memcontrol.c 177.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/slab.h>
43
#include <linux/swap.h>
44
#include <linux/swapops.h>
45
#include <linux/spinlock.h>
46 47
#include <linux/eventfd.h>
#include <linux/sort.h>
48
#include <linux/fs.h>
49
#include <linux/seq_file.h>
50
#include <linux/vmalloc.h>
51
#include <linux/vmpressure.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
90
	"rss_huge",
91
	"mapped_file",
92
	"writeback",
93 94 95
	"swap",
};

96 97 98
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
99 100
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
101 102
	MEM_CGROUP_EVENTS_NSTATS,
};
103 104 105 106 107 108 109 110

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

111 112 113 114 115 116 117 118
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

119 120 121 122 123 124 125 126
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
127
	MEM_CGROUP_TARGET_NUMAINFO,
128 129
	MEM_CGROUP_NTARGETS,
};
130 131 132
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
133

134
struct mem_cgroup_stat_cpu {
135
	long count[MEM_CGROUP_STAT_NSTATS];
136
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
137
	unsigned long nr_page_events;
138
	unsigned long targets[MEM_CGROUP_NTARGETS];
139 140
};

141
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
142 143 144 145
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
146
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
147 148
	unsigned long last_dead_count;

149 150 151 152
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

153 154 155 156
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
157
	struct lruvec		lruvec;
158
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
159

160 161
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

162
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
163
						/* use container_of	   */
164 165 166 167 168 169
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

170 171 172 173 174
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
175
/* For threshold */
176
struct mem_cgroup_threshold_ary {
177
	/* An array index points to threshold just below or equal to usage. */
178
	int current_threshold;
179 180 181 182 183
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
184 185 186 187 188 189 190 191 192 193 194 195

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
196 197 198 199 200
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
201

202 203
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
204

B
Balbir Singh 已提交
205 206 207 208 209 210 211
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
212 213 214
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
215 216 217 218 219 220 221
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
222

223 224 225
	/* vmpressure notifications */
	struct vmpressure vmpressure;

226 227 228 229
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
230

231 232 233 234
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
235 236 237 238
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
239
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
240 241 242

	bool		oom_lock;
	atomic_t	under_oom;
243
	atomic_t	oom_wakeups;
244

245
	int	swappiness;
246 247
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
248

249 250 251
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

252 253 254 255
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
256
	struct mem_cgroup_thresholds thresholds;
257

258
	/* thresholds for mem+swap usage. RCU-protected */
259
	struct mem_cgroup_thresholds memsw_thresholds;
260

K
KAMEZAWA Hiroyuki 已提交
261 262
	/* For oom notifier event fd */
	struct list_head oom_notify;
263

264 265 266 267
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
268
	unsigned long move_charge_at_immigrate;
269 270 271 272
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
273 274
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
275
	/*
276
	 * percpu counter.
277
	 */
278
	struct mem_cgroup_stat_cpu __percpu *stat;
279 280 281 282 283 284
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
285

M
Michal Hocko 已提交
286
	atomic_t	dead_count;
M
Michal Hocko 已提交
287
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
288 289
	struct tcp_memcontrol tcp_mem;
#endif
290 291 292 293 294 295 296 297
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
298 299 300 301 302 303 304

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
305

306 307
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
308 309
};

310 311 312 313 314 315
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

316 317 318
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
319
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
320
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
321 322
};

323 324 325
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
326 327 328 329 330 331

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
332 333 334 335 336 337

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

338 339 340 341 342
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

343 344 345 346 347
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

348 349
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
350 351 352 353 354
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
355 356 357 358 359 360 361 362 363
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
364 365
#endif

366 367
/* Stuffs for move charges at task migration. */
/*
368 369
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
370 371
 */
enum move_type {
372
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
373
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
374 375 376
	NR_MOVE_TYPE,
};

377 378
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
379
	spinlock_t	  lock; /* for from, to */
380 381
	struct mem_cgroup *from;
	struct mem_cgroup *to;
382
	unsigned long immigrate_flags;
383
	unsigned long precharge;
384
	unsigned long moved_charge;
385
	unsigned long moved_swap;
386 387 388
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
389
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
390 391
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
392

D
Daisuke Nishimura 已提交
393 394
static bool move_anon(void)
{
395
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
396 397
}

398 399
static bool move_file(void)
{
400
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
401 402
}

403 404 405 406
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
407
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
408

409 410
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
411
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
412
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
413
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
414 415 416
	NR_CHARGE_TYPE,
};

417
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
418 419 420 421
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
422
	_KMEM,
G
Glauber Costa 已提交
423 424
};

425 426
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
427
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
428 429
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
430

431 432 433 434 435 436 437 438
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

439 440 441 442 443 444 445
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

446 447
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
448
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
449 450
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

469 470 471 472 473
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
474
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
475
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
476 477 478

void sock_update_memcg(struct sock *sk)
{
479
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
480
		struct mem_cgroup *memcg;
481
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
482 483 484

		BUG_ON(!sk->sk_prot->proto_cgroup);

485 486 487 488 489 490 491 492 493 494
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
495
			css_get(&sk->sk_cgrp->memcg->css);
496 497 498
			return;
		}

G
Glauber Costa 已提交
499 500
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
501
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
502 503
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
504
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
505 506 507 508 509 510 511 512
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
513
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
514 515 516
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
517
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
518 519
	}
}
G
Glauber Costa 已提交
520 521 522 523 524 525 526 527 528

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
529

530 531 532 533 534 535 536 537 538 539 540 541
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

542
#ifdef CONFIG_MEMCG_KMEM
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
561 562
int memcg_limited_groups_array_size;

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

578 579 580 581 582 583
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
584
struct static_key memcg_kmem_enabled_key;
585
EXPORT_SYMBOL(memcg_kmem_enabled_key);
586 587 588

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
589
	if (memcg_kmem_is_active(memcg)) {
590
		static_key_slow_dec(&memcg_kmem_enabled_key);
591 592
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
593 594 595 596 597
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
598 599 600 601 602 603 604 605 606 607 608 609 610
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

611
static void drain_all_stock_async(struct mem_cgroup *memcg);
612

613
static struct mem_cgroup_per_zone *
614
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
615
{
616
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
617
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
618 619
}

620
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
621
{
622
	return &memcg->css;
623 624
}

625
static struct mem_cgroup_per_zone *
626
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
627
{
628 629
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
630

631
	return mem_cgroup_zoneinfo(memcg, nid, zid);
632 633
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
653
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
654
				 enum mem_cgroup_stat_index idx)
655
{
656
	long val = 0;
657 658
	int cpu;

659 660
	get_online_cpus();
	for_each_online_cpu(cpu)
661
		val += per_cpu(memcg->stat->count[idx], cpu);
662
#ifdef CONFIG_HOTPLUG_CPU
663 664 665
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
666 667
#endif
	put_online_cpus();
668 669 670
	return val;
}

671
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
672 673 674
					 bool charge)
{
	int val = (charge) ? 1 : -1;
675
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
676 677
}

678
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
679 680 681 682 683 684
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
685
		val += per_cpu(memcg->stat->events[idx], cpu);
686
#ifdef CONFIG_HOTPLUG_CPU
687 688 689
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
690 691 692 693
#endif
	return val;
}

694
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
695
					 struct page *page,
696
					 bool anon, int nr_pages)
697
{
698 699
	preempt_disable();

700 701 702 703 704 705
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
706
				nr_pages);
707
	else
708
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
709
				nr_pages);
710

711 712 713 714
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

715 716
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
717
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
718
	else {
719
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
720 721
		nr_pages = -nr_pages; /* for event */
	}
722

723
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
724

725
	preempt_enable();
726 727
}

728
unsigned long
729
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
730 731 732 733 734 735 736 737
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
738
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
739
			unsigned int lru_mask)
740 741
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
742
	enum lru_list lru;
743 744
	unsigned long ret = 0;

745
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
746

H
Hugh Dickins 已提交
747 748 749
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
750 751 752 753 754
	}
	return ret;
}

static unsigned long
755
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
756 757
			int nid, unsigned int lru_mask)
{
758 759 760
	u64 total = 0;
	int zid;

761
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
762 763
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
764

765 766
	return total;
}
767

768
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
769
			unsigned int lru_mask)
770
{
771
	int nid;
772 773
	u64 total = 0;

774
	for_each_node_state(nid, N_MEMORY)
775
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
776
	return total;
777 778
}

779 780
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
781 782 783
{
	unsigned long val, next;

784
	val = __this_cpu_read(memcg->stat->nr_page_events);
785
	next = __this_cpu_read(memcg->stat->targets[target]);
786
	/* from time_after() in jiffies.h */
787 788 789 790 791 792 793 794 795 796 797 798 799
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
800
	}
801
	return false;
802 803 804 805 806 807
}

/*
 * Check events in order.
 *
 */
808
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
809
{
810
	preempt_disable();
811
	/* threshold event is triggered in finer grain than soft limit */
812 813
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
814
		bool do_numainfo __maybe_unused;
815 816 817 818 819 820 821

#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

822
		mem_cgroup_threshold(memcg);
823
#if MAX_NUMNODES > 1
824
		if (unlikely(do_numainfo))
825
			atomic_inc(&memcg->numainfo_events);
826
#endif
827 828
	} else
		preempt_enable();
829 830
}

831
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
832
{
833 834 835 836 837 838 839 840
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

841
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
842 843
}

844
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
845
{
846
	struct mem_cgroup *memcg = NULL;
847 848 849

	if (!mm)
		return NULL;
850 851 852 853 854 855 856
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
857 858
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
859
			break;
860
	} while (!css_tryget(&memcg->css));
861
	rcu_read_unlock();
862
	return memcg;
863 864
}

865 866 867 868 869 870 871
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
872
		struct mem_cgroup *last_visited)
873
{
874
	struct cgroup_subsys_state *prev_css, *next_css;
875

876
	prev_css = last_visited ? &last_visited->css : NULL;
877
skip_node:
878
	next_css = css_next_descendant_pre(prev_css, &root->css);
879 880 881 882 883 884 885 886

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
887 888 889
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

890 891 892
		if (css_tryget(&mem->css))
			return mem;
		else {
893
			prev_css = next_css;
894 895 896 897 898 899 900
			goto skip_node;
		}
	}

	return NULL;
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
970
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
971
				   struct mem_cgroup *prev,
972
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
973
{
974
	struct mem_cgroup *memcg = NULL;
975
	struct mem_cgroup *last_visited = NULL;
976

977 978
	if (mem_cgroup_disabled())
		return NULL;
979

980 981
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
982

983
	if (prev && !reclaim)
984
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
985

