blk-mq.c 81.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
37
#include "blk-mq-sched.h"
38
#include "blk-rq-qos.h"
39

40 41 42
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

43 44
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
45
	int ddir, sectors, bucket;
46

J
Jens Axboe 已提交
47
	ddir = rq_data_dir(rq);
48
	sectors = blk_rq_stats_sectors(rq);
49

50
	bucket = ddir + 2 * ilog2(sectors);
51 52 53 54 55 56 57 58 59

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

60 61 62
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
63
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64
{
65 66
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
67
			blk_mq_sched_has_work(hctx);
68 69
}

70 71 72 73 74 75
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
76 77
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 79 80 81 82
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
83
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 85
}

86 87 88 89 90
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

91 92 93 94 95
struct mq_hang {
	struct hd_struct *part;
	unsigned int *hang;
};

96 97 98 99 100 101
static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

102 103 104 105 106 107 108
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
109
	if (rq->part && mi->part->partno)
110
		mi->inflight[1]++;
111 112 113 114 115 116 117
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

118
	inflight[0] = inflight[1] = 0;
119 120 121
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
static void blk_mq_check_hang_rw(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct mq_hang *mh = priv;
	u64 now = ktime_get_ns();
	u64 duration;

	duration = div_u64(now - rq->start_time_ns, NSEC_PER_MSEC);
	if (duration < rq->q->rq_hang_threshold)
		return;

	if (!mh->part->partno || rq->part == mh->part)
		mh->hang[rq_data_dir(rq)]++;
}

void blk_mq_in_hang_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int hang[2])
{
	struct mq_hang mh = { .part = part, .hang = hang, };

	hang[0] = hang[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_hang_rw, &mh);
}

165
void blk_freeze_queue_start(struct request_queue *q)
166
{
167
	int freeze_depth;
168

169 170
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
171
		percpu_ref_kill(&q->q_usage_counter);
172 173
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
174
	}
175
}
176
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177

178
void blk_mq_freeze_queue_wait(struct request_queue *q)
179
{
180
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181
}
182
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183

184 185 186 187 188 189 190 191
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192

193 194 195 196
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
197
void blk_freeze_queue(struct request_queue *q)
198
{
199 200 201 202 203 204 205
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
206
	blk_freeze_queue_start(q);
207 208
	if (!q->mq_ops)
		blk_drain_queue(q);
209 210
	blk_mq_freeze_queue_wait(q);
}
211 212 213 214 215 216 217 218 219

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
220
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
221

222
void blk_mq_unfreeze_queue(struct request_queue *q)
223
{
224
	int freeze_depth;
225

226 227 228
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
229
		percpu_ref_reinit(&q->q_usage_counter);
230
		wake_up_all(&q->mq_freeze_wq);
231
	}
232
}
233
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
234

235 236 237 238 239 240
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
241
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
242 243 244
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

245
/**
246
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
247 248 249
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
250 251 252
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
253 254 255 256 257 258 259
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

260
	blk_mq_quiesce_queue_nowait(q);
261

262 263
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
264
			synchronize_srcu(hctx->srcu);
265 266 267 268 269 270 271 272
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

273 274 275 276 277 278 279 280 281
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
282
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
283

284 285
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
286 287 288
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

289 290 291 292 293 294 295 296 297 298
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

299 300 301 302 303 304
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

305
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
306
		unsigned int tag, unsigned int op, u64 alloc_time_ns)
307
{
308 309
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
310
	req_flags_t rq_flags = 0;
311

312 313 314 315
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
316
		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
317
			rq_flags = RQF_MQ_INFLIGHT;
318 319 320 321 322 323 324
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

325
	/* csd/requeue_work/fifo_time is initialized before use */
326 327
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
328
	rq->rq_flags = rq_flags;
329
	rq->cpu = -1;
330
	rq->cmd_flags = op;
331 332
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
333
	if (blk_queue_io_stat(data->q))
334
		rq->rq_flags |= RQF_IO_STAT;
335
	INIT_LIST_HEAD(&rq->queuelist);
336 337 338 339
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
340 341 342
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
343
	rq->start_time_ns = ktime_get_ns();
344
	rq->io_start_time_ns = 0;
345
	rq->stats_sectors = 0;
346 347 348 349 350 351 352
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
353
	rq->__deadline = 0;
354 355

	INIT_LIST_HEAD(&rq->timeout_list);
356 357
	rq->timeout = 0;

358 359 360 361
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

362 363 364 365
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
#endif

366
	data->ctx->rq_dispatched[op_is_sync(op)]++;
K
Keith Busch 已提交
367
	refcount_set(&rq->ref, 1);
368
	return rq;
369 370
}

371 372 373 374 375 376
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
377
	unsigned int tag;
378
	bool put_ctx_on_error = false;
379
	u64 alloc_time_ns = 0;
380 381

	blk_queue_enter_live(q);
382 383 384 385 386

	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

387
	data->q = q;
388 389 390 391
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
392 393
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
394 395
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
396 397 398 399 400 401

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
402 403
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
404
		 */
405 406
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
		    !(data->flags & BLK_MQ_REQ_RESERVED))
407
			e->type->ops.mq.limit_depth(op, data);
408 409
	} else {
		blk_mq_tag_busy(data->hctx);
410 411
	}

412 413
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
414 415
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
416 417
			data->ctx = NULL;
		}
418 419
		blk_queue_exit(q);
		return NULL;
420 421
	}

422
	rq = blk_mq_rq_ctx_init(data, tag, op, alloc_time_ns);
423 424
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
425
		if (e && e->type->ops.mq.prepare_request) {
426 427 428
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

429 430
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
431
		}
432 433 434
	}
	data->hctx->queued++;
	return rq;
435 436
}

437
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
438
		blk_mq_req_flags_t flags)
439
{
440
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
441
	struct request *rq;
442
	int ret;
443

444
	ret = blk_queue_enter(q, flags);
445 446
	if (ret)
		return ERR_PTR(ret);
447

448
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449
	blk_queue_exit(q);
450

451
	if (!rq)
452
		return ERR_PTR(-EWOULDBLOCK);
453

454 455
	blk_mq_put_ctx(alloc_data.ctx);

456 457 458
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
459 460
	return rq;
}
461
EXPORT_SYMBOL(blk_mq_alloc_request);
462

