
M
Ming Lei 已提交
1432 1433 1434 1435 1436 1437
	bool run_queue = true;

	if (blk_mq_hctx_stopped(hctx)) {
		run_queue = false;
		goto insert;
	}
1438

1439
	if (q->elevator)
1440 1441
		goto insert;

M
Ming Lei 已提交
1442
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1443 1444 1445 1446
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1447 1448 1449 1450 1451 1452
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1453 1454
	switch (ret) {
	case BLK_STS_OK:
1455
		*cookie = new_cookie;
1456
		return;
1457 1458 1459 1460
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1461
		*cookie = BLK_QC_T_NONE;
1462
		blk_mq_end_request(rq, ret);
1463
		return;
1464
	}
1465

1466
insert:
M
Ming Lei 已提交
1467
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1468 1469
}

1470 1471 1472 1473 1474
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1475
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1476 1477
		rcu_read_unlock();
	} else {
1478 1479 1480 1481 1482
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
M
Ming Lei 已提交
1483
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1484 1485 1486 1487
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1488
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1489
{
1490
	const int is_sync = op_is_sync(bio->bi_opf);
1491
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1492
	struct blk_mq_alloc_data data = { .flags = 0 };
1493
	struct request *rq;
1494
	unsigned int request_count = 0;
1495
	struct blk_plug *plug;
1496
	struct request *same_queue_rq = NULL;
1497
	blk_qc_t cookie;
J
Jens Axboe 已提交
1498
	unsigned int wb_acct;
1499 1500 1501

	blk_queue_bounce(q, &bio);

1502 1503
	blk_queue_split(q, &bio, q->bio_split);

1504
	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1505
		bio_io_error(bio);
1506
		return BLK_QC_T_NONE;
1507 1508
	}

1509 1510 1511
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1512

1513 1514 1515
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1516 1517
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1518 1519
	trace_block_getrq(q, bio, bio->bi_opf);

1520
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1521 1522
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1523
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1524 1525 1526
	}

	wbt_track(&rq->issue_stat, wb_acct);
1527

1528
	cookie = request_to_qc_t(data.hctx, rq);
1529

1530
	plug = current->plug;
1531
	if (unlikely(is_flush_fua)) {
1532
		blk_mq_put_ctx(data.ctx);
1533
		blk_mq_bio_to_request(rq, bio);
1534 1535 1536
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1537
		} else {
1538 1539
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1540
		}
1541
	} else if (plug && q->nr_hw_queues == 1) {
1542 1543
		struct request *last = NULL;

1544
		blk_mq_put_ctx(data.ctx);
1545
		blk_mq_bio_to_request(rq, bio);
1546 1547 1548 1549 1550 1551 1552

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1553 1554 1555
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1556
		if (!request_count)
1557
			trace_block_plug(q);
1558 1559
		else
			last = list_entry_rq(plug->mq_list.prev);
1560

1561 1562
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1563 1564
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1565
		}
1566

1567
		list_add_tail(&rq->queuelist, &plug->mq_list);
1568
	} else if (plug && !blk_queue_nomerges(q)) {
1569
		blk_mq_bio_to_request(rq, bio);
1570 1571

		/*
1572
		 * We do limited plugging. If the bio can be merged, do that.
1573 1574
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1575 1576
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1577
		 */
1578 1579 1580 1581 1582 1583
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1584 1585
		blk_mq_put_ctx(data.ctx);

1586 1587 1588
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1589 1590
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1591
		}
1592
	} else if (q->nr_hw_queues > 1 && is_sync) {
1593
		blk_mq_put_ctx(data.ctx);
1594 1595
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1596
	} else if (q->elevator) {
1597
		blk_mq_put_ctx(data.ctx);
1598
		blk_mq_bio_to_request(rq, bio);
1599
		blk_mq_sched_insert_request(rq, false, true, true, true);
1600
	} else {
1601
		blk_mq_put_ctx(data.ctx);
1602 1603
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1604
		blk_mq_run_hw_queue(data.hctx, true);
1605
	}
1606

1607
	return cookie;
1608 1609
}

1610 1611
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1612
{
1613
	struct page *page;
1614

1615
	if (tags->rqs && set->ops->exit_request) {
1616
		int i;
1617

1618
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1619 1620 1621
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1622
				continue;
1623
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1624
			tags->static_rqs[i] = NULL;
1625
		}
1626 1627
	}

1628 1629
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1630
		list_del_init(&page->lru);
1631 1632 1633 1634 1635
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1636 1637
		__free_pages(page, page->private);
	}
1638
}
1639

1640 1641
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1642
	kfree(tags->rqs);
1643
	tags->rqs = NULL;
J
Jens Axboe 已提交
1644 1645
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1646

