memcontrol.c 181.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

131 132 133 134 135 136 137 138 139
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
140
	MEM_CGROUP_TARGET_NUMAINFO,
141 142
	MEM_CGROUP_NTARGETS,
};
143 144 145
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
146

147
struct mem_cgroup_stat_cpu {
148
	long count[MEM_CGROUP_STAT_NSTATS];
149
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
150
	unsigned long nr_page_events;
151
	unsigned long targets[MEM_CGROUP_NTARGETS];
152 153
};

154
struct mem_cgroup_reclaim_iter {
155 156
	/* last scanned hierarchy member with elevated css ref count */
	struct mem_cgroup *last_visited;
157 158
	/* scan generation, increased every round-trip */
	unsigned int generation;
159 160
	/* lock to protect the position and generation */
	spinlock_t iter_lock;
161 162
};

163 164 165 166
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
167
	struct lruvec		lruvec;
168
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
169

170 171
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

172 173 174 175
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
176
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
177
						/* use container_of	   */
178 179 180 181 182 183 184
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
185
	struct mem_cgroup_per_node *nodeinfo[0];
186 187
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

208 209 210 211 212
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
213
/* For threshold */
214
struct mem_cgroup_threshold_ary {
215
	/* An array index points to threshold just below or equal to usage. */
216
	int current_threshold;
217 218 219 220 221
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
222 223 224 225 226 227 228 229 230 231 232 233

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
234 235 236 237 238
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
239

240 241
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
242

B
Balbir Singh 已提交
243 244 245 246 247 248 249
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
250 251 252
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
253 254 255 256 257 258 259
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
278 279
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
280 281 282 283
		 */
		struct work_struct work_freeing;
	};

284 285 286 287
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
288 289 290 291
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
292
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
293 294 295 296

	bool		oom_lock;
	atomic_t	under_oom;

297
	atomic_t	refcnt;
298

299
	int	swappiness;
300 301
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
302

303 304 305
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

306 307 308 309
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
310
	struct mem_cgroup_thresholds thresholds;
311

312
	/* thresholds for mem+swap usage. RCU-protected */
313
	struct mem_cgroup_thresholds memsw_thresholds;
314

K
KAMEZAWA Hiroyuki 已提交
315 316
	/* For oom notifier event fd */
	struct list_head oom_notify;
317

318 319 320 321 322
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
323 324 325 326
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
327 328
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
329
	/*
330
	 * percpu counter.
331
	 */
332
	struct mem_cgroup_stat_cpu __percpu *stat;
333 334 335 336 337 338
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
339

M
Michal Hocko 已提交
340
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
341 342
	struct tcp_memcontrol tcp_mem;
#endif
343 344 345 346 347 348 349 350
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 *
	 * WARNING: This has to be the last element of the struct. Don't
	 * add new fields after this point.
	 */
	struct mem_cgroup_lru_info info;
B
Balbir Singh 已提交
366 367
};

368 369 370 371 372 373
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

374 375 376
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
377
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
378
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
379 380
};

381 382 383
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
384 385 386 387 388 389

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
390 391 392 393 394 395

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

396 397 398 399 400
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

401 402 403 404 405
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

406 407 408 409 410 411 412 413 414 415 416
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
417 418
#endif

419 420
/* Stuffs for move charges at task migration. */
/*
421 422
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
423 424
 */
enum move_type {
425
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
426
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
427 428 429
	NR_MOVE_TYPE,
};

430 431
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
432
	spinlock_t	  lock; /* for from, to */
433 434
	struct mem_cgroup *from;
	struct mem_cgroup *to;
435
	unsigned long immigrate_flags;
436
	unsigned long precharge;
437
	unsigned long moved_charge;
438
	unsigned long moved_swap;
439 440 441
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
442
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
443 444
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
445

D
Daisuke Nishimura 已提交
446 447
static bool move_anon(void)
{
448
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
449 450
}

451 452
static bool move_file(void)
{
453
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
454 455
}

456 457 458 459
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
460 461
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
462

463 464
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
465
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
466
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
467
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
468 469 470
	NR_CHARGE_TYPE,
};

471
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
472 473 474 475
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
476
	_KMEM,
G
Glauber Costa 已提交
477 478
};

479 480
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
481
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
482 483
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
484

485 486 487 488 489 490 491 492
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

493 494 495 496 497 498 499
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

500 501
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
502

503 504 505 506 507 508
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

509 510 511 512 513
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
514
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
515
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
516 517 518

void sock_update_memcg(struct sock *sk)
{
519
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
520
		struct mem_cgroup *memcg;
521
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
522 523 524

		BUG_ON(!sk->sk_prot->proto_cgroup);

525 526 527 528 529 530 531 532 533 534 535 536 537 538
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
539 540
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
541 542
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
543
			mem_cgroup_get(memcg);
544
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
545 546 547 548 549 550 551 552
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
553
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
554 555 556 557 558 559
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
560 561 562 563 564 565 566 567 568

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
569

570 571 572 573 574 575 576 577 578 579 580 581
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

582
#ifdef CONFIG_MEMCG_KMEM
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
601 602
int memcg_limited_groups_array_size;