463
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
464
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
465
{
466
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
467
	struct request *rq;
468
	unsigned int cpu;
M
Ming Lin 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

483
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
484 485 486
	if (ret)
		return ERR_PTR(ret);

487 488 489 490
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
491 492 493 494
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
495
	}
496
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
497
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
498

499
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
500
	blk_queue_exit(q);
501

502 503 504 505
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
506 507 508
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

509
void __blk_mq_free_request(struct request *rq)
K
Keith Busch 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

524
void blk_mq_free_request(struct request *rq)
525 526
{
	struct request_queue *q = rq->q;
527 528 529 530
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

531
	if (rq->rq_flags & RQF_ELVPRIV) {
532 533 534 535 536 537 538
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
539

540
	ctx->rq_completed[rq_is_sync(rq)]++;
541
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
542
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
543

544 545 546
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

547
	rq_qos_done(q, rq);
548

S
Shaohua Li 已提交
549 550 551
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

K
Keith Busch 已提交
552 553 554
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
555
}
J
Jens Axboe 已提交
556
EXPORT_SYMBOL_GPL(blk_mq_free_request);
557

558
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
559
{
560 561
	u64 now = ktime_get_ns();

562 563
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
564
		blk_stat_add(rq, now);
565 566
	}

567
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
568

C
Christoph Hellwig 已提交
569
	if (rq->end_io) {
570
		rq_qos_done(rq->q, rq);
571
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
572 573 574
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
575
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
576
	}
577
}
578
EXPORT_SYMBOL(__blk_mq_end_request);
579

580
void blk_mq_end_request(struct request *rq, blk_status_t error)
581 582 583
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
584
	__blk_mq_end_request(rq, error);
585
}
586
EXPORT_SYMBOL(blk_mq_end_request);
587

588
static void __blk_mq_complete_request_remote(void *data)
589
{
590
	struct request *rq = data;
591

592
	rq->q->softirq_done_fn(rq);
593 594
}

595
static void __blk_mq_complete_request(struct request *rq)
596 597
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
598
	bool shared = false;
599 600
	int cpu;

601
	if (!blk_mq_mark_complete(rq))
K
Keith Busch 已提交
602
		return;
603 604 605
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);

C
Christoph Hellwig 已提交
606
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
607 608 609
		rq->q->softirq_done_fn(rq);
		return;
	}
610 611

	cpu = get_cpu();
C
Christoph Hellwig 已提交
612 613 614 615
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
616
		rq->csd.func = __blk_mq_complete_request_remote;
617 618
		rq->csd.info = rq;
		rq->csd.flags = 0;
619
		smp_call_function_single_async(ctx->cpu, &rq->csd);
620
	} else {
621
		rq->q->softirq_done_fn(rq);
622
	}
623 624
	put_cpu();
}
625

626
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
627
	__releases(hctx->srcu)
628 629 630 631
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
632
		srcu_read_unlock(hctx->srcu, srcu_idx);
633 634 635
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
636
	__acquires(hctx->srcu)
637
{
638 639 640
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
641
		rcu_read_lock();
642
	} else
643
		*srcu_idx = srcu_read_lock(hctx->srcu);
644 645
}

646 647 648 649 650 651 652 653
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
654
void blk_mq_complete_request(struct request *rq)
655
{
K
Keith Busch 已提交
656
	if (unlikely(blk_should_fake_timeout(rq->q)))
657
		return;
K
Keith Busch 已提交
658
	__blk_mq_complete_request(rq);
659 660
}
EXPORT_SYMBOL(blk_mq_complete_request);
661

662 663
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
664
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
665 666 667
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

668
void blk_mq_start_request(struct request *rq)
669 670 671
{
	struct request_queue *q = rq->q;

672 673
	blk_mq_sched_started_request(rq);

674 675
	trace_block_rq_issue(q, rq);

676
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
677
		rq->io_start_time_ns = ktime_get_ns();
678
		rq->stats_sectors = blk_rq_sectors(rq);
679
		rq->rq_flags |= RQF_STATS;
680
		rq_qos_issue(q, rq);
681 682
	}

683
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
684

685
	blk_add_timer(rq);
K
Keith Busch 已提交
686
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
687 688 689 690 691 692 693 694 695

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
696
}
697
EXPORT_SYMBOL(blk_mq_start_request);
698

699
static void __blk_mq_requeue_request(struct request *rq)
700 701 702
{
	struct request_queue *q = rq->q;

703 704
	blk_mq_put_driver_tag(rq);

705
	trace_block_rq_requeue(q, rq);
706
	rq_qos_requeue(q, rq);
707

K
Keith Busch 已提交
708 709
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
710
		rq->rq_flags &= ~RQF_TIMED_OUT;
711 712 713
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
714 715
}

716
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
717 718 719
{
	__blk_mq_requeue_request(rq);

720 721 722
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

723
	BUG_ON(blk_queued_rq(rq));
724
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
725 726 727
}
EXPORT_SYMBOL(blk_mq_requeue_request);

728 729 730
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
731
		container_of(work, struct request_queue, requeue_work.work);
732 733 734
	LIST_HEAD(rq_list);
	struct request *rq, *next;

735
	spin_lock_irq(&q->requeue_lock);
736
	list_splice_init(&q->requeue_list, &rq_list);
737
	spin_unlock_irq(&q->requeue_lock);
738 739

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
740
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
741 742
			continue;

743
		rq->rq_flags &= ~RQF_SOFTBARRIER;
744
		list_del_init(&rq->queuelist);
745 746 747 748 749 750 751 752 753
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
			blk_mq_request_bypass_insert(rq, false);
		else
			blk_mq_sched_insert_request(rq, true, false, false);
754 755 756 757 758
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
759
		blk_mq_sched_insert_request(rq, false, false, false);
760 761
	}

762
	blk_mq_run_hw_queues(q, false);
763 764
}

765 766
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
767 768 769 770 771 772
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
773
	 * request head insertion from the workqueue.
774
	 */
775
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
776 777 778

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
779
		rq->rq_flags |= RQF_SOFTBARRIER;
780 781 782 783 784
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
785 786 787

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
788 789 790 791 792
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
793
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
794 795 796
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

797 798 799
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
800 801
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
802 803 804
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

