blk-mq.c 77.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98 99 100 101 102 103 104 105 106
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
107 108 109 110 111 112 113
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

114
	inflight[0] = inflight[1] = 0;
115 116 117
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

137
void blk_freeze_queue_start(struct request_queue *q)
138
{
139
	int freeze_depth;
140

141 142
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
143
		percpu_ref_kill(&q->q_usage_counter);
144 145
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
146
	}
147
}
148
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149

150
void blk_mq_freeze_queue_wait(struct request_queue *q)
151
{
152
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155

156 157 158 159 160 161 162 163
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164

165 166 167 168
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
169
void blk_freeze_queue(struct request_queue *q)
170
{
171 172 173 174 175 176 177
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
178
	blk_freeze_queue_start(q);
179 180
	if (!q->mq_ops)
		blk_drain_queue(q);
181 182
	blk_mq_freeze_queue_wait(q);
}
183 184 185 186 187 188 189 190 191

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
192
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193

194
void blk_mq_unfreeze_queue(struct request_queue *q)
195
{
196
	int freeze_depth;
197

198 199 200
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
201
		percpu_ref_reinit(&q->q_usage_counter);
202
		wake_up_all(&q->mq_freeze_wq);
203
	}
204
}
205
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206

207 208 209 210 211 212
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
213
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 215 216
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

217
/**
218
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 220 221
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
222 223 224
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
225 226 227 228 229 230 231
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

232
	blk_mq_quiesce_queue_nowait(q);
233

234 235
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
236
			synchronize_srcu(hctx->srcu);
237 238 239 240 241 242 243 244
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

245 246 247 248 249 250 251 252 253
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
254
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255

256 257
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
258 259 260
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

261 262 263 264 265 266 267 268 269 270
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

271 272 273 274 275 276
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

277 278
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
279
{
280 281
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
282
	req_flags_t rq_flags = 0;
283

284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
289
			rq_flags = RQF_MQ_INFLIGHT;
290 291 292 293 294 295 296
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

297
	/* csd/requeue_work/fifo_time is initialized before use */
298 299
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
300
	rq->rq_flags = rq_flags;
301
	rq->cpu = -1;
302
	rq->cmd_flags = op;
303 304
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
305
	if (blk_queue_io_stat(data->q))
306
		rq->rq_flags |= RQF_IO_STAT;
307
	INIT_LIST_HEAD(&rq->queuelist);
308 309 310 311
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
312
	rq->start_time = jiffies;
313 314 315 316 317 318 319
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
320
	rq->__deadline = 0;
321 322

	INIT_LIST_HEAD(&rq->timeout_list);
323 324
	rq->timeout = 0;

325 326 327 328
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

329 330 331 332 333 334
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
	set_start_time_ns(rq);
	rq->io_start_time_ns = 0;
#endif

335 336
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
337 338
}

339 340 341 342 343 344
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
345
	unsigned int tag;
346
	bool put_ctx_on_error = false;
347 348 349

	blk_queue_enter_live(q);
	data->q = q;
350 351 352 353
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
354 355
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 357
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
358 359 360 361 362 363 364 365

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
366 367
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
368 369
	}

370 371
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
372 373
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
374 375
			data->ctx = NULL;
		}
376 377
		blk_queue_exit(q);
		return NULL;
378 379
	}

380
	rq = blk_mq_rq_ctx_init(data, tag, op);
381 382
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
383
		if (e && e->type->ops.mq.prepare_request) {
384 385 386
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

387 388
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
389
		}
390 391 392
	}
	data->hctx->queued++;
	return rq;
393 394
}

395
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
396
		blk_mq_req_flags_t flags)
397
{
398
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
399
	struct request *rq;
400
	int ret;
401

402
	ret = blk_queue_enter(q, flags);
403 404
	if (ret)
		return ERR_PTR(ret);
405

406
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
407
	blk_queue_exit(q);
408

409
	if (!rq)
410
		return ERR_PTR(-EWOULDBLOCK);
411

412 413
	blk_mq_put_ctx(alloc_data.ctx);

414 415 416
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
417 418
	return rq;
}
419
EXPORT_SYMBOL(blk_mq_alloc_request);
420

421
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
422
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
423
{
424
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
425
	struct request *rq;
426
	unsigned int cpu;
M
Ming Lin 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

441
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
442 443 444
	if (ret)
		return ERR_PTR(ret);

445 446 447 448
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
449 450 451 452
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
453
	}
454
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
455
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
456

457
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
458
	blk_queue_exit(q);
459

460 461 462 463
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
464 465 466
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

467
void blk_mq_free_request(struct request *rq)
468 469
{
	struct request_queue *q = rq->q;
470 471 472 473 474
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

475
	if (rq->rq_flags & RQF_ELVPRIV) {
476 477 478 479 480 481 482
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
483

484
	ctx->rq_completed[rq_is_sync(rq)]++;
485
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
486
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
487

488 489 490
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
491
	wbt_done(q->rq_wb, &rq->issue_stat);
492

S
Shaohua Li 已提交
493 494 495
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

496
	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
497 498 499
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
500
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
501
	blk_mq_sched_restart(hctx);
502
	blk_queue_exit(q);
503
}
J
Jens Axboe 已提交
504
EXPORT_SYMBOL_GPL(blk_mq_free_request);
505

506
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
507
{
M
Ming Lei 已提交
508 509
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
510
	if (rq->end_io) {
J
Jens Axboe 已提交
511
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
512
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
513 514 515
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
516
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
517
	}
518
}
519
EXPORT_SYMBOL(__blk_mq_end_request);
520