986 987
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
988
			goto out_css_put;
989
		return root;
990
	}
K
KAMEZAWA Hiroyuki 已提交
991

992
	rcu_read_lock();
993
	while (!memcg) {
994
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
995
		int uninitialized_var(seq);
996

997 998 999 1000 1001 1002 1003
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1004
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1005
				iter->last_visited = NULL;
1006 1007
				goto out_unlock;
			}
M
Michal Hocko 已提交
1008

1009
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1010
		}
K
KAMEZAWA Hiroyuki 已提交
1011

1012
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1013

1014
		if (reclaim) {
1015
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1016

M
Michal Hocko 已提交
1017
			if (!memcg)
1018 1019 1020 1021
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1022

1023
		if (prev && !memcg)
1024
			goto out_unlock;
1025
	}
1026 1027
out_unlock:
	rcu_read_unlock();
1028 1029 1030 1031
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1032
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1033
}
K
KAMEZAWA Hiroyuki 已提交
1034

1035 1036 1037 1038 1039 1040 1041
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1042 1043 1044 1045 1046 1047
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1048

1049 1050 1051 1052 1053 1054
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1055
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1056
	     iter != NULL;				\
1057
	     iter = mem_cgroup_iter(root, iter, NULL))
1058

1059
#define for_each_mem_cgroup(iter)			\
1060
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1061
	     iter != NULL;				\
1062
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1063

1064
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1065
{
1066
	struct mem_cgroup *memcg;
1067 1068

	rcu_read_lock();
1069 1070
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1071 1072 1073 1074
		goto out;

	switch (idx) {
	case PGFAULT:
1075 1076 1077 1078
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1079 1080 1081 1082 1083 1084 1085
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1086
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1087

1088 1089 1090
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1091
 * @memcg: memcg of the wanted lruvec
1092 1093 1094 1095 1096 1097 1098 1099 1100
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1101
	struct lruvec *lruvec;
1102

1103 1104 1105 1106
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1107 1108

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1119 1120
}

K
KAMEZAWA Hiroyuki 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1134

1135
/**
1136
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1137
 * @page: the page
1138
 * @zone: zone of the page
1139
 */
1140
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1141 1142
{
	struct mem_cgroup_per_zone *mz;
1143 1144
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1145
	struct lruvec *lruvec;
1146

1147 1148 1149 1150
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1151

K
KAMEZAWA Hiroyuki 已提交
1152
	pc = lookup_page_cgroup(page);
1153
	memcg = pc->mem_cgroup;
1154 1155

	/*
1156
	 * Surreptitiously switch any uncharged offlist page to root:
1157 1158 1159 1160 1161 1162 1163
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1164
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1165 1166
		pc->mem_cgroup = memcg = root_mem_cgroup;

1167
	mz = page_cgroup_zoneinfo(memcg, page);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1178
}
1179

1180
/**
1181 1182 1183 1184
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1185
 *
1186 1187
 * This function must be called when a page is added to or removed from an
 * lru list.
1188
 */
1189 1190
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1191 1192
{
	struct mem_cgroup_per_zone *mz;
1193
	unsigned long *lru_size;
1194 1195 1196 1197

	if (mem_cgroup_disabled())
		return;

1198 1199 1200 1201
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1202
}
1203

1204
/*
1205
 * Checks whether given mem is same or in the root_mem_cgroup's
1206 1207
 * hierarchy subtree
 */
1208 1209
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1210
{
1211 1212
	if (root_memcg == memcg)
		return true;
1213
	if (!root_memcg->use_hierarchy || !memcg)
1214
		return false;
1215 1216 1217 1218 1219 1220 1221 1222
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1223
	rcu_read_lock();
1224
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1225 1226
	rcu_read_unlock();
	return ret;
1227 1228
}

1229 1230
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1231
{
1232
	struct mem_cgroup *curr = NULL;
1233
	struct task_struct *p;
1234
	bool ret;
1235

1236
	p = find_lock_task_mm(task);
1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1246
		rcu_read_lock();
1247 1248 1249
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1250
		rcu_read_unlock();
1251
	}
1252
	if (!curr)
1253
		return false;
1254
	/*
1255
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1256
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1257 1258
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1259
	 */
1260
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1261
	css_put(&curr->css);
1262 1263 1264
	return ret;
}

1265
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1266
{
1267
	unsigned long inactive_ratio;
1268
	unsigned long inactive;
1269
	unsigned long active;
1270
	unsigned long gb;
1271

1272 1273
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1274

1275 1276 1277 1278 1279 1280
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1281
	return inactive * inactive_ratio < active;
1282 1283
}

1284 1285 1286
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1287
/**
1288
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1289
 * @memcg: the memory cgroup
1290
 *
1291
 * Returns the maximum amount of memory @mem can be charged with, in
1292
 * pages.
1293
 */
1294
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1295
{
1296 1297
	unsigned long long margin;

1298
	margin = res_counter_margin(&memcg->res);
1299
	if (do_swap_account)
1300
		margin = min(margin, res_counter_margin(&memcg->memsw));
1301
	return margin >> PAGE_SHIFT;
1302 1303
}

1304
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1305 1306
{
	/* root ? */
T
Tejun Heo 已提交
1307
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1308 1309
		return vm_swappiness;

1310
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1311 1312
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1327 1328 1329 1330

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1331
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1332
{
1333
	atomic_inc(&memcg_moving);
1334
	atomic_inc(&memcg->moving_account);
1335 1336 1337
	synchronize_rcu();
}

1338
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1339
{
1340 1341 1342 1343
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1344 1345
	if (memcg) {
		atomic_dec(&memcg_moving);
1346
		atomic_dec(&memcg->moving_account);
1347
	}
1348
}
1349

1350 1351 1352
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1353 1354
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1355 1356 1357 1358 1359 1360 1361
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1362
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1363 1364
{
	VM_BUG_ON(!rcu_read_lock_held());
1365
	return atomic_read(&memcg->moving_account) > 0;
1366
}
1367

1368
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1369
{
1370 1371
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1372
	bool ret = false;
1373 1374 1375 1376 1377 1378 1379 1380 1381
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1382

1383 1384
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1385 1386
unlock:
	spin_unlock(&mc.lock);
1387 1388 1389
	return ret;
}

1390
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1391 1392
{
	if (mc.moving_task && current != mc.moving_task) {
1393
		if (mem_cgroup_under_move(memcg)) {
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1406 1407 1408 1409
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1410
 * see mem_cgroup_stolen(), too.
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1424
#define K(x) ((x) << (PAGE_SHIFT-10))
1425
/**
1426
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1444 1445
	struct mem_cgroup *iter;
	unsigned int i;
1446

1447
	if (!p)
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1466
	pr_info("Task in %s killed", memcg_name);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1479
	pr_cont(" as a result of limit of %s\n", memcg_name);
1480 1481
done:

1482
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1483 1484 1485
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1486
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1487 1488 1489
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1490
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1491 1492 1493
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1518 1519
}

1520 1521 1522 1523
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1524
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1525 1526
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1527 1528
	struct mem_cgroup *iter;

1529
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1530
		num++;
1531 1532 1533
	return num;
}

D
David Rientjes 已提交
1534 1535 1536
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1537
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1538 1539 1540
{
	u64 limit;

1541 1542
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1543
	/*
1544
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1545
	 */
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1560 1561
}

1562 1563
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1564 1565 1566 1567 1568 1569 1570
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1571
	/*
1572 1573 1574
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1575
	 */
1576
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1577 1578 1579 1580 1581
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1582 1583
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1584
		struct css_task_iter it;
1585 1586
		struct task_struct *task;

1587 1588
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1601
				css_task_iter_end(&it);
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1618
		css_task_iter_end(&it);
1619 1620 1621 1622 1623 1624 1625 1626 1627
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1664
#if MAX_NUMNODES > 1
1665 1666
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1667
 * @memcg: the target memcg
1668 1669 1670 1671 1672 1673 1674
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1675
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1676 1677
		int nid, bool noswap)
{
1678
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1679 1680 1681
		return true;
	if (noswap || !total_swap_pages)
		return false;
1682
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1683 1684 1685 1686
		return true;
	return false;

}
1687 1688 1689 1690 1691 1692 1693

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1694
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1695 1696
{
	int nid;
1697 1698 1699 1700
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1701
	if (!atomic_read(&memcg->numainfo_events))
1702
		return;
1703
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1704 1705 1706
		return;

	/* make a nodemask where this memcg uses memory from */
1707
	memcg->scan_nodes = node_states[N_MEMORY];
1708

1709
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1710

1711 1712
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1713
	}
1714

1715 1716
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1731
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1732 1733 1734
{
	int node;

1735 1736
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1737

1738
	node = next_node(node, memcg->scan_nodes);
1739
	if (node == MAX_NUMNODES)
1740
		node = first_node(memcg->scan_nodes);
1741 1742 1743 1744 1745 1746 1747 1748 1749
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1750
	memcg->last_scanned_node = node;
1751 1752 1753 1754
	return node;
}

#else
1755
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1756 1757 1758
{
	return 0;
}
1759

1760 1761
#endif

1762
/*
1763 1764
 * A group is eligible for the soft limit reclaim under the given root
 * hierarchy if
A
Andrew Morton 已提交
1765 1766
 *	a) it is over its soft limit
 *	b) any parent up the hierarchy is over its soft limit
1767
 */
1768
bool mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1769
		struct mem_cgroup *root)
1770
{
1771
	struct mem_cgroup *parent = memcg;
1772 1773

	if (res_counter_soft_limit_excess(&memcg->res))
1774
		return true;
1775 1776

	/*
1777 1778
	 * If any parent up to the root in the hierarchy is over its soft limit
	 * then we have to obey and reclaim from this group as well.
1779
	 */
A
Andrew Morton 已提交
1780
	while ((parent = parent_mem_cgroup(parent))) {
1781
		if (res_counter_soft_limit_excess(&parent->res))
1782
			return true;
1783 1784
		if (parent == root)
			break;
1785
	}
1786

1787
	return false;
1788 1789
}

1790 1791
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1792 1793 1794 1795
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1796
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1797
{
1798
	struct mem_cgroup *iter, *failed = NULL;
1799

1800 1801
	spin_lock(&memcg_oom_lock);

1802
	for_each_mem_cgroup_tree(iter, memcg) {
1803
		if (iter->oom_lock) {
1804 1805 1806 1807 1808
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1809 1810
			mem_cgroup_iter_break(memcg, iter);
			break;
1811 1812
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1813
	}
K
KAMEZAWA Hiroyuki 已提交
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1826 1827
		}
	}
1828 1829 1830 1831

	spin_unlock(&memcg_oom_lock);

	return !failed;
1832
}
1833

1834
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1835
{
K
KAMEZAWA Hiroyuki 已提交
1836 1837
	struct mem_cgroup *iter;