805 806
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
807 808
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
809
		return tags->rqs[tag];
810
	}
811 812

	return NULL;
813 814 815
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

816
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
817
{
818
	req->rq_flags |= RQF_TIMED_OUT;
819 820 821 822 823 824 825
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
826
	}
827 828

	blk_add_timer(req);
829
}
830

K
Keith Busch 已提交
831
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
832
{
K
Keith Busch 已提交
833
	unsigned long deadline;
834

K
Keith Busch 已提交
835 836
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
837 838
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
839

K
Keith Busch 已提交
840 841 842
	deadline = blk_rq_deadline(rq);
	if (time_after_eq(jiffies, deadline))
		return true;
843

K
Keith Busch 已提交
844 845 846 847 848
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
849 850
}

K
Keith Busch 已提交
851
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
852 853
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
		return;

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
		return;

875
	/*
K
Keith Busch 已提交
876 877 878 879
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
880
	 */
K
Keith Busch 已提交
881
	if (blk_mq_req_expired(rq, next))
882
		blk_mq_rq_timed_out(rq, reserved);
883 884 885 886

	if (is_flush_rq(rq, hctx))
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
K
Keith Busch 已提交
887
		__blk_mq_free_request(rq);
888 889
}

890
static void blk_mq_timeout_work(struct work_struct *work)
891
{
892 893
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
894
	unsigned long next = 0;
895
	struct blk_mq_hw_ctx *hctx;
896
	int i;
897

898 899 900 901 902 903 904 905 906
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
907
	 * blk_freeze_queue_start, and the moment the last request is
908 909 910 911
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
912 913
		return;

K
Keith Busch 已提交
914
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
915

K
Keith Busch 已提交
916 917
	if (next != 0) {
		mod_timer(&q->timeout, next);
918
	} else {
919 920 921 922 923 924
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
925 926 927 928 929
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
930
	}
931
	blk_queue_exit(q);
932 933
}

934 935 936 937 938 939 940 941 942 943 944 945 946
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
947
	sbitmap_clear_bit(sb, bitnr);
948 949 950 951
	spin_unlock(&ctx->lock);
	return true;
}

952 953 954 955
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
956
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
957
{
958 959 960 961
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
962

963
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
964
}
965
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
966

967 968 969 970 971 972 973 974 975 976 977 978 979
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
H
huhai 已提交
980
	if (!list_empty(&ctx->rq_list)) {
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1006 1007 1008 1009
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1010

1011
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1012 1013
}

1014
bool blk_mq_get_driver_tag(struct request *rq)
1015 1016 1017 1018
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1019
		.flags = BLK_MQ_REQ_NOWAIT,
1020
	};
1021
	bool shared;
1022

1023 1024
	if (rq->tag != -1)
		goto done;
1025

1026 1027 1028
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1029
	shared = blk_mq_tag_busy(data.hctx);
1030 1031
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1032
		if (shared) {
1033 1034 1035
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1036 1037 1038
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1039 1040
done:
	return rq->tag != -1;
1041 1042
}

1043 1044
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1045 1046 1047 1048 1049
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1050
	spin_lock(&hctx->dispatch_wait_lock);
1051
	list_del_init(&wait->entry);
1052 1053
	spin_unlock(&hctx->dispatch_wait_lock);

1054 1055 1056 1057
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1058 1059
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1060 1061
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1062 1063
 * marking us as waiting.
 */
1064
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1065
				 struct request *rq)
1066
{
1067
	struct wait_queue_head *wq;
1068 1069
	wait_queue_entry_t *wait;
	bool ret;
1070

1071 1072 1073
	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1074

1075 1076 1077 1078 1079 1080 1081 1082
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1083
		return blk_mq_get_driver_tag(rq);
1084 1085
	}

1086
	wait = &hctx->dispatch_wait;
1087 1088 1089
	if (!list_empty_careful(&wait->entry))
		return false;

1090 1091 1092 1093
	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1094
	if (!list_empty(&wait->entry)) {
1095 1096
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1097
		return false;
1098 1099
	}

1100 1101
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1102

1103
	/*
1104 1105 1106
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1107
	 */
1108
	ret = blk_mq_get_driver_tag(rq);
1109
	if (!ret) {
1110 1111
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1112
		return false;
1113
	}
1114 1115 1116 1117 1118 1119

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1120 1121
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1122 1123

	return true;
1124 1125
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	if (hctx->queue->elevator)
		return;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1155 1156
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1157 1158 1159
/*
 * Returns true if we did some work AND can potentially do more.
 */
1160
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1161
			     bool got_budget)
1162
{
1163
	struct blk_mq_hw_ctx *hctx;
1164
	struct request *rq, *nxt;
1165
	bool no_tag = false;
1166
	int errors, queued;
1167
	blk_status_t ret = BLK_STS_OK;
1168

1169 1170 1171
	if (list_empty(list))
		return false;

1172 1173
	WARN_ON(!list_is_singular(list) && got_budget);

1174 1175 1176
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1177
	errors = queued = 0;
1178
	do {
1179
		struct blk_mq_queue_data bd;
1180

1181
		rq = list_first_entry(list, struct request, queuelist);
1182 1183 1184 1185 1186

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

1187
		if (!blk_mq_get_driver_tag(rq)) {
1188
			/*
1189
			 * The initial allocation attempt failed, so we need to
1190 1191 1192 1193
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1194
			 */
1195
			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1196
				blk_mq_put_dispatch_budget(hctx);
1197 1198 1199 1200 1201 1202
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1203 1204 1205 1206
				break;
			}
		}

1207 1208
		list_del_init(&rq->queuelist);

1209
		bd.rq = rq;
1210 1211 1212 1213 1214 1215 1216 1217 1218

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1219
			bd.last = !blk_mq_get_driver_tag(nxt);
1220
		}
1221 1222

		ret = q->mq_ops->queue_rq(hctx, &bd);
1223
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1224 1225
			/*
			 * If an I/O scheduler has been configured and we got a
1226 1227
			 * driver tag for the next request already, free it
			 * again.
1228 1229 1230 1231 1232
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1233
			list_add(&rq->queuelist, list);
1234
			__blk_mq_requeue_request(rq);
1235
			break;
1236 1237 1238
		}

		if (unlikely(ret != BLK_STS_OK)) {
1239
			errors++;
1240
			blk_mq_end_request(rq, BLK_STS_IOERR);
1241
			continue;
1242 1243
		}

