blk-mq.c 67.4 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
35
#include "blk-stat.h"
J
Jens Axboe 已提交
36
#include "blk-wbt.h"
37
#include "blk-mq-sched.h"
38 39 40 41

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

42 43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

45 46 47
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
48
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49
{
50 51 52
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
53 54
}

55 56 57 58 59 60
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
61 62
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 64 65 66 67
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
68
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 70
}

71
void blk_mq_freeze_queue_start(struct request_queue *q)
72
{
73
	int freeze_depth;
74

75 76
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
77
		percpu_ref_kill(&q->q_usage_counter);
78
		blk_mq_run_hw_queues(q, false);
79
	}
80
}
81
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
82

83
void blk_mq_freeze_queue_wait(struct request_queue *q)
84
{
85
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86
}
87
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88

89 90 91 92 93 94 95 96
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111 112 113
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

165 166 167 168 169 170 171 172
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
173 174 175 176 177 178 179

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
180 181
}

182 183 184 185 186 187
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

188 189
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
190
{
191 192 193
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
194
	rq->mq_ctx = ctx;
195
	rq->cmd_flags = op;
196 197
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
198 199 200 201 202 203
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
204
	rq->start_time = jiffies;
205 206
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
207
	set_start_time_ns(rq);
208 209 210 211 212 213 214 215 216 217 218 219
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
220 221
	rq->timeout = 0;

222 223 224 225
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

226
	ctx->rq_dispatched[op_is_sync(op)]++;
227
}
228
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229

230 231
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
232 233 234 235
{
	struct request *rq;
	unsigned int tag;

236
	tag = blk_mq_get_tag(data);
237
	if (tag != BLK_MQ_TAG_FAIL) {
238 239 240
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
241

242 243 244 245
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
246 247 248 249
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
250 251
			rq->tag = tag;
			rq->internal_tag = -1;
252
			data->hctx->tags->rqs[rq->tag] = rq;
253 254
		}

255
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 257 258 259 260
		return rq;
	}

	return NULL;
}
261
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262

263 264
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
265
{
266
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
267
	struct request *rq;
268
	int ret;
269

270
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 272
	if (ret)
		return ERR_PTR(ret);
273

274
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275

276 277 278 279
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
280
		return ERR_PTR(-EWOULDBLOCK);
281 282 283 284

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
285 286
	return rq;
}
287
EXPORT_SYMBOL(blk_mq_alloc_request);
288

M
Ming Lin 已提交
289 290 291
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
292
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
293
	struct request *rq;
294
	unsigned int cpu;
M
Ming Lin 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

313 314 315 316
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
317 318 319 320
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
321
	}
322 323
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
324

325
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326

327
	blk_mq_put_ctx(alloc_data.ctx);
328
	blk_queue_exit(q);
329 330 331 332 333

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
334 335 336
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

337 338
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
339
{
340
	const int sched_tag = rq->internal_tag;
341 342
	struct request_queue *q = rq->q;

343
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
344
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
345 346

	wbt_done(q->rq_wb, &rq->issue_stat);
347
	rq->rq_flags = 0;
348

349
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
350
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
351 352 353 354
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
355
	blk_mq_sched_restart_queues(hctx);
356
	blk_queue_exit(q);
357 358
}

359
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
360
				     struct request *rq)
361 362 363 364
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
365 366 367 368 369 370
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
371 372 373 374
}

void blk_mq_free_request(struct request *rq)
{
375
	blk_mq_sched_put_request(rq);
376
}
J
Jens Axboe 已提交
377
EXPORT_SYMBOL_GPL(blk_mq_free_request);
378

379
inline void __blk_mq_end_request(struct request *rq, int error)
380
{
M
Ming Lei 已提交
381 382
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
383
	if (rq->end_io) {
J
Jens Axboe 已提交
384
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
385
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
386 387 388
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
389
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
390
	}
391
}
392
EXPORT_SYMBOL(__blk_mq_end_request);
393

394
void blk_mq_end_request(struct request *rq, int error)
395 396 397
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
398
	__blk_mq_end_request(rq, error);
399
}
400
EXPORT_SYMBOL(blk_mq_end_request);
401

