blk-mq.c 75.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98
	if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128 129
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	blk_mq_freeze_queue_wait(q);
}
165 166 167 168 169 170 171 172 173

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
174
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175

176
void blk_mq_unfreeze_queue(struct request_queue *q)
177
{
178
	int freeze_depth;
179

180 181 182
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
183
		percpu_ref_reinit(&q->q_usage_counter);
184
		wake_up_all(&q->mq_freeze_wq);
185
	}
186
}
187
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

203
/**
204
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 206 207
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
208 209 210
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
211 212 213 214 215 216 217
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

218
	blk_mq_quiesce_queue_nowait(q);
219

220 221
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
222
			synchronize_srcu(hctx->queue_rq_srcu);
223 224 225 226 227 228 229 230
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

231 232 233 234 235 236 237 238 239
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
240 241 242
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
243
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244
	spin_unlock_irqrestore(q->queue_lock, flags);
245

246 247
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
248 249 250
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

251 252 253 254 255 256 257 258 259 260
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

261 262 263 264 265 266
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

267 268
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
269
{
270 271 272
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

273 274
	rq->rq_flags = 0;

275 276 277 278 279 280 281 282 283 284 285 286 287
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

288 289
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
290 291
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
292
	rq->cmd_flags = op;
293 294
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
295
	if (blk_queue_io_stat(data->q))
296
		rq->rq_flags |= RQF_IO_STAT;
297 298 299 300 301 302
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
303
	rq->start_time = jiffies;
304 305
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
306
	set_start_time_ns(rq);
307 308 309 310 311 312 313 314 315 316 317
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
318 319
	rq->timeout = 0;

320 321 322 323
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

324 325
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
326 327
}

328 329 330 331 332 333
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
334
	unsigned int tag;
335
	bool put_ctx_on_error = false;
336 337 338

	blk_queue_enter_live(q);
	data->q = q;
339 340 341 342
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
343 344
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
345 346
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
347 348 349 350 351 352 353 354

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
355 356
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
357 358
	}

359 360
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
361 362
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
363 364
			data->ctx = NULL;
		}
365 366
		blk_queue_exit(q);
		return NULL;
367 368
	}

369
	rq = blk_mq_rq_ctx_init(data, tag, op);
370 371
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
372
		if (e && e->type->ops.mq.prepare_request) {
373 374 375
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

376 377
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
378
		}
379 380 381
	}
	data->hctx->queued++;
	return rq;
382 383
}

384
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
385
		blk_mq_req_flags_t flags)
386
{
387
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
388
	struct request *rq;
389
	int ret;
390

391
	ret = blk_queue_enter(q, flags);
392 393
	if (ret)
		return ERR_PTR(ret);
394

395
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
396
	blk_queue_exit(q);
397

398
	if (!rq)
399
		return ERR_PTR(-EWOULDBLOCK);
400

401 402
	blk_mq_put_ctx(alloc_data.ctx);

403 404 405
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
406 407
	return rq;
}
408
EXPORT_SYMBOL(blk_mq_alloc_request);
409

410
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
411
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
412
{
413
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
414
	struct request *rq;
415
	unsigned int cpu;
M
Ming Lin 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

430
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
431 432 433
	if (ret)
		return ERR_PTR(ret);

434 435 436 437
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
438 439 440 441
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
442
	}
443 444
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
445

446
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
447
	blk_queue_exit(q);
448

449 450 451 452
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
453 454 455
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

456
void blk_mq_free_request(struct request *rq)
457 458
{
	struct request_queue *q = rq->q;
459 460 461 462 463
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

464
	if (rq->rq_flags & RQF_ELVPRIV) {
465 466 467 468 469 470 471
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
472

473
	ctx->rq_completed[rq_is_sync(rq)]++;
474
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
475
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
476

477 478 479
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
480
	wbt_done(q->rq_wb, &rq->issue_stat);
481

S
Shaohua Li 已提交
482 483 484
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

485
	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
486
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
487
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
488 489 490
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
491
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
492
	blk_mq_sched_restart(hctx);
493
	blk_queue_exit(q);
494
}
J
Jens Axboe 已提交
495
EXPORT_SYMBOL_GPL(blk_mq_free_request);
496

497
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
498
{
M
Ming Lei 已提交
499 500
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
501
	if (rq->end_io) {
J
Jens Axboe 已提交
502
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
503
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
504 505 506
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
507
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
508
	}
509
}
510
EXPORT_SYMBOL(__blk_mq_end_request);
511

512
void blk_mq_end_request(struct request *rq, blk_status_t error)
513 514 515
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
516
	__blk_mq_end_request(rq, error);
517
}
518
EXPORT_SYMBOL(blk_mq_end_request);
519

520
static void __blk_mq_complete_request_remote(void *data)
521
{
522
	struct request *rq = data;
523

524
	rq->q->softirq_done_fn(rq);
525 526
}

527
static void __blk_mq_complete_request(struct request *rq)
528 529
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
530
	bool shared = false;
531 532
	int cpu;

533 534
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);