1838
	spin_lock(&memcg_oom_lock);
1839
	for_each_mem_cgroup_tree(iter, memcg)
1840
		iter->oom_lock = false;
1841
	spin_unlock(&memcg_oom_lock);
1842 1843
}

1844
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1845 1846 1847
{
	struct mem_cgroup *iter;

1848
	for_each_mem_cgroup_tree(iter, memcg)
1849 1850 1851
		atomic_inc(&iter->under_oom);
}

1852
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1853 1854 1855
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1856 1857 1858 1859 1860
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1861
	for_each_mem_cgroup_tree(iter, memcg)
1862
		atomic_add_unless(&iter->under_oom, -1, 0);
1863 1864
}

K
KAMEZAWA Hiroyuki 已提交
1865 1866
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1867
struct oom_wait_info {
1868
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1869 1870 1871 1872 1873 1874
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1875 1876
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1877 1878 1879
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1880
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1881 1882

	/*
1883
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1884 1885
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1886 1887
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1888 1889 1890 1891
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1892
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1893
{
1894
	atomic_inc(&memcg->oom_wakeups);
1895 1896
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1897 1898
}

1899
static void memcg_oom_recover(struct mem_cgroup *memcg)
1900
{
1901 1902
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1903 1904
}

K
KAMEZAWA Hiroyuki 已提交
1905
/*
1906
 * try to call OOM killer
K
KAMEZAWA Hiroyuki 已提交
1907
 */
1908
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1909
{
1910
	bool locked;
1911
	int wakeups;
K
KAMEZAWA Hiroyuki 已提交
1912

1913 1914 1915 1916
	if (!current->memcg_oom.may_oom)
		return;

	current->memcg_oom.in_memcg_oom = 1;
1917

K
KAMEZAWA Hiroyuki 已提交
1918
	/*
1919 1920 1921 1922 1923
	 * As with any blocking lock, a contender needs to start
	 * listening for wakeups before attempting the trylock,
	 * otherwise it can miss the wakeup from the unlock and sleep
	 * indefinitely.  This is just open-coded because our locking
	 * is so particular to memcg hierarchies.
K
KAMEZAWA Hiroyuki 已提交
1924
	 */
1925
	wakeups = atomic_read(&memcg->oom_wakeups);
1926 1927 1928 1929
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

1930
	if (locked)
1931
		mem_cgroup_oom_notify(memcg);
K
KAMEZAWA Hiroyuki 已提交
1932

1933 1934
	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
1935
		mem_cgroup_out_of_memory(memcg, mask, order);
1936 1937 1938 1939 1940 1941 1942
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
1943
	} else {
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		/*
		 * A system call can just return -ENOMEM, but if this
		 * is a page fault and somebody else is handling the
		 * OOM already, we need to sleep on the OOM waitqueue
		 * for this memcg until the situation is resolved.
		 * Which can take some time because it might be
		 * handled by a userspace task.
		 *
		 * However, this is the charge context, which means
		 * that we may sit on a large call stack and hold
		 * various filesystem locks, the mmap_sem etc. and we
		 * don't want the OOM handler to deadlock on them
		 * while we sit here and wait.  Store the current OOM
		 * context in the task_struct, then return -ENOMEM.
		 * At the end of the page fault handler, with the
		 * stack unwound, pagefault_out_of_memory() will check
		 * back with us by calling
		 * mem_cgroup_oom_synchronize(), possibly putting the
		 * task to sleep.
		 */
		current->memcg_oom.oom_locked = locked;
		current->memcg_oom.wakeups = wakeups;
		css_get(&memcg->css);
		current->memcg_oom.wait_on_memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1968
	}
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
 *
 * This has to be called at the end of a page fault if the the memcg
 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
 *
 * Memcg supports userspace OOM handling, so failed allocations must
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
 * the end of the page fault to put the task to sleep and clean up the
 * OOM state.
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
 * finalized, %false otherwise.
 */
bool mem_cgroup_oom_synchronize(void)
{
	struct oom_wait_info owait;
	struct mem_cgroup *memcg;

	/* OOM is global, do not handle */
	if (!current->memcg_oom.in_memcg_oom)
		return false;

	/*
	 * We invoked the OOM killer but there is a chance that a kill
	 * did not free up any charges.  Everybody else might already
	 * be sleeping, so restart the fault and keep the rampage
	 * going until some charges are released.
	 */
	memcg = current->memcg_oom.wait_on_memcg;
	if (!memcg)
		goto out;

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		goto out_memcg;

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2015

2016 2017 2018 2019 2020 2021 2022 2023
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	/* Only sleep if we didn't miss any wakeups since OOM */
	if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
		schedule();
	finish_wait(&memcg_oom_waitq, &owait.wait);
out_memcg:
	mem_cgroup_unmark_under_oom(memcg);
	if (current->memcg_oom.oom_locked) {
2024 2025 2026 2027 2028 2029 2030 2031
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2032 2033 2034 2035
	css_put(&memcg->css);
	current->memcg_oom.wait_on_memcg = NULL;
out:
	current->memcg_oom.in_memcg_oom = 0;
K
KAMEZAWA Hiroyuki 已提交
2036
	return true;
2037 2038
}

2039 2040 2041
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2059 2060
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2061
 */
2062

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2076
	 * need to take move_lock_mem_cgroup(). Because we already hold
2077
	 * rcu_read_lock(), any calls to move_account will be delayed until
2078
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2079
	 */
2080
	if (!mem_cgroup_stolen(memcg))
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2098
	 * should take move_lock_mem_cgroup().
2099 2100 2101 2102
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2103
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2104
				 enum mem_cgroup_stat_index idx, int val)
2105
{
2106
	struct mem_cgroup *memcg;
2107
	struct page_cgroup *pc = lookup_page_cgroup(page);
2108
	unsigned long uninitialized_var(flags);
2109

2110
	if (mem_cgroup_disabled())
2111
		return;
2112

2113
	VM_BUG_ON(!rcu_read_lock_held());
2114 2115
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2116
		return;
2117

2118
	this_cpu_add(memcg->stat->count[idx], val);
2119
}
2120

2121 2122 2123 2124
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2125
#define CHARGE_BATCH	32U
2126 2127
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2128
	unsigned int nr_pages;
2129
	struct work_struct work;
2130
	unsigned long flags;
2131
#define FLUSHING_CACHED_CHARGE	0
2132 2133
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2134
static DEFINE_MUTEX(percpu_charge_mutex);
2135

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2146
 */
2147
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2148 2149 2150 2151
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2152 2153 2154
	if (nr_pages > CHARGE_BATCH)
		return false;

2155
	stock = &get_cpu_var(memcg_stock);
2156 2157
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2171 2172 2173 2174
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2175
		if (do_swap_account)
2176 2177
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2190
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2191 2192
}

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2204 2205
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2206
 * This will be consumed by consume_stock() function, later.
2207
 */
2208
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2209 2210 2211
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2212
	if (stock->cached != memcg) { /* reset if necessary */
2213
		drain_stock(stock);
2214
		stock->cached = memcg;
2215
	}
2216
	stock->nr_pages += nr_pages;
2217 2218 2219 2220
	put_cpu_var(memcg_stock);
}

/*
2221
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2222 2223
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2224
 */
2225
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2226
{
2227
	int cpu, curcpu;
2228

2229 2230
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2231
	curcpu = get_cpu();
2232 2233
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2234
		struct mem_cgroup *memcg;
2235

2236 2237
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2238
			continue;
2239
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2240
			continue;
2241 2242 2243 2244 2245 2246
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2247
	}
2248
	put_cpu();
2249 2250 2251 2252 2253 2254

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2255
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2256 2257 2258
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2259
	put_online_cpus();
2260 2261 2262 2263 2264 2265 2266 2267
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2268
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2269
{
2270 2271 2272 2273 2274
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2275
	drain_all_stock(root_memcg, false);
2276
	mutex_unlock(&percpu_charge_mutex);
2277 2278 2279
}

/* This is a synchronous drain interface. */
2280
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2281 2282
{
	/* called when force_empty is called */
2283
	mutex_lock(&percpu_charge_mutex);
2284
	drain_all_stock(root_memcg, true);
2285
	mutex_unlock(&percpu_charge_mutex);
2286 2287
}

2288 2289 2290 2291
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2292
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2293 2294 2295
{
	int i;

2296
	spin_lock(&memcg->pcp_counter_lock);
2297
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2298
		long x = per_cpu(memcg->stat->count[i], cpu);
2299

2300 2301
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2302
	}
2303
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2304
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2305

2306 2307
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2308
	}
2309
	spin_unlock(&memcg->pcp_counter_lock);
2310 2311
}

2312
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2313 2314 2315 2316 2317
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2318
	struct mem_cgroup *iter;
2319

2320
	if (action == CPU_ONLINE)
2321 2322
		return NOTIFY_OK;

2323
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2324
		return NOTIFY_OK;
2325

2326
	for_each_mem_cgroup(iter)
2327 2328
		mem_cgroup_drain_pcp_counter(iter, cpu);

2329 2330 2331 2332 2333
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2334 2335 2336 2337 2338 2339 2340 2341 2342

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2343
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2344
				unsigned int nr_pages, unsigned int min_pages,
2345
				bool invoke_oom)
2346
{
2347
	unsigned long csize = nr_pages * PAGE_SIZE;
2348 2349 2350 2351 2352
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2353
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2354 2355 2356 2357

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2358
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2359 2360 2361
		if (likely(!ret))
			return CHARGE_OK;

2362
		res_counter_uncharge(&memcg->res, csize);
2363 2364 2365 2366
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2367 2368 2369 2370
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2371
	if (nr_pages > min_pages)
2372 2373 2374 2375 2376
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2377 2378 2379
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2380
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2381
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2382
		return CHARGE_RETRY;
2383
	/*
2384 2385 2386 2387 2388 2389 2390
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2391
	 */
2392
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2393 2394 2395 2396 2397 2398 2399 2400 2401
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2402 2403
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2404

2405
	return CHARGE_NOMEM;
2406 2407
}

2408
/*
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2428
 */
2429
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2430
				   gfp_t gfp_mask,
2431
				   unsigned int nr_pages,
2432
				   struct mem_cgroup **ptr,
2433
				   bool oom)
2434
{
2435
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2436
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2437
	struct mem_cgroup *memcg = NULL;
2438
	int ret;
2439

K
KAMEZAWA Hiroyuki 已提交
2440 2441 2442 2443 2444 2445 2446 2447
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2448