402
static void __blk_mq_complete_request_remote(void *data)
403
{
404
	struct request *rq = data;
405

406
	rq->q->softirq_done_fn(rq);
407 408
}

409
static void blk_mq_ipi_complete_request(struct request *rq)
410 411
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
412
	bool shared = false;
413 414
	int cpu;

C
Christoph Hellwig 已提交
415
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
416 417 418
		rq->q->softirq_done_fn(rq);
		return;
	}
419 420

	cpu = get_cpu();
C
Christoph Hellwig 已提交
421 422 423 424
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
425
		rq->csd.func = __blk_mq_complete_request_remote;
426 427
		rq->csd.info = rq;
		rq->csd.flags = 0;
428
		smp_call_function_single_async(ctx->cpu, &rq->csd);
429
	} else {
430
		rq->q->softirq_done_fn(rq);
431
	}
432 433
	put_cpu();
}
434

435 436 437
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
438 439
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
440 441 442
	}
}

443
static void __blk_mq_complete_request(struct request *rq)
444 445 446
{
	struct request_queue *q = rq->q;

447 448
	blk_mq_stat_add(rq);

449
	if (!q->softirq_done_fn)
450
		blk_mq_end_request(rq, rq->errors);
451 452 453 454
	else
		blk_mq_ipi_complete_request(rq);
}

455 456 457 458 459 460 461 462
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
463
void blk_mq_complete_request(struct request *rq, int error)
464
{
465 466 467
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
468
		return;
469 470
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
471
		__blk_mq_complete_request(rq);
472
	}
473 474
}
EXPORT_SYMBOL(blk_mq_complete_request);
475

476 477 478 479 480 481
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

482
void blk_mq_start_request(struct request *rq)
483 484 485
{
	struct request_queue *q = rq->q;

486 487
	blk_mq_sched_started_request(rq);

488 489
	trace_block_rq_issue(q, rq);

490
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
491
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
492
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
493
		wbt_issue(q->rq_wb, &rq->issue_stat);
494 495
	}

496
	blk_add_timer(rq);
497

498 499 500 501 502 503
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

504 505 506 507 508 509
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
510 511 512 513
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
514 515 516 517 518 519 520 521 522

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
523
}
524
EXPORT_SYMBOL(blk_mq_start_request);
525

526
static void __blk_mq_requeue_request(struct request *rq)
527 528 529 530
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
531
	wbt_requeue(q->rq_wb, &rq->issue_stat);
532
	blk_mq_sched_requeue_request(rq);
533

534 535 536 537
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
538 539
}

540
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
541 542 543 544
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
545
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
546 547 548
}
EXPORT_SYMBOL(blk_mq_requeue_request);

549 550 551
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
552
		container_of(work, struct request_queue, requeue_work.work);
553 554 555 556 557 558 559 560 561
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
562
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
563 564
			continue;

565
		rq->rq_flags &= ~RQF_SOFTBARRIER;
566
		list_del_init(&rq->queuelist);
567
		blk_mq_sched_insert_request(rq, true, false, false, true);
568 569 570 571 572
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
573
		blk_mq_sched_insert_request(rq, false, false, false, true);
574 575
	}

576
	blk_mq_run_hw_queues(q, false);
577 578
}

579 580
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
581 582 583 584 585 586 587 588
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
589
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
590 591 592

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
593
		rq->rq_flags |= RQF_SOFTBARRIER;
594 595 596 597 598
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
599 600 601

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
602 603 604 605 606
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
607
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
608 609 610
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

611 612 613 614 615 616 617 618
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

639 640
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
641 642
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
643
		return tags->rqs[tag];
644
	}
645 646

	return NULL;
647 648 649
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

650
struct blk_mq_timeout_data {
651 652
	unsigned long next;
	unsigned int next_set;
653 654
};

655
void blk_mq_rq_timed_out(struct request *req, bool reserved)
656
{
J
Jens Axboe 已提交
657
	const struct blk_mq_ops *ops = req->q->mq_ops;
658
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
659 660 661 662 663 664 665 666 667 668