521
void blk_mq_end_request(struct request *rq, blk_status_t error)
522 523 524
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
525
	__blk_mq_end_request(rq, error);
526
}
527
EXPORT_SYMBOL(blk_mq_end_request);
528

529
static void __blk_mq_complete_request_remote(void *data)
530
{
531
	struct request *rq = data;
532

533
	rq->q->softirq_done_fn(rq);
534 535
}

536
static void __blk_mq_complete_request(struct request *rq)
537 538
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
539
	bool shared = false;
540 541
	int cpu;

542
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
T
Tejun Heo 已提交
543
	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
544

545 546 547 548 549 550 551
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
552
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
553 554 555
		rq->q->softirq_done_fn(rq);
		return;
	}
556 557

	cpu = get_cpu();
C
Christoph Hellwig 已提交
558 559 560 561
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
562
		rq->csd.func = __blk_mq_complete_request_remote;
563 564
		rq->csd.info = rq;
		rq->csd.flags = 0;
565
		smp_call_function_single_async(ctx->cpu, &rq->csd);
566
	} else {
567
		rq->q->softirq_done_fn(rq);
568
	}
569 570
	put_cpu();
}
571

572
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
573
	__releases(hctx->srcu)
574 575 576 577
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
578
		srcu_read_unlock(hctx->srcu, srcu_idx);
579 580 581
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
582
	__acquires(hctx->srcu)
583
{
584 585 586
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
587
		rcu_read_lock();
588
	} else
589
		*srcu_idx = srcu_read_lock(hctx->srcu);
590 591
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
{
	unsigned long flags;

	/*
	 * blk_mq_rq_aborted_gstate() is used from the completion path and
	 * can thus be called from irq context.  u64_stats_fetch in the
	 * middle of update on the same CPU leads to lockup.  Disable irq
	 * while updating.
	 */
	local_irq_save(flags);
	u64_stats_update_begin(&rq->aborted_gstate_sync);
	rq->aborted_gstate = gstate;
	u64_stats_update_end(&rq->aborted_gstate_sync);
	local_irq_restore(flags);
}

static u64 blk_mq_rq_aborted_gstate(struct request *rq)
{
	unsigned int start;
	u64 aborted_gstate;

	do {
		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
		aborted_gstate = rq->aborted_gstate;
	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));

	return aborted_gstate;
}

622 623 624 625 626 627 628 629
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
630
void blk_mq_complete_request(struct request *rq)
631
{
632
	struct request_queue *q = rq->q;
633 634
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
635 636

	if (unlikely(blk_should_fake_timeout(q)))
637
		return;
638

639 640 641 642 643 644 645 646 647 648 649
	/*
	 * If @rq->aborted_gstate equals the current instance, timeout is
	 * claiming @rq and we lost.  This is synchronized through
	 * hctx_lock().  See blk_mq_timeout_work() for details.
	 *
	 * Completion path never blocks and we can directly use RCU here
	 * instead of hctx_lock() which can be either RCU or SRCU.
	 * However, that would complicate paths which want to synchronize
	 * against us.  Let stay in sync with the issue path so that
	 * hctx_lock() covers both issue and completion paths.
	 */
650
	hctx_lock(hctx, &srcu_idx);
651
	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
652
		__blk_mq_complete_request(rq);
653
	hctx_unlock(hctx, srcu_idx);
654 655
}
EXPORT_SYMBOL(blk_mq_complete_request);
656

657 658
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
659
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
660 661 662
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

663
void blk_mq_start_request(struct request *rq)
664 665 666
{
	struct request_queue *q = rq->q;

667 668
	blk_mq_sched_started_request(rq);

669 670
	trace_block_rq_issue(q, rq);

671
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
672
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
673
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
674
		wbt_issue(q->rq_wb, &rq->issue_stat);
675 676
	}

677
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
678

679
	/*
680 681 682 683
	 * Mark @rq in-flight which also advances the generation number,
	 * and register for timeout.  Protect with a seqcount to allow the
	 * timeout path to read both @rq->gstate and @rq->deadline
	 * coherently.
684
	 *
685 686 687 688
	 * This is the only place where a request is marked in-flight.  If
	 * the timeout path reads an in-flight @rq->gstate, the
	 * @rq->deadline it reads together under @rq->gstate_seq is
	 * guaranteed to be the matching one.
689
	 */
690 691 692 693 694 695 696 697
	preempt_disable();
	write_seqcount_begin(&rq->gstate_seq);

	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
	blk_add_timer(rq);

	write_seqcount_end(&rq->gstate_seq);
	preempt_enable();
698 699 700 701 702 703 704 705 706

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
707
}
708
EXPORT_SYMBOL(blk_mq_start_request);
709

710
/*
T
Tejun Heo 已提交
711 712 713
 * When we reach here because queue is busy, it's safe to change the state
 * to IDLE without checking @rq->aborted_gstate because we should still be
 * holding the RCU read lock and thus protected against timeout.
714
 */
715
static void __blk_mq_requeue_request(struct request *rq)
716 717 718
{
	struct request_queue *q = rq->q;

719 720
	blk_mq_put_driver_tag(rq);

721
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
722
	wbt_requeue(q->rq_wb, &rq->issue_stat);
723

T
Tejun Heo 已提交
724
	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
725
		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
726 727 728
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
729 730
}

731
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
732 733 734
{
	__blk_mq_requeue_request(rq);