1244
		queued++;
1245
	} while (!list_empty(list));
1246

1247
	hctx->dispatched[queued_to_index(queued)]++;
1248 1249 1250 1251 1252

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1253
	if (!list_empty(list)) {
1254 1255
		bool needs_restart;

J
Jens Axboe 已提交
1256 1257 1258 1259 1260 1261 1262 1263
		/*
		 * If we didn't flush the entire list, we could have told
		 * the driver there was more coming, but that turned out to
		 * be a lie.
		 */
		if (q->mq_ops->commit_rqs)
			q->mq_ops->commit_rqs(hctx);

1264
		spin_lock(&hctx->lock);
1265
		list_splice_init(list, &hctx->dispatch);
1266
		spin_unlock(&hctx->lock);
1267

1268
		/*
1269 1270 1271
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1272
		 *
1273 1274 1275 1276
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1277
		 *
1278 1279 1280 1281 1282 1283 1284
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1285
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1286
		 *   and dm-rq.
1287 1288 1289 1290
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1291
		 */
1292 1293
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1294
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1295
			blk_mq_run_hw_queue(hctx, true);
1296 1297
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1298

1299
		blk_mq_update_dispatch_busy(hctx, true);
1300
		return false;
1301 1302
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1303

1304 1305 1306 1307 1308 1309 1310
	/*
	 * If the host/device is unable to accept more work, inform the
	 * caller of that.
	 */
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
		return false;

1311
	return (queued + errors) != 0;
1312 1313
}

1314 1315 1316 1317
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1318 1319 1320
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1334
	 */
1335 1336 1337 1338 1339 1340 1341
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1342

1343 1344 1345 1346 1347 1348
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1349
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1350

1351 1352 1353
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363 1364
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1365 1366 1367 1368 1369 1370 1371 1372
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1373
	bool tried = false;
1374
	int next_cpu = hctx->next_cpu;
1375

1376 1377
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1378 1379

	if (--hctx->next_cpu_batch <= 0) {
1380
select_cpu:
1381
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1382
				cpu_online_mask);
1383
		if (next_cpu >= nr_cpu_ids)
1384
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1385 1386 1387
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1388 1389 1390 1391
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1392
	if (!cpu_online(next_cpu)) {
1393 1394 1395 1396 1397 1398 1399 1400 1401
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1402
		hctx->next_cpu = next_cpu;
1403 1404 1405
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1406 1407 1408

	hctx->next_cpu = next_cpu;
	return next_cpu;
1409 1410
}

1411 1412
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1413
{
1414
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1415 1416
		return;

1417
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1418 1419
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1420
			__blk_mq_run_hw_queue(hctx);
1421
			put_cpu();
1422 1423
			return;
		}
1424

1425
		put_cpu();
1426
	}
1427

1428 1429
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1430 1431 1432 1433 1434 1435 1436 1437
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1438
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1439
{
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1451 1452 1453 1454
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1455 1456

	if (need_run) {
1457 1458 1459 1460 1461
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1462
}
O
Omar Sandoval 已提交
1463
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1464

1465
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1466 1467 1468 1469 1470
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1471
		if (blk_mq_hctx_stopped(hctx))
1472 1473
			continue;

1474
		blk_mq_run_hw_queue(hctx, async);
1475 1476
	}
}
1477
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1478

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1499 1500 1501
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1502
 * BLK_STS_RESOURCE is usually returned.
1503 1504 1505 1506 1507
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1508 1509
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1510
	cancel_delayed_work(&hctx->run_work);
1511

1512
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1513
}
1514
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1515

1516 1517 1518
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1519
 * BLK_STS_RESOURCE is usually returned.
1520 1521 1522 1523 1524
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1525 1526
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1527 1528 1529 1530 1531
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1532 1533 1534
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1535 1536 1537
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1538

1539
	blk_mq_run_hw_queue(hctx, false);
1540 1541 1542
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1563
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1564 1565 1566 1567
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1568 1569
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1570 1571 1572
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1573
static void blk_mq_run_work_fn(struct work_struct *work)
1574 1575 1576
{
	struct blk_mq_hw_ctx *hctx;

1577
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1578

1579
	/*
M
Ming Lei 已提交
1580
	 * If we are stopped, don't run the queue.
1581
	 */
M
Ming Lei 已提交
1582
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1583
		return;
1584 1585 1586 1587

	__blk_mq_run_hw_queue(hctx);
}

1588 1589 1590
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1591
{
J
Jens Axboe 已提交
1592 1593
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1594 1595
	lockdep_assert_held(&ctx->lock);

1596 1597
	trace_block_rq_insert(hctx->queue, rq);

1598 1599 1600 1601
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1602
}
1603

1604 1605
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1606 1607 1608
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1609 1610
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1611
	__blk_mq_insert_req_list(hctx, rq, at_head);
1612 1613 1614
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1615 1616 1617 1618
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1619
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1620 1621 1622 1623 1624 1625 1626 1627
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1628 1629
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1630 1631
}

1632 1633
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1634 1635

{
1636 1637
	struct request *rq;

1638 1639 1640 1641
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
1642
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
1643
		BUG_ON(rq->mq_ctx != ctx);
1644
		trace_block_rq_insert(hctx->queue, rq);
1645
	}
1646 1647 1648

	spin_lock(&ctx->lock);
	list_splice_tail_init(list, &ctx->rq_list);
1649
	blk_mq_hctx_mark_pending(hctx, ctx);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

1674 1675
	if (plug->multiple_queues)
		list_sort(NULL, &list, plug_ctx_cmp);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1687
				trace_block_unplug(this_q, depth, !from_schedule);
1688 1689 1690
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1707
		trace_block_unplug(this_q, depth, !from_schedule);
1708 1709
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1710 1711 1712 1713 1714
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1715
	blk_init_request_from_bio(rq, bio);
1716

S
Shaohua Li 已提交
1717 1718
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1719
	blk_account_io_start(rq, true);
1720 1721
}

1722 1723
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1724 1725 1726 1727
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1728 1729
}