1647
	blk_mq_free_tags(tags);
1648 1649
}

1650 1651 1652 1653
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1654
{
1655
	struct blk_mq_tags *tags;
1656
	int node;
1657

1658 1659 1660 1661 1662
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1663
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1664 1665
	if (!tags)
		return NULL;
1666

1667
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1668
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1669
				 node);
1670 1671 1672 1673
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1674

J
Jens Axboe 已提交
1675 1676
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1677
				 node);
J
Jens Axboe 已提交
1678 1679 1680 1681 1682 1683
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1697 1698 1699 1700 1701
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1702 1703 1704

	INIT_LIST_HEAD(&tags->page_list);

1705 1706 1707 1708
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1709
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1710
				cache_line_size());
1711
	left = rq_size * depth;
1712

1713
	for (i = 0; i < depth; ) {
1714 1715 1716 1717 1718
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1719
		while (this_order && left < order_to_size(this_order - 1))
1720 1721 1722
			this_order--;

		do {
1723
			page = alloc_pages_node(node,
1724
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1725
				this_order);
1726 1727 1728 1729 1730 1731 1732 1733 1734
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1735
			goto fail;
1736 1737

		page->private = this_order;
1738
		list_add_tail(&page->lru, &tags->page_list);
1739 1740

		p = page_address(page);
1741 1742 1743 1744
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1745
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1746
		entries_per_page = order_to_size(this_order) / rq_size;
1747
		to_do = min(entries_per_page, depth - i);
1748 1749
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1750 1751 1752
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1753
			if (set->ops->init_request) {
1754
				if (set->ops->init_request(set, rq, hctx_idx,
1755
						node)) {
J
Jens Axboe 已提交
1756
					tags->static_rqs[i] = NULL;
1757
					goto fail;
1758
				}
1759 1760
			}

1761 1762 1763 1764
			p += rq_size;
			i++;
		}
	}
1765
	return 0;
1766

1767
fail:
1768 1769
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1770 1771
}

J
Jens Axboe 已提交
1772 1773 1774 1775 1776
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1777
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1778
{
1779
	struct blk_mq_hw_ctx *hctx;
1780 1781 1782
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1783
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1784
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1785 1786 1787 1788 1789 1790 1791 1792 1793

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1794
		return 0;
1795

J
Jens Axboe 已提交
1796 1797 1798
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1799 1800

	blk_mq_run_hw_queue(hctx, true);
1801
	return 0;
1802 1803
}

1804
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1805
{
1806 1807
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1808 1809
}

1810
/* hctx->ctxs will be freed in queue's release handler */
1811 1812 1813 1814
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1815 1816
	blk_mq_debugfs_unregister_hctx(hctx);

1817 1818
	blk_mq_tag_idle(hctx);

1819
	if (set->ops->exit_request)
1820
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1821

1822 1823
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1824 1825 1826
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1827 1828 1829
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1830
	blk_mq_remove_cpuhp(hctx);
1831
	blk_free_flush_queue(hctx->fq);
1832
	sbitmap_free(&hctx->ctx_map);
1833 1834
}

M
Ming Lei 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1844
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1845 1846 1847
	}
}

1848 1849 1850
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1851
{
1852 1853 1854 1855 1856 1857
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1858
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1859 1860 1861 1862
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1863
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1864

1865
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1866 1867

	hctx->tags = set->tags[hctx_idx];
1868 1869

	/*
1870 1871
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1872
	 */
1873 1874 1875 1876
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1877

1878 1879
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1880
		goto free_ctxs;
1881

1882
	hctx->nr_ctx = 0;
1883

1884 1885 1886
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1887

1888 1889 1890
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1891 1892
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1893
		goto sched_exit_hctx;
1894

1895
	if (set->ops->init_request &&
1896 1897
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1898
		goto free_fq;
1899

1900 1901 1902
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1903 1904
	blk_mq_debugfs_register_hctx(q, hctx);

1905
	return 0;
1906

1907 1908
 free_fq:
	kfree(hctx->fq);
1909 1910
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1911 1912 1913
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1914
 free_bitmap:
1915
	sbitmap_free(&hctx->ctx_map);
1916 1917 1918
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1919
	blk_mq_remove_cpuhp(hctx);
1920 1921
	return -1;
}
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1941
		hctx = blk_mq_map_queue(q, i);
1942

1943 1944 1945 1946 1947
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1948
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1949 1950 1951
	}
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1974 1975 1976 1977 1978
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
1979 1980
}

1981 1982
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1983
{
1984
	unsigned int i, hctx_idx;
1985 1986
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1987
	struct blk_mq_tag_set *set = q->tag_set;
1988