735 736 737
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

738
	BUG_ON(blk_queued_rq(rq));
739
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
740 741 742
}
EXPORT_SYMBOL(blk_mq_requeue_request);

743 744 745
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
746
		container_of(work, struct request_queue, requeue_work.work);
747 748 749
	LIST_HEAD(rq_list);
	struct request *rq, *next;

750
	spin_lock_irq(&q->requeue_lock);
751
	list_splice_init(&q->requeue_list, &rq_list);
752
	spin_unlock_irq(&q->requeue_lock);
753 754

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
755
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
756 757
			continue;

758
		rq->rq_flags &= ~RQF_SOFTBARRIER;
759
		list_del_init(&rq->queuelist);
760
		blk_mq_sched_insert_request(rq, true, false, false);
761 762 763 764 765
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
766
		blk_mq_sched_insert_request(rq, false, false, false);
767 768
	}

769
	blk_mq_run_hw_queues(q, false);
770 771
}

772 773
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
774 775 776 777 778 779
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
780
	 * request head insertion from the workqueue.
781
	 */
782
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
783 784 785

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
786
		rq->rq_flags |= RQF_SOFTBARRIER;
787 788 789 790 791
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
792 793 794

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
795 796 797 798 799
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
800
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
801 802 803
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

804 805 806
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
807 808
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
809 810 811
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

812 813
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
814 815
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
816
		return tags->rqs[tag];
817
	}
818 819

	return NULL;
820 821 822
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

823
struct blk_mq_timeout_data {
824 825
	unsigned long next;
	unsigned int next_set;
826
	unsigned int nr_expired;
827 828
};

829
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
830
{
J
Jens Axboe 已提交
831
	const struct blk_mq_ops *ops = req->q->mq_ops;
832
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
833

834
	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
835

836
	if (ops->timeout)
837
		ret = ops->timeout(req, reserved);
838 839 840 841 842 843

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
844 845 846 847 848 849
		/*
		 * As nothing prevents from completion happening while
		 * ->aborted_gstate is set, this may lead to ignored
		 * completions and further spurious timeouts.
		 */
		blk_mq_rq_update_aborted_gstate(req, 0);
850 851 852 853 854 855 856 857
		blk_add_timer(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
858
}
859

860 861 862 863
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
864 865
	unsigned long gstate, deadline;
	int start;
866

867
	might_sleep();
868

T
Tejun Heo 已提交
869
	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
870
		return;
871

872 873 874 875
	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
	while (true) {
		start = read_seqcount_begin(&rq->gstate_seq);
		gstate = READ_ONCE(rq->gstate);
876
		deadline = blk_rq_deadline(rq);
877 878 879 880
		if (!read_seqcount_retry(&rq->gstate_seq, start))
			break;
		cond_resched();
	}
881

882 883 884 885 886 887
	/* if in-flight && overdue, mark for abortion */
	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
	    time_after_eq(jiffies, deadline)) {
		blk_mq_rq_update_aborted_gstate(rq, gstate);
		data->nr_expired++;
		hctx->nr_expired++;
888 889
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
890 891
		data->next_set = 1;
	}
892 893
}

894 895 896 897 898 899 900 901 902 903
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	/*
	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
	 * completions that we lost to, they would have finished and
	 * updated @rq->gstate by now; otherwise, the completion path is
	 * now guaranteed to see @rq->aborted_gstate and yield.  If
	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
	 */
904 905
	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
906 907 908
		blk_mq_rq_timed_out(rq, reserved);
}

909
static void blk_mq_timeout_work(struct work_struct *work)
910
{
911 912
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
913 914 915
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
916
		.nr_expired	= 0,
917
	};
918
	struct blk_mq_hw_ctx *hctx;
919
	int i;
920

921 922 923 924 925 926 927 928 929
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
930
	 * blk_freeze_queue_start, and the moment the last request is
931 932 933 934
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
935 936
		return;

937
	/* scan for the expired ones and set their ->aborted_gstate */
938
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
939

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
	if (data.nr_expired) {
		bool has_rcu = false;

		/*
		 * Wait till everyone sees ->aborted_gstate.  The
		 * sequential waits for SRCUs aren't ideal.  If this ever
		 * becomes a problem, we can add per-hw_ctx rcu_head and
		 * wait in parallel.
		 */
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->nr_expired)
				continue;

			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
				has_rcu = true;
			else
956
				synchronize_srcu(hctx->srcu);
957 958 959 960 961 962 963 964 965 966

			hctx->nr_expired = 0;
		}
		if (has_rcu)
			synchronize_rcu();

		/* terminate the ones we won */
		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
	}

967 968 969
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
970
	} else {
971 972 973 974 975 976
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
977 978 979 980 981
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
982
	}
983
	blk_queue_exit(q);
984 985
}

986 987 988 989 990 991 992 993 994 995 996 997 998
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
999
	sbitmap_clear_bit(sb, bitnr);
1000 1001 1002 1003
	spin_unlock(&ctx->lock);
	return true;
}

1004 1005 1006 1007
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1008
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1009
{
1010 1011 1012 1013
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1014

1015
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1016
}
1017
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1058 1059 1060 1061
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1062

1063
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1064 1065
}

1066 1067
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
1068 1069 1070 1071 1072 1073 1074
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

1075 1076
	might_sleep_if(wait);

1077 1078
	if (rq->tag != -1)
		goto done;
1079

1080 1081 1082
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1083 1084
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1085 1086 1087 1088
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1089 1090 1091
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1092 1093 1094 1095
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1096 1097
}