1730 1731
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
1732
					    blk_qc_t *cookie, bool last)
1733 1734 1735 1736
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1737
		.last = last,
1738
	};
1739
	blk_qc_t new_cookie;
1740
	blk_status_t ret;
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
1752
		blk_mq_update_dispatch_busy(hctx, false);
1753 1754 1755
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1756
	case BLK_STS_DEV_RESOURCE:
1757
		blk_mq_update_dispatch_busy(hctx, true);
1758 1759 1760
		__blk_mq_requeue_request(rq);
		break;
	default:
1761
		blk_mq_update_dispatch_busy(hctx, false);
1762 1763 1764 1765 1766 1767 1768 1769 1770
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1771
						blk_qc_t *cookie,
1772
						bool bypass_insert, bool last)
1773 1774
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1775 1776
	bool run_queue = true;

1777 1778 1779 1780
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1781
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1782 1783
	 * and avoid driver to try to dispatch again.
	 */
1784
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1785
		run_queue = false;
1786
		bypass_insert = false;
M
Ming Lei 已提交
1787 1788
		goto insert;
	}
1789

1790
	if (q->elevator && !bypass_insert)
1791 1792
		goto insert;

1793
	if (!blk_mq_get_dispatch_budget(hctx))
1794 1795
		goto insert;

1796
	if (!blk_mq_get_driver_tag(rq)) {
1797
		blk_mq_put_dispatch_budget(hctx);
1798
		goto insert;
1799
	}
1800

1801
	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1802
insert:
1803 1804
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1805

1806
	blk_mq_request_bypass_insert(rq, run_queue);
1807
	return BLK_STS_OK;
1808 1809
}

1810 1811 1812
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1813
	blk_status_t ret;
1814
	int srcu_idx;
1815

1816
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1817

1818
	hctx_lock(hctx, &srcu_idx);
1819

1820
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1821
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1822
		blk_mq_request_bypass_insert(rq, true);
1823 1824 1825
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1826
	hctx_unlock(hctx, srcu_idx);
1827 1828
}

1829
blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1830 1831 1832 1833 1834 1835 1836 1837
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
1838
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1839 1840 1841
	hctx_unlock(hctx, srcu_idx);

	return ret;
1842 1843
}

1844 1845 1846 1847 1848 1849 1850 1851 1852
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
	while (!list_empty(list)) {
		blk_status_t ret;
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
1853
		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1854
		if (ret != BLK_STS_OK) {
1855 1856
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
1857 1858
				blk_mq_request_bypass_insert(rq,
							list_empty(list));
1859 1860 1861
				break;
			}
			blk_mq_end_request(rq, ret);
1862 1863
		}
	}
J
Jens Axboe 已提交
1864 1865 1866 1867 1868 1869 1870 1871

	/*
	 * If we didn't flush the entire list, we could have told
	 * the driver there was more coming, but that turned out to
	 * be a lie.
	 */
	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
		hctx->queue->mq_ops->commit_rqs(hctx);
1872 1873
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
	list_add_tail(&rq->queuelist, &plug->mq_list);
	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
		struct request *tmp;

		tmp = list_first_entry(&plug->mq_list, struct request,
						queuelist);
		if (tmp->q != rq->q)
			plug->multiple_queues = true;
	}
}

1887
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1888
{
1889
	const int is_sync = op_is_sync(bio->bi_opf);
1890
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1891
	struct blk_mq_alloc_data data = { .flags = 0 };
1892
	struct request *rq;
1893
	unsigned int request_count = 0;
1894
	struct blk_plug *plug;
1895
	struct request *same_queue_rq = NULL;
1896
	blk_qc_t cookie;
1897 1898 1899

	blk_queue_bounce(q, &bio);

1900
	blk_queue_split(q, &bio);
1901

1902
	if (!bio_integrity_prep(bio))
1903
		return BLK_QC_T_NONE;
1904

1905 1906 1907
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1908

1909 1910 1911
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

1912
	rq_qos_throttle(q, bio, NULL);
J
Jens Axboe 已提交
1913

1914
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1915
	if (unlikely(!rq)) {
1916
		rq_qos_cleanup(q, bio);
1917 1918
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1919
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1920 1921
	}

1922 1923
	trace_block_getrq(q, bio, bio->bi_opf);

1924
	rq_qos_track(q, rq, bio);
1925

1926
	cookie = request_to_qc_t(data.hctx, rq);
1927

1928
	plug = current->plug;
1929
	if (unlikely(is_flush_fua)) {
1930
		blk_mq_put_ctx(data.ctx);
1931
		blk_mq_bio_to_request(rq, bio);
1932 1933 1934 1935

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1936 1937 1938 1939 1940
	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
		/*
		 * Use plugging if we have a ->commit_rqs() hook as well, as
		 * we know the driver uses bd->last in a smart fashion.
		 */
1941 1942
		struct request *last = NULL;

1943
		blk_mq_put_ctx(data.ctx);
1944
		blk_mq_bio_to_request(rq, bio);
1945 1946 1947 1948 1949 1950 1951

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1952 1953 1954
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1955
		if (!request_count)
1956
			trace_block_plug(q);
1957 1958
		else
			last = list_entry_rq(plug->mq_list.prev);
1959

1960 1961
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1962 1963
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1964
		}
1965

1966
		blk_add_rq_to_plug(plug, rq);
1967
	} else if (plug && !blk_queue_nomerges(q)) {
1968
		blk_mq_bio_to_request(rq, bio);
1969 1970

		/*
1971
		 * We do limited plugging. If the bio can be merged, do that.
1972 1973
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1974 1975
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1976
		 */
1977 1978 1979 1980
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
1981
		blk_add_rq_to_plug(plug, rq);
1982

1983 1984
		blk_mq_put_ctx(data.ctx);

1985 1986 1987
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1988 1989
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1990
		}
1991 1992
	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
			!data.hctx->dispatch_busy)) {
1993
		blk_mq_put_ctx(data.ctx);
1994 1995
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1996
	} else {
1997
		blk_mq_put_ctx(data.ctx);
1998
		blk_mq_bio_to_request(rq, bio);
1999
		blk_mq_sched_insert_request(rq, false, true, true);
2000
	}
2001

2002
	return cookie;
2003 2004
}

2005 2006
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
2007
{
2008
	struct page *page;
2009

2010
	if (tags->rqs && set->ops->exit_request) {
2011
		int i;
2012

2013
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
2014 2015 2016
			struct request *rq = tags->static_rqs[i];

			if (!rq)
2017
				continue;
2018
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
2019
			tags->static_rqs[i] = NULL;
2020
		}
2021 2022
	}

