blk-mq.c 77.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
37
#include "blk-mq-sched.h"
38
#include "blk-rq-qos.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98 99 100 101 102 103 104 105 106
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
107 108 109 110 111 112 113
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

114
	inflight[0] = inflight[1] = 0;
115 116 117
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

137
void blk_freeze_queue_start(struct request_queue *q)
138
{
139
	int freeze_depth;
140

141 142
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
143
		percpu_ref_kill(&q->q_usage_counter);
144 145
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
146
	}
147
}
148
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149

150
void blk_mq_freeze_queue_wait(struct request_queue *q)
151
{
152
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155

156 157 158 159 160 161 162 163
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164

165 166 167 168
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
169
void blk_freeze_queue(struct request_queue *q)
170
{
171 172 173 174 175 176 177
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
178
	blk_freeze_queue_start(q);
179 180
	if (!q->mq_ops)
		blk_drain_queue(q);
181 182
	blk_mq_freeze_queue_wait(q);
}
183 184 185 186 187 188 189 190 191

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
192
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193

194
void blk_mq_unfreeze_queue(struct request_queue *q)
195
{
196
	int freeze_depth;
197

198 199 200
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
201
		percpu_ref_reinit(&q->q_usage_counter);
202
		wake_up_all(&q->mq_freeze_wq);
203
	}
204
}
205
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206

207 208 209 210 211 212
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
213
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 215 216
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

217
/**
218
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 220 221
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
222 223 224
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
225 226 227 228 229 230 231
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

232
	blk_mq_quiesce_queue_nowait(q);
233

234 235
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
236
			synchronize_srcu(hctx->srcu);
237 238 239 240 241 242 243 244
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

245 246 247 248 249 250 251 252 253
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
254
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255

256 257
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
258 259 260
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

261 262 263 264 265 266 267 268 269 270
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

271 272 273 274 275 276
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

277 278
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
279
{
280 281
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
282
	req_flags_t rq_flags = 0;
283

284 285 286 287
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
288
		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
289
			rq_flags = RQF_MQ_INFLIGHT;
290 291 292 293 294 295 296
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

297
	/* csd/requeue_work/fifo_time is initialized before use */
298 299
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
300
	rq->rq_flags = rq_flags;
301
	rq->cpu = -1;
302
	rq->cmd_flags = op;
303 304
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
305
	if (blk_queue_io_stat(data->q))
306
		rq->rq_flags |= RQF_IO_STAT;
307
	INIT_LIST_HEAD(&rq->queuelist);
308 309 310 311
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
312
	rq->start_time_ns = ktime_get_ns();
313
	rq->io_start_time_ns = 0;
314 315 316 317 318 319 320
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
321
	rq->__deadline = 0;
322 323

	INIT_LIST_HEAD(&rq->timeout_list);
324 325
	rq->timeout = 0;

326 327 328 329
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

330 331 332 333
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
#endif

334
	data->ctx->rq_dispatched[op_is_sync(op)]++;
K
Keith Busch 已提交
335
	refcount_set(&rq->ref, 1);
336
	return rq;
337 338
}

339 340 341 342 343 344
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
345
	unsigned int tag;
346
	bool put_ctx_on_error = false;
347 348 349

	blk_queue_enter_live(q);
	data->q = q;
350 351 352 353
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
354 355
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 357
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
358 359 360 361 362 363

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
364 365
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
366
		 */
367 368
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
		    !(data->flags & BLK_MQ_REQ_RESERVED))
369
			e->type->ops.mq.limit_depth(op, data);
370 371
	} else {
		blk_mq_tag_busy(data->hctx);
372 373
	}

374 375
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
376 377
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
378 379
			data->ctx = NULL;
		}
380 381
		blk_queue_exit(q);
		return NULL;
382 383
	}

384
	rq = blk_mq_rq_ctx_init(data, tag, op);
385 386
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
387
		if (e && e->type->ops.mq.prepare_request) {
388 389 390
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

391 392
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
393
		}
394 395 396
	}
	data->hctx->queued++;
	return rq;
397 398
}

399
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400
		blk_mq_req_flags_t flags)
401
{
402
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
403
	struct request *rq;
404
	int ret;
405

406
	ret = blk_queue_enter(q, flags);
407 408
	if (ret)
		return ERR_PTR(ret);
409

410
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
411
	blk_queue_exit(q);
412

413
	if (!rq)
414
		return ERR_PTR(-EWOULDBLOCK);
415

416 417
	blk_mq_put_ctx(alloc_data.ctx);

418 419 420
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
421 422
	return rq;
}
423
EXPORT_SYMBOL(blk_mq_alloc_request);
424

425
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
427
{
428
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
429
	struct request *rq;
430
	unsigned int cpu;
M
Ming Lin 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

445
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
446 447 448
	if (ret)
		return ERR_PTR(ret);

449 450 451 452
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
453 454 455 456
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
457
	}
458
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
460

461
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
462
	blk_queue_exit(q);
463

464 465 466 467
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
468 469 470
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

486
void blk_mq_free_request(struct request *rq)
487 488
{
	struct request_queue *q = rq->q;
489 490 491 492
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

493
	if (rq->rq_flags & RQF_ELVPRIV) {
494 495 496 497 498 499 500
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
501

502
	ctx->rq_completed[rq_is_sync(rq)]++;
503
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
504
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
505

506 507 508
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

509
	rq_qos_done(q, rq);
510

S
Shaohua Li 已提交
511 512 513
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