535 536 537 538 539 540 541
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
542
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
543 544 545
		rq->q->softirq_done_fn(rq);
		return;
	}
546 547

	cpu = get_cpu();
C
Christoph Hellwig 已提交
548 549 550 551
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
552
		rq->csd.func = __blk_mq_complete_request_remote;
553 554
		rq->csd.info = rq;
		rq->csd.flags = 0;
555
		smp_call_function_single_async(ctx->cpu, &rq->csd);
556
	} else {
557
		rq->q->softirq_done_fn(rq);
558
	}
559 560
	put_cpu();
}
561

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_lock();
	else
		*srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
{
	unsigned long flags;

	/*
	 * blk_mq_rq_aborted_gstate() is used from the completion path and
	 * can thus be called from irq context.  u64_stats_fetch in the
	 * middle of update on the same CPU leads to lockup.  Disable irq
	 * while updating.
	 */
	local_irq_save(flags);
	u64_stats_update_begin(&rq->aborted_gstate_sync);
	rq->aborted_gstate = gstate;
	u64_stats_update_end(&rq->aborted_gstate_sync);
	local_irq_restore(flags);
}

static u64 blk_mq_rq_aborted_gstate(struct request *rq)
{
	unsigned int start;
	u64 aborted_gstate;

	do {
		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
		aborted_gstate = rq->aborted_gstate;
	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));

	return aborted_gstate;
}

608 609 610 611 612 613 614 615
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
616
void blk_mq_complete_request(struct request *rq)
617
{
618
	struct request_queue *q = rq->q;
619 620
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
621 622

	if (unlikely(blk_should_fake_timeout(q)))
623
		return;
624

625 626 627 628 629 630 631 632 633 634 635
	/*
	 * If @rq->aborted_gstate equals the current instance, timeout is
	 * claiming @rq and we lost.  This is synchronized through
	 * hctx_lock().  See blk_mq_timeout_work() for details.
	 *
	 * Completion path never blocks and we can directly use RCU here
	 * instead of hctx_lock() which can be either RCU or SRCU.
	 * However, that would complicate paths which want to synchronize
	 * against us.  Let stay in sync with the issue path so that
	 * hctx_lock() covers both issue and completion paths.
	 */
636
	hctx_lock(hctx, &srcu_idx);
637 638
	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate &&
	    !blk_mark_rq_complete(rq))
639
		__blk_mq_complete_request(rq);
640
	hctx_unlock(hctx, srcu_idx);
641 642
}
EXPORT_SYMBOL(blk_mq_complete_request);
643

644 645 646 647 648 649
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

650
void blk_mq_start_request(struct request *rq)
651 652 653
{
	struct request_queue *q = rq->q;

654 655
	blk_mq_sched_started_request(rq);

656 657
	trace_block_rq_issue(q, rq);

658
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
659
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
660
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
661
		wbt_issue(q->rq_wb, &rq->issue_stat);
662 663
	}

664
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
665
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
666

667
	/*
668 669 670 671
	 * Mark @rq in-flight which also advances the generation number,
	 * and register for timeout.  Protect with a seqcount to allow the
	 * timeout path to read both @rq->gstate and @rq->deadline
	 * coherently.
672
	 *
673 674 675 676
	 * This is the only place where a request is marked in-flight.  If
	 * the timeout path reads an in-flight @rq->gstate, the
	 * @rq->deadline it reads together under @rq->gstate_seq is
	 * guaranteed to be the matching one.
677
	 */
678 679 680 681 682 683 684 685 686
	preempt_disable();
	write_seqcount_begin(&rq->gstate_seq);

	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
	blk_add_timer(rq);

	write_seqcount_end(&rq->gstate_seq);
	preempt_enable();

687
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
688
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
689
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
690 691 692 693 694 695 696 697 698

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
699
}
700
EXPORT_SYMBOL(blk_mq_start_request);
701

702 703
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
704
 * flag isn't set yet, so there may be race with timeout handler,
705 706 707 708 709 710
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
711
static void __blk_mq_requeue_request(struct request *rq)
712 713 714
{
	struct request_queue *q = rq->q;

715 716
	blk_mq_put_driver_tag(rq);

717
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
718
	wbt_requeue(q->rq_wb, &rq->issue_stat);
719
	blk_mq_sched_requeue_request(rq);
720

721
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
722
		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
723 724 725
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
726 727
}

728
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
729 730 731 732
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
733
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
734 735 736
}
EXPORT_SYMBOL(blk_mq_requeue_request);

737 738 739
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
740
		container_of(work, struct request_queue, requeue_work.work);
741 742 743
	LIST_HEAD(rq_list);
	struct request *rq, *next;

744
	spin_lock_irq(&q->requeue_lock);
745
	list_splice_init(&q->requeue_list, &rq_list);
746
	spin_unlock_irq(&q->requeue_lock);
747 748

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
749
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
750 751
			continue;

752
		rq->rq_flags &= ~RQF_SOFTBARRIER;
753
		list_del_init(&rq->queuelist);
754
		blk_mq_sched_insert_request(rq, true, false, false, true);
755 756 757 758 759
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
760
		blk_mq_sched_insert_request(rq, false, false, false, true);
761 762
	}

763
	blk_mq_run_hw_queues(q, false);
764 765
}

766 767
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
768 769 770 771 772 773
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
774
	 * request head insertion from the workqueue.
775
	 */
776
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
777 778 779

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
780
		rq->rq_flags |= RQF_SOFTBARRIER;
781 782 783 784 785
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
786 787 788