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
669 670
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
671

672
	if (ops->timeout)
673
		ret = ops->timeout(req, reserved);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
689
}
690

691 692 693 694
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
695

696
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
697
		return;
698

699 700
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
701
			blk_mq_rq_timed_out(rq, reserved);
702 703 704 705
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
706 707
}

708
static void blk_mq_timeout_work(struct work_struct *work)
709
{
710 711
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
712 713 714 715 716
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
717

718 719 720 721 722 723 724 725 726 727 728 729 730 731
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
732 733
		return;

734
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
735

736 737 738
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
739
	} else {
740 741
		struct blk_mq_hw_ctx *hctx;

742 743 744 745 746
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
747
	}
748
	blk_queue_exit(q);
749 750 751 752 753 754 755 756 757 758 759 760 761 762
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
763
		bool merged = false;
764 765 766 767 768 769 770

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

771 772 773 774
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
775
			break;
776 777 778
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
779
			break;
780 781
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
782
			break;
783 784
		default:
			continue;
785
		}
786 787 788 789

		if (merged)
			ctx->rq_merged++;
		return merged;
790 791 792 793 794
	}

	return false;
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

813 814 815 816
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
817
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
818
{
819 820 821 822
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
823

824
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
825
}
826
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
827

828 829 830 831
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
832

833
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
834 835
}

836 837
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
838 839 840 841 842 843 844 845 846 847 848 849 850 851
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

852 853 854
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

855 856
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
857 858 859 860
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
861 862 863 864 865 866 867
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

868 869
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
870 871 872 873 874 875 876 877 878 879
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

962
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
963 964 965
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
966 967
	LIST_HEAD(driver_list);
	struct list_head *dptr;
968
	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
969

970 971 972 973 974 975
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

976 977 978
	/*
	 * Now process all the entries, sending them to the driver.
	 */
979
	queued = 0;
980
	while (!list_empty(list)) {
981
		struct blk_mq_queue_data bd;
982

983
		rq = list_first_entry(list, struct request, queuelist);
984 985 986
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
987 988

			/*
989 990
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
991
			 */
992 993 994 995 996 997 998 999 1000
			if (blk_mq_dispatch_wait_add(hctx)) {
				/*
				 * It's possible that a tag was freed in the
				 * window between the allocation failure and
				 * adding the hardware queue to the wait queue.
				 */
				if (!blk_mq_get_driver_tag(rq, &hctx, false))
					break;
			} else {
1001
				break;
1002
			}
1003
		}
1004

1005 1006
		list_del_init(&rq->queuelist);

1007 1008
		bd.rq = rq;
		bd.list = dptr;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1022 1023

		ret = q->mq_ops->queue_rq(hctx, &bd);
1024 1025 1026
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1027
			break;
1028
		case BLK_MQ_RQ_QUEUE_BUSY:
1029
			blk_mq_put_driver_tag_hctx(hctx, rq);
1030
			list_add(&rq->queuelist, list);
1031
			__blk_mq_requeue_request(rq);
1032 1033 1034 1035
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1036
			rq->errors = -EIO;
1037
			blk_mq_end_request(rq, rq->errors);
1038 1039 1040 1041 1042
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1043 1044 1045 1046 1047

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
1048
		if (!dptr && list->next != list->prev)
1049
			dptr = &driver_list;
1050 1051
	}

1052
	hctx->dispatched[queued_to_index(queued)]++;
1053 1054 1055 1056 1057

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1058
	if (!list_empty(list)) {
1059 1060 1061 1062 1063 1064 1065
		/*
		 * If we got a driver tag for the next request already,
		 * free it again.
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1066
		spin_lock(&hctx->lock);
1067
		list_splice_init(list, &hctx->dispatch);
1068
		spin_unlock(&hctx->lock);
1069

1070 1071 1072 1073 1074 1075 1076 1077
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1078
		 *
1079 1080
		 * If RESTART or TAG_WAITING is set, then let completion restart
		 * the queue instead of potentially looping here.
1081
		 */
1082 1083
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1084
			blk_mq_run_hw_queue(hctx, true);
1085
	}
1086