K
Keith Busch 已提交
514 515 516
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
517
}
J
Jens Axboe 已提交
518
EXPORT_SYMBOL_GPL(blk_mq_free_request);
519

520
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521
{
522 523
	u64 now = ktime_get_ns();

524 525
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
526
		blk_stat_add(rq, now);
527 528
	}

529
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
530

C
Christoph Hellwig 已提交
531
	if (rq->end_io) {
532
		rq_qos_done(rq->q, rq);
533
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
534 535 536
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
537
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
538
	}
539
}
540
EXPORT_SYMBOL(__blk_mq_end_request);
541

542
void blk_mq_end_request(struct request *rq, blk_status_t error)
543 544 545
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
546
	__blk_mq_end_request(rq, error);
547
}
548
EXPORT_SYMBOL(blk_mq_end_request);
549

550
static void __blk_mq_complete_request_remote(void *data)
551
{
552
	struct request *rq = data;
553

554
	rq->q->softirq_done_fn(rq);
555 556
}

557
static void __blk_mq_complete_request(struct request *rq)
558 559
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
560
	bool shared = false;
561 562
	int cpu;

563
	if (!blk_mq_mark_complete(rq))
K
Keith Busch 已提交
564
		return;
565 566 567
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);

C
Christoph Hellwig 已提交
568
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 570 571
		rq->q->softirq_done_fn(rq);
		return;
	}
572 573

	cpu = get_cpu();
C
Christoph Hellwig 已提交
574 575 576 577
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578
		rq->csd.func = __blk_mq_complete_request_remote;
579 580
		rq->csd.info = rq;
		rq->csd.flags = 0;
581
		smp_call_function_single_async(ctx->cpu, &rq->csd);
582
	} else {
583
		rq->q->softirq_done_fn(rq);
584
	}
585 586
	put_cpu();
}
587

588
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589
	__releases(hctx->srcu)
590 591 592 593
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
594
		srcu_read_unlock(hctx->srcu, srcu_idx);
595 596 597
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598
	__acquires(hctx->srcu)
599
{
600 601 602
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
603
		rcu_read_lock();
604
	} else
605
		*srcu_idx = srcu_read_lock(hctx->srcu);
606 607
}

608 609 610 611 612 613 614 615
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
616
void blk_mq_complete_request(struct request *rq)
617
{
K
Keith Busch 已提交
618
	if (unlikely(blk_should_fake_timeout(rq->q)))
619
		return;
K
Keith Busch 已提交
620
	__blk_mq_complete_request(rq);
621 622
}
EXPORT_SYMBOL(blk_mq_complete_request);
623

624 625
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
626
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 628 629
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

630
void blk_mq_start_request(struct request *rq)
631 632 633
{
	struct request_queue *q = rq->q;

634 635
	blk_mq_sched_started_request(rq);

636 637
	trace_block_rq_issue(q, rq);

638
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 640 641 642
		rq->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		rq->throtl_size = blk_rq_sectors(rq);
#endif
643
		rq->rq_flags |= RQF_STATS;
644
		rq_qos_issue(q, rq);
645 646
	}

647
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648

649
	blk_add_timer(rq);
K
Keith Busch 已提交
650
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651 652 653 654 655 656 657 658 659

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
660
}
661
EXPORT_SYMBOL(blk_mq_start_request);
662

663
static void __blk_mq_requeue_request(struct request *rq)
664 665 666
{
	struct request_queue *q = rq->q;

667 668
	blk_mq_put_driver_tag(rq);

669
	trace_block_rq_requeue(q, rq);
670
	rq_qos_requeue(q, rq);
671

K
Keith Busch 已提交
672 673
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674
		rq->rq_flags &= ~RQF_TIMED_OUT;
675 676 677
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
678 679
}

680
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 682 683
{
	__blk_mq_requeue_request(rq);

684 685 686
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

687
	BUG_ON(blk_queued_rq(rq));
688
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 690 691
}
EXPORT_SYMBOL(blk_mq_requeue_request);

692 693 694
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
695
		container_of(work, struct request_queue, requeue_work.work);
696 697 698
	LIST_HEAD(rq_list);
	struct request *rq, *next;

699
	spin_lock_irq(&q->requeue_lock);
700
	list_splice_init(&q->requeue_list, &rq_list);
701
	spin_unlock_irq(&q->requeue_lock);
702 703

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
705 706
			continue;

707
		rq->rq_flags &= ~RQF_SOFTBARRIER;
708
		list_del_init(&rq->queuelist);
709 710 711 712 713 714 715 716 717
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
			blk_mq_request_bypass_insert(rq, false);
		else
			blk_mq_sched_insert_request(rq, true, false, false);
718 719 720 721 722
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
723
		blk_mq_sched_insert_request(rq, false, false, false);
724 725
	}

726
	blk_mq_run_hw_queues(q, false);
727 728
}

729 730
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
731 732 733 734 735 736
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
737
	 * request head insertion from the workqueue.
738
	 */
739
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
740 741 742

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
743
		rq->rq_flags |= RQF_SOFTBARRIER;
744 745 746 747 748
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
749 750 751

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
752 753 754 755 756
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
757
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
758 759 760
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

761 762 763
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
764 765
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
766 767 768
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

769 770
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
771 772
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
773
		return tags->rqs[tag];
774
	}
775 776

	return NULL;
777 778 779
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

780
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
781
{
782
	req->rq_flags |= RQF_TIMED_OUT;
783 784 785 786 787 788 789
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
790
	}
791 792

	blk_add_timer(req);
793
}
794

K
Keith Busch 已提交
795
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
796
{
K
Keith Busch 已提交
797
	unsigned long deadline;
798