2449
	/*
2450 2451
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2452
	 * thread group leader migrates. It's possible that mm is not
2453
	 * set, if so charge the root memcg (happens for pagecache usage).
2454
	 */
2455
	if (!*ptr && !mm)
2456
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2457
again:
2458 2459 2460
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2461
			goto done;
2462
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2463
			goto done;
2464
		css_get(&memcg->css);
2465
	} else {
K
KAMEZAWA Hiroyuki 已提交
2466
		struct task_struct *p;
2467

K
KAMEZAWA Hiroyuki 已提交
2468 2469 2470
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2471
		 * Because we don't have task_lock(), "p" can exit.
2472
		 * In that case, "memcg" can point to root or p can be NULL with
2473 2474 2475 2476 2477 2478
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2479
		 */
2480
		memcg = mem_cgroup_from_task(p);
2481 2482 2483
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2484 2485 2486
			rcu_read_unlock();
			goto done;
		}
2487
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2500
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2501 2502 2503 2504 2505
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2506

2507
	do {
2508
		bool invoke_oom = oom && !nr_oom_retries;
2509

2510
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2511
		if (fatal_signal_pending(current)) {
2512
			css_put(&memcg->css);
2513
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2514
		}
2515

2516 2517
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2518 2519 2520 2521
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2522
			batch = nr_pages;
2523 2524
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2525
			goto again;
2526
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2527
			css_put(&memcg->css);
2528 2529
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2530
			if (!oom || invoke_oom) {
2531
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2532
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2533
			}
2534 2535
			nr_oom_retries--;
			break;
2536
		}
2537 2538
	} while (ret != CHARGE_OK);

2539
	if (batch > nr_pages)
2540 2541
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2542
done:
2543
	*ptr = memcg;
2544 2545
	return 0;
nomem:
2546
	*ptr = NULL;
2547
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2548
bypass:
2549 2550
	*ptr = root_mem_cgroup;
	return -EINTR;
2551
}
2552

2553 2554 2555 2556 2557
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2558
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2559
				       unsigned int nr_pages)
2560
{
2561
	if (!mem_cgroup_is_root(memcg)) {
2562 2563
		unsigned long bytes = nr_pages * PAGE_SIZE;

2564
		res_counter_uncharge(&memcg->res, bytes);
2565
		if (do_swap_account)
2566
			res_counter_uncharge(&memcg->memsw, bytes);
2567
	}
2568 2569
}

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2588 2589
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2590 2591 2592
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2604
	return mem_cgroup_from_css(css);
2605 2606
}

2607
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2608
{
2609
	struct mem_cgroup *memcg = NULL;
2610
	struct page_cgroup *pc;
2611
	unsigned short id;
2612 2613
	swp_entry_t ent;

2614 2615 2616
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2617
	lock_page_cgroup(pc);
2618
	if (PageCgroupUsed(pc)) {
2619 2620 2621
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2622
	} else if (PageSwapCache(page)) {
2623
		ent.val = page_private(page);
2624
		id = lookup_swap_cgroup_id(ent);
2625
		rcu_read_lock();
2626 2627 2628
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2629
		rcu_read_unlock();
2630
	}
2631
	unlock_page_cgroup(pc);
2632
	return memcg;
2633 2634
}

2635
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2636
				       struct page *page,
2637
				       unsigned int nr_pages,
2638 2639
				       enum charge_type ctype,
				       bool lrucare)
2640
{
2641
	struct page_cgroup *pc = lookup_page_cgroup(page);
2642
	struct zone *uninitialized_var(zone);
2643
	struct lruvec *lruvec;
2644
	bool was_on_lru = false;
2645
	bool anon;
2646

2647
	lock_page_cgroup(pc);
2648
	VM_BUG_ON(PageCgroupUsed(pc));
2649 2650 2651 2652
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2653 2654 2655 2656 2657 2658 2659 2660 2661

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2662
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2663
			ClearPageLRU(page);
2664
			del_page_from_lru_list(page, lruvec, page_lru(page));
2665 2666 2667 2668
			was_on_lru = true;
		}
	}

2669
	pc->mem_cgroup = memcg;
2670 2671 2672 2673 2674 2675
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2676
	 */
K
KAMEZAWA Hiroyuki 已提交
2677
	smp_wmb();
2678
	SetPageCgroupUsed(pc);
2679

2680 2681
	if (lrucare) {
		if (was_on_lru) {
2682
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2683 2684
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2685
			add_page_to_lru_list(page, lruvec, page_lru(page));
2686 2687 2688 2689
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2690
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2691 2692 2693 2694
		anon = true;
	else
		anon = false;

2695
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2696
	unlock_page_cgroup(pc);
2697

2698
	/*
2699
	 * "charge_statistics" updated event counter.
2700
	 */
2701
	memcg_check_events(memcg, page);
2702
}
2703

2704 2705
static DEFINE_MUTEX(set_limit_mutex);

2706 2707 2708 2709 2710 2711 2712
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2726
#ifdef CONFIG_SLABINFO
2727 2728
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2729
{
2730
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2800 2801 2802 2803 2804

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2805 2806 2807 2808 2809 2810 2811 2812
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2813
	if (memcg_kmem_test_and_clear_dead(memcg))
2814
		css_put(&memcg->css);
2815 2816
}

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

2900 2901
static void kmem_cache_destroy_work_func(struct work_struct *w);

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
2913
		size += offsetof(struct memcg_cache_params, memcg_caches);
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
2953 2954
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
2955
{
2956
	size_t size;
2957 2958 2959 2960

	if (!memcg_kmem_enabled())
		return 0;

2961 2962
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
2963
		size += memcg_limited_groups_array_size * sizeof(void *);
2964 2965
	} else
		size = sizeof(struct memcg_cache_params);
2966

2967 2968 2969 2970
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
2971
	if (memcg) {
2972
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
2973
		s->memcg_params->root_cache = root_cache;
2974 2975
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
2976 2977 2978
	} else
		s->memcg_params->is_root_cache = true;

2979 2980 2981 2982 2983
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3008
	css_put(&memcg->css);
3009
out:
3010 3011 3012
	kfree(s->memcg_params);
}

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3044 3045 3046 3047 3048 3049 3050 3051 3052
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3074 3075 3076 3077 3078 3079 3080 3081
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3102 3103 3104 3105 3106 3107 3108
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3109 3110 3111 3112 3113 3114 3115 3116 3117
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3118

3119 3120 3121
/*
 * Called with memcg_cache_mutex held
 */
3122 3123 3124 3125
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3126
	static char *tmp_name = NULL;
3127

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3146

3147
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3148
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3149

3150 3151 3152
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3168 3169
	if (new_cachep) {
		css_put(&memcg->css);
3170
		goto out;
3171
	}
3172 3173 3174 3175

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3176
		css_put(&memcg->css);
3177 3178 3179
		goto out;
	}

G
Glauber Costa 已提交
3180
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3232
		cancel_work_sync(&c->memcg_params->destroy);
3233 3234 3235 3236 3237
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3238 3239 3240 3241 3242 3243
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3273 3274
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3275 3276 3277 3278
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3279 3280
	if (cw == NULL) {
		css_put(&memcg->css);
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3331 3332 3333
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3334 3335 3336 3337
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3338
		goto out;
3339 3340 3341 3342 3343 3344 3345 3346

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3347 3348 3349
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3350 3351
	}

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3379 3380 3381
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3418 3419 3420
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3505 3506 3507 3508
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3509 3510
#endif /* CONFIG_MEMCG_KMEM */

3511 3512
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3513
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3514 3515
/*
 * Because tail pages are not marked as "used", set it. We're under
3516 3517 3518
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3519
 */
3520
void mem_cgroup_split_huge_fixup(struct page *head)
3521 3522
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3523
	struct page_cgroup *pc;
3524
	struct mem_cgroup *memcg;
3525
	int i;
3526

3527 3528
	if (mem_cgroup_disabled())
		return;
3529 3530

	memcg = head_pc->mem_cgroup;
3531 3532
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3533
		pc->mem_cgroup = memcg;
3534 3535 3536
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3537 3538
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3539
}
3540
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3541

3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
	WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
	__this_cpu_add(from->stat->count[idx], -nr_pages);
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3556
/**
3557
 * mem_cgroup_move_account - move account of the page
3558
 * @page: the page
3559
 * @nr_pages: number of regular pages (>1 for huge pages)
3560 3561 3562 3563 3564
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3565
 * - page is not on LRU (isolate_page() is useful.)
3566
 * - compound_lock is held when nr_pages > 1
3567
 *
3568 3569
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3570
 */
3571 3572 3573 3574
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3575
				   struct mem_cgroup *to)
3576
{
3577 3578
	unsigned long flags;
	int ret;
3579
	bool anon = PageAnon(page);
3580

3581
	VM_BUG_ON(from == to);
3582
	VM_BUG_ON(PageLRU(page));
3583 3584 3585 3586 3587 3588 3589
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3590
	if (nr_pages > 1 && !PageTransHuge(page))
3591 3592 3593 3594 3595 3596 3597 3598
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3599
	move_lock_mem_cgroup(from, &flags);
3600

3601 3602 3603 3604 3605 3606 3607 3608
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3609
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3610

3611
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3612
	pc->mem_cgroup = to;
3613
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3614
	move_unlock_mem_cgroup(from, &flags);
3615 3616
	ret = 0;
unlock:
3617
	unlock_page_cgroup(pc);
3618 3619 3620
	/*
	 * check events
	 */
3621 3622
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3623
out:
3624 3625 3626
	return ret;
}

3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3647
 */
3648 3649
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3650
				  struct mem_cgroup *child)
3651 3652
{
	struct mem_cgroup *parent;
3653
	unsigned int nr_pages;
3654
	unsigned long uninitialized_var(flags);
3655 3656
	int ret;

3657
	VM_BUG_ON(mem_cgroup_is_root(child));
3658

3659 3660 3661 3662 3663
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3664

3665
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3666

3667 3668 3669 3670 3671 3672
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3673

3674 3675
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3676
		flags = compound_lock_irqsave(page);
3677
	}
3678

3679
	ret = mem_cgroup_move_account(page, nr_pages,
3680
				pc, child, parent);
3681 3682
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3683

3684
	if (nr_pages > 1)
3685
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3686
	putback_lru_page(page);
3687
put:
3688
	put_page(page);
3689
out:
3690 3691 3692
	return ret;
}

3693 3694 3695 3696 3697 3698 3699
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3700
				gfp_t gfp_mask, enum charge_type ctype)
3701
{
3702
	struct mem_cgroup *memcg = NULL;
3703
	unsigned int nr_pages = 1;
3704
	bool oom = true;
3705
	int ret;
A
Andrea Arcangeli 已提交
3706