1989 1990 1991 1992 1993
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1994
	queue_for_each_hw_ctx(q, hctx, i) {
1995
		cpumask_clear(hctx->cpumask);
1996 1997 1998 1999 2000 2001
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2002
	for_each_possible_cpu(i) {
2003
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2004
		if (!cpumask_test_cpu(i, online_mask))
2005 2006
			continue;

2007 2008
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2009 2010
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2011 2012 2013 2014 2015 2016
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2017
			q->mq_map[i] = 0;
2018 2019
		}

2020
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2021
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2022

2023
		cpumask_set_cpu(i, hctx->cpumask);
2024 2025 2026
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2027

2028 2029
	mutex_unlock(&q->sysfs_lock);

2030
	queue_for_each_hw_ctx(q, hctx, i) {
2031
		/*
2032 2033
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2034 2035
		 */
		if (!hctx->nr_ctx) {
2036 2037 2038 2039
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2040 2041 2042
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2043
			hctx->tags = NULL;
2044 2045 2046
			continue;
		}

M
Ming Lei 已提交
2047 2048 2049
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2050 2051 2052 2053 2054
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2055
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2056

2057 2058 2059
		/*
		 * Initialize batch roundrobin counts
		 */
2060 2061 2062
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2063 2064
}

2065
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2066 2067 2068 2069
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2081

2082 2083
	lockdep_assert_held(&set->tag_list_lock);

2084 2085
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2086
		queue_set_hctx_shared(q, shared);
2087 2088 2089 2090 2091 2092 2093 2094 2095
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2096 2097
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2098 2099 2100 2101 2102 2103
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2104
	mutex_unlock(&set->tag_list_lock);
2105 2106

	synchronize_rcu();
2107 2108 2109 2110 2111 2112 2113 2114
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2115 2116 2117 2118 2119 2120 2121 2122 2123

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2124
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2125

2126 2127 2128
	mutex_unlock(&set->tag_list_lock);
}

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2141 2142 2143
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2144
		kobject_put(&hctx->kobj);
2145
	}
2146

2147 2148
	q->mq_map = NULL;

2149 2150
	kfree(q->queue_hw_ctx);

2151 2152 2153 2154 2155 2156
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2157 2158 2159
	free_percpu(q->queue_ctx);
}

2160
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2176 2177
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2178
{
K
Keith Busch 已提交
2179 2180
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2181

K
Keith Busch 已提交
2182
	blk_mq_sysfs_unregister(q);
2183
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2184
		int node;
2185

K
Keith Busch 已提交
2186 2187 2188 2189
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2190 2191
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2192
		if (!hctxs[i])
K
Keith Busch 已提交
2193
			break;
2194

2195
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2196 2197 2198 2199 2200
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2201

2202
		atomic_set(&hctxs[i]->nr_active, 0);
2203
		hctxs[i]->numa_node = node;
2204
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2205 2206 2207 2208 2209 2210 2211 2212

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2213
	}
K
Keith Busch 已提交
2214 2215 2216 2217
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2218 2219
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2233 2234 2235
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2236
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2237 2238
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2239 2240 2241
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2242 2243
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2244
		goto err_exit;
K
Keith Busch 已提交
2245

2246 2247 2248
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2249 2250 2251 2252 2253
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2254
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2255 2256 2257 2258

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2259

2260
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2261
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2262 2263 2264

	q->nr_queues = nr_cpu_ids;

2265
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2266

2267 2268 2269
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2270 2271
	q->sg_reserved_size = INT_MAX;

2272
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2273 2274 2275
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2276
	blk_queue_make_request(q, blk_mq_make_request);
2277

2278 2279 2280 2281 2282
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2283 2284 2285 2286 2287
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2288 2289
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2290

2291
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2292

2293
	get_online_cpus();
2294
	mutex_lock(&all_q_mutex);
2295

2296
	list_add_tail(&q->all_q_node, &all_q_list);
2297
	blk_mq_add_queue_tag_set(set, q);
2298
	blk_mq_map_swqueue(q, cpu_online_mask);
2299

2300
	mutex_unlock(&all_q_mutex);
2301
	put_online_cpus();
2302

2303 2304 2305 2306 2307 2308 2309 2310
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2311
	return q;
2312

2313
err_hctxs:
K
Keith Busch 已提交
2314
	kfree(q->queue_hw_ctx);
2315
err_percpu:
K
Keith Busch 已提交
2316
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2317 2318
err_exit:
	q->mq_ops = NULL;
2319 2320
	return ERR_PTR(-ENOMEM);
}
2321
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2322 2323 2324

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2325
	struct blk_mq_tag_set	*set = q->tag_set;
2326

2327 2328 2329 2330
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2331 2332
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2333
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2334 2335 2336
}