K
Keith Busch 已提交
799 800
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
801 802
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
803

K
Keith Busch 已提交
804 805 806
	deadline = blk_rq_deadline(rq);
	if (time_after_eq(jiffies, deadline))
		return true;
807

K
Keith Busch 已提交
808 809 810 811 812
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
813 814
}

K
Keith Busch 已提交
815
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
816 817
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
		return;

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
		return;

839
	/*
K
Keith Busch 已提交
840 841 842 843
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
844
	 */
K
Keith Busch 已提交
845
	if (blk_mq_req_expired(rq, next))
846
		blk_mq_rq_timed_out(rq, reserved);
847 848 849 850

	if (is_flush_rq(rq, hctx))
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
K
Keith Busch 已提交
851
		__blk_mq_free_request(rq);
852 853
}

854
static void blk_mq_timeout_work(struct work_struct *work)
855
{
856 857
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
858
	unsigned long next = 0;
859
	struct blk_mq_hw_ctx *hctx;
860
	int i;
861

862 863 864 865 866 867 868 869 870
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
871
	 * blk_freeze_queue_start, and the moment the last request is
872 873 874 875
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
876 877
		return;

K
Keith Busch 已提交
878
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
879

K
Keith Busch 已提交
880 881
	if (next != 0) {
		mod_timer(&q->timeout, next);
882
	} else {
883 884 885 886 887 888
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
889 890 891 892 893
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
894
	}
895
	blk_queue_exit(q);
896 897
}

898 899 900 901 902 903 904 905 906 907 908 909 910
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
911
	sbitmap_clear_bit(sb, bitnr);
912 913 914 915
	spin_unlock(&ctx->lock);
	return true;
}

916 917 918 919
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
920
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
921
{
922 923 924 925
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
926

927
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
928
}
929
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
930

931 932 933 934 935 936 937 938 939 940 941 942 943
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
H
huhai 已提交
944
	if (!list_empty(&ctx->rq_list)) {
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

970 971 972 973
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
974

975
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
976 977
}

978
bool blk_mq_get_driver_tag(struct request *rq)
979 980 981 982
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
983
		.flags = BLK_MQ_REQ_NOWAIT,
984
	};
985
	bool shared;
986

987 988
	if (rq->tag != -1)
		goto done;
989

990 991 992
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

993
	shared = blk_mq_tag_busy(data.hctx);
994 995
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
996
		if (shared) {
997 998 999
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1000 1001 1002
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1003 1004
done:
	return rq->tag != -1;
1005 1006
}

1007 1008
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1009 1010 1011 1012 1013
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1014
	spin_lock(&hctx->dispatch_wait_lock);
1015
	list_del_init(&wait->entry);
1016 1017
	spin_unlock(&hctx->dispatch_wait_lock);

1018 1019 1020 1021
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1022 1023
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1024 1025
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1026 1027
 * marking us as waiting.
 */
1028
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1029
				 struct request *rq)
1030
{
1031
	struct wait_queue_head *wq;
1032 1033
	wait_queue_entry_t *wait;
	bool ret;
1034

1035 1036 1037
	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1038

1039 1040 1041 1042 1043 1044 1045 1046
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1047
		return blk_mq_get_driver_tag(rq);
1048 1049
	}

1050
	wait = &hctx->dispatch_wait;
1051 1052 1053
	if (!list_empty_careful(&wait->entry))
		return false;

1054 1055 1056 1057
	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1058
	if (!list_empty(&wait->entry)) {
1059 1060
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1061
		return false;
1062 1063
	}

1064 1065
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1066

1067
	/*
1068 1069 1070
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1071
	 */
1072
	ret = blk_mq_get_driver_tag(rq);
1073
	if (!ret) {
1074 1075
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1076
		return false;
1077
	}
1078 1079 1080 1081 1082 1083

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1084 1085
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1086 1087

	return true;
1088 1089
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	if (hctx->queue->elevator)
		return;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1119 1120
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1121 1122 1123
/*
 * Returns true if we did some work AND can potentially do more.
 */
1124
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1125
			     bool got_budget)
1126
{
1127
	struct blk_mq_hw_ctx *hctx;
1128
	struct request *rq, *nxt;
1129
	bool no_tag = false;
1130
	int errors, queued;
1131
	blk_status_t ret = BLK_STS_OK;
1132

1133 1134 1135
	if (list_empty(list))
		return false;

1136 1137
	WARN_ON(!list_is_singular(list) && got_budget);

1138 1139 1140
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1141
	errors = queued = 0;
1142
	do {
1143
		struct blk_mq_queue_data bd;
1144

1145
		rq = list_first_entry(list, struct request, queuelist);
1146 1147 1148 1149 1150

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

1151
		if (!blk_mq_get_driver_tag(rq)) {
1152
			/*
1153
			 * The initial allocation attempt failed, so we need to
1154 1155 1156 1157
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1158
			 */
1159
			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1160
				blk_mq_put_dispatch_budget(hctx);
1161 1162 1163 1164 1165 1166
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1167 1168 1169 1170
				break;
			}
		}

1171 1172
		list_del_init(&rq->queuelist);