1087
	return queued != 0;
1088 1089
}

1090 1091 1092 1093 1094 1095 1096 1097 1098
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1099
		blk_mq_sched_dispatch_requests(hctx);
1100 1101 1102
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1103
		blk_mq_sched_dispatch_requests(hctx);
1104 1105 1106 1107
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1108 1109 1110 1111 1112 1113 1114 1115
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1116 1117
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1118 1119

	if (--hctx->next_cpu_batch <= 0) {
1120
		int next_cpu;
1121 1122 1123 1124 1125 1126 1127 1128 1129

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1130
	return hctx->next_cpu;
1131 1132
}

1133 1134
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1135 1136
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1137 1138
		return;

1139
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1140 1141
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1142
			__blk_mq_run_hw_queue(hctx);
1143
			put_cpu();
1144 1145
			return;
		}
1146

1147
		put_cpu();
1148
	}
1149

1150
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1151 1152
}

1153
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1154 1155 1156 1157 1158
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1159
		if (!blk_mq_hctx_has_pending(hctx) ||
1160
		    blk_mq_hctx_stopped(hctx))
1161 1162
			continue;

1163
		blk_mq_run_hw_queue(hctx, async);
1164 1165
	}
}
1166
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1167

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1188 1189
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1190
	cancel_work(&hctx->run_work);
1191
	cancel_delayed_work(&hctx->delay_work);
1192 1193 1194 1195
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1206 1207 1208
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1209

1210
	blk_mq_run_hw_queue(hctx, false);
1211 1212 1213
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1234
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1235 1236 1237 1238
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1239 1240
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1241 1242 1243
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1244
static void blk_mq_run_work_fn(struct work_struct *work)
1245 1246 1247
{
	struct blk_mq_hw_ctx *hctx;

1248
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1249

1250 1251 1252
	__blk_mq_run_hw_queue(hctx);
}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1265 1266
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1267

1268
	blk_mq_stop_hw_queue(hctx);
1269 1270
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1271 1272 1273
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1274 1275 1276
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1277
{
J
Jens Axboe 已提交
1278 1279
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1280 1281
	trace_block_rq_insert(hctx->queue, rq);

1282 1283 1284 1285
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1286
}
1287

1288 1289
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1290 1291 1292
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1293
	__blk_mq_insert_req_list(hctx, rq, at_head);
1294 1295 1296
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1297 1298
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1310
		BUG_ON(rq->mq_ctx != ctx);
1311
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1312
		__blk_mq_insert_req_list(hctx, rq, false);
1313
	}
1314
	blk_mq_hctx_mark_pending(hctx, ctx);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1351 1352 1353 1354
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1371 1372 1373
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1374 1375 1376 1377 1378 1379
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1380

1381
	blk_account_io_start(rq, true);
1382 1383
}

1384 1385 1386 1387 1388 1389
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1390 1391 1392
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1393
{
1394
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1395 1396 1397 1398 1399 1400 1401
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1402 1403
		struct request_queue *q = hctx->queue;

1404 1405 1406 1407 1408
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1409

1410
		spin_unlock(&ctx->lock);
1411
		__blk_mq_finish_request(hctx, ctx, rq);
1412
		return true;
1413
	}
1414
}
1415

1416 1417
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1418 1419 1420 1421
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1422 1423
}

1424
static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1425
				      bool may_sleep)
1426 1427 1428 1429 1430 1431 1432
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1433 1434 1435
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1436

1437
	if (q->elevator)
1438 1439
		goto insert;

1440 1441 1442 1443 1444
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1445 1446 1447 1448 1449 1450
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1451 1452
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1453
		return;
1454
	}
1455

1456 1457 1458 1459 1460 1461
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1462
		return;
1463
	}
1464