2023 2024
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
2025
		list_del_init(&page->lru);
2026 2027 2028 2029 2030
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
2031 2032
		__free_pages(page, page->private);
	}
2033
}
2034

2035 2036
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
2037
	kfree(tags->rqs);
2038
	tags->rqs = NULL;
J
Jens Axboe 已提交
2039 2040
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2041

2042
	blk_mq_free_tags(tags);
2043 2044
}

2045 2046 2047 2048
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
2049
{
2050
	struct blk_mq_tags *tags;
2051
	int node;
2052

J
Jens Axboe 已提交
2053
	node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2054 2055 2056 2057
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2058
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2059 2060
	if (!tags)
		return NULL;
2061

2062
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2063
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2064
				 node);
2065 2066 2067 2068
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2069

2070 2071 2072
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2073 2074 2075 2076 2077 2078
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2079 2080 2081 2082 2083 2084 2085 2086
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2098
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2099 2100 2101
	return 0;
}

2102 2103 2104 2105 2106
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2107 2108
	int node;

J
Jens Axboe 已提交
2109
	node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2110 2111
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2112 2113 2114

	INIT_LIST_HEAD(&tags->page_list);

2115 2116 2117 2118
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2119
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2120
				cache_line_size());
2121
	left = rq_size * depth;
2122

2123
	for (i = 0; i < depth; ) {
2124 2125 2126 2127 2128
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2129
		while (this_order && left < order_to_size(this_order - 1))
2130 2131 2132
			this_order--;

		do {
2133
			page = alloc_pages_node(node,
2134
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2135
				this_order);
2136 2137 2138 2139 2140 2141 2142 2143 2144
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2145
			goto fail;
2146 2147

		page->private = this_order;
2148
		list_add_tail(&page->lru, &tags->page_list);
2149 2150

		p = page_address(page);
2151 2152 2153 2154
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2155
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2156
		entries_per_page = order_to_size(this_order) / rq_size;
2157
		to_do = min(entries_per_page, depth - i);
2158 2159
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2160 2161 2162
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2163 2164 2165
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2166 2167
			}

2168 2169 2170 2171
			p += rq_size;
			i++;
		}
	}
2172
	return 0;
2173

2174
fail:
2175 2176
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2177 2178
}

J
Jens Axboe 已提交
2179 2180 2181 2182 2183
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2184
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2185
{
2186
	struct blk_mq_hw_ctx *hctx;
2187 2188 2189
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2190
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2191
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2192 2193 2194 2195 2196 2197 2198 2199 2200

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2201
		return 0;
2202

J
Jens Axboe 已提交
2203 2204 2205
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2206 2207

	blk_mq_run_hw_queue(hctx, true);
2208
	return 0;
2209 2210
}

2211
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2212
{
2213 2214
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2215 2216
}

2217
/* hctx->ctxs will be freed in queue's release handler */
2218 2219 2220 2221
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2222 2223
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2224

2225
	if (set->ops->exit_request)
2226
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2227

2228 2229 2230
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2231
	blk_mq_remove_cpuhp(hctx);
2232 2233
}

M
Ming Lei 已提交
2234 2235 2236 2237 2238 2239 2240 2241 2242
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2243
		blk_mq_debugfs_unregister_hctx(hctx);
2244
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2245 2246 2247
	}
}

2248 2249 2250
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2251
{
2252 2253 2254 2255 2256 2257
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2258
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2259 2260 2261
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2262
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2263

2264
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2265 2266

	hctx->tags = set->tags[hctx_idx];
2267 2268

	/*
2269 2270
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2271
	 */
2272
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2273
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2274 2275
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2276

2277 2278
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2279
		goto free_ctxs;
2280

2281
	hctx->nr_ctx = 0;
2282

2283
	spin_lock_init(&hctx->dispatch_wait_lock);
2284 2285 2286
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2287 2288 2289
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2290

2291 2292
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2293
	if (!hctx->fq)
2294
		goto exit_hctx;
2295

2296
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2297
		goto free_fq;
2298

2299
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2300
		init_srcu_struct(hctx->srcu);
2301

2302
	return 0;
2303

2304
 free_fq:
2305
	blk_free_flush_queue(hctx->fq);
2306 2307 2308
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2309
 free_bitmap:
2310
	sbitmap_free(&hctx->ctx_map);
2311 2312 2313
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2314
	blk_mq_remove_cpuhp(hctx);
2315 2316
	return -1;
}
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2336
		hctx = blk_mq_map_queue(q, i);
2337
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2338
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2339 2340 2341
	}
}

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2364
	if (set->tags && set->tags[hctx_idx]) {
2365 2366 2367 2368
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2369 2370
}

2371
static void blk_mq_map_swqueue(struct request_queue *q)
2372
{
2373
	unsigned int i, hctx_idx;
2374 2375
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2376
	struct blk_mq_tag_set *set = q->tag_set;
2377

2378 2379 2380 2381 2382
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2383
	queue_for_each_hw_ctx(q, hctx, i) {
2384
		cpumask_clear(hctx->cpumask);
2385
		hctx->nr_ctx = 0;
2386
		hctx->dispatch_from = NULL;
2387 2388 2389
	}

	/*
2390
	 * Map software to hardware queues.
2391 2392
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2393
	 */
2394
	for_each_possible_cpu(i) {
J
Jens Axboe 已提交
2395
		hctx_idx = set->map[0].mq_map[i];
2396 2397 2398 2399 2400 2401 2402 2403 2404
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
J
Jens Axboe 已提交
2405
			set->map[0].mq_map[i] = 0;
2406 2407
		}

2408
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2409
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2410

2411
		cpumask_set_cpu(i, hctx->cpumask);
2412 2413 2414
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2415

2416 2417
	mutex_unlock(&q->sysfs_lock);

2418
	queue_for_each_hw_ctx(q, hctx, i) {
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2434

M
Ming Lei 已提交
2435 2436 2437
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2438 2439 2440 2441 2442
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2443
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2444

2445 2446 2447
		/*
		 * Initialize batch roundrobin counts
		 */
2448
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2449 2450
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2451 2452
}

2453 2454 2455 2456
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2457
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2458 2459 2460 2461
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2462
	queue_for_each_hw_ctx(q, hctx, i) {
2463
		if (shared)
2464
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2465
		else
2466 2467 2468 2469
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

2470 2471
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2472 2473
{
	struct request_queue *q;
2474