1173
		bd.rq = rq;
1174 1175 1176 1177 1178 1179 1180 1181 1182

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1183
			bd.last = !blk_mq_get_driver_tag(nxt);
1184
		}
1185 1186

		ret = q->mq_ops->queue_rq(hctx, &bd);
1187
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1188 1189
			/*
			 * If an I/O scheduler has been configured and we got a
1190 1191
			 * driver tag for the next request already, free it
			 * again.
1192 1193 1194 1195 1196
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1197
			list_add(&rq->queuelist, list);
1198
			__blk_mq_requeue_request(rq);
1199
			break;
1200 1201 1202
		}

		if (unlikely(ret != BLK_STS_OK)) {
1203
			errors++;
1204
			blk_mq_end_request(rq, BLK_STS_IOERR);
1205
			continue;
1206 1207
		}

1208
		queued++;
1209
	} while (!list_empty(list));
1210

1211
	hctx->dispatched[queued_to_index(queued)]++;
1212 1213 1214 1215 1216

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1217
	if (!list_empty(list)) {
1218 1219
		bool needs_restart;

1220
		spin_lock(&hctx->lock);
1221
		list_splice_init(list, &hctx->dispatch);
1222
		spin_unlock(&hctx->lock);
1223

1224
		/*
1225 1226 1227
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1228
		 *
1229 1230 1231 1232
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1233
		 *
1234 1235 1236 1237 1238 1239 1240
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1241
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1242
		 *   and dm-rq.
1243 1244 1245 1246
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1247
		 */
1248 1249
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1250
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1251
			blk_mq_run_hw_queue(hctx, true);
1252 1253
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1254

1255
		blk_mq_update_dispatch_busy(hctx, true);
1256
		return false;
1257 1258
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1259

1260 1261 1262 1263 1264 1265 1266
	/*
	 * If the host/device is unable to accept more work, inform the
	 * caller of that.
	 */
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
		return false;

1267
	return (queued + errors) != 0;
1268 1269
}

1270 1271 1272 1273
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1274 1275 1276
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1290
	 */
1291 1292 1293 1294 1295 1296 1297
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1298

1299 1300 1301 1302 1303 1304
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1305
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1306

1307 1308 1309
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1310 1311
}

1312 1313 1314 1315 1316 1317 1318 1319 1320
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1321 1322 1323 1324 1325 1326 1327 1328
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1329
	bool tried = false;
1330
	int next_cpu = hctx->next_cpu;
1331

1332 1333
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1334 1335

	if (--hctx->next_cpu_batch <= 0) {
1336
select_cpu:
1337
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1338
				cpu_online_mask);
1339
		if (next_cpu >= nr_cpu_ids)
1340
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1341 1342 1343
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1344 1345 1346 1347
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1348
	if (!cpu_online(next_cpu)) {
1349 1350 1351 1352 1353 1354 1355 1356 1357
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1358
		hctx->next_cpu = next_cpu;
1359 1360 1361
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1362 1363 1364

	hctx->next_cpu = next_cpu;
	return next_cpu;
1365 1366
}

1367 1368
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1369
{
1370
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1371 1372
		return;

1373
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1374 1375
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1376
			__blk_mq_run_hw_queue(hctx);
1377
			put_cpu();
1378 1379
			return;
		}
1380

1381
		put_cpu();
1382
	}
1383

1384 1385
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1386 1387 1388 1389 1390 1391 1392 1393
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1394
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1395
{
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1407 1408 1409 1410
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1411 1412

	if (need_run) {
1413 1414 1415 1416 1417
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1418
}
O
Omar Sandoval 已提交
1419
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1420

1421
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1422 1423 1424 1425 1426
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1427
		if (blk_mq_hctx_stopped(hctx))
1428 1429
			continue;

1430
		blk_mq_run_hw_queue(hctx, async);
1431 1432
	}
}
1433
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1455 1456 1457
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1458
 * BLK_STS_RESOURCE is usually returned.
1459 1460 1461 1462 1463
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1464 1465
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1466
	cancel_delayed_work(&hctx->run_work);
1467

1468
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1469
}
1470
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1471

1472 1473 1474
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1475
 * BLK_STS_RESOURCE is usually returned.
1476 1477 1478 1479 1480
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1481 1482
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1483 1484 1485 1486 1487
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1488 1489 1490
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1491 1492 1493
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1494

1495
	blk_mq_run_hw_queue(hctx, false);
1496 1497 1498
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1519
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1520 1521 1522 1523
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1524 1525
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1526 1527 1528
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1529
static void blk_mq_run_work_fn(struct work_struct *work)
1530 1531 1532
{
	struct blk_mq_hw_ctx *hctx;

1533
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1534

1535
	/*
M
Ming Lei 已提交
1536
	 * If we are stopped, don't run the queue.
1537
	 */
M
Ming Lei 已提交
1538
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1539
		return;
1540 1541 1542 1543

	__blk_mq_run_hw_queue(hctx);
}

1544 1545 1546
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1547
{
J
Jens Axboe 已提交
1548 1549
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1550 1551
	lockdep_assert_held(&ctx->lock);

1552 1553
	trace_block_rq_insert(hctx->queue, rq);

1554 1555 1556 1557
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1558
}
1559

1560 1561
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1562 1563 1564
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1565 1566
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1567
	__blk_mq_insert_req_list(hctx, rq, at_head);
1568 1569 1570
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1571 1572 1573 1574
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1575
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1576 1577 1578 1579 1580 1581 1582 1583
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1584 1585
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1586 1587
}

1588 1589
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1590 1591

{
1592 1593
	struct request *rq;