A
Andrea Arcangeli 已提交
3707
	if (PageTransHuge(page)) {
3708
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3709
		VM_BUG_ON(!PageTransHuge(page));
3710 3711 3712 3713 3714
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3715
	}
3716

3717
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3718
	if (ret == -ENOMEM)
3719
		return ret;
3720
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3721 3722 3723
	return 0;
}

3724 3725
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3726
{
3727
	if (mem_cgroup_disabled())
3728
		return 0;
3729 3730 3731
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3732
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3733
					MEM_CGROUP_CHARGE_TYPE_ANON);
3734 3735
}

3736 3737 3738
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3739
 * struct page_cgroup is acquired. This refcnt will be consumed by
3740 3741
 * "commit()" or removed by "cancel()"
 */
3742 3743 3744 3745
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3746
{
3747
	struct mem_cgroup *memcg;
3748
	struct page_cgroup *pc;
3749
	int ret;
3750

3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3761 3762
	if (!do_swap_account)
		goto charge_cur_mm;
3763 3764
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3765
		goto charge_cur_mm;
3766 3767
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3768
	css_put(&memcg->css);
3769 3770
	if (ret == -EINTR)
		ret = 0;
3771
	return ret;
3772
charge_cur_mm:
3773 3774 3775 3776
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3777 3778
}

3779 3780 3781 3782 3783 3784
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3799 3800 3801
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3802 3803 3804 3805 3806 3807 3808 3809 3810
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3811
static void
3812
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3813
					enum charge_type ctype)
3814
{
3815
	if (mem_cgroup_disabled())
3816
		return;
3817
	if (!memcg)
3818
		return;
3819

3820
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3821 3822 3823
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3824 3825 3826
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3827
	 */
3828
	if (do_swap_account && PageSwapCache(page)) {
3829
		swp_entry_t ent = {.val = page_private(page)};
3830
		mem_cgroup_uncharge_swap(ent);
3831
	}
3832 3833
}

3834 3835
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3836
{
3837
	__mem_cgroup_commit_charge_swapin(page, memcg,
3838
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3839 3840
}

3841 3842
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3843
{
3844 3845 3846 3847
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3848
	if (mem_cgroup_disabled())
3849 3850 3851 3852 3853 3854 3855
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3856 3857
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3858 3859 3860 3861
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3862 3863
}

3864
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3865 3866
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3867 3868 3869
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3870

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3882
		batch->memcg = memcg;
3883 3884
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3885
	 * In those cases, all pages freed continuously can be expected to be in
3886 3887 3888 3889 3890 3891 3892 3893
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3894
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3895 3896
		goto direct_uncharge;

3897 3898 3899 3900 3901
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3902
	if (batch->memcg != memcg)
3903 3904
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3905
	batch->nr_pages++;
3906
	if (uncharge_memsw)
3907
		batch->memsw_nr_pages++;
3908 3909
	return;
direct_uncharge:
3910
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3911
	if (uncharge_memsw)
3912 3913 3914
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3915
}
3916

3917
/*
3918
 * uncharge if !page_mapped(page)
3919
 */
3920
static struct mem_cgroup *
3921 3922
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3923
{
3924
	struct mem_cgroup *memcg = NULL;
3925 3926
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3927
	bool anon;
3928

3929
	if (mem_cgroup_disabled())
3930
		return NULL;
3931

A
Andrea Arcangeli 已提交
3932
	if (PageTransHuge(page)) {
3933
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3934 3935
		VM_BUG_ON(!PageTransHuge(page));
	}
3936
	/*
3937
	 * Check if our page_cgroup is valid
3938
	 */
3939
	pc = lookup_page_cgroup(page);
3940
	if (unlikely(!PageCgroupUsed(pc)))
3941
		return NULL;
3942

3943
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3944

3945
	memcg = pc->mem_cgroup;
3946

K
KAMEZAWA Hiroyuki 已提交
3947 3948 3949
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3950 3951
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3952
	switch (ctype) {
3953
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3954 3955 3956 3957 3958
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3959 3960
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3961
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3962
		/* See mem_cgroup_prepare_migration() */
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3984
	}
K
KAMEZAWA Hiroyuki 已提交
3985

3986
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3987

3988
	ClearPageCgroupUsed(pc);
3989 3990 3991 3992 3993 3994
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3995

3996
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3997
	/*
3998
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
3999
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4000
	 */
4001
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4002
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4003
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4004
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4005
	}
4006 4007 4008 4009 4010 4011
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4012
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4013

4014
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4015 4016 4017

unlock_out:
	unlock_page_cgroup(pc);
4018
	return NULL;
4019 4020
}

4021 4022
void mem_cgroup_uncharge_page(struct page *page)
{
4023 4024 4025
	/* early check. */
	if (page_mapped(page))
		return;
4026
	VM_BUG_ON(page->mapping && !PageAnon(page));
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4039 4040
	if (PageSwapCache(page))
		return;
4041
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4042 4043 4044 4045 4046
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4047
	VM_BUG_ON(page->mapping);
4048
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4049 4050
}

4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4065 4066
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4087 4088 4089 4090 4091 4092
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4093
	memcg_oom_recover(batch->memcg);
4094 4095 4096 4097
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4098
#ifdef CONFIG_SWAP
4099
/*
4100
 * called after __delete_from_swap_cache() and drop "page" account.
4101 4102
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4103 4104
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4105 4106
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4107 4108 4109 4110 4111
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4112
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4113

K
KAMEZAWA Hiroyuki 已提交
4114 4115
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4116
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4117 4118
	 */
	if (do_swap_account && swapout && memcg)
4119
		swap_cgroup_record(ent, css_id(&memcg->css));
4120
}
4121
#endif
4122

A
Andrew Morton 已提交
4123
#ifdef CONFIG_MEMCG_SWAP
4124 4125 4126 4127 4128
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4129
{
4130
	struct mem_cgroup *memcg;
4131
	unsigned short id;
4132 4133 4134 4135

	if (!do_swap_account)
		return;

4136 4137 4138
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4139
	if (memcg) {
4140 4141 4142 4143
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4144
		if (!mem_cgroup_is_root(memcg))
4145
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4146
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4147
		css_put(&memcg->css);
4148
	}
4149
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4150
}
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4167
				struct mem_cgroup *from, struct mem_cgroup *to)
4168 4169 4170 4171 4172 4173 4174 4175
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4176
		mem_cgroup_swap_statistics(to, true);
4177
		/*
4178 4179 4180
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4181 4182 4183 4184 4185 4186
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4187
		 */
L
Li Zefan 已提交
4188
		css_get(&to->css);
4189 4190 4191 4192 4193 4194
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4195
				struct mem_cgroup *from, struct mem_cgroup *to)
4196 4197 4198
{
	return -EINVAL;
}
4199
#endif
K
KAMEZAWA Hiroyuki 已提交
4200

4201
/*
4202 4203
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4204
 */
4205 4206
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4207
{
4208
	struct mem_cgroup *memcg = NULL;
4209
	unsigned int nr_pages = 1;
4210
	struct page_cgroup *pc;
4211
	enum charge_type ctype;
4212

4213
	*memcgp = NULL;
4214

4215
	if (mem_cgroup_disabled())
4216
		return;
4217

4218 4219 4220
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4221 4222 4223
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4224 4225
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4257
	}
4258
	unlock_page_cgroup(pc);
4259 4260 4261 4262
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4263
	if (!memcg)
4264
		return;
4265

4266
	*memcgp = memcg;
4267 4268 4269 4270 4271 4272 4273
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4274
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4275
	else
4276
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4277 4278 4279 4280 4281
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4282
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4283
}
4284

4285
/* remove redundant charge if migration failed*/
4286
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4287
	struct page *oldpage, struct page *newpage, bool migration_ok)
4288
{
4289
	struct page *used, *unused;
4290
	struct page_cgroup *pc;
4291
	bool anon;
4292

4293
	if (!memcg)
4294
		return;
4295

4296
	if (!migration_ok) {
4297 4298
		used = oldpage;
		unused = newpage;
4299
	} else {
4300
		used = newpage;
4301 4302
		unused = oldpage;
	}
4303
	anon = PageAnon(used);
4304 4305 4306 4307
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4308
	css_put(&memcg->css);
4309
	/*
4310 4311 4312
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4313
	 */
4314 4315 4316 4317 4318
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4319
	/*
4320 4321 4322 4323 4324 4325
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4326
	 */
4327
	if (anon)
4328
		mem_cgroup_uncharge_page(used);
4329
}
4330

4331 4332 4333 4334 4335 4336 4337 4338
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4339
	struct mem_cgroup *memcg = NULL;
4340 4341 4342 4343 4344 4345 4346 4347 4348
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4349 4350
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4351
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4352 4353
		ClearPageCgroupUsed(pc);
	}
4354 4355
	unlock_page_cgroup(pc);

4356 4357 4358 4359 4360 4361
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4362 4363 4364 4365 4366
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4367
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4368 4369
}

4370 4371 4372 4373 4374 4375
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4376 4377 4378 4379 4380
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4400 4401
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4402 4403 4404 4405
	}
}
#endif

4406
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4407
				unsigned long long val)
4408
{
4409
	int retry_count;
4410
	u64 memswlimit, memlimit;
4411
	int ret = 0;
4412 4413
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4414
	int enlarge;
4415 4416 4417 4418 4419 4420 4421 4422 4423

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4424

4425
	enlarge = 0;
4426
	while (retry_count) {
4427 4428 4429 4430
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4431 4432 4433
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4434
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4435 4436 4437 4438 4439 4440
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4441 4442
			break;
		}
4443 4444 4445 4446 4447

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4448
		ret = res_counter_set_limit(&memcg->res, val);
4449 4450 4451 4452 4453 4454
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4455 4456 4457 4458 4459
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4460 4461
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4462 4463
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4464
		if (curusage >= oldusage)
4465 4466 4467
			retry_count--;
		else
			oldusage = curusage;
4468
	}
4469 4470
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4471

4472 4473 4474
	return ret;
}

L
Li Zefan 已提交
4475 4476
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4477
{
4478
	int retry_count;
4479
	u64 memlimit, memswlimit, oldusage, curusage;
4480 4481
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4482
	int enlarge = 0;
4483

4484
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4485
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4486
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4487 4488 4489 4490 4491 4492 4493 4494
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4495
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4496 4497 4498 4499 4500 4501 4502 4503
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4504 4505 4506
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4507
		ret = res_counter_set_limit(&memcg->memsw, val);
4508 4509 4510 4511 4512 4513
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4514 4515 4516 4517 4518
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4519 4520 4521
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4522
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4523
		/* Usage is reduced ? */
4524
		if (curusage >= oldusage)
4525
			retry_count--;
4526 4527
		else
			oldusage = curusage;
4528
	}
4529 4530
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4531 4532 4533
	return ret;
}