1098 1099
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1100 1101 1102 1103 1104
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1105
	list_del_init(&wait->entry);
1106 1107 1108 1109
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1110 1111
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1112 1113
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1114 1115 1116 1117
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1118
{
1119
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1120
	struct sbq_wait_state *ws;
1121 1122
	wait_queue_entry_t *wait;
	bool ret;
1123

1124
	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1125 1126 1127
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);

1128 1129 1130 1131 1132 1133 1134 1135 1136
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return blk_mq_get_driver_tag(rq, hctx, false);
1137 1138
	}

1139 1140 1141 1142 1143 1144 1145 1146
	wait = &this_hctx->dispatch_wait;
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
1147 1148
	}

1149 1150 1151
	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1152
	/*
1153 1154 1155
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1156
	 */
1157
	ret = blk_mq_get_driver_tag(rq, hctx, false);
1158
	if (!ret) {
1159
		spin_unlock(&this_hctx->lock);
1160
		return false;
1161
	}
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);

	return true;
1173 1174
}

1175 1176
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1177
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1178
			     bool got_budget)
1179
{
1180
	struct blk_mq_hw_ctx *hctx;
1181
	struct request *rq, *nxt;
1182
	bool no_tag = false;
1183
	int errors, queued;
1184
	blk_status_t ret = BLK_STS_OK;
1185

1186 1187 1188
	if (list_empty(list))
		return false;

1189 1190
	WARN_ON(!list_is_singular(list) && got_budget);

1191 1192 1193
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1194
	errors = queued = 0;
1195
	do {
1196
		struct blk_mq_queue_data bd;
1197

1198
		rq = list_first_entry(list, struct request, queuelist);
1199 1200 1201 1202 1203 1204

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1205
			/*
1206
			 * The initial allocation attempt failed, so we need to
1207 1208 1209 1210
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1211
			 */
1212
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1213
				blk_mq_put_dispatch_budget(hctx);
1214 1215 1216 1217 1218 1219
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1220 1221 1222 1223
				break;
			}
		}

1224 1225
		list_del_init(&rq->queuelist);

1226
		bd.rq = rq;
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1238 1239

		ret = q->mq_ops->queue_rq(hctx, &bd);
1240
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1241 1242
			/*
			 * If an I/O scheduler has been configured and we got a
1243 1244
			 * driver tag for the next request already, free it
			 * again.
1245 1246 1247 1248 1249
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1250
			list_add(&rq->queuelist, list);
1251
			__blk_mq_requeue_request(rq);
1252
			break;
1253 1254 1255
		}

		if (unlikely(ret != BLK_STS_OK)) {
1256
			errors++;
1257
			blk_mq_end_request(rq, BLK_STS_IOERR);
1258
			continue;
1259 1260
		}

1261
		queued++;
1262
	} while (!list_empty(list));
1263

1264
	hctx->dispatched[queued_to_index(queued)]++;
1265 1266 1267 1268 1269

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1270
	if (!list_empty(list)) {
1271 1272
		bool needs_restart;

1273
		spin_lock(&hctx->lock);
1274
		list_splice_init(list, &hctx->dispatch);
1275
		spin_unlock(&hctx->lock);
1276

1277
		/*
1278 1279 1280
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1281
		 *
1282 1283 1284 1285
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1286
		 *
1287 1288 1289 1290 1291 1292 1293
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1294
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1295
		 *   and dm-rq.
1296 1297 1298 1299
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1300
		 */
1301 1302
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1303
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1304
			blk_mq_run_hw_queue(hctx, true);
1305 1306
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1307
	}
1308

1309
	return (queued + errors) != 0;
1310 1311
}

1312 1313 1314 1315
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1316 1317 1318
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1332
	 */
1333 1334 1335 1336 1337 1338 1339
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1340

1341 1342 1343 1344 1345 1346
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1347
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1348

1349 1350 1351
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1352 1353
}

1354 1355 1356 1357 1358 1359 1360 1361 1362
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1363 1364 1365 1366 1367 1368 1369 1370
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1371
	bool tried = false;
1372
	int next_cpu = hctx->next_cpu;
1373

1374 1375
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1376 1377

	if (--hctx->next_cpu_batch <= 0) {
1378
select_cpu:
1379
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1380
				cpu_online_mask);
1381
		if (next_cpu >= nr_cpu_ids)
1382
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1383 1384 1385
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1386 1387 1388 1389
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1390
	if (!cpu_online(next_cpu)) {
1391 1392 1393 1394 1395 1396 1397 1398 1399
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1400
		hctx->next_cpu = next_cpu;
1401 1402 1403
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1404 1405 1406

	hctx->next_cpu = next_cpu;
	return next_cpu;
1407 1408
}

1409 1410
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1411
{
1412
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1413 1414
		return;

1415
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1416 1417
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1418
			__blk_mq_run_hw_queue(hctx);
1419
			put_cpu();
1420 1421
			return;
		}
1422

1423
		put_cpu();
1424
	}
1425

1426 1427
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1428 1429 1430 1431 1432 1433 1434 1435
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1436
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1437
{
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1449 1450 1451 1452
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1453 1454

	if (need_run) {
1455 1456 1457 1458 1459
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1460
}
O
Omar Sandoval 已提交
1461
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1462

1463
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1464 1465 1466 1467 1468
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1469
		if (blk_mq_hctx_stopped(hctx))
1470 1471
			continue;

1472
		blk_mq_run_hw_queue(hctx, async);
1473 1474
	}
}
1475
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1476