1594 1595 1596 1597
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
1598
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
1599
		BUG_ON(rq->mq_ctx != ctx);
1600
		trace_block_rq_insert(hctx->queue, rq);
1601
	}
1602 1603 1604

	spin_lock(&ctx->lock);
	list_splice_tail_init(list, &ctx->rq_list);
1605
	blk_mq_hctx_mark_pending(hctx, ctx);
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1642
				trace_block_unplug(this_q, depth, !from_schedule);
1643 1644 1645
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1662
		trace_block_unplug(this_q, depth, !from_schedule);
1663 1664
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1665 1666 1667 1668 1669
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1670
	blk_init_request_from_bio(rq, bio);
1671

S
Shaohua Li 已提交
1672 1673
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1674
	blk_account_io_start(rq, true);
1675 1676
}

1677 1678
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1679 1680 1681 1682
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1683 1684
}

1685 1686 1687
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1688 1689 1690 1691
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1692
		.last = true,
1693
	};
1694
	blk_qc_t new_cookie;
1695
	blk_status_t ret;
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
1707
		blk_mq_update_dispatch_busy(hctx, false);
1708 1709 1710
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1711
	case BLK_STS_DEV_RESOURCE:
1712
		blk_mq_update_dispatch_busy(hctx, true);
1713 1714 1715
		__blk_mq_requeue_request(rq);
		break;
	default:
1716
		blk_mq_update_dispatch_busy(hctx, false);
1717 1718 1719 1720 1721 1722 1723 1724 1725
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1726 1727
						blk_qc_t *cookie,
						bool bypass_insert)
1728 1729
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1730 1731
	bool run_queue = true;

1732 1733 1734 1735
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1736
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1737 1738
	 * and avoid driver to try to dispatch again.
	 */
1739
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1740
		run_queue = false;
1741
		bypass_insert = false;
M
Ming Lei 已提交
1742 1743
		goto insert;
	}
1744

1745
	if (q->elevator && !bypass_insert)
1746 1747
		goto insert;

1748
	if (!blk_mq_get_dispatch_budget(hctx))
1749 1750
		goto insert;

1751
	if (!blk_mq_get_driver_tag(rq)) {
1752
		blk_mq_put_dispatch_budget(hctx);
1753
		goto insert;
1754
	}
1755

1756
	return __blk_mq_issue_directly(hctx, rq, cookie);
1757
insert:
1758 1759
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1760

1761
	blk_mq_request_bypass_insert(rq, run_queue);
1762
	return BLK_STS_OK;
1763 1764
}

1765 1766 1767
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1768
	blk_status_t ret;
1769
	int srcu_idx;
1770

1771
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1772

1773
	hctx_lock(hctx, &srcu_idx);
1774

1775
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1776
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1777
		blk_mq_request_bypass_insert(rq, true);
1778 1779 1780
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1781
	hctx_unlock(hctx, srcu_idx);
1782 1783
}

1784
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1797 1798
}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
	while (!list_empty(list)) {
		blk_status_t ret;
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
		ret = blk_mq_request_issue_directly(rq);
		if (ret != BLK_STS_OK) {
1810 1811
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
1812 1813
				blk_mq_request_bypass_insert(rq,
							list_empty(list));
1814 1815 1816
				break;
			}
			blk_mq_end_request(rq, ret);
1817 1818 1819 1820
		}
	}
}

1821
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1822
{
1823
	const int is_sync = op_is_sync(bio->bi_opf);
1824
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1825
	struct blk_mq_alloc_data data = { .flags = 0 };
1826
	struct request *rq;
1827
	unsigned int request_count = 0;
1828
	struct blk_plug *plug;
1829
	struct request *same_queue_rq = NULL;
1830
	blk_qc_t cookie;
1831 1832 1833

	blk_queue_bounce(q, &bio);

1834
	blk_queue_split(q, &bio);
1835

1836
	if (!bio_integrity_prep(bio))
1837
		return BLK_QC_T_NONE;
1838

1839 1840 1841
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1842

1843 1844 1845
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

1846
	rq_qos_throttle(q, bio, NULL);
J
Jens Axboe 已提交
1847

1848 1849
	trace_block_getrq(q, bio, bio->bi_opf);

1850
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1851
	if (unlikely(!rq)) {
1852
		rq_qos_cleanup(q, bio);
1853 1854
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1855
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1856 1857
	}

1858
	rq_qos_track(q, rq, bio);
1859

1860
	cookie = request_to_qc_t(data.hctx, rq);
1861

1862
	plug = current->plug;
1863
	if (unlikely(is_flush_fua)) {
1864
		blk_mq_put_ctx(data.ctx);
1865
		blk_mq_bio_to_request(rq, bio);
1866 1867 1868 1869

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1870
	} else if (plug && q->nr_hw_queues == 1) {
1871 1872
		struct request *last = NULL;

1873
		blk_mq_put_ctx(data.ctx);
1874
		blk_mq_bio_to_request(rq, bio);
1875 1876 1877 1878 1879 1880 1881

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1882 1883 1884
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1885
		if (!request_count)
1886
			trace_block_plug(q);
1887 1888
		else
			last = list_entry_rq(plug->mq_list.prev);
1889

1890 1891
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1892 1893
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1894
		}
1895

1896
		list_add_tail(&rq->queuelist, &plug->mq_list);
1897
	} else if (plug && !blk_queue_nomerges(q)) {
1898
		blk_mq_bio_to_request(rq, bio);
1899 1900