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
789 790 791 792 793
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
794
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
795 796 797
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

798 799 800
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
801 802
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
803 804 805
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

806 807
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
808 809
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
810
		return tags->rqs[tag];
811
	}
812 813

	return NULL;
814 815 816
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

817
struct blk_mq_timeout_data {
818 819
	unsigned long next;
	unsigned int next_set;
820
	unsigned int nr_expired;
821 822
};

823
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
824
{
J
Jens Axboe 已提交
825
	const struct blk_mq_ops *ops = req->q->mq_ops;
826
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
827 828 829 830 831 832 833

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
834
	 * both flags will get cleared. So check here again, and ignore
835 836
	 * a timeout event with a request that isn't active.
	 */
837 838
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
839

840
	if (ops->timeout)
841
		ret = ops->timeout(req, reserved);
842 843 844 845 846 847

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
848 849 850 851 852 853
		/*
		 * As nothing prevents from completion happening while
		 * ->aborted_gstate is set, this may lead to ignored
		 * completions and further spurious timeouts.
		 */
		blk_mq_rq_update_aborted_gstate(req, 0);
854 855 856 857 858 859 860 861 862
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
863
}
864

865 866 867 868
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
869 870 871 872
	unsigned long gstate, deadline;
	int start;

	might_sleep();
873

874
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
875
		return;
876

877 878 879 880 881 882 883 884 885
	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
	while (true) {
		start = read_seqcount_begin(&rq->gstate_seq);
		gstate = READ_ONCE(rq->gstate);
		deadline = rq->deadline;
		if (!read_seqcount_retry(&rq->gstate_seq, start))
			break;
		cond_resched();
	}
886

887 888 889 890 891 892
	/* if in-flight && overdue, mark for abortion */
	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
	    time_after_eq(jiffies, deadline)) {
		blk_mq_rq_update_aborted_gstate(rq, gstate);
		data->nr_expired++;
		hctx->nr_expired++;
893 894
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
895 896
		data->next_set = 1;
	}
897 898
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	/*
	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
	 * completions that we lost to, they would have finished and
	 * updated @rq->gstate by now; otherwise, the completion path is
	 * now guaranteed to see @rq->aborted_gstate and yield.  If
	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
	 */
	if (READ_ONCE(rq->gstate) == rq->aborted_gstate &&
	    !blk_mark_rq_complete(rq))
		blk_mq_rq_timed_out(rq, reserved);
}

914
static void blk_mq_timeout_work(struct work_struct *work)
915
{
916 917
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
918 919 920
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
921
		.nr_expired	= 0,
922
	};
923
	struct blk_mq_hw_ctx *hctx;
924
	int i;
925

926 927 928 929 930 931 932 933 934
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
935
	 * blk_freeze_queue_start, and the moment the last request is
936 937 938 939
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
940 941
		return;

942
	/* scan for the expired ones and set their ->aborted_gstate */
943
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
944

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	if (data.nr_expired) {
		bool has_rcu = false;

		/*
		 * Wait till everyone sees ->aborted_gstate.  The
		 * sequential waits for SRCUs aren't ideal.  If this ever
		 * becomes a problem, we can add per-hw_ctx rcu_head and
		 * wait in parallel.
		 */
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->nr_expired)
				continue;

			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
				has_rcu = true;
			else
				synchronize_srcu(hctx->queue_rq_srcu);

			hctx->nr_expired = 0;
		}
		if (has_rcu)
			synchronize_rcu();

		/* terminate the ones we won */
		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
	}

972 973 974
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
975
	} else {
976 977 978 979 980
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
981
	}
982
	blk_queue_exit(q);
983 984
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

1003 1004 1005 1006
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1007
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1008
{
1009 1010 1011 1012
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1013

1014
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1015
}
1016
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1057 1058 1059 1060
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1061

1062
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1063 1064
}

1065 1066
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
1067 1068 1069 1070 1071 1072 1073
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

1074 1075
	might_sleep_if(wait);

1076 1077
	if (rq->tag != -1)
		goto done;
1078

1079 1080 1081
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1082 1083
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1084 1085 1086 1087
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1088 1089 1090
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1091 1092 1093 1094
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1095 1096
}

1097 1098
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1099 1100 1101 1102 1103
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1104
	list_del_init(&wait->entry);
1105 1106 1107 1108
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1109 1110 1111 1112 1113 1114 1115 1116
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
 * restart. For both caes, take care to check the condition again after
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1117
{
1118
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1119
	bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1120
	struct sbq_wait_state *ws;
1121 1122
	wait_queue_entry_t *wait;
	bool ret;
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	if (!shared_tags) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
	} else {
		wait = &this_hctx->dispatch_wait;
		if (!list_empty_careful(&wait->entry))
			return false;

		spin_lock(&this_hctx->lock);
		if (!list_empty(&wait->entry)) {
			spin_unlock(&this_hctx->lock);
			return false;
		}
1137

1138 1139
		ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
		add_wait_queue(&ws->wait, wait);
1140 1141
	}

1142
	/*
1143 1144 1145
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1146
	 */
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	ret = blk_mq_get_driver_tag(rq, hctx, false);

	if (!shared_tags) {
		/*
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return ret;
	} else {
		if (!ret) {
			spin_unlock(&this_hctx->lock);
			return false;
		}