4534 4535 4536 4537 4538 4539 4540
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4541
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4542 4543
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4544
 */
4545
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4546
				int node, int zid, enum lru_list lru)
4547
{
4548
	struct lruvec *lruvec;
4549
	unsigned long flags;
4550
	struct list_head *list;
4551 4552
	struct page *busy;
	struct zone *zone;
4553

K
KAMEZAWA Hiroyuki 已提交
4554
	zone = &NODE_DATA(node)->node_zones[zid];
4555 4556
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4557

4558
	busy = NULL;
4559
	do {
4560
		struct page_cgroup *pc;
4561 4562
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4563
		spin_lock_irqsave(&zone->lru_lock, flags);
4564
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4565
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4566
			break;
4567
		}
4568 4569 4570
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4571
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4572
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4573 4574
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4575
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4576

4577
		pc = lookup_page_cgroup(page);
4578

4579
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4580
			/* found lock contention or "pc" is obsolete. */
4581
			busy = page;
4582 4583 4584
			cond_resched();
		} else
			busy = NULL;
4585
	} while (!list_empty(list));
4586 4587 4588
}

/*
4589 4590
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4591
 * This enables deleting this mem_cgroup.
4592 4593
 *
 * Caller is responsible for holding css reference on the memcg.
4594
 */
4595
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4596
{
4597
	int node, zid;
4598
	u64 usage;
4599

4600
	do {
4601 4602
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4603 4604
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4605
		for_each_node_state(node, N_MEMORY) {
4606
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4607 4608
				enum lru_list lru;
				for_each_lru(lru) {
4609
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4610
							node, zid, lru);
4611
				}
4612
			}
4613
		}
4614 4615
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4616
		cond_resched();
4617

4618
		/*
4619 4620 4621 4622 4623
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4624 4625 4626 4627 4628 4629
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4630 4631 4632
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4633 4634
}

4635 4636 4637 4638 4639 4640 4641
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4642
	struct cgroup_subsys_state *pos;
4643 4644

	/* bounce at first found */
4645
	css_for_each_child(pos, &memcg->css)
4646 4647 4648 4649 4650
		return true;
	return false;
}

/*
4651 4652
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4653 4654 4655 4656 4657 4658 4659 4660 4661
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4672

4673
	/* returns EBUSY if there is a task or if we come here twice. */
4674 4675 4676
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4677 4678
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4679
	/* try to free all pages in this cgroup */
4680
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4681
		int progress;
4682

4683 4684 4685
		if (signal_pending(current))
			return -EINTR;

4686
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4687
						false);
4688
		if (!progress) {
4689
			nr_retries--;
4690
			/* maybe some writeback is necessary */
4691
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4692
		}
4693 4694

	}
K
KAMEZAWA Hiroyuki 已提交
4695
	lru_add_drain();
4696 4697 4698
	mem_cgroup_reparent_charges(memcg);

	return 0;
4699 4700
}

4701 4702
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4703
{
4704
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4705

4706 4707
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4708
	return mem_cgroup_force_empty(memcg);
4709 4710
}

4711 4712
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4713
{
4714
	return mem_cgroup_from_css(css)->use_hierarchy;
4715 4716
}

4717 4718
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4719 4720
{
	int retval = 0;
4721
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4722
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4723

4724
	mutex_lock(&memcg_create_mutex);
4725 4726 4727 4728

	if (memcg->use_hierarchy == val)
		goto out;

4729
	/*
4730
	 * If parent's use_hierarchy is set, we can't make any modifications
4731 4732 4733 4734 4735 4736
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4737
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4738
				(val == 1 || val == 0)) {
4739
		if (!__memcg_has_children(memcg))
4740
			memcg->use_hierarchy = val;
4741 4742 4743 4744
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4745 4746

out:
4747
	mutex_unlock(&memcg_create_mutex);
4748 4749 4750 4751

	return retval;
}

4752

4753
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4754
					       enum mem_cgroup_stat_index idx)
4755
{
K
KAMEZAWA Hiroyuki 已提交
4756
	struct mem_cgroup *iter;
4757
	long val = 0;
4758

4759
	/* Per-cpu values can be negative, use a signed accumulator */
4760
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4761 4762 4763 4764 4765
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4766 4767
}

4768
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4769
{
K
KAMEZAWA Hiroyuki 已提交
4770
	u64 val;
4771

4772
	if (!mem_cgroup_is_root(memcg)) {
4773
		if (!swap)
4774
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4775
		else
4776
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4777 4778
	}

4779 4780 4781 4782
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4783 4784
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4785

K
KAMEZAWA Hiroyuki 已提交
4786
	if (swap)
4787
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4788 4789 4790 4791

	return val << PAGE_SHIFT;
}

4792 4793 4794
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4795
{
4796
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4797
	char str[64];
4798
	u64 val;
G
Glauber Costa 已提交
4799 4800
	int name, len;
	enum res_type type;
4801 4802 4803

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4804

4805 4806
	switch (type) {
	case _MEM:
4807
		if (name == RES_USAGE)
4808
			val = mem_cgroup_usage(memcg, false);
4809
		else
4810
			val = res_counter_read_u64(&memcg->res, name);
4811 4812
		break;
	case _MEMSWAP:
4813
		if (name == RES_USAGE)
4814
			val = mem_cgroup_usage(memcg, true);
4815
		else
4816
			val = res_counter_read_u64(&memcg->memsw, name);
4817
		break;
4818 4819 4820
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4821 4822 4823
	default:
		BUG();
	}
4824 4825 4826

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4827
}
4828

4829
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4830 4831 4832
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4833
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4846
	mutex_lock(&memcg_create_mutex);
4847
	mutex_lock(&set_limit_mutex);
4848
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
4849
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4850 4851 4852 4853 4854 4855
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4856 4857
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
4858
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
4859 4860
			goto out;
		}
4861 4862 4863 4864 4865 4866
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
4867 4868 4869 4870
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
4871
	mutex_unlock(&memcg_create_mutex);
4872 4873 4874 4875
#endif
	return ret;
}

4876
#ifdef CONFIG_MEMCG_KMEM
4877
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4878
{
4879
	int ret = 0;
4880 4881
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
4882 4883
		goto out;

4884
	memcg->kmem_account_flags = parent->kmem_account_flags;
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
4895 4896 4897 4898
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
4899 4900 4901
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
4902 4903 4904 4905
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
4906
	memcg_stop_kmem_account();
4907
	ret = memcg_update_cache_sizes(memcg);
4908
	memcg_resume_kmem_account();
4909 4910 4911
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
4912
}
4913
#endif /* CONFIG_MEMCG_KMEM */
4914

4915 4916 4917 4918
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4919
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4920
			    const char *buffer)
B
Balbir Singh 已提交
4921
{
4922
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
4923 4924
	enum res_type type;
	int name;
4925 4926 4927
	unsigned long long val;
	int ret;

4928 4929
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4930

4931
	switch (name) {
4932
	case RES_LIMIT:
4933 4934 4935 4936
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4937 4938
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4939 4940 4941
		if (ret)
			break;
		if (type == _MEM)
4942
			ret = mem_cgroup_resize_limit(memcg, val);
4943
		else if (type == _MEMSWAP)
4944
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4945
		else if (type == _KMEM)
4946
			ret = memcg_update_kmem_limit(css, val);
4947 4948
		else
			return -EINVAL;
4949
		break;
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4964 4965 4966 4967 4968
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4969 4970
}

4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
4981 4982
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4995
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
4996
{
4997
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
4998 4999
	int name;
	enum res_type type;
5000

5001 5002
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5003

5004
	switch (name) {
5005
	case RES_MAX_USAGE:
5006
		if (type == _MEM)
5007
			res_counter_reset_max(&memcg->res);
5008
		else if (type == _MEMSWAP)
5009
			res_counter_reset_max(&memcg->memsw);
5010 5011 5012 5013
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5014 5015
		break;
	case RES_FAILCNT:
5016
		if (type == _MEM)
5017
			res_counter_reset_failcnt(&memcg->res);
5018
		else if (type == _MEMSWAP)
5019
			res_counter_reset_failcnt(&memcg->memsw);
5020 5021 5022 5023
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5024 5025
		break;
	}
5026

5027
	return 0;
5028 5029
}

5030
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5031 5032
					struct cftype *cft)
{
5033
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5034 5035
}

5036
#ifdef CONFIG_MMU
5037
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5038 5039
					struct cftype *cft, u64 val)
{
5040
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5041 5042 5043

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5044

5045
	/*
5046 5047 5048 5049
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5050
	 */
5051
	memcg->move_charge_at_immigrate = val;
5052 5053
	return 0;
}
5054
#else
5055
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5056 5057 5058 5059 5060
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5061

5062
#ifdef CONFIG_NUMA
5063 5064
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5065 5066 5067 5068
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5069
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5070

5071
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5072
	seq_printf(m, "total=%lu", total_nr);
5073
	for_each_node_state(nid, N_MEMORY) {
5074
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5075 5076 5077 5078
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5079
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5080
	seq_printf(m, "file=%lu", file_nr);
5081
	for_each_node_state(nid, N_MEMORY) {
5082
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5083
				LRU_ALL_FILE);
5084 5085 5086 5087
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5088
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5089
	seq_printf(m, "anon=%lu", anon_nr);
5090
	for_each_node_state(nid, N_MEMORY) {
5091
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5092
				LRU_ALL_ANON);
5093 5094 5095 5096
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5097
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5098
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5099
	for_each_node_state(nid, N_MEMORY) {
5100
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5101
				BIT(LRU_UNEVICTABLE));
5102 5103 5104 5105 5106 5107 5108
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5109 5110 5111 5112 5113
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5114
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5115
				 struct seq_file *m)
5116
{
5117
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5118 5119
	struct mem_cgroup *mi;
	unsigned int i;
5120

5121
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5122
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5123
			continue;
5124 5125
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5126
	}
L
Lee Schermerhorn 已提交
5127

5128 5129 5130 5131 5132 5133 5134 5135
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5136
	/* Hierarchical information */
5137 5138
	{
		unsigned long long limit, memsw_limit;
5139
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5140
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5141
		if (do_swap_account)
5142 5143
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5144
	}
K
KOSAKI Motohiro 已提交
5145

5146 5147 5148
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5149
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5150
			continue;
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5171
	}
K
KAMEZAWA Hiroyuki 已提交
5172

K
KOSAKI Motohiro 已提交
5173 5174 5175 5176
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5177
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5178 5179 5180 5181 5182
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5183
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5184
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5185