		/*
1901
		 * We do limited plugging. If the bio can be merged, do that.
1902 1903
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1904 1905
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1906
		 */
1907 1908 1909 1910 1911 1912
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1913 1914
		blk_mq_put_ctx(data.ctx);

1915 1916 1917
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1918 1919
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1920
		}
1921 1922
	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
			!data.hctx->dispatch_busy)) {
1923
		blk_mq_put_ctx(data.ctx);
1924 1925
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1926
	} else {
1927
		blk_mq_put_ctx(data.ctx);
1928
		blk_mq_bio_to_request(rq, bio);
1929
		blk_mq_sched_insert_request(rq, false, true, true);
1930
	}
1931

1932
	return cookie;
1933 1934
}

1935 1936
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1937
{
1938
	struct page *page;
1939

1940
	if (tags->rqs && set->ops->exit_request) {
1941
		int i;
1942

1943
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1944 1945 1946
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1947
				continue;
1948
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1949
			tags->static_rqs[i] = NULL;
1950
		}
1951 1952
	}

1953 1954
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1955
		list_del_init(&page->lru);
1956 1957 1958 1959 1960
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1961 1962
		__free_pages(page, page->private);
	}
1963
}
1964

1965 1966
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1967
	kfree(tags->rqs);
1968
	tags->rqs = NULL;
J
Jens Axboe 已提交
1969 1970
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1971

1972
	blk_mq_free_tags(tags);
1973 1974
}

1975 1976 1977 1978
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1979
{
1980
	struct blk_mq_tags *tags;
1981
	int node;
1982

1983 1984 1985 1986 1987
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1988
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1989 1990
	if (!tags)
		return NULL;
1991

1992
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1993
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1994
				 node);
1995 1996 1997 1998
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1999

2000 2001 2002
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2003 2004 2005 2006 2007 2008
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2009 2010 2011 2012 2013 2014 2015 2016
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2028
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2029 2030 2031
	return 0;
}

2032 2033 2034 2035 2036
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2037 2038 2039 2040 2041
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2042 2043 2044

	INIT_LIST_HEAD(&tags->page_list);

2045 2046 2047 2048
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2049
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2050
				cache_line_size());
2051
	left = rq_size * depth;
2052

2053
	for (i = 0; i < depth; ) {
2054 2055 2056 2057 2058
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2059
		while (this_order && left < order_to_size(this_order - 1))
2060 2061 2062
			this_order--;

		do {
2063
			page = alloc_pages_node(node,
2064
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2065
				this_order);
2066 2067 2068 2069 2070 2071 2072 2073 2074
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2075
			goto fail;
2076 2077

		page->private = this_order;
2078
		list_add_tail(&page->lru, &tags->page_list);
2079 2080

		p = page_address(page);
2081 2082 2083 2084
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2085
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2086
		entries_per_page = order_to_size(this_order) / rq_size;
2087
		to_do = min(entries_per_page, depth - i);
2088 2089
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2090 2091 2092
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2093 2094 2095
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2096 2097
			}

2098 2099 2100 2101
			p += rq_size;
			i++;
		}
	}
2102
	return 0;
2103

2104
fail:
2105 2106
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2107 2108
}

J
Jens Axboe 已提交
2109 2110 2111 2112 2113
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2114
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2115
{
2116
	struct blk_mq_hw_ctx *hctx;
2117 2118 2119
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2120
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2121
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2122 2123 2124 2125 2126 2127 2128 2129 2130

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2131
		return 0;
2132

J
Jens Axboe 已提交
2133 2134 2135
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2136 2137

	blk_mq_run_hw_queue(hctx, true);
2138
	return 0;
2139 2140
}

2141
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2142
{
2143 2144
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2145 2146
}

2147
/* hctx->ctxs will be freed in queue's release handler */
2148 2149 2150 2151
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2152 2153
	blk_mq_debugfs_unregister_hctx(hctx);

2154 2155
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2156

2157
	if (set->ops->exit_request)
2158
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2159

2160 2161 2162
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2163
	blk_mq_remove_cpuhp(hctx);
2164 2165
}

M
Ming Lei 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2175
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2176 2177 2178
	}
}

2179 2180 2181
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2182
{
2183 2184 2185 2186 2187 2188
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2189
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2190 2191 2192
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2193
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2194

2195
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2196 2197

	hctx->tags = set->tags[hctx_idx];
2198 2199

	/*
2200 2201
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2202
	 */
2203
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2204
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2205 2206
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2207

2208 2209
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2210
		goto free_ctxs;
2211

2212
	hctx->nr_ctx = 0;
2213

2214
	spin_lock_init(&hctx->dispatch_wait_lock);
2215 2216 2217
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2218 2219 2220
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2221

2222 2223
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2224
	if (!hctx->fq)
2225
		goto exit_hctx;
2226

2227
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2228
		goto free_fq;
2229

2230
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2231
		init_srcu_struct(hctx->srcu);
2232

2233 2234
	blk_mq_debugfs_register_hctx(q, hctx);

2235
	return 0;
2236

2237
 free_fq:
2238
	blk_free_flush_queue(hctx->fq);
2239 2240 2241
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2242
 free_bitmap:
2243
	sbitmap_free(&hctx->ctx_map);
2244 2245 2246
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2247
	blk_mq_remove_cpuhp(hctx);
2248 2249
	return -1;
}
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2269
		hctx = blk_mq_map_queue(q, i);
2270
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2271
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2272 2273 2274
	}
}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2297 2298 2299 2300 2301
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2302 2303
}