		/*
		 * We got a tag, remove ourselves from the wait queue to ensure
		 * someone else gets the wakeup.
		 */
		spin_lock_irq(&ws->wait.lock);
		list_del_init(&wait->entry);
		spin_unlock_irq(&ws->wait.lock);
1168
		spin_unlock(&this_hctx->lock);
1169
		return true;
1170
	}
1171 1172
}

1173
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1174
			     bool got_budget)
1175
{
1176
	struct blk_mq_hw_ctx *hctx;
1177
	struct request *rq, *nxt;
1178
	bool no_tag = false;
1179
	int errors, queued;
1180

1181 1182 1183
	if (list_empty(list))
		return false;

1184 1185
	WARN_ON(!list_is_singular(list) && got_budget);

1186 1187 1188
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1189
	errors = queued = 0;
1190
	do {
1191
		struct blk_mq_queue_data bd;
1192
		blk_status_t ret;
1193

1194
		rq = list_first_entry(list, struct request, queuelist);
1195
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1196
			/*
1197
			 * The initial allocation attempt failed, so we need to
1198 1199 1200 1201
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1202
			 */
1203
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1204 1205
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1206 1207 1208 1209 1210 1211
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1212 1213 1214 1215
				break;
			}
		}

1216 1217
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1218
			break;
1219
		}
1220

1221 1222
		list_del_init(&rq->queuelist);

1223
		bd.rq = rq;
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1235 1236

		ret = q->mq_ops->queue_rq(hctx, &bd);
1237
		if (ret == BLK_STS_RESOURCE) {
1238 1239
			/*
			 * If an I/O scheduler has been configured and we got a
1240 1241
			 * driver tag for the next request already, free it
			 * again.
1242 1243 1244 1245 1246
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1247
			list_add(&rq->queuelist, list);
1248
			__blk_mq_requeue_request(rq);
1249
			break;
1250 1251 1252
		}

		if (unlikely(ret != BLK_STS_OK)) {
1253
			errors++;
1254
			blk_mq_end_request(rq, BLK_STS_IOERR);
1255
			continue;
1256 1257
		}

1258
		queued++;
1259
	} while (!list_empty(list));
1260

1261
	hctx->dispatched[queued_to_index(queued)]++;
1262 1263 1264 1265 1266

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1267
	if (!list_empty(list)) {
1268
		spin_lock(&hctx->lock);
1269
		list_splice_init(list, &hctx->dispatch);
1270
		spin_unlock(&hctx->lock);
1271

1272
		/*
1273 1274 1275
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1276
		 *
1277 1278 1279 1280
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1281
		 *
1282 1283 1284 1285 1286 1287 1288
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1289
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1290
		 *   and dm-rq.
1291
		 */
1292 1293
		if (!blk_mq_sched_needs_restart(hctx) ||
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1294
			blk_mq_run_hw_queue(hctx, true);
1295
	}
1296

1297
	return (queued + errors) != 0;
1298 1299
}

1300 1301 1302 1303
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1304 1305 1306 1307
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1308 1309 1310
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1311 1312 1313 1314 1315 1316
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1317
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1318

1319 1320 1321
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1322 1323
}

1324 1325 1326 1327 1328 1329 1330 1331
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1332 1333
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1334 1335

	if (--hctx->next_cpu_batch <= 0) {
1336
		int next_cpu;
1337 1338 1339 1340 1341 1342 1343 1344 1345

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1346
	return hctx->next_cpu;
1347 1348
}

1349 1350
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1351
{
1352 1353 1354 1355
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1356 1357
		return;

1358
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1359 1360
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1361
			__blk_mq_run_hw_queue(hctx);
1362
			put_cpu();
1363 1364
			return;
		}
1365

1366
		put_cpu();
1367
	}
1368

1369 1370 1371
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1372 1373 1374 1375 1376 1377 1378 1379
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1380
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1381
{
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1393 1394 1395 1396
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1397 1398

	if (need_run) {
1399 1400 1401 1402 1403
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1404
}
O
Omar Sandoval 已提交
1405
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1406

1407
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1408 1409 1410 1411 1412
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1413
		if (blk_mq_hctx_stopped(hctx))
1414 1415
			continue;

1416
		blk_mq_run_hw_queue(hctx, async);
1417 1418
	}
}
1419
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1420

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1441 1442 1443
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1444
 * BLK_STS_RESOURCE is usually returned.
1445 1446 1447 1448 1449
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1450 1451
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1452
	cancel_delayed_work(&hctx->run_work);
1453

1454
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1455
}
1456
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1457

1458 1459 1460
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1461
 * BLK_STS_RESOURCE is usually returned.
1462 1463 1464 1465 1466
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1467 1468
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1469 1470 1471 1472 1473
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1474 1475 1476
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1477 1478 1479
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1480

1481
	blk_mq_run_hw_queue(hctx, false);
1482 1483 1484
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1505
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1506 1507 1508 1509
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1510 1511
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1512 1513 1514
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1515
static void blk_mq_run_work_fn(struct work_struct *work)
1516 1517 1518
{
	struct blk_mq_hw_ctx *hctx;

1519
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1520

1521 1522 1523 1524 1525 1526 1527 1528
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1529

1530 1531 1532
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1533 1534 1535 1536