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1497 1498 1499
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1500
 * BLK_STS_RESOURCE is usually returned.
1501 1502 1503 1504 1505
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1506 1507
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1508
	cancel_delayed_work(&hctx->run_work);
1509

1510
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1511
}
1512
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1513

1514 1515 1516
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1517
 * BLK_STS_RESOURCE is usually returned.
1518 1519 1520 1521 1522
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1523 1524
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1525 1526 1527 1528 1529
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1530 1531 1532
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1533 1534 1535
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1536

1537
	blk_mq_run_hw_queue(hctx, false);
1538 1539 1540
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1561
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1562 1563 1564 1565
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1566 1567
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1568 1569 1570
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1571
static void blk_mq_run_work_fn(struct work_struct *work)
1572 1573 1574
{
	struct blk_mq_hw_ctx *hctx;

1575
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1576

1577
	/*
M
Ming Lei 已提交
1578
	 * If we are stopped, don't run the queue.
1579
	 */
M
Ming Lei 已提交
1580
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1581
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1582 1583 1584 1585

	__blk_mq_run_hw_queue(hctx);
}

1586 1587 1588
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1589
{
J
Jens Axboe 已提交
1590 1591
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1592 1593
	lockdep_assert_held(&ctx->lock);

1594 1595
	trace_block_rq_insert(hctx->queue, rq);

1596 1597 1598 1599
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1600
}
1601

1602 1603
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1604 1605 1606
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1607 1608
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1609
	__blk_mq_insert_req_list(hctx, rq, at_head);
1610 1611 1612
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1613 1614 1615 1616
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1617
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1618 1619 1620 1621 1622 1623 1624 1625
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1626 1627
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1628 1629
}

1630 1631
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1643
		BUG_ON(rq->mq_ctx != ctx);
1644
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1645
		__blk_mq_insert_req_list(hctx, rq, false);
1646
	}
1647
	blk_mq_hctx_mark_pending(hctx, ctx);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1684 1685 1686 1687
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1704 1705 1706
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1707 1708 1709 1710 1711
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1712
	blk_init_request_from_bio(rq, bio);
1713

S
Shaohua Li 已提交
1714 1715
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1716
	blk_account_io_start(rq, true);
1717 1718
}

1719 1720 1721 1722 1723 1724 1725
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1726
}
1727

1728 1729
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1730 1731 1732 1733
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1734 1735
}

1736 1737 1738
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1739 1740 1741 1742
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1743
		.last = true,
1744
	};
1745
	blk_qc_t new_cookie;
1746
	blk_status_t ret;
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1761
	case BLK_STS_DEV_RESOURCE:
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
		__blk_mq_requeue_request(rq);
		break;
	default:
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1774 1775
						blk_qc_t *cookie,
						bool bypass_insert)
1776 1777
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1778 1779
	bool run_queue = true;

1780 1781 1782 1783
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1784
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1785 1786
	 * and avoid driver to try to dispatch again.
	 */
1787
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1788
		run_queue = false;
1789
		bypass_insert = false;
M
Ming Lei 已提交
1790 1791
		goto insert;
	}
1792

1793
	if (q->elevator && !bypass_insert)
1794 1795
		goto insert;

1796
	if (!blk_mq_get_dispatch_budget(hctx))
1797 1798
		goto insert;

1799 1800
	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
		blk_mq_put_dispatch_budget(hctx);
1801
		goto insert;
1802
	}
1803

1804
	return __blk_mq_issue_directly(hctx, rq, cookie);
1805
insert:
1806 1807
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1808

1809
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1810
	return BLK_STS_OK;
1811 1812
}

1813 1814 1815
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1816
	blk_status_t ret;
1817
	int srcu_idx;
1818

1819
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1820

1821
	hctx_lock(hctx, &srcu_idx);
1822

1823
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1824
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1825
		blk_mq_sched_insert_request(rq, false, true, false);
1826 1827 1828
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1829
	hctx_unlock(hctx, srcu_idx);
1830 1831
}

1832
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1845 1846
}

1847
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1848
{
1849
	const int is_sync = op_is_sync(bio->bi_opf);
1850
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1851
	struct blk_mq_alloc_data data = { .flags = 0 };
1852
	struct request *rq;
1853
	unsigned int request_count = 0;
1854
	struct blk_plug *plug;
1855
	struct request *same_queue_rq = NULL;
1856
	blk_qc_t cookie;
J
Jens Axboe 已提交
1857
	unsigned int wb_acct;
1858 1859 1860

	blk_queue_bounce(q, &bio);

1861
	blk_queue_split(q, &bio);
1862

1863
	if (!bio_integrity_prep(bio))
1864
		return BLK_QC_T_NONE;
1865

1866 1867 1868
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1869

1870 1871 1872
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1873 1874
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1875 1876
	trace_block_getrq(q, bio, bio->bi_opf);

1877
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1878 1879
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1880 1881
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1882
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1883 1884 1885
	}

	wbt_track(&rq->issue_stat, wb_acct);
1886

1887
	cookie = request_to_qc_t(data.hctx, rq);
1888

1889
	plug = current->plug;
1890
	if (unlikely(is_flush_fua)) {
1891
		blk_mq_put_ctx(data.ctx);
1892
		blk_mq_bio_to_request(rq, bio);
1893 1894 1895 1896

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1897
	} else if (plug && q->nr_hw_queues == 1) {
1898 1899
		struct request *last = NULL;