1465
insert:
1466
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1467 1468
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
		unsigned int srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1483
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1484
{
1485
	const int is_sync = op_is_sync(bio->bi_opf);
1486
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1487
	struct blk_mq_alloc_data data = { .flags = 0 };
1488
	struct request *rq;
1489
	unsigned int request_count = 0;
1490
	struct blk_plug *plug;
1491
	struct request *same_queue_rq = NULL;
1492
	blk_qc_t cookie;
J
Jens Axboe 已提交
1493
	unsigned int wb_acct;
1494 1495 1496 1497

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1498
		bio_io_error(bio);
1499
		return BLK_QC_T_NONE;
1500 1501
	}

1502 1503
	blk_queue_split(q, &bio, q->bio_split);

1504 1505 1506
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1507

1508 1509 1510
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1511 1512
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1513 1514 1515
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1516 1517
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1518
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1519 1520 1521
	}

	wbt_track(&rq->issue_stat, wb_acct);
1522

1523
	cookie = request_to_qc_t(data.hctx, rq);
1524

1525
	plug = current->plug;
1526 1527
	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
1528 1529 1530 1531 1532 1533 1534 1535
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
		} else {
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
		}
	} else if (plug && q->nr_hw_queues == 1) {
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
		struct request *last = NULL;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

		if (!request_count)
			trace_block_plug(q);
		else
			last = list_entry_rq(plug->mq_list.prev);

		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
		}

		list_add_tail(&rq->queuelist, &plug->mq_list);
1561
	} else if (plug && !blk_queue_nomerges(q)) {
1562 1563 1564
		blk_mq_bio_to_request(rq, bio);

		/*
1565
		 * We do limited plugging. If the bio can be merged, do that.
1566 1567
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1568 1569
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1570
		 */
1571 1572 1573 1574 1575 1576 1577 1578 1579
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

		if (same_queue_rq)
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1580
	} else if (q->nr_hw_queues > 1 && is_sync) {
1581 1582
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1583
	} else if (q->elevator) {
1584
		blk_mq_bio_to_request(rq, bio);
1585 1586 1587
		blk_mq_sched_insert_request(rq, false, true, true, true);
	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		blk_mq_run_hw_queue(data.hctx, true);
1588
	}
1589

1590
	blk_mq_put_ctx(data.ctx);
1591
	return cookie;
1592 1593
}

1594 1595
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1596
{
1597
	struct page *page;
1598

1599
	if (tags->rqs && set->ops->exit_request) {
1600
		int i;
1601

1602
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1603 1604 1605
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1606
				continue;
J
Jens Axboe 已提交
1607
			set->ops->exit_request(set->driver_data, rq,
1608
						hctx_idx, i);
J
Jens Axboe 已提交
1609
			tags->static_rqs[i] = NULL;
1610
		}
1611 1612
	}

1613 1614
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1615
		list_del_init(&page->lru);
1616 1617 1618 1619 1620
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1621 1622
		__free_pages(page, page->private);
	}
1623
}
1624

1625 1626
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1627
	kfree(tags->rqs);
1628
	tags->rqs = NULL;
J
Jens Axboe 已提交
1629 1630
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1631

1632
	blk_mq_free_tags(tags);
1633 1634
}

1635 1636 1637 1638
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1639
{
1640
	struct blk_mq_tags *tags;
1641
	int node;
1642

1643 1644 1645 1646 1647
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1648
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1649 1650
	if (!tags)
		return NULL;
1651

1652
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1653
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1654
				 node);
1655 1656 1657 1658
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1659

J
Jens Axboe 已提交
1660 1661
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1662
				 node);
J
Jens Axboe 已提交
1663 1664 1665 1666 1667 1668
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1682 1683 1684 1685 1686
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1687 1688 1689

	INIT_LIST_HEAD(&tags->page_list);

1690 1691 1692 1693
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1694
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1695
				cache_line_size());
1696
	left = rq_size * depth;
1697