2475 2476
	lockdep_assert_held(&set->tag_list_lock);

2477 2478
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2479
		queue_set_hctx_shared(q, shared);
2480 2481 2482 2483 2484 2485 2486 2487 2488
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2489
	list_del_rcu(&q->tag_set_list);
2490 2491 2492 2493 2494 2495
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2496
	mutex_unlock(&set->tag_list_lock);
2497
	INIT_LIST_HEAD(&q->tag_set_list);
2498 2499 2500 2501 2502 2503
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
2504

2505 2506 2507 2508 2509
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2510 2511 2512 2513 2514 2515
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2516
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2517

2518 2519 2520
	mutex_unlock(&set->tag_list_lock);
}

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2561 2562 2563
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2564
		kobject_put(&hctx->kobj);
2565
	}
2566 2567 2568

	kfree(q->queue_hw_ctx);

2569 2570 2571 2572 2573
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
2574 2575
}

2576
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2577 2578 2579
{
	struct request_queue *uninit_q, *q;

2580
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2592 2593 2594 2595
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2596
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2597 2598 2599 2600 2601 2602 2603 2604 2605
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
			node);
	if (!hctx)
		return NULL;

	if (!zalloc_cpumask_var_node(&hctx->cpumask,
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				node)) {
		kfree(hctx);
		return NULL;
	}

	atomic_set(&hctx->nr_active, 0);
	hctx->numa_node = node;
	hctx->queue_num = hctx_idx;

	if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
		free_cpumask_var(hctx->cpumask);
		kfree(hctx);
		return NULL;
	}
	blk_mq_hctx_kobj_init(hctx);

	return hctx;
}

K
Keith Busch 已提交
2639 2640
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2641
{
2642
	int i, j, end;
K
Keith Busch 已提交
2643
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2644

2645 2646
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2647
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2648
		int node;
2649
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
2650

J
Jens Axboe 已提交
2651
		node = blk_mq_hw_queue_to_node(&set->map[0], i);
2652 2653 2654 2655 2656 2657 2658
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
2659

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
			if (hctxs[i]) {
				blk_mq_exit_hctx(q, set, hctxs[i], i);
				kobject_put(&hctxs[i]->kobj);
			}
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
2674
		}
2675
	}
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
2688

2689
	for (; j < end; j++) {
K
Keith Busch 已提交
2690 2691 2692
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2693 2694
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2695 2696 2697 2698 2699 2700
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
2701
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2702 2703 2704 2705 2706
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2707 2708 2709
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2710
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2711 2712
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2713 2714 2715
	if (!q->poll_cb)
		goto err_exit;

2716
	if (blk_mq_alloc_ctxs(q))
M
Ming Lin 已提交
2717
		goto err_exit;
K
Keith Busch 已提交
2718

2719 2720 2721
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

2722
	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
K
Keith Busch 已提交
2723 2724
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
2725
		goto err_sys_init;
K
Keith Busch 已提交
2726 2727 2728 2729

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2730

2731
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2732
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2733 2734

	q->nr_queues = nr_cpu_ids;
J
Jens Axboe 已提交
2735
	q->tag_set = set;
2736

2737
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2738 2739
	if (q->mq_ops->poll)
		queue_flag_set_unlocked(QUEUE_FLAG_POLL, q);
2740

2741
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2742
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2743

2744 2745
	q->sg_reserved_size = INT_MAX;

2746
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2747 2748 2749
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2750
	blk_queue_make_request(q, blk_mq_make_request);
2751

2752 2753 2754 2755 2756
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2757 2758 2759 2760 2761
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2762 2763
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2764

2765
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2766
	blk_mq_add_queue_tag_set(set, q);
2767
	blk_mq_map_swqueue(q);
2768

2769 2770 2771
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

2772
		ret = elevator_init_mq(q);
2773 2774 2775 2776
		if (ret)
			return ERR_PTR(ret);
	}

2777
	return q;
2778

2779
err_hctxs:
K
Keith Busch 已提交
2780
	kfree(q->queue_hw_ctx);
2781 2782
err_sys_init:
	blk_mq_sysfs_deinit(q);
M
Ming Lin 已提交
2783 2784
err_exit:
	q->mq_ops = NULL;
2785 2786
	return ERR_PTR(-ENOMEM);
}
2787
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2788

2789 2790
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
2791
{
M
Ming Lei 已提交
2792
	struct blk_mq_tag_set	*set = q->tag_set;
2793

2794
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2795
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2796 2797
}

2798 2799 2800 2801
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2802 2803
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2804 2805 2806 2807 2808 2809
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2810
		blk_mq_free_rq_map(set->tags[i]);
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2850 2851
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2852 2853 2854 2855 2856 2857 2858 2859
	if (set->ops->map_queues) {
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
2860
		 * 		set->map.mq_map[cpu] = queue;
2861 2862 2863 2864 2865 2866
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
2867
		blk_mq_clear_mq_map(&set->map[0]);
2868

2869
		return set->ops->map_queues(set);
2870
	} else
J
Jens Axboe 已提交
2871
		return blk_mq_map_queues(&set->map[0]);
2872 2873
}

2874 2875 2876
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
2877
 * requested depth down, if it's too large. In that case, the set
2878 2879
 * value will be stored in set->queue_depth.
 */
2880 2881
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2882 2883
	int ret;

B
Bart Van Assche 已提交
2884 2885
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2886 2887
	if (!set->nr_hw_queues)
		return -EINVAL;
2888
	if (!set->queue_depth)
2889 2890 2891 2892
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2893
	if (!set->ops->queue_rq)
2894 2895
		return -EINVAL;

2896 2897 2898
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2899 2900 2901 2902 2903
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2904

2905 2906 2907 2908 2909 2910 2911 2912 2913
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2914 2915 2916 2917 2918
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2919

2920
	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2921 2922
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2923
		return -ENOMEM;
2924

2925
	ret = -ENOMEM;
J
Jens Axboe 已提交
2926 2927 2928 2929
	set->map[0].mq_map = kcalloc_node(nr_cpu_ids,
					  sizeof(*set->map[0].mq_map),
					  GFP_KERNEL, set->numa_node);
	if (!set->map[0].mq_map)
2930
		goto out_free_tags;
J
Jens Axboe 已提交
2931
	set->map[0].nr_queues = set->nr_hw_queues;
2932