1900
		blk_mq_put_ctx(data.ctx);
1901
		blk_mq_bio_to_request(rq, bio);
1902 1903 1904 1905 1906 1907 1908

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1909 1910 1911
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1912
		if (!request_count)
1913
			trace_block_plug(q);
1914 1915
		else
			last = list_entry_rq(plug->mq_list.prev);
1916

1917 1918
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1919 1920
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1921
		}
1922

1923
		list_add_tail(&rq->queuelist, &plug->mq_list);
1924
	} else if (plug && !blk_queue_nomerges(q)) {
1925
		blk_mq_bio_to_request(rq, bio);
1926 1927

		/*
1928
		 * We do limited plugging. If the bio can be merged, do that.
1929 1930
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1931 1932
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1933
		 */
1934 1935 1936 1937 1938 1939
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1940 1941
		blk_mq_put_ctx(data.ctx);

1942 1943 1944
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1945 1946
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1947
		}
1948
	} else if (q->nr_hw_queues > 1 && is_sync) {
1949
		blk_mq_put_ctx(data.ctx);
1950 1951
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1952
	} else if (q->elevator) {
1953
		blk_mq_put_ctx(data.ctx);
1954
		blk_mq_bio_to_request(rq, bio);
1955
		blk_mq_sched_insert_request(rq, false, true, true);
1956
	} else {
1957
		blk_mq_put_ctx(data.ctx);
1958 1959
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1960
		blk_mq_run_hw_queue(data.hctx, true);
1961
	}
1962

1963
	return cookie;
1964 1965
}

1966 1967
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1968
{
1969
	struct page *page;
1970

1971
	if (tags->rqs && set->ops->exit_request) {
1972
		int i;
1973

1974
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1975 1976 1977
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1978
				continue;
1979
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1980
			tags->static_rqs[i] = NULL;
1981
		}
1982 1983
	}

1984 1985
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1986
		list_del_init(&page->lru);
1987 1988 1989 1990 1991
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1992 1993
		__free_pages(page, page->private);
	}
1994
}
1995

1996 1997
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1998
	kfree(tags->rqs);
1999
	tags->rqs = NULL;
J
Jens Axboe 已提交
2000 2001
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2002

2003
	blk_mq_free_tags(tags);
2004 2005
}

2006 2007 2008 2009
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
2010
{
2011
	struct blk_mq_tags *tags;
2012
	int node;
2013

2014 2015 2016 2017 2018
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2019
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2020 2021
	if (!tags)
		return NULL;
2022

2023
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2024
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2025
				 node);
2026 2027 2028 2029
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2030

J
Jens Axboe 已提交
2031 2032
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2033
				 node);
J
Jens Axboe 已提交
2034 2035 2036 2037 2038 2039
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2040 2041 2042 2043 2044 2045 2046 2047
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

	seqcount_init(&rq->gstate_seq);
	u64_stats_init(&rq->aborted_gstate_sync);
2061 2062 2063 2064 2065 2066 2067
	/*
	 * start gstate with gen 1 instead of 0, otherwise it will be equal
	 * to aborted_gstate, and be identified timed out by
	 * blk_mq_terminate_expired.
	 */
	WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);

2068 2069 2070
	return 0;
}

2071 2072 2073 2074 2075
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2076 2077 2078 2079 2080
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2081 2082 2083

	INIT_LIST_HEAD(&tags->page_list);

2084 2085 2086 2087
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2088
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2089
				cache_line_size());
2090
	left = rq_size * depth;
2091

2092
	for (i = 0; i < depth; ) {
2093 2094 2095 2096 2097
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2098
		while (this_order && left < order_to_size(this_order - 1))
2099 2100 2101
			this_order--;

		do {
2102
			page = alloc_pages_node(node,
2103
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2104
				this_order);
2105 2106 2107 2108 2109 2110 2111 2112 2113
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2114
			goto fail;
2115 2116

		page->private = this_order;
2117
		list_add_tail(&page->lru, &tags->page_list);
2118 2119

		p = page_address(page);
2120 2121 2122 2123
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2124
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2125
		entries_per_page = order_to_size(this_order) / rq_size;
2126
		to_do = min(entries_per_page, depth - i);
2127 2128
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2129 2130 2131
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2132 2133 2134
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2135 2136
			}

2137 2138 2139 2140
			p += rq_size;
			i++;
		}
	}
2141
	return 0;
2142

2143
fail:
2144 2145
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2146 2147
}

J
Jens Axboe 已提交
2148 2149 2150 2151 2152
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2153
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2154
{
2155
	struct blk_mq_hw_ctx *hctx;
2156 2157 2158
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2159
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2160
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2161 2162 2163 2164 2165 2166 2167 2168 2169

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2170
		return 0;
2171

J
Jens Axboe 已提交
2172 2173 2174
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2175 2176

	blk_mq_run_hw_queue(hctx, true);
2177
	return 0;
2178 2179
}

2180
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2181
{
2182 2183
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2184 2185
}

2186
/* hctx->ctxs will be freed in queue's release handler */
2187 2188 2189 2190
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2191 2192
	blk_mq_debugfs_unregister_hctx(hctx);

2193 2194
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2195

2196
	if (set->ops->exit_request)
2197
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2198

2199 2200
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2201 2202 2203
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2204
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2205
		cleanup_srcu_struct(hctx->srcu);
2206

2207
	blk_mq_remove_cpuhp(hctx);
2208
	blk_free_flush_queue(hctx->fq);
2209
	sbitmap_free(&hctx->ctx_map);
2210 2211
}