1698
	for (i = 0; i < depth; ) {
1699 1700 1701 1702 1703
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1704
		while (this_order && left < order_to_size(this_order - 1))
1705 1706 1707
			this_order--;

		do {
1708
			page = alloc_pages_node(node,
1709
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1710
				this_order);
1711 1712 1713 1714 1715 1716 1717 1718 1719
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1720
			goto fail;
1721 1722

		page->private = this_order;
1723
		list_add_tail(&page->lru, &tags->page_list);
1724 1725

		p = page_address(page);
1726 1727 1728 1729
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1730
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1731
		entries_per_page = order_to_size(this_order) / rq_size;
1732
		to_do = min(entries_per_page, depth - i);
1733 1734
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1735 1736 1737
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1738 1739
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1740
						rq, hctx_idx, i,
1741
						node)) {
J
Jens Axboe 已提交
1742
					tags->static_rqs[i] = NULL;
1743
					goto fail;
1744
				}
1745 1746
			}

1747 1748 1749 1750
			p += rq_size;
			i++;
		}
	}
1751
	return 0;
1752

1753
fail:
1754 1755
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1756 1757
}

J
Jens Axboe 已提交
1758 1759 1760 1761 1762
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1763
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1764
{
1765
	struct blk_mq_hw_ctx *hctx;
1766 1767 1768
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1769
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1770
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1771 1772 1773 1774 1775 1776 1777 1778 1779

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1780
		return 0;
1781

J
Jens Axboe 已提交
1782 1783 1784
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1785 1786

	blk_mq_run_hw_queue(hctx, true);
1787
	return 0;
1788 1789
}

1790
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1791
{
1792 1793
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1794 1795
}

1796
/* hctx->ctxs will be freed in queue's release handler */
1797 1798 1799 1800
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1801 1802
	unsigned flush_start_tag = set->queue_depth;

1803 1804
	blk_mq_tag_idle(hctx);

1805 1806 1807 1808 1809
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1810 1811 1812
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1813 1814 1815
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1816
	blk_mq_remove_cpuhp(hctx);
1817
	blk_free_flush_queue(hctx->fq);
1818
	sbitmap_free(&hctx->ctx_map);
1819 1820
}

M
Ming Lei 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1830
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1831 1832 1833
	}
}

1834 1835 1836
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1837
{
1838
	int node;
1839
	unsigned flush_start_tag = set->queue_depth;
1840 1841 1842 1843 1844

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1845
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1846 1847 1848 1849 1850
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1851
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1852

1853
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1854 1855

	hctx->tags = set->tags[hctx_idx];
1856 1857

	/*
1858 1859
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1860
	 */
1861 1862 1863 1864
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1865

1866 1867
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1868
		goto free_ctxs;
1869

1870
	hctx->nr_ctx = 0;
1871

1872 1873 1874
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1875

1876 1877 1878
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1879

1880 1881 1882 1883 1884
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1885

1886 1887 1888
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1889
	return 0;
1890

1891 1892 1893 1894 1895
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1896
 free_bitmap:
1897
	sbitmap_free(&hctx->ctx_map);
1898 1899 1900
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1901
	blk_mq_remove_cpuhp(hctx);
1902 1903
	return -1;
}
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1923
		hctx = blk_mq_map_queue(q, i);
1924

1925 1926 1927 1928 1929
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1930
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1931 1932 1933
	}
}

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1956 1957 1958 1959 1960
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
1961 1962
}

1963 1964
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1965
{
1966
	unsigned int i, hctx_idx;
1967 1968
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1969
	struct blk_mq_tag_set *set = q->tag_set;
1970

1971 1972 1973 1974 1975
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1976
	queue_for_each_hw_ctx(q, hctx, i) {
1977
		cpumask_clear(hctx->cpumask);
1978 1979 1980 1981 1982 1983
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1984
	for_each_possible_cpu(i) {
1985
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1986
		if (!cpumask_test_cpu(i, online_mask))
1987 1988
			continue;

1989 1990
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
1991 1992
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
1993 1994 1995 1996 1997 1998
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
1999
			q->mq_map[i] = 0;
2000 2001
		}

2002
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2003
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2004

2005
		cpumask_set_cpu(i, hctx->cpumask);
2006 2007 2008
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2009

2010 2011
	mutex_unlock(&q->sysfs_lock);