2304
static void blk_mq_map_swqueue(struct request_queue *q)
2305
{
2306
	unsigned int i, hctx_idx;
2307 2308
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2309
	struct blk_mq_tag_set *set = q->tag_set;
2310

2311 2312 2313 2314 2315
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2316
	queue_for_each_hw_ctx(q, hctx, i) {
2317
		cpumask_clear(hctx->cpumask);
2318
		hctx->nr_ctx = 0;
2319
		hctx->dispatch_from = NULL;
2320 2321 2322
	}

	/*
2323
	 * Map software to hardware queues.
2324 2325
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2326
	 */
2327
	for_each_possible_cpu(i) {
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			q->mq_map[i] = 0;
		}

2341
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2342
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2343

2344
		cpumask_set_cpu(i, hctx->cpumask);
2345 2346 2347
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2348

2349 2350
	mutex_unlock(&q->sysfs_lock);

2351
	queue_for_each_hw_ctx(q, hctx, i) {
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2367

M
Ming Lei 已提交
2368 2369 2370
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2371 2372 2373 2374 2375
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2376
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2377

2378 2379 2380
		/*
		 * Initialize batch roundrobin counts
		 */
2381
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2382 2383
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2384 2385
}

2386 2387 2388 2389
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2390
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2391 2392 2393 2394
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2395
	queue_for_each_hw_ctx(q, hctx, i) {
2396
		if (shared)
2397
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2398
		else
2399 2400 2401 2402
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

2403 2404
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2405 2406
{
	struct request_queue *q;
2407

2408 2409
	lockdep_assert_held(&set->tag_list_lock);

2410 2411
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2412
		queue_set_hctx_shared(q, shared);
2413 2414 2415 2416 2417 2418 2419 2420 2421
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2422
	list_del_rcu(&q->tag_set_list);
2423 2424 2425 2426 2427 2428
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2429
	mutex_unlock(&set->tag_list_lock);
2430
	INIT_LIST_HEAD(&q->tag_set_list);
2431 2432 2433 2434 2435 2436 2437 2438
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2439

2440 2441 2442 2443 2444
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2445 2446 2447 2448 2449 2450
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2451
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2452

2453 2454 2455
	mutex_unlock(&set->tag_list_lock);
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2468 2469 2470
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2471
		kobject_put(&hctx->kobj);
2472
	}
2473

2474 2475
	q->mq_map = NULL;

2476 2477
	kfree(q->queue_hw_ctx);

2478 2479 2480 2481 2482 2483
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2484 2485 2486
	free_percpu(q->queue_ctx);
}

2487
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2488 2489 2490
{
	struct request_queue *uninit_q, *q;

2491
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2503 2504 2505 2506
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2507
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2508 2509 2510 2511 2512 2513 2514 2515 2516
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2517 2518
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2519
{
K
Keith Busch 已提交
2520 2521
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2522

K
Keith Busch 已提交
2523
	blk_mq_sysfs_unregister(q);
2524 2525 2526

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2527
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2528
		int node;
2529

K
Keith Busch 已提交
2530 2531 2532 2533
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2534
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2535 2536
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				node);
2537
		if (!hctxs[i])
K
Keith Busch 已提交
2538
			break;
2539

2540 2541 2542
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node)) {
K
Keith Busch 已提交
2543 2544 2545 2546
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2547

2548
		atomic_set(&hctxs[i]->nr_active, 0);
2549
		hctxs[i]->numa_node = node;
2550
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2551 2552 2553 2554 2555 2556 2557 2558

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2559
	}
K
Keith Busch 已提交
2560 2561 2562 2563
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2564 2565
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2566 2567 2568 2569 2570 2571 2572
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2573
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2574 2575 2576 2577 2578 2579
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2580 2581 2582
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2583
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2584 2585
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2586 2587 2588
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2589 2590
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2591
		goto err_exit;
K
Keith Busch 已提交
2592

2593 2594 2595
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

2596
	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
K
Keith Busch 已提交
2597 2598 2599 2600
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2601
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2602 2603 2604 2605

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2606

2607
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2608
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2609 2610 2611

	q->nr_queues = nr_cpu_ids;

2612
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2613

2614
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2615
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2616

2617 2618
	q->sg_reserved_size = INT_MAX;

2619
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2620 2621 2622
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2623
	blk_queue_make_request(q, blk_mq_make_request);
2624 2625
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2626

2627 2628 2629 2630 2631
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2632 2633 2634 2635 2636
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2637 2638
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2639

2640
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2641
	blk_mq_add_queue_tag_set(set, q);
2642
	blk_mq_map_swqueue(q);
2643

2644 2645 2646
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

2647
		ret = elevator_init_mq(q);
2648 2649 2650 2651
		if (ret)
			return ERR_PTR(ret);
	}

2652
	return q;
2653

2654
err_hctxs:
K
Keith Busch 已提交
2655
	kfree(q->queue_hw_ctx);
2656
err_percpu:
K
Keith Busch 已提交
2657
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2658 2659
err_exit:
	q->mq_ops = NULL;
2660 2661
	return ERR_PTR(-ENOMEM);
}
2662
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2663

2664 2665
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
2666
{
M
Ming Lei 已提交
2667
	struct blk_mq_tag_set	*set = q->tag_set;
2668

2669
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2670
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2671 2672 2673
}

/* Basically redo blk_mq_init_queue with queue frozen */
2674
static void blk_mq_queue_reinit(struct request_queue *q)
2675
{
2676
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2677