M
Ming Lei 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2221
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2222 2223 2224
	}
}

2225 2226 2227
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2228
{
2229 2230 2231 2232 2233 2234
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2235
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2236 2237 2238
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2239
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2240

2241
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2242 2243

	hctx->tags = set->tags[hctx_idx];
2244 2245

	/*
2246 2247
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2248
	 */
2249
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2250 2251 2252
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2253

2254 2255
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2256
		goto free_ctxs;
2257

2258
	hctx->nr_ctx = 0;
2259

2260 2261 2262
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2263 2264 2265
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2266

2267 2268 2269
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2270 2271
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2272
		goto sched_exit_hctx;
2273

2274
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2275
		goto free_fq;
2276

2277
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2278
		init_srcu_struct(hctx->srcu);
2279

2280 2281
	blk_mq_debugfs_register_hctx(q, hctx);

2282
	return 0;
2283

2284 2285
 free_fq:
	kfree(hctx->fq);
2286 2287
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2288 2289 2290
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2291
 free_bitmap:
2292
	sbitmap_free(&hctx->ctx_map);
2293 2294 2295
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2296
	blk_mq_remove_cpuhp(hctx);
2297 2298
	return -1;
}
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2318
		hctx = blk_mq_map_queue(q, i);
2319
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2320
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2321 2322 2323
	}
}

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2346 2347 2348 2349 2350
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2351 2352
}

2353
static void blk_mq_map_swqueue(struct request_queue *q)
2354
{
2355
	unsigned int i, hctx_idx;
2356 2357
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2358
	struct blk_mq_tag_set *set = q->tag_set;
2359

2360 2361 2362 2363 2364
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2365
	queue_for_each_hw_ctx(q, hctx, i) {
2366
		cpumask_clear(hctx->cpumask);
2367 2368 2369 2370
		hctx->nr_ctx = 0;
	}

	/*
2371
	 * Map software to hardware queues.
2372 2373
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2374
	 */
2375
	for_each_possible_cpu(i) {
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			q->mq_map[i] = 0;
		}

2389
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2390
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2391

2392
		cpumask_set_cpu(i, hctx->cpumask);
2393 2394 2395
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2396

2397 2398
	mutex_unlock(&q->sysfs_lock);

2399
	queue_for_each_hw_ctx(q, hctx, i) {
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2415

M
Ming Lei 已提交
2416 2417 2418
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2419 2420 2421 2422 2423
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2424
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2425

2426 2427 2428
		/*
		 * Initialize batch roundrobin counts
		 */
2429
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2430 2431
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2432 2433
}

2434 2435 2436 2437
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2438
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2439 2440 2441 2442
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2443
	queue_for_each_hw_ctx(q, hctx, i) {
2444 2445 2446
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2447
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2448 2449 2450
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2451
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2452
		}
2453 2454 2455
	}
}

2456 2457
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2458 2459
{
	struct request_queue *q;
2460

2461 2462
	lockdep_assert_held(&set->tag_list_lock);

2463 2464
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2465
		queue_set_hctx_shared(q, shared);
2466 2467 2468 2469 2470 2471 2472 2473 2474
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2475 2476
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2477 2478 2479 2480 2481 2482
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2483
	mutex_unlock(&set->tag_list_lock);
2484 2485

	synchronize_rcu();
2486 2487 2488 2489 2490 2491 2492 2493
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2494

2495 2496 2497 2498 2499
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2500 2501 2502 2503 2504 2505
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2506
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2507

2508 2509 2510
	mutex_unlock(&set->tag_list_lock);
}

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2523 2524 2525
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2526
		kobject_put(&hctx->kobj);
2527
	}
2528

2529 2530
	q->mq_map = NULL;

2531 2532
	kfree(q->queue_hw_ctx);

2533 2534 2535 2536 2537 2538
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2539 2540 2541
	free_percpu(q->queue_ctx);
}

2542
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2543 2544 2545
{
	struct request_queue *uninit_q, *q;

2546
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2558 2559 2560 2561
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2562
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2563 2564 2565 2566 2567 2568 2569 2570 2571
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2572 2573
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2574
{
K
Keith Busch 已提交
2575 2576
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2577

K
Keith Busch 已提交
2578
	blk_mq_sysfs_unregister(q);
2579 2580 2581

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2582
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2583
		int node;
2584

K
Keith Busch 已提交
2585 2586 2587 2588
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2589
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2590
					GFP_KERNEL, node);
2591
		if (!hctxs[i])
K
Keith Busch 已提交
2592
			break;
2593

2594
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2595 2596 2597 2598 2599
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2600

2601
		atomic_set(&hctxs[i]->nr_active, 0);
2602
		hctxs[i]->numa_node = node;
2603
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2604 2605 2606 2607 2608 2609 2610 2611

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2612
	}
K
Keith Busch 已提交
2613 2614 2615 2616
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2617 2618
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2619 2620 2621 2622 2623 2624 2625
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2626
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2627 2628 2629 2630 2631 2632
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2633 2634 2635
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2636
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2637 2638
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2639 2640 2641
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2642 2643
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2644
		goto err_exit;
K
Keith Busch 已提交
2645

2646 2647 2648
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2649 2650 2651 2652 2653
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2654
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2655 2656 2657 2658

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2659

2660
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2661
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2662 2663 2664

	q->nr_queues = nr_cpu_ids;

2665
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2666

2667
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2668
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2669

2670 2671
	q->sg_reserved_size = INT_MAX;