	__blk_mq_run_hw_queue(hctx);
}

1537 1538 1539

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1540
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1541
		return;
1542

1543 1544 1545 1546 1547
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1548
	blk_mq_stop_hw_queue(hctx);
1549 1550 1551 1552
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1553 1554 1555
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1556 1557 1558
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1559
{
J
Jens Axboe 已提交
1560 1561
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1562 1563
	lockdep_assert_held(&ctx->lock);

1564 1565
	trace_block_rq_insert(hctx->queue, rq);

1566 1567 1568 1569
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1570
}
1571

1572 1573
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1574 1575 1576
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1577 1578
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1579
	__blk_mq_insert_req_list(hctx, rq, at_head);
1580 1581 1582
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1583 1584 1585 1586
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1587
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1588 1589 1590 1591 1592 1593 1594 1595
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1596 1597
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1598 1599
}

1600 1601
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1613
		BUG_ON(rq->mq_ctx != ctx);
1614
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1615
		__blk_mq_insert_req_list(hctx, rq, false);
1616
	}
1617
	blk_mq_hctx_mark_pending(hctx, ctx);
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1654 1655 1656 1657
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1674 1675 1676
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1677 1678 1679 1680 1681
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1682
	blk_init_request_from_bio(rq, bio);
1683

S
Shaohua Li 已提交
1684 1685
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1686
	blk_account_io_start(rq, true);
1687 1688
}

1689 1690 1691 1692 1693 1694 1695
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1696
}
1697

1698 1699
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1700 1701 1702 1703
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1704 1705
}

M
Ming Lei 已提交
1706 1707
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
1708
					blk_qc_t *cookie)
1709 1710 1711 1712
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1713
		.last = true,
1714
	};
1715
	blk_qc_t new_cookie;
1716
	blk_status_t ret;
M
Ming Lei 已提交
1717 1718
	bool run_queue = true;

1719 1720
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1721 1722 1723
		run_queue = false;
		goto insert;
	}
1724

1725
	if (q->elevator)
1726 1727
		goto insert;

M
Ming Lei 已提交
1728
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1729 1730
		goto insert;

1731
	if (!blk_mq_get_dispatch_budget(hctx)) {
1732 1733
		blk_mq_put_driver_tag(rq);
		goto insert;
1734
	}
1735

1736 1737
	new_cookie = request_to_qc_t(hctx, rq);

1738 1739 1740 1741 1742 1743
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1744 1745
	switch (ret) {
	case BLK_STS_OK:
1746
		*cookie = new_cookie;
1747
		return;
1748 1749 1750 1751
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1752
		*cookie = BLK_QC_T_NONE;
1753
		blk_mq_end_request(rq, ret);
1754
		return;
1755
	}
1756

1757
insert:
1758 1759
	blk_mq_sched_insert_request(rq, false, run_queue, false,
					hctx->flags & BLK_MQ_F_BLOCKING);
1760 1761
}

1762 1763 1764
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1765
	int srcu_idx;
1766

1767
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1768

1769 1770 1771
	hctx_lock(hctx, &srcu_idx);
	__blk_mq_try_issue_directly(hctx, rq, cookie);
	hctx_unlock(hctx, srcu_idx);
1772 1773
}

1774
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1775
{
1776
	const int is_sync = op_is_sync(bio->bi_opf);
1777
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1778
	struct blk_mq_alloc_data data = { .flags = 0 };
1779
	struct request *rq;
1780
	unsigned int request_count = 0;
1781
	struct blk_plug *plug;
1782
	struct request *same_queue_rq = NULL;
1783
	blk_qc_t cookie;
J
Jens Axboe 已提交
1784
	unsigned int wb_acct;
1785 1786 1787

	blk_queue_bounce(q, &bio);

1788
	blk_queue_split(q, &bio);
1789

1790
	if (!bio_integrity_prep(bio))
1791
		return BLK_QC_T_NONE;
1792

1793 1794 1795
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1796

1797 1798 1799
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1800 1801
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1802 1803
	trace_block_getrq(q, bio, bio->bi_opf);

1804
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1805 1806
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1807 1808
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1809
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1810 1811 1812
	}

	wbt_track(&rq->issue_stat, wb_acct);
1813

1814
	cookie = request_to_qc_t(data.hctx, rq);
1815

1816
	plug = current->plug;
1817
	if (unlikely(is_flush_fua)) {
1818
		blk_mq_put_ctx(data.ctx);
1819
		blk_mq_bio_to_request(rq, bio);
1820 1821 1822 1823

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1824
	} else if (plug && q->nr_hw_queues == 1) {
1825 1826
		struct request *last = NULL;

1827
		blk_mq_put_ctx(data.ctx);
1828
		blk_mq_bio_to_request(rq, bio);
1829 1830 1831 1832 1833 1834 1835

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1836 1837 1838
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1839
		if (!request_count)
1840
			trace_block_plug(q);
1841 1842
		else
			last = list_entry_rq(plug->mq_list.prev);
1843

1844 1845
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1846 1847
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1848
		}
1849

1850
		list_add_tail(&rq->queuelist, &plug->mq_list);
1851
	} else if (plug && !blk_queue_nomerges(q)) {
1852
		blk_mq_bio_to_request(rq, bio);
1853 1854