/* Basically redo blk_mq_init_queue with queue frozen */
2337 2338
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2339
{
2340
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2341

2342
	blk_mq_debugfs_unregister_hctxs(q);
2343 2344
	blk_mq_sysfs_unregister(q);

2345 2346 2347 2348 2349 2350
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2351
	blk_mq_map_swqueue(q, online_mask);
2352

2353
	blk_mq_sysfs_register(q);
2354
	blk_mq_debugfs_register_hctxs(q);
2355 2356
}

2357 2358 2359 2360 2361 2362 2363 2364
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2365 2366 2367 2368
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2369 2370 2371 2372 2373 2374 2375 2376
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2377
		blk_freeze_queue_start(q);
2378
	list_for_each_entry(q, &all_q_list, all_q_node)
2379 2380
		blk_mq_freeze_queue_wait(q);

2381
	list_for_each_entry(q, &all_q_list, all_q_node)
2382
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2383 2384 2385 2386

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2387
	mutex_unlock(&all_q_mutex);
2388 2389 2390 2391
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2392
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2408 2409 2410 2411
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2412 2413 2414 2415 2416 2417 2418
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2419 2420
}

2421 2422 2423 2424
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2425 2426
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2427 2428 2429 2430 2431 2432
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2433
		blk_mq_free_rq_map(set->tags[i]);
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2473 2474 2475 2476 2477 2478 2479 2480
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2481 2482 2483 2484 2485 2486
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2487 2488
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2489 2490
	int ret;

B
Bart Van Assche 已提交
2491 2492
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2493 2494
	if (!set->nr_hw_queues)
		return -EINVAL;
2495
	if (!set->queue_depth)
2496 2497 2498 2499
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2500
	if (!set->ops->queue_rq)
2501 2502
		return -EINVAL;

2503 2504 2505 2506 2507
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2508

2509 2510 2511 2512 2513 2514 2515 2516 2517
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2518 2519 2520 2521 2522
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2523

K
Keith Busch 已提交
2524
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2525 2526
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2527
		return -ENOMEM;
2528

2529 2530 2531
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2532 2533 2534
	if (!set->mq_map)
		goto out_free_tags;

2535
	ret = blk_mq_update_queue_map(set);
2536 2537 2538 2539 2540
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2541
		goto out_free_mq_map;
2542

2543 2544 2545
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2546
	return 0;
2547 2548 2549 2550 2551

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2552 2553
	kfree(set->tags);
	set->tags = NULL;
2554
	return ret;
2555 2556 2557 2558 2559 2560 2561
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2562 2563
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2564

2565 2566 2567
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2568
	kfree(set->tags);
2569
	set->tags = NULL;
2570 2571 2572
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2573 2574 2575 2576 2577 2578
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2579
	if (!set)
2580 2581
		return -EINVAL;

2582 2583
	blk_mq_freeze_queue(q);

2584 2585
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2586 2587
		if (!hctx->tags)
			continue;
2588 2589 2590 2591
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2592 2593 2594 2595 2596 2597 2598 2599
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2600 2601 2602 2603 2604 2605 2606
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2607 2608
	blk_mq_unfreeze_queue(q);

2609 2610 2611
	return ret;
}

2612 2613
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2614 2615 2616
{
	struct request_queue *q;

2617 2618
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2628
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2629 2630 2631 2632 2633 2634 2635 2636
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2637 2638 2639 2640 2641 2642 2643

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2644 2645
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2672
	int bucket;
2673

2674 2675 2676 2677
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2678 2679
}

2680 2681 2682 2683 2684
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2685
	int bucket;
2686 2687 2688 2689 2690

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2691
	if (!blk_poll_stats_enable(q))
2692 2693 2694 2695 2696 2697 2698 2699
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2700 2701
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2702
	 */
2703 2704 2705 2706 2707 2708
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2709 2710 2711 2712

	return ret;
}

2713
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2714
				     struct blk_mq_hw_ctx *hctx,
2715 2716 2717 2718
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2719
	unsigned int nsecs;
2720 2721
	ktime_t kt;

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2740 2741 2742 2743 2744 2745 2746 2747
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2748
	kt = nsecs;
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2771 2772 2773 2774 2775
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2776 2777 2778 2779 2780 2781 2782
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2783
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2784 2785
		return true;

J
Jens Axboe 已提交
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2829 2830
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2831
	else {
2832
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2833 2834 2835 2836 2837 2838 2839 2840 2841
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2842 2843 2844 2845 2846

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2857 2858
static int __init blk_mq_init(void)
{
2859 2860
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2861

2862 2863 2864
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2865 2866 2867
	return 0;
}
subsys_initcall(blk_mq_init);