2012
	queue_for_each_hw_ctx(q, hctx, i) {
2013
		/*
2014 2015
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2016 2017
		 */
		if (!hctx->nr_ctx) {
2018 2019 2020 2021
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2022 2023 2024
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2025
			hctx->tags = NULL;
2026 2027 2028
			continue;
		}

M
Ming Lei 已提交
2029 2030 2031
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2032 2033 2034 2035 2036
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2037
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2038

2039 2040 2041
		/*
		 * Initialize batch roundrobin counts
		 */
2042 2043 2044
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2045 2046
}

2047
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2048 2049 2050 2051
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2063 2064 2065

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2066
		queue_set_hctx_shared(q, shared);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2077 2078 2079 2080 2081 2082
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2083 2084 2085 2086 2087 2088 2089 2090 2091
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2092 2093 2094 2095 2096 2097 2098 2099 2100

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2101
	list_add_tail(&q->tag_set_list, &set->tag_list);
2102

2103 2104 2105
	mutex_unlock(&set->tag_list_lock);
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2117 2118
	blk_mq_sched_teardown(q);

2119
	/* hctx kobj stays in hctx */
2120 2121 2122
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2123
		kobject_put(&hctx->kobj);
2124
	}
2125

2126 2127
	q->mq_map = NULL;

2128 2129
	kfree(q->queue_hw_ctx);

2130 2131 2132 2133 2134 2135
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2136 2137 2138
	free_percpu(q->queue_ctx);
}

2139
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2155 2156
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2157
{
K
Keith Busch 已提交
2158 2159
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2160

K
Keith Busch 已提交
2161
	blk_mq_sysfs_unregister(q);
2162
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2163
		int node;
2164

K
Keith Busch 已提交
2165 2166 2167 2168
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2169 2170
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2171
		if (!hctxs[i])
K
Keith Busch 已提交
2172
			break;
2173

2174
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2175 2176 2177 2178 2179
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2180

2181
		atomic_set(&hctxs[i]->nr_active, 0);
2182
		hctxs[i]->numa_node = node;
2183
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2184 2185 2186 2187 2188 2189 2190 2191

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2192
	}
K
Keith Busch 已提交
2193 2194 2195 2196
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2197 2198
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2212 2213 2214
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2215 2216 2217 2218 2219 2220 2221 2222 2223
	q->stats = blk_alloc_queue_stats();
	if (!q->stats)
		goto err_exit;

	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
					     blk_stat_rq_ddir, 2, q);
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2224 2225
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2226
		goto err_exit;
K
Keith Busch 已提交
2227

2228 2229 2230
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2231 2232 2233 2234 2235
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2236
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2237 2238 2239 2240

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2241

2242
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2243
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2244 2245 2246

	q->nr_queues = nr_cpu_ids;

2247
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2248

2249 2250 2251
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2252 2253
	q->sg_reserved_size = INT_MAX;

2254
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2255 2256 2257
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2258
	blk_queue_make_request(q, blk_mq_make_request);
2259

2260 2261 2262 2263 2264
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2265 2266 2267 2268 2269
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2270 2271
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2272

2273
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2274

2275
	get_online_cpus();
2276 2277
	mutex_lock(&all_q_mutex);

2278
	list_add_tail(&q->all_q_node, &all_q_list);
2279
	blk_mq_add_queue_tag_set(set, q);
2280
	blk_mq_map_swqueue(q, cpu_online_mask);
2281

2282
	mutex_unlock(&all_q_mutex);
2283
	put_online_cpus();
2284

2285 2286 2287 2288 2289 2290 2291 2292
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2293
	return q;
2294

2295
err_hctxs:
K
Keith Busch 已提交
2296
	kfree(q->queue_hw_ctx);
2297
err_percpu:
K
Keith Busch 已提交
2298
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2299 2300
err_exit:
	q->mq_ops = NULL;
2301 2302
	return ERR_PTR(-ENOMEM);
}
2303
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2304 2305 2306

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2307
	struct blk_mq_tag_set	*set = q->tag_set;
2308

2309 2310 2311 2312
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2313 2314
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2315
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2316 2317 2318
}