2678
	blk_mq_debugfs_unregister_hctxs(q);
2679 2680
	blk_mq_sysfs_unregister(q);

2681 2682
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2683 2684
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2685
	 */
2686
	blk_mq_map_swqueue(q);
2687

2688
	blk_mq_sysfs_register(q);
2689
	blk_mq_debugfs_register_hctxs(q);
2690 2691
}

2692 2693 2694 2695
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2696 2697
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2698 2699 2700 2701 2702 2703
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2704
		blk_mq_free_rq_map(set->tags[i]);
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2744 2745
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
	if (set->ops->map_queues) {
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
2761
		blk_mq_clear_mq_map(set);
2762

2763
		return set->ops->map_queues(set);
2764
	} else
2765 2766 2767
		return blk_mq_map_queues(set);
}

2768 2769 2770
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
2771
 * requested depth down, if it's too large. In that case, the set
2772 2773
 * value will be stored in set->queue_depth.
 */
2774 2775
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2776 2777
	int ret;

B
Bart Van Assche 已提交
2778 2779
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2780 2781
	if (!set->nr_hw_queues)
		return -EINVAL;
2782
	if (!set->queue_depth)
2783 2784 2785 2786
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2787
	if (!set->ops->queue_rq)
2788 2789
		return -EINVAL;

2790 2791 2792
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2793 2794 2795 2796 2797
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2798

2799 2800 2801 2802 2803 2804 2805 2806 2807
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2808 2809 2810 2811 2812
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2813

2814
	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2815 2816
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2817
		return -ENOMEM;
2818

2819
	ret = -ENOMEM;
2820 2821
	set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
				   GFP_KERNEL, set->numa_node);
2822 2823 2824
	if (!set->mq_map)
		goto out_free_tags;

2825
	ret = blk_mq_update_queue_map(set);
2826 2827 2828 2829 2830
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2831
		goto out_free_mq_map;
2832

2833 2834 2835
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2836
	return 0;
2837 2838 2839 2840 2841

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2842 2843
	kfree(set->tags);
	set->tags = NULL;
2844
	return ret;
2845 2846 2847 2848 2849 2850 2851
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2852 2853
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2854

2855 2856 2857
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2858
	kfree(set->tags);
2859
	set->tags = NULL;
2860 2861 2862
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2863 2864 2865 2866 2867 2868
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2869
	if (!set)
2870 2871
		return -EINVAL;

2872
	blk_mq_freeze_queue(q);
2873
	blk_mq_quiesce_queue(q);
2874

2875 2876
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2877 2878
		if (!hctx->tags)
			continue;
2879 2880 2881 2882
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2883
		if (!hctx->sched_tags) {
2884
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2885 2886 2887 2888 2889
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2890 2891
		if (ret)
			break;
2892 2893
		if (q->elevator && q->elevator->type->ops.mq.depth_updated)
			q->elevator->type->ops.mq.depth_updated(hctx);
2894 2895 2896 2897 2898
	}

	if (!ret)
		q->nr_requests = nr;

2899
	blk_mq_unquiesce_queue(q);
2900 2901
	blk_mq_unfreeze_queue(q);

2902 2903 2904
	return ret;
}

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

2975 2976
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2977 2978
{
	struct request_queue *q;
2979
	LIST_HEAD(head);
K
Keith Busch 已提交
2980

2981 2982
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2983 2984 2985 2986 2987 2988 2989
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
2990 2991 2992 2993
	/*
	 * Sync with blk_mq_queue_tag_busy_iter.
	 */
	synchronize_rcu();
2994 2995 2996 2997 2998 2999 3000 3001
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
3002 3003

	set->nr_hw_queues = nr_hw_queues;
3004
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
3005 3006
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
3007
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
3008 3009
	}

3010 3011 3012 3013
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
3014 3015 3016
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
3017 3018 3019 3020 3021 3022 3023

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3024 3025
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3026 3027 3028 3029
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3030
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3052
	int bucket;
3053

3054 3055 3056 3057
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3058 3059
}

3060 3061 3062 3063 3064
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3065
	int bucket;
3066 3067 3068 3069 3070

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3071
	if (!blk_poll_stats_enable(q))
3072 3073 3074 3075 3076 3077 3078 3079
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3080 3081
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3082
	 */
3083 3084 3085 3086 3087 3088
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3089 3090 3091 3092

	return ret;
}

3093
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3094
				     struct blk_mq_hw_ctx *hctx,
3095 3096 3097 3098
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3099
	unsigned int nsecs;
3100 3101
	ktime_t kt;

J
Jens Axboe 已提交
3102
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3120 3121
		return false;

J
Jens Axboe 已提交
3122
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3123 3124 3125 3126 3127

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3128
	kt = nsecs;
3129 3130 3131 3132 3133 3134 3135

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3136
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3151 3152 3153 3154 3155
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3156 3157 3158 3159 3160 3161 3162
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3163
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3164 3165
		return true;

J
Jens Axboe 已提交
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3191
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3192 3193 3194
	return false;
}

3195
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3196 3197 3198 3199
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3200
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3201 3202 3203
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3204 3205
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3206
	else {
3207
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3208 3209 3210 3211 3212 3213 3214 3215 3216
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3217 3218 3219 3220

	return __blk_mq_poll(hctx, rq);
}

3221 3222
static int __init blk_mq_init(void)
{
3223 3224
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3225 3226 3227
	return 0;
}
subsys_initcall(blk_mq_init);