5186 5187 5188 5189
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5190
			}
5191 5192 5193 5194
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5195 5196 5197
	}
#endif

5198 5199 5200
	return 0;
}

5201 5202
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5203
{
5204
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5205

5206
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5207 5208
}

5209 5210
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5211
{
5212
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5213
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5214

T
Tejun Heo 已提交
5215
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5216 5217
		return -EINVAL;

5218
	mutex_lock(&memcg_create_mutex);
5219

K
KOSAKI Motohiro 已提交
5220
	/* If under hierarchy, only empty-root can set this value */
5221
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5222
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5223
		return -EINVAL;
5224
	}
K
KOSAKI Motohiro 已提交
5225 5226 5227

	memcg->swappiness = val;

5228
	mutex_unlock(&memcg_create_mutex);
5229

K
KOSAKI Motohiro 已提交
5230 5231 5232
	return 0;
}

5233 5234 5235 5236 5237 5238 5239 5240
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5241
		t = rcu_dereference(memcg->thresholds.primary);
5242
	else
5243
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5244 5245 5246 5247 5248 5249 5250

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5251
	 * current_threshold points to threshold just below or equal to usage.
5252 5253 5254
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5255
	i = t->current_threshold;
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5279
	t->current_threshold = i - 1;
5280 5281 5282 5283 5284 5285
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5286 5287 5288 5289 5290 5291 5292
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5293 5294 5295 5296 5297 5298 5299
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5300 5301 5302 5303 5304 5305 5306
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5307 5308
}

5309
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5310 5311 5312
{
	struct mem_cgroup_eventfd_list *ev;

5313
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5314 5315 5316 5317
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5318
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5319
{
K
KAMEZAWA Hiroyuki 已提交
5320 5321
	struct mem_cgroup *iter;

5322
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5323
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5324 5325
}

5326
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5327
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5328
{
5329
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5330 5331
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5332
	enum res_type type = MEMFILE_TYPE(cft->private);
5333
	u64 threshold, usage;
5334
	int i, size, ret;
5335 5336 5337 5338 5339 5340

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5341

5342
	if (type == _MEM)
5343
		thresholds = &memcg->thresholds;
5344
	else if (type == _MEMSWAP)
5345
		thresholds = &memcg->memsw_thresholds;
5346 5347 5348 5349 5350 5351
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5352
	if (thresholds->primary)
5353 5354
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5355
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5356 5357

	/* Allocate memory for new array of thresholds */
5358
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5359
			GFP_KERNEL);
5360
	if (!new) {
5361 5362 5363
		ret = -ENOMEM;
		goto unlock;
	}
5364
	new->size = size;
5365 5366

	/* Copy thresholds (if any) to new array */
5367 5368
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5369
				sizeof(struct mem_cgroup_threshold));
5370 5371
	}

5372
	/* Add new threshold */
5373 5374
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5375 5376

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5377
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5378 5379 5380
			compare_thresholds, NULL);

	/* Find current threshold */
5381
	new->current_threshold = -1;
5382
	for (i = 0; i < size; i++) {
5383
		if (new->entries[i].threshold <= usage) {
5384
			/*
5385 5386
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5387 5388
			 * it here.
			 */
5389
			++new->current_threshold;
5390 5391
		} else
			break;
5392 5393
	}

5394 5395 5396 5397 5398
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5399

5400
	/* To be sure that nobody uses thresholds */
5401 5402 5403 5404 5405 5406 5407 5408
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5409
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5410
	struct cftype *cft, struct eventfd_ctx *eventfd)
5411
{
5412
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5413 5414
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5415
	enum res_type type = MEMFILE_TYPE(cft->private);
5416
	u64 usage;
5417
	int i, j, size;
5418 5419 5420

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5421
		thresholds = &memcg->thresholds;
5422
	else if (type == _MEMSWAP)
5423
		thresholds = &memcg->memsw_thresholds;
5424 5425 5426
	else
		BUG();

5427 5428 5429
	if (!thresholds->primary)
		goto unlock;

5430 5431 5432 5433 5434 5435
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5436 5437 5438
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5439 5440 5441
			size++;
	}

5442
	new = thresholds->spare;
5443

5444 5445
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5446 5447
		kfree(new);
		new = NULL;
5448
		goto swap_buffers;
5449 5450
	}

5451
	new->size = size;
5452 5453

	/* Copy thresholds and find current threshold */
5454 5455 5456
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5457 5458
			continue;

5459
		new->entries[j] = thresholds->primary->entries[i];
5460
		if (new->entries[j].threshold <= usage) {
5461
			/*
5462
			 * new->current_threshold will not be used
5463 5464 5465
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5466
			++new->current_threshold;
5467 5468 5469 5470
		}
		j++;
	}

5471
swap_buffers:
5472 5473
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5474 5475 5476 5477 5478 5479
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5480
	rcu_assign_pointer(thresholds->primary, new);
5481

5482
	/* To be sure that nobody uses thresholds */
5483
	synchronize_rcu();
5484
unlock:
5485 5486
	mutex_unlock(&memcg->thresholds_lock);
}
5487

5488
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5489 5490
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5491
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5492
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5493
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5494 5495 5496 5497 5498 5499

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5500
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5501 5502 5503 5504 5505

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5506
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5507
		eventfd_signal(eventfd, 1);
5508
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5509 5510 5511 5512

	return 0;
}

5513
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5514 5515
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5516
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5517
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5518
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5519 5520 5521

	BUG_ON(type != _OOM_TYPE);

5522
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5523

5524
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5525 5526 5527 5528 5529 5530
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5531
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5532 5533
}

5534
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5535 5536
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5537
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5538

5539
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5540

5541
	if (atomic_read(&memcg->under_oom))
5542 5543 5544 5545 5546 5547
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5548
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5549 5550
	struct cftype *cft, u64 val)
{
5551
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5552
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5553 5554

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5555
	if (!parent || !((val == 0) || (val == 1)))
5556 5557
		return -EINVAL;

5558
	mutex_lock(&memcg_create_mutex);
5559
	/* oom-kill-disable is a flag for subhierarchy. */
5560
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5561
		mutex_unlock(&memcg_create_mutex);
5562 5563
		return -EINVAL;
	}
5564
	memcg->oom_kill_disable = val;
5565
	if (!val)
5566
		memcg_oom_recover(memcg);
5567
	mutex_unlock(&memcg_create_mutex);
5568 5569 5570
	return 0;
}

A
Andrew Morton 已提交
5571
#ifdef CONFIG_MEMCG_KMEM
5572
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5573
{
5574 5575
	int ret;

5576
	memcg->kmemcg_id = -1;
5577 5578 5579
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5580

5581
	return mem_cgroup_sockets_init(memcg, ss);
5582
}
5583

5584
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5585
{
5586
	mem_cgroup_sockets_destroy(memcg);
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5613 5614 5615 5616 5617 5618 5619

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5620
		css_put(&memcg->css);
G
Glauber Costa 已提交
5621
}
5622
#else
5623
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5624 5625 5626
{
	return 0;
}
G
Glauber Costa 已提交
5627

5628 5629 5630 5631 5632
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5633 5634
{
}
5635 5636
#endif

B
Balbir Singh 已提交
5637 5638
static struct cftype mem_cgroup_files[] = {
	{
5639
		.name = "usage_in_bytes",
5640
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5641
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5642 5643
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5644
	},
5645 5646
	{
		.name = "max_usage_in_bytes",
5647
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5648
		.trigger = mem_cgroup_reset,
5649
		.read = mem_cgroup_read,
5650
	},
B
Balbir Singh 已提交
5651
	{
5652
		.name = "limit_in_bytes",
5653
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5654
		.write_string = mem_cgroup_write,
5655
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5656
	},
5657 5658 5659 5660
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5661
		.read = mem_cgroup_read,
5662
	},
B
Balbir Singh 已提交
5663 5664
	{
		.name = "failcnt",
5665
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5666
		.trigger = mem_cgroup_reset,
5667
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5668
	},
5669 5670
	{
		.name = "stat",
5671
		.read_seq_string = memcg_stat_show,
5672
	},
5673 5674 5675 5676
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5677 5678
	{
		.name = "use_hierarchy",
5679
		.flags = CFTYPE_INSANE,
5680 5681 5682
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5683 5684 5685 5686 5687
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5688 5689 5690 5691 5692
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5693 5694
	{
		.name = "oom_control",
5695 5696
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5697 5698 5699 5700
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5701 5702 5703 5704 5705
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5706 5707 5708
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5709
		.read_seq_string = memcg_numa_stat_show,
5710 5711
	},
#endif
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5736 5737 5738 5739 5740 5741
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5742
#endif
5743
	{ },	/* terminate */
5744
};
5745

5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5776
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5777 5778
{
	struct mem_cgroup_per_node *pn;
5779
	struct mem_cgroup_per_zone *mz;
5780
	int zone, tmp = node;
5781 5782 5783 5784 5785 5786 5787 5788
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5789 5790
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5791
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5792 5793
	if (!pn)
		return 1;
5794 5795 5796

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5797
		lruvec_init(&mz->lruvec);
5798
		mz->memcg = memcg;
5799
	}
5800
	memcg->nodeinfo[node] = pn;
5801 5802 5803
	return 0;
}

5804
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5805
{
5806
	kfree(memcg->nodeinfo[node]);
5807 5808
}

5809 5810
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5811
	struct mem_cgroup *memcg;
5812
	size_t size = memcg_size();
5813

5814
	/* Can be very big if nr_node_ids is very big */
5815
	if (size < PAGE_SIZE)
5816
		memcg = kzalloc(size, GFP_KERNEL);
5817
	else
5818
		memcg = vzalloc(size);
5819

5820
	if (!memcg)
5821 5822
		return NULL;

5823 5824
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5825
		goto out_free;
5826 5827
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5828 5829 5830

out_free:
	if (size < PAGE_SIZE)
5831
		kfree(memcg);
5832
	else
5833
		vfree(memcg);
5834
	return NULL;
5835 5836
}

5837
/*
5838 5839 5840 5841 5842 5843 5844 5845
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5846
 */
5847 5848

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5849
{
5850
	int node;
5851
	size_t size = memcg_size();
5852

5853 5854 5855 5856 5857 5858 5859
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5871
	disarm_static_keys(memcg);
5872 5873 5874 5875
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5876
}
5877

5878 5879 5880
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5881
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5882
{
5883
	if (!memcg->res.parent)
5884
		return NULL;
5885
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5886
}
G
Glauber Costa 已提交
5887
EXPORT_SYMBOL(parent_mem_cgroup);
5888