/* Basically redo blk_mq_init_queue with queue frozen */
2319 2320
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2321
{
2322
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2323

2324 2325
	blk_mq_sysfs_unregister(q);

2326 2327 2328 2329 2330 2331
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2332
	blk_mq_map_swqueue(q, online_mask);
2333

2334
	blk_mq_sysfs_register(q);
2335 2336
}

2337 2338 2339 2340 2341 2342 2343 2344
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2345 2346 2347 2348
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2349 2350 2351 2352 2353 2354 2355 2356 2357
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2358
	list_for_each_entry(q, &all_q_list, all_q_node)
2359 2360
		blk_mq_freeze_queue_wait(q);

2361
	list_for_each_entry(q, &all_q_list, all_q_node)
2362
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2363 2364 2365 2366

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2367
	mutex_unlock(&all_q_mutex);
2368 2369 2370 2371
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2372
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2388 2389 2390 2391
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2392 2393 2394 2395 2396 2397 2398
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2399 2400
}

2401 2402 2403 2404
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2405 2406
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2407 2408 2409 2410 2411 2412
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2413
		blk_mq_free_rq_map(set->tags[i]);
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2453 2454 2455 2456 2457 2458
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2459 2460
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2461 2462
	int ret;

B
Bart Van Assche 已提交
2463 2464
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2465 2466
	if (!set->nr_hw_queues)
		return -EINVAL;
2467
	if (!set->queue_depth)
2468 2469 2470 2471
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2472
	if (!set->ops->queue_rq)
2473 2474
		return -EINVAL;

2475 2476 2477 2478 2479
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2480

2481 2482 2483 2484 2485 2486 2487 2488 2489
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2490 2491 2492 2493 2494
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2495

K
Keith Busch 已提交
2496
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2497 2498
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2499
		return -ENOMEM;
2500

2501 2502 2503
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2504 2505 2506
	if (!set->mq_map)
		goto out_free_tags;

2507 2508 2509 2510 2511 2512 2513 2514 2515
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2516
		goto out_free_mq_map;
2517

2518 2519 2520
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2521
	return 0;
2522 2523 2524 2525 2526

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2527 2528
	kfree(set->tags);
	set->tags = NULL;
2529
	return ret;
2530 2531 2532 2533 2534 2535 2536
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2537 2538
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2539

2540 2541 2542
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2543
	kfree(set->tags);
2544
	set->tags = NULL;
2545 2546 2547
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2548 2549 2550 2551 2552 2553
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2554
	if (!set)
2555 2556
		return -EINVAL;

2557 2558 2559
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2560 2561
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2562 2563
		if (!hctx->tags)
			continue;
2564 2565 2566 2567
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2568 2569 2570 2571 2572 2573 2574 2575
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2576 2577 2578 2579 2580 2581 2582
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2583 2584 2585
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2586 2587 2588
	return ret;
}

K
Keith Busch 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;

	if (cb->stat[READ].nr_samples)
		q->poll_stat[READ] = cb->stat[READ];
	if (cb->stat[WRITE].nr_samples)
		q->poll_stat[WRITE] = cb->stat[WRITE];
}

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2655
	if (!blk_poll_stats_enable(q))
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
2666 2667 2668 2669
	if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
		ret = (q->poll_stat[READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
		ret = (q->poll_stat[WRITE].mean + 1) / 2;
2670 2671 2672 2673

	return ret;
}

2674
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2675
				     struct blk_mq_hw_ctx *hctx,
2676 2677 2678 2679
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2680
	unsigned int nsecs;
2681 2682
	ktime_t kt;

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2701 2702 2703 2704 2705 2706 2707 2708
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2709
	kt = nsecs;
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2732 2733 2734 2735 2736
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2737 2738 2739 2740 2741 2742 2743
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2744
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2745 2746
		return true;

J
Jens Axboe 已提交
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2790 2791 2792 2793
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2794 2795 2796 2797 2798

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2809 2810
static int __init blk_mq_init(void)
{
2811 2812
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2813

2814 2815 2816
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2817 2818 2819
	return 0;
}
subsys_initcall(blk_mq_init);