		/*
1855
		 * We do limited plugging. If the bio can be merged, do that.
1856 1857
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1858 1859
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1860
		 */
1861 1862 1863 1864 1865 1866
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1867 1868
		blk_mq_put_ctx(data.ctx);

1869 1870 1871
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1872 1873
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1874
		}
1875
	} else if (q->nr_hw_queues > 1 && is_sync) {
1876
		blk_mq_put_ctx(data.ctx);
1877 1878
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1879
	} else if (q->elevator) {
1880
		blk_mq_put_ctx(data.ctx);
1881
		blk_mq_bio_to_request(rq, bio);
1882
		blk_mq_sched_insert_request(rq, false, true, true, true);
1883
	} else {
1884
		blk_mq_put_ctx(data.ctx);
1885 1886
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1887
		blk_mq_run_hw_queue(data.hctx, true);
1888
	}
1889

1890
	return cookie;
1891 1892
}

1893 1894
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1895
{
1896
	struct page *page;
1897

1898
	if (tags->rqs && set->ops->exit_request) {
1899
		int i;
1900

1901
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1902 1903 1904
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1905
				continue;
1906
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1907
			tags->static_rqs[i] = NULL;
1908
		}
1909 1910
	}

1911 1912
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1913
		list_del_init(&page->lru);
1914 1915 1916 1917 1918
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1919 1920
		__free_pages(page, page->private);
	}
1921
}
1922

1923 1924
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1925
	kfree(tags->rqs);
1926
	tags->rqs = NULL;
J
Jens Axboe 已提交
1927 1928
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1929

1930
	blk_mq_free_tags(tags);
1931 1932
}

1933 1934 1935 1936
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1937
{
1938
	struct blk_mq_tags *tags;
1939
	int node;
1940

1941 1942 1943 1944 1945
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1946
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1947 1948
	if (!tags)
		return NULL;
1949

1950
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1951
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1952
				 node);
1953 1954 1955 1956
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1957

J
Jens Axboe 已提交
1958 1959
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1960
				 node);
J
Jens Axboe 已提交
1961 1962 1963 1964 1965 1966
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1967 1968 1969 1970 1971 1972 1973 1974
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

	seqcount_init(&rq->gstate_seq);
	u64_stats_init(&rq->aborted_gstate_sync);
	return 0;
}

1991 1992 1993 1994 1995
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1996 1997 1998 1999 2000
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2001 2002 2003

	INIT_LIST_HEAD(&tags->page_list);

2004 2005 2006 2007
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2008
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2009
				cache_line_size());
2010
	left = rq_size * depth;
2011

2012
	for (i = 0; i < depth; ) {
2013 2014 2015 2016 2017
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2018
		while (this_order && left < order_to_size(this_order - 1))
2019 2020 2021
			this_order--;

		do {
2022
			page = alloc_pages_node(node,
2023
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2024
				this_order);
2025 2026 2027 2028 2029 2030 2031 2032 2033
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2034
			goto fail;
2035 2036

		page->private = this_order;
2037
		list_add_tail(&page->lru, &tags->page_list);
2038 2039

		p = page_address(page);
2040 2041 2042 2043
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2044
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2045
		entries_per_page = order_to_size(this_order) / rq_size;
2046
		to_do = min(entries_per_page, depth - i);
2047 2048
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2049 2050 2051
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2052 2053 2054
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2055 2056
			}

2057 2058 2059 2060
			p += rq_size;
			i++;
		}
	}
2061
	return 0;
2062

2063
fail:
2064 2065
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2066 2067
}

J
Jens Axboe 已提交
2068 2069 2070 2071 2072
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2073
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2074
{
2075
	struct blk_mq_hw_ctx *hctx;
2076 2077 2078
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2079
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2080
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2081 2082 2083 2084 2085 2086 2087 2088 2089

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2090
		return 0;
2091

J
Jens Axboe 已提交
2092 2093 2094
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2095 2096

	blk_mq_run_hw_queue(hctx, true);
2097
	return 0;
2098 2099
}

2100
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2101
{
2102 2103
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2104 2105
}

2106
/* hctx->ctxs will be freed in queue's release handler */
2107 2108 2109 2110
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2111 2112
	blk_mq_debugfs_unregister_hctx(hctx);

2113 2114
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2115

2116
	if (set->ops->exit_request)
2117
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2118

2119 2120
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2121 2122 2123
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2124
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2125
		cleanup_srcu_struct(hctx->queue_rq_srcu);
2126

2127
	blk_mq_remove_cpuhp(hctx);
2128
	blk_free_flush_queue(hctx->fq);
2129
	sbitmap_free(&hctx->ctx_map);
2130 2131
}

M
Ming Lei 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2141
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2142 2143 2144
	}
}

2145 2146 2147
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2148
{
2149 2150 2151 2152 2153 2154
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2155
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2156 2157 2158
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2159
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2160

2161
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2162 2163

	hctx->tags = set->tags[hctx_idx];
2164 2165

	/*
2166 2167
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2168
	 */
2169
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2170 2171 2172
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2173

2174 2175
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2176
		goto free_ctxs;
2177

2178
	hctx->nr_ctx = 0;
2179

2180 2181 2182
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2183 2184 2185
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2186

2187 2188 2189
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2190 2191
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2192
		goto sched_exit_hctx;
2193