2933
	ret = blk_mq_update_queue_map(set);
2934 2935 2936 2937 2938
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2939
		goto out_free_mq_map;
2940

2941 2942 2943
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2944
	return 0;
2945 2946

out_free_mq_map:
J
Jens Axboe 已提交
2947 2948
	kfree(set->map[0].mq_map);
	set->map[0].mq_map = NULL;
2949
out_free_tags:
2950 2951
	kfree(set->tags);
	set->tags = NULL;
2952
	return ret;
2953 2954 2955 2956 2957 2958 2959
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2960 2961
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2962

J
Jens Axboe 已提交
2963 2964
	kfree(set->map[0].mq_map);
	set->map[0].mq_map = NULL;
2965

M
Ming Lei 已提交
2966
	kfree(set->tags);
2967
	set->tags = NULL;
2968 2969 2970
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2971 2972 2973 2974 2975 2976
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2977
	if (!set)
2978 2979
		return -EINVAL;

2980
	blk_mq_freeze_queue(q);
2981
	blk_mq_quiesce_queue(q);
2982

2983 2984
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2985 2986
		if (!hctx->tags)
			continue;
2987 2988 2989 2990
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2991
		if (!hctx->sched_tags) {
2992
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2993 2994 2995 2996 2997
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2998 2999
		if (ret)
			break;
3000 3001
		if (q->elevator && q->elevator->type->ops.mq.depth_updated)
			q->elevator->type->ops.mq.depth_updated(hctx);
3002 3003 3004 3005 3006
	}

	if (!ret)
		q->nr_requests = nr;

3007
	blk_mq_unquiesce_queue(q);
3008 3009
	blk_mq_unfreeze_queue(q);

3010 3011 3012
	return ret;
}

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

3083 3084
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
3085 3086
{
	struct request_queue *q;
3087
	LIST_HEAD(head);
3088
	int prev_nr_hw_queues;
K
Keith Busch 已提交
3089

3090 3091
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
3092 3093 3094 3095 3096 3097 3098
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
3099 3100 3101 3102
	/*
	 * Sync with blk_mq_queue_tag_busy_iter.
	 */
	synchronize_rcu();
3103 3104 3105 3106 3107 3108 3109 3110
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
3111

3112 3113 3114 3115 3116
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

3117
	prev_nr_hw_queues = set->nr_hw_queues;
K
Keith Busch 已提交
3118
	set->nr_hw_queues = nr_hw_queues;
3119
	blk_mq_update_queue_map(set);
3120
fallback:
K
Keith Busch 已提交
3121 3122
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
3123 3124 3125 3126
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
J
Jens Axboe 已提交
3127
			blk_mq_map_queues(&set->map[0]);
3128 3129
			goto fallback;
		}
3130 3131 3132 3133 3134 3135
		blk_mq_map_swqueue(q);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
3136 3137
	}

3138 3139 3140 3141
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
3142 3143 3144
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
3145 3146 3147 3148 3149 3150 3151

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3152 3153
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3154 3155 3156 3157
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3158
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3180
	int bucket;
3181

3182 3183 3184 3185
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3186 3187
}

3188 3189 3190 3191 3192
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3193
	int bucket;
3194 3195 3196 3197 3198

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3199
	if (!blk_poll_stats_enable(q))
3200 3201 3202 3203 3204 3205 3206 3207
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3208 3209
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3210
	 */
3211 3212 3213 3214 3215 3216
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3217 3218 3219 3220

	return ret;
}

3221
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3222
				     struct blk_mq_hw_ctx *hctx,
3223 3224 3225 3226
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3227
	unsigned int nsecs;
3228 3229
	ktime_t kt;

J
Jens Axboe 已提交
3230
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3231 3232 3233
		return false;

	/*
3234
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3235 3236 3237 3238
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
3239
	if (q->poll_nsec > 0)
3240 3241 3242 3243 3244
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3245 3246
		return false;

J
Jens Axboe 已提交
3247
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3248 3249 3250 3251 3252

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3253
	kt = nsecs;
3254 3255 3256 3257 3258 3259 3260

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3261
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

3276 3277
static bool blk_mq_poll_hybrid(struct request_queue *q,
			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
J
Jens Axboe 已提交
3278
{
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
	struct request *rq;

	if (q->poll_nsec == -1)
		return false;

	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else {
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}

	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
}

C
Christoph Hellwig 已提交
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
/**
 * blk_poll - poll for IO completions
 * @q:  the queue
 * @cookie: cookie passed back at IO submission time
 * @spin: whether to spin for completions
 *
 * Description:
 *    Poll for completions on the passed in queue. Returns number of
 *    completed entries found. If @spin is true, then blk_poll will continue
 *    looping until at least one completion is found, unless the task is
 *    otherwise marked running (or we need to reschedule).
 */
int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3314 3315
{
	struct blk_mq_hw_ctx *hctx;
J
Jens Axboe 已提交
3316 3317
	long state;

3318
	if (!blk_qc_t_valid(cookie) || !q->mq_ops->poll ||
C
Christoph Hellwig 已提交
3319
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3320 3321
		return 0;

C
Christoph Hellwig 已提交
3322 3323 3324
	if (current->plug)
		blk_flush_plug_list(current->plug, false);

3325 3326
	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];

3327 3328 3329 3330 3331 3332 3333
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3334
	if (blk_mq_poll_hybrid(q, hctx, cookie))
3335
		return 1;
3336

J
Jens Axboe 已提交
3337 3338 3339 3340 3341 3342 3343 3344
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

3345
		ret = q->mq_ops->poll(hctx, -1U);
J
Jens Axboe 已提交
3346 3347 3348
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
3349
			return ret;
J
Jens Axboe 已提交
3350 3351 3352 3353 3354 3355
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
3356
			return 1;
3357
		if (ret < 0 || !spin)
J
Jens Axboe 已提交
3358 3359 3360 3361
			break;
		cpu_relax();
	}

3362
	__set_current_state(TASK_RUNNING);
3363
	return 0;
J
Jens Axboe 已提交
3364
}
C
Christoph Hellwig 已提交
3365
EXPORT_SYMBOL_GPL(blk_poll);
J
Jens Axboe 已提交
3366

3367 3368
static int __init blk_mq_init(void)
{
3369 3370
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3371 3372 3373
	return 0;
}
subsys_initcall(blk_mq_init);