L
Li Zefan 已提交
5889
static struct cgroup_subsys_state * __ref
5890
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
5891
{
5892
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5893
	long error = -ENOMEM;
5894
	int node;
B
Balbir Singh 已提交
5895

5896 5897
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5898
		return ERR_PTR(error);
5899

B
Bob Liu 已提交
5900
	for_each_node(node)
5901
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5902
			goto free_out;
5903

5904
	/* root ? */
5905
	if (parent_css == NULL) {
5906
		root_mem_cgroup = memcg;
5907 5908 5909
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
5910
	}
5911

5912 5913 5914 5915 5916
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5917
	vmpressure_init(&memcg->vmpressure);
5918 5919 5920 5921 5922 5923 5924 5925 5926

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
5927
mem_cgroup_css_online(struct cgroup_subsys_state *css)
5928
{
5929 5930
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
5931 5932
	int error = 0;

T
Tejun Heo 已提交
5933
	if (!parent)
5934 5935
		return 0;

5936
	mutex_lock(&memcg_create_mutex);
5937 5938 5939 5940 5941 5942

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5943 5944
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5945
		res_counter_init(&memcg->kmem, &parent->kmem);
5946

5947
		/*
5948 5949
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
5950
		 */
5951
	} else {
5952 5953
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5954
		res_counter_init(&memcg->kmem, NULL);
5955 5956 5957 5958 5959
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5960
		if (parent != root_mem_cgroup)
5961
			mem_cgroup_subsys.broken_hierarchy = true;
5962
	}
5963 5964

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5965
	mutex_unlock(&memcg_create_mutex);
5966
	return error;
B
Balbir Singh 已提交
5967 5968
}

M
Michal Hocko 已提交
5969 5970 5971 5972 5973 5974 5975 5976
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
5977
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
5978 5979 5980 5981 5982 5983

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
5984
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
5985 5986
}

5987
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5988
{
5989
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5990

5991 5992
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
5993
	mem_cgroup_invalidate_reclaim_iterators(memcg);
5994
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
5995
	mem_cgroup_destroy_all_caches(memcg);
5996
	vmpressure_cleanup(&memcg->vmpressure);
5997 5998
}

5999
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6000
{
6001
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6002

6003
	memcg_destroy_kmem(memcg);
6004
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6005 6006
}

6007
#ifdef CONFIG_MMU
6008
/* Handlers for move charge at task migration. */
6009 6010
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6011
{
6012 6013
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6014
	struct mem_cgroup *memcg = mc.to;
6015

6016
	if (mem_cgroup_is_root(memcg)) {
6017 6018 6019 6020 6021 6022 6023 6024
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6025
		 * "memcg" cannot be under rmdir() because we've already checked
6026 6027 6028 6029
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6030
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6031
			goto one_by_one;
6032
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6033
						PAGE_SIZE * count, &dummy)) {
6034
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6051 6052
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6053
		if (ret)
6054
			/* mem_cgroup_clear_mc() will do uncharge later */
6055
			return ret;
6056 6057
		mc.precharge++;
	}
6058 6059 6060 6061
	return ret;
}

/**
6062
 * get_mctgt_type - get target type of moving charge
6063 6064 6065
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6066
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6067 6068 6069 6070 6071 6072
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6073 6074 6075
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6076 6077 6078 6079 6080
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6081
	swp_entry_t	ent;
6082 6083 6084
};

enum mc_target_type {
6085
	MC_TARGET_NONE = 0,
6086
	MC_TARGET_PAGE,
6087
	MC_TARGET_SWAP,
6088 6089
};

D
Daisuke Nishimura 已提交
6090 6091
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6092
{
D
Daisuke Nishimura 已提交
6093
	struct page *page = vm_normal_page(vma, addr, ptent);
6094

D
Daisuke Nishimura 已提交
6095 6096 6097 6098
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6099
		if (!move_anon())
D
Daisuke Nishimura 已提交
6100
			return NULL;
6101 6102
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6103 6104 6105 6106 6107 6108 6109
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6110
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6111 6112 6113 6114 6115 6116 6117 6118
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6119 6120 6121 6122
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6123
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6124 6125 6126 6127 6128
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6129 6130 6131 6132 6133 6134 6135
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6136

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6156 6157 6158 6159 6160 6161
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6162
		if (do_swap_account)
6163
			*entry = swap;
6164
		page = find_get_page(swap_address_space(swap), swap.val);
6165
	}
6166
#endif
6167 6168 6169
	return page;
}

6170
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6171 6172 6173 6174
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6175
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6176 6177 6178 6179 6180 6181
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6182 6183
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6184 6185

	if (!page && !ent.val)
6186
		return ret;
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6202 6203
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6204
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6205 6206 6207
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6208 6209 6210 6211
	}
	return ret;
}

6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6247 6248 6249 6250 6251 6252 6253 6254
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6255 6256 6257 6258
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6259
		return 0;
6260
	}
6261

6262 6263
	if (pmd_trans_unstable(pmd))
		return 0;
6264 6265
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6266
		if (get_mctgt_type(vma, addr, *pte, NULL))
6267 6268 6269 6270
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6271 6272 6273
	return 0;
}

6274 6275 6276 6277 6278
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6279
	down_read(&mm->mmap_sem);
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6291
	up_read(&mm->mmap_sem);
6292 6293 6294 6295 6296 6297 6298 6299 6300

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6301 6302 6303 6304 6305
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6306 6307
}

6308 6309
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6310
{
6311 6312
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6313
	int i;
6314

6315
	/* we must uncharge all the leftover precharges from mc.to */
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6327
	}
6328 6329 6330 6331 6332 6333
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6334 6335 6336

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6337 6338 6339 6340 6341 6342 6343 6344 6345

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6346
		/* we've already done css_get(mc.to) */
6347 6348
		mc.moved_swap = 0;
	}
6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6364
	spin_lock(&mc.lock);
6365 6366
	mc.from = NULL;
	mc.to = NULL;
6367
	spin_unlock(&mc.lock);
6368
	mem_cgroup_end_move(from);
6369 6370
}

6371
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6372
				 struct cgroup_taskset *tset)
6373
{
6374
	struct task_struct *p = cgroup_taskset_first(tset);
6375
	int ret = 0;
6376
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6377
	unsigned long move_charge_at_immigrate;
6378

6379 6380 6381 6382 6383 6384 6385
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6386 6387 6388
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6389
		VM_BUG_ON(from == memcg);
6390 6391 6392 6393 6394

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6395 6396 6397 6398
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6399
			VM_BUG_ON(mc.moved_charge);
6400
			VM_BUG_ON(mc.moved_swap);
6401
			mem_cgroup_start_move(from);
6402
			spin_lock(&mc.lock);
6403
			mc.from = from;
6404
			mc.to = memcg;
6405
			mc.immigrate_flags = move_charge_at_immigrate;
6406
			spin_unlock(&mc.lock);
6407
			/* We set mc.moving_task later */
6408 6409 6410 6411

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6412 6413
		}
		mmput(mm);
6414 6415 6416 6417
	}
	return ret;
}

6418
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6419
				     struct cgroup_taskset *tset)
6420
{
6421
	mem_cgroup_clear_mc();
6422 6423
}

6424 6425 6426
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6427
{
6428 6429 6430 6431
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6432 6433 6434 6435
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6436

6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6448
		if (mc.precharge < HPAGE_PMD_NR) {
6449 6450 6451 6452 6453 6454 6455 6456 6457
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6458
							pc, mc.from, mc.to)) {
6459 6460 6461 6462 6463 6464 6465 6466
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6467
		return 0;
6468 6469
	}

6470 6471
	if (pmd_trans_unstable(pmd))
		return 0;
6472 6473 6474 6475
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6476
		swp_entry_t ent;
6477 6478 6479 6480

		if (!mc.precharge)
			break;

6481
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6482 6483 6484 6485 6486
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6487
			if (!mem_cgroup_move_account(page, 1, pc,
6488
						     mc.from, mc.to)) {
6489
				mc.precharge--;
6490 6491
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6492 6493
			}
			putback_lru_page(page);
6494
put:			/* get_mctgt_type() gets the page */
6495 6496
			put_page(page);
			break;
6497 6498
		case MC_TARGET_SWAP:
			ent = target.ent;
6499
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6500
				mc.precharge--;
6501 6502 6503
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6504
			break;
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6519
		ret = mem_cgroup_do_precharge(1);
6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6563
	up_read(&mm->mmap_sem);
6564 6565
}

6566
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6567
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6568
{
6569
	struct task_struct *p = cgroup_taskset_first(tset);
6570
	struct mm_struct *mm = get_task_mm(p);
6571 6572

	if (mm) {
6573 6574
		if (mc.to)
			mem_cgroup_move_charge(mm);
6575 6576
		mmput(mm);
	}
6577 6578
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6579
}
6580
#else	/* !CONFIG_MMU */
6581
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6582
				 struct cgroup_taskset *tset)
6583 6584 6585
{
	return 0;
}
6586
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6587
				     struct cgroup_taskset *tset)
6588 6589
{
}
6590
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6591
				 struct cgroup_taskset *tset)
6592 6593 6594
{
}
#endif
B
Balbir Singh 已提交
6595

6596 6597 6598 6599
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6600
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6601 6602 6603 6604 6605 6606
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6607 6608
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6609 6610
}

B
Balbir Singh 已提交
6611 6612 6613
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6614
	.css_alloc = mem_cgroup_css_alloc,
6615
	.css_online = mem_cgroup_css_online,
6616 6617
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6618 6619
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6620
	.attach = mem_cgroup_move_task,
6621
	.bind = mem_cgroup_bind,
6622
	.base_cftypes = mem_cgroup_files,
6623
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6624
	.use_id = 1,
B
Balbir Singh 已提交
6625
};
6626

A
Andrew Morton 已提交
6627
#ifdef CONFIG_MEMCG_SWAP
6628 6629
static int __init enable_swap_account(char *s)
{
6630
	if (!strcmp(s, "1"))
6631
		really_do_swap_account = 1;
6632
	else if (!strcmp(s, "0"))
6633 6634 6635
		really_do_swap_account = 0;
	return 1;
}
6636
__setup("swapaccount=", enable_swap_account);
6637

6638 6639
static void __init memsw_file_init(void)
{
6640 6641 6642 6643 6644 6645 6646 6647 6648
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6649
}
6650

6651
#else
6652
static void __init enable_swap_cgroup(void)
6653 6654
{
}
6655
#endif
6656 6657

/*
6658 6659 6660 6661 6662 6663
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6664 6665 6666 6667
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6668
	enable_swap_cgroup();
6669
	memcg_stock_init();
6670 6671 6672
	return 0;
}
subsys_initcall(mem_cgroup_init);