2672
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2673 2674 2675
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2676
	blk_queue_make_request(q, blk_mq_make_request);
2677 2678
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2679

2680 2681 2682 2683 2684
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2685 2686 2687 2688 2689
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2690 2691
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2692

2693
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2694
	blk_mq_add_queue_tag_set(set, q);
2695
	blk_mq_map_swqueue(q);
2696

2697 2698 2699 2700 2701 2702 2703 2704
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2705
	return q;
2706

2707
err_hctxs:
K
Keith Busch 已提交
2708
	kfree(q->queue_hw_ctx);
2709
err_percpu:
K
Keith Busch 已提交
2710
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2711 2712
err_exit:
	q->mq_ops = NULL;
2713 2714
	return ERR_PTR(-ENOMEM);
}
2715
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2716 2717 2718

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2719
	struct blk_mq_tag_set	*set = q->tag_set;
2720

2721
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2722
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2723 2724 2725
}

/* Basically redo blk_mq_init_queue with queue frozen */
2726
static void blk_mq_queue_reinit(struct request_queue *q)
2727
{
2728
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2729

2730
	blk_mq_debugfs_unregister_hctxs(q);
2731 2732
	blk_mq_sysfs_unregister(q);

2733 2734
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2735 2736
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2737
	 */
2738
	blk_mq_map_swqueue(q);
2739

2740
	blk_mq_sysfs_register(q);
2741
	blk_mq_debugfs_register_hctxs(q);
2742 2743
}

2744 2745 2746 2747
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2748 2749
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2750 2751 2752 2753 2754 2755
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2756
		blk_mq_free_rq_map(set->tags[i]);
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2796 2797
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2817
		return set->ops->map_queues(set);
2818
	} else
2819 2820 2821
		return blk_mq_map_queues(set);
}

2822 2823 2824 2825 2826 2827
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2828 2829
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2830 2831
	int ret;

B
Bart Van Assche 已提交
2832 2833
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2834 2835
	if (!set->nr_hw_queues)
		return -EINVAL;
2836
	if (!set->queue_depth)
2837 2838 2839 2840
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2841
	if (!set->ops->queue_rq)
2842 2843
		return -EINVAL;

2844 2845 2846
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2847 2848 2849 2850 2851
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2852

2853 2854 2855 2856 2857 2858 2859 2860 2861
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2862 2863 2864 2865 2866
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2867

K
Keith Busch 已提交
2868
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2869 2870
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2871
		return -ENOMEM;
2872

2873 2874 2875
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2876 2877 2878
	if (!set->mq_map)
		goto out_free_tags;

2879
	ret = blk_mq_update_queue_map(set);
2880 2881 2882 2883 2884
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2885
		goto out_free_mq_map;
2886

2887 2888 2889
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2890
	return 0;
2891 2892 2893 2894 2895

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2896 2897
	kfree(set->tags);
	set->tags = NULL;
2898
	return ret;
2899 2900 2901 2902 2903 2904 2905
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2906 2907
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2908

2909 2910 2911
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2912
	kfree(set->tags);
2913
	set->tags = NULL;
2914 2915 2916
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2917 2918 2919 2920 2921 2922
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2923
	if (!set)
2924 2925
		return -EINVAL;

2926
	blk_mq_freeze_queue(q);
2927
	blk_mq_quiesce_queue(q);
2928

2929 2930
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2931 2932
		if (!hctx->tags)
			continue;
2933 2934 2935 2936
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2937
		if (!hctx->sched_tags) {
2938
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2939 2940 2941 2942 2943
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2944 2945 2946 2947 2948 2949 2950
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2951
	blk_mq_unquiesce_queue(q);
2952 2953
	blk_mq_unfreeze_queue(q);

2954 2955 2956
	return ret;
}

2957 2958
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2959 2960 2961
{
	struct request_queue *q;

2962 2963
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2973
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2974 2975
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2976
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2977 2978 2979 2980 2981
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2982 2983 2984 2985 2986 2987 2988

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2989 2990
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2991 2992 2993 2994
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2995
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3017
	int bucket;
3018

3019 3020 3021 3022
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3023 3024
}

3025 3026 3027 3028 3029
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3030
	int bucket;
3031 3032 3033 3034 3035

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3036
	if (!blk_poll_stats_enable(q))
3037 3038 3039 3040 3041 3042 3043 3044
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3045 3046
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3047
	 */
3048 3049 3050 3051 3052 3053
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3054 3055 3056 3057

	return ret;
}

3058
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3059
				     struct blk_mq_hw_ctx *hctx,
3060 3061 3062 3063
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3064
	unsigned int nsecs;
3065 3066
	ktime_t kt;

J
Jens Axboe 已提交
3067
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3085 3086
		return false;

J
Jens Axboe 已提交
3087
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3088 3089 3090 3091 3092

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3093
	kt = nsecs;
3094 3095 3096 3097 3098 3099 3100

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3101
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3116 3117 3118 3119 3120
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3121 3122 3123 3124 3125 3126 3127
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3128
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3129 3130
		return true;

J
Jens Axboe 已提交
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3156
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3157 3158 3159
	return false;
}

3160
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3161 3162 3163 3164
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3165
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3166 3167 3168
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3169 3170
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3171
	else {
3172
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3173 3174 3175 3176 3177 3178 3179 3180 3181
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3182 3183 3184 3185

	return __blk_mq_poll(hctx, rq);
}

3186 3187
static int __init blk_mq_init(void)
{
3188 3189
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3190 3191 3192
	return 0;
}
subsys_initcall(blk_mq_init);