2194
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2195
		goto free_fq;
2196

2197
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2198
		init_srcu_struct(hctx->queue_rq_srcu);
2199

2200 2201
	blk_mq_debugfs_register_hctx(q, hctx);

2202
	return 0;
2203

2204 2205
 free_fq:
	kfree(hctx->fq);
2206 2207
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2208 2209 2210
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2211
 free_bitmap:
2212
	sbitmap_free(&hctx->ctx_map);
2213 2214 2215
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2216
	blk_mq_remove_cpuhp(hctx);
2217 2218
	return -1;
}
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2234 2235
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2236 2237
			continue;

C
Christoph Hellwig 已提交
2238
		hctx = blk_mq_map_queue(q, i);
2239

2240 2241 2242 2243 2244
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2245
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2246 2247 2248
	}
}

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2271 2272 2273 2274 2275
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2276 2277
}

2278
static void blk_mq_map_swqueue(struct request_queue *q)
2279
{
2280
	unsigned int i, hctx_idx;
2281 2282
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2283
	struct blk_mq_tag_set *set = q->tag_set;
2284

2285 2286 2287 2288 2289
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2290
	queue_for_each_hw_ctx(q, hctx, i) {
2291
		cpumask_clear(hctx->cpumask);
2292 2293 2294 2295
		hctx->nr_ctx = 0;
	}

	/*
2296 2297 2298
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2299
	 */
2300
	for_each_present_cpu(i) {
2301 2302
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2303 2304
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2305 2306 2307 2308 2309 2310
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2311
			q->mq_map[i] = 0;
2312 2313
		}

2314
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2315
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2316

2317
		cpumask_set_cpu(i, hctx->cpumask);
2318 2319 2320
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2321

2322 2323
	mutex_unlock(&q->sysfs_lock);

2324
	queue_for_each_hw_ctx(q, hctx, i) {
2325
		/*
2326 2327
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2328 2329
		 */
		if (!hctx->nr_ctx) {
2330 2331 2332 2333
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2334 2335 2336
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2337
			hctx->tags = NULL;
2338 2339 2340
			continue;
		}

M
Ming Lei 已提交
2341 2342 2343
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2344 2345 2346 2347 2348
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2349
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2350

2351 2352 2353
		/*
		 * Initialize batch roundrobin counts
		 */
2354 2355 2356
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2357 2358
}

2359 2360 2361 2362
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2363
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2364 2365 2366 2367
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2368
	queue_for_each_hw_ctx(q, hctx, i) {
2369 2370 2371
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2372
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2373 2374 2375
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2376
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2377
		}
2378 2379 2380
	}
}

2381 2382
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2383 2384
{
	struct request_queue *q;
2385

2386 2387
	lockdep_assert_held(&set->tag_list_lock);

2388 2389
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2390
		queue_set_hctx_shared(q, shared);
2391 2392 2393 2394 2395 2396 2397 2398 2399
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2400 2401
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2402 2403 2404 2405 2406 2407
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2408
	mutex_unlock(&set->tag_list_lock);
2409 2410

	synchronize_rcu();
2411 2412 2413 2414 2415 2416 2417 2418
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2419

2420 2421 2422 2423 2424
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2425 2426 2427 2428 2429 2430
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2431
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2432

2433 2434 2435
	mutex_unlock(&set->tag_list_lock);
}

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2448 2449 2450
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2451
		kobject_put(&hctx->kobj);
2452
	}
2453

2454 2455
	q->mq_map = NULL;

2456 2457
	kfree(q->queue_hw_ctx);

2458 2459 2460 2461 2462 2463
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2464 2465 2466
	free_percpu(q->queue_ctx);
}

2467
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2497 2498
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2499
{
K
Keith Busch 已提交
2500 2501
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2502

K
Keith Busch 已提交
2503
	blk_mq_sysfs_unregister(q);
2504 2505 2506

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2507
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2508
		int node;
2509

K
Keith Busch 已提交
2510 2511 2512 2513
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2514
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2515
					GFP_KERNEL, node);
2516
		if (!hctxs[i])
K
Keith Busch 已提交
2517
			break;
2518

2519
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2520 2521 2522 2523 2524
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2525

2526
		atomic_set(&hctxs[i]->nr_active, 0);
2527
		hctxs[i]->numa_node = node;
2528
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2529 2530 2531 2532 2533 2534 2535 2536

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2537
	}
K
Keith Busch 已提交
2538 2539 2540 2541
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2542 2543
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2544 2545 2546 2547 2548 2549 2550
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2551
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2552 2553 2554 2555 2556 2557
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2558 2559 2560
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2561
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2562 2563
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2564 2565 2566
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2567 2568
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2569
		goto err_exit;
K
Keith Busch 已提交
2570

2571 2572 2573
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2574 2575 2576 2577 2578
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2579
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2580 2581 2582 2583

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2584

2585
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2586
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2587 2588 2589

	q->nr_queues = nr_cpu_ids;

2590
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2591

2592 2593 2594
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2595 2596
	q->sg_reserved_size = INT_MAX;

2597
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2598 2599 2600
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2601
	blk_queue_make_request(q, blk_mq_make_request);
2602 2603
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2604

2605 2606 2607 2608 2609
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2610 2611 2612 2613 2614
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2615 2616
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2617

2618
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2619
	blk_mq_add_queue_tag_set(set, q);
2620
	blk_mq_map_swqueue(q);
2621

2622 2623 2624 2625 2626 2627 2628 2629
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2630
	return q;
2631

2632
err_hctxs:
K
Keith Busch 已提交
2633
	kfree(q->queue_hw_ctx);
2634
err_percpu:
K
Keith Busch 已提交
2635
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2636 2637
err_exit:
	q->mq_ops = NULL;
2638 2639
	return ERR_PTR(-ENOMEM);
}
2640
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2641 2642 2643

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2644
	struct blk_mq_tag_set	*set = q->tag_set;
2645

2646
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2647
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2648 2649 2650
}

/* Basically redo blk_mq_init_queue with queue frozen */
2651
static void blk_mq_queue_reinit(struct request_queue *q)
2652
{
2653
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2654

2655
	blk_mq_debugfs_unregister_hctxs(q);
2656 2657
	blk_mq_sysfs_unregister(q);

2658 2659
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2660 2661
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2662
	 */
2663
	blk_mq_map_swqueue(q);
2664

2665
	blk_mq_sysfs_register(q);
2666
	blk_mq_debugfs_register_hctxs(q);
2667 2668
}

2669 2670 2671 2672
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2673 2674
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2675 2676 2677 2678 2679 2680
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2681
		blk_mq_free_rq_map(set->tags[i]);
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2721 2722
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2742
		return set->ops->map_queues(set);
2743
	} else
2744 2745 2746
		return blk_mq_map_queues(set);
}

2747 2748 2749 2750 2751 2752
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2753 2754
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2755 2756
	int ret;

B
Bart Van Assche 已提交
2757 2758
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2759 2760
	if (!set->nr_hw_queues)
		return -EINVAL;
2761
	if (!set->queue_depth)
2762 2763 2764 2765
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2766
	if (!set->ops->queue_rq)
2767 2768
		return -EINVAL;

2769 2770 2771
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2772 2773 2774 2775 2776
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2777

2778 2779 2780 2781 2782 2783 2784 2785 2786
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2787 2788 2789 2790 2791
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2792

K
Keith Busch 已提交
2793
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2794 2795
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2796
		return -ENOMEM;
2797

2798 2799 2800
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2801 2802 2803
	if (!set->mq_map)
		goto out_free_tags;

2804
	ret = blk_mq_update_queue_map(set);
2805 2806 2807 2808 2809
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2810
		goto out_free_mq_map;
2811

2812 2813 2814
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2815
	return 0;
2816 2817 2818 2819 2820

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2821 2822
	kfree(set->tags);
	set->tags = NULL;
2823
	return ret;
2824 2825 2826 2827 2828 2829 2830
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2831 2832
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2833

2834 2835 2836
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2837
	kfree(set->tags);
2838
	set->tags = NULL;
2839 2840 2841
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2842 2843 2844 2845 2846 2847
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2848
	if (!set)
2849 2850
		return -EINVAL;

2851
	blk_mq_freeze_queue(q);
2852
	blk_mq_quiesce_queue(q);
2853

2854 2855
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2856 2857
		if (!hctx->tags)
			continue;
2858 2859 2860 2861
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2862
		if (!hctx->sched_tags) {
2863
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2864 2865 2866 2867 2868
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2869 2870 2871 2872 2873 2874 2875
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2876
	blk_mq_unquiesce_queue(q);
2877 2878
	blk_mq_unfreeze_queue(q);

2879 2880 2881
	return ret;
}

2882 2883
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2884 2885 2886
{
	struct request_queue *q;

2887 2888
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2889 2890 2891 2892 2893 2894 2895 2896 2897
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2898
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2899 2900
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2901
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2902 2903 2904 2905 2906
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2907 2908 2909 2910 2911 2912 2913

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2914 2915
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2942
	int bucket;
2943

2944 2945 2946 2947
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2948 2949
}

2950 2951 2952 2953 2954
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2955
	int bucket;
2956 2957 2958 2959 2960

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2961
	if (!blk_poll_stats_enable(q))
2962 2963 2964 2965 2966 2967 2968 2969
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2970 2971
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2972
	 */
2973 2974 2975 2976 2977 2978
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2979 2980 2981 2982

	return ret;
}

2983
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2984
				     struct blk_mq_hw_ctx *hctx,
2985 2986 2987 2988
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2989
	unsigned int nsecs;
2990 2991
	ktime_t kt;

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3010 3011 3012 3013 3014 3015 3016 3017
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3018
	kt = nsecs;
3019 3020 3021 3022 3023 3024 3025

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
3026 3027
		if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
		    blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3042 3043 3044 3045 3046
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3047 3048 3049 3050 3051 3052 3053
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3054
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3055 3056
		return true;

J
Jens Axboe 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

3085
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3086 3087 3088 3089
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3090
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3091 3092 3093
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3094 3095
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3096
	else {
3097
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3098 3099 3100 3101 3102 3103 3104 3105 3106
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3107 3108 3109 3110

	return __blk_mq_poll(hctx, rq);
}

3111 3112
static int __init blk_mq_init(void)
{
3113 3114
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3115 3116 3117
	return 0;
}
subsys_initcall(blk_mq_init);