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

618 619 620 621 622 623
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
624
struct static_key memcg_kmem_enabled_key;
625
EXPORT_SYMBOL(memcg_kmem_enabled_key);
626 627 628

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
629
	if (memcg_kmem_is_active(memcg)) {
630
		static_key_slow_dec(&memcg_kmem_enabled_key);
631 632
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
633 634 635 636 637
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
638 639 640 641 642 643 644 645 646 647 648 649 650
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

651
static void drain_all_stock_async(struct mem_cgroup *memcg);
652

653
static struct mem_cgroup_per_zone *
654
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
655
{
656
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
657
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
658 659
}

660
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
661
{
662
	return &memcg->css;
663 664
}

665
static struct mem_cgroup_per_zone *
666
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
667
{
668 669
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
670

671
	return mem_cgroup_zoneinfo(memcg, nid, zid);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
690
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
691
				struct mem_cgroup_per_zone *mz,
692 693
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
694 695 696 697 698 699 700 701
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

702 703 704
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
721 722 723
}

static void
724
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
725 726 727 728 729 730 731 732 733
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

734
static void
735
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
736 737 738 739
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
740
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
741 742 743 744
	spin_unlock(&mctz->lock);
}


745
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
746
{
747
	unsigned long long excess;
748 749
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
750 751
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
752 753 754
	mctz = soft_limit_tree_from_page(page);

	/*
755 756
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
757
	 */
758 759 760
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
761 762 763 764
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
765
		if (excess || mz->on_tree) {
766 767 768
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
769
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
770
			/*
771 772
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
773
			 */
774
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
775 776
			spin_unlock(&mctz->lock);
		}
777 778 779
	}
}

780
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
781 782 783 784 785
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
786
	for_each_node(node) {
787
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
788
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
789
			mctz = soft_limit_tree_node_zone(node, zone);
790
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
791 792 793 794
		}
	}
}

795 796 797 798
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
799
	struct mem_cgroup_per_zone *mz;
800 801

retry:
802
	mz = NULL;
803 804 805 806 807 808 809 810 811 812
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
813 814 815
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
851
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
852
				 enum mem_cgroup_stat_index idx)
853
{
854
	long val = 0;
855 856
	int cpu;

857 858
	get_online_cpus();
	for_each_online_cpu(cpu)
859
		val += per_cpu(memcg->stat->count[idx], cpu);
860
#ifdef CONFIG_HOTPLUG_CPU
861 862 863
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
864 865
#endif
	put_online_cpus();
866 867 868
	return val;
}

869
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
870 871 872
					 bool charge)
{
	int val = (charge) ? 1 : -1;
873
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
874 875
}

876
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
877 878 879 880 881 882
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
883
		val += per_cpu(memcg->stat->events[idx], cpu);
884
#ifdef CONFIG_HOTPLUG_CPU
885 886 887
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
888 889 890 891
#endif
	return val;
}

892
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
893
					 bool anon, int nr_pages)
894
{
895 896
	preempt_disable();

897 898 899 900 901 902
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
903
				nr_pages);
904
	else
905
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
906
				nr_pages);
907

908 909
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
910
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
911
	else {
912
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
913 914
		nr_pages = -nr_pages; /* for event */
	}
915

916
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
917

918
	preempt_enable();
919 920
}

921
unsigned long
922
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
923 924 925 926 927 928 929 930
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
931
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
932
			unsigned int lru_mask)
933 934
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
935
	enum lru_list lru;
936 937
	unsigned long ret = 0;

938
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
939

H
Hugh Dickins 已提交
940 941 942
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
943 944 945 946 947
	}
	return ret;
}

static unsigned long
948
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
949 950
			int nid, unsigned int lru_mask)
{
951 952 953
	u64 total = 0;
	int zid;

954
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
955 956
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
957

958 959
	return total;
}
960

961
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
962
			unsigned int lru_mask)
963
{
964
	int nid;
965 966
	u64 total = 0;

967
	for_each_node_state(nid, N_MEMORY)
968
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
969
	return total;
970 971
}

972 973
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
974 975 976
{
	unsigned long val, next;

977
	val = __this_cpu_read(memcg->stat->nr_page_events);
978
	next = __this_cpu_read(memcg->stat->targets[target]);
979
	/* from time_after() in jiffies.h */
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
996
	}
997
	return false;
998 999 1000 1001 1002 1003
}

/*
 * Check events in order.
 *
 */
1004
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1005
{
1006
	preempt_disable();
1007
	/* threshold event is triggered in finer grain than soft limit */
1008 1009
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1010 1011
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1012 1013 1014 1015 1016 1017 1018 1019 1020

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1021
		mem_cgroup_threshold(memcg);
1022
		if (unlikely(do_softlimit))
1023
			mem_cgroup_update_tree(memcg, page);
1024
#if MAX_NUMNODES > 1
1025
		if (unlikely(do_numainfo))
1026
			atomic_inc(&memcg->numainfo_events);
1027
#endif
1028 1029
	} else
		preempt_enable();
1030 1031
}

G
Glauber Costa 已提交
1032
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1033
{
1034 1035
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1036 1037
}

1038
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1039
{
1040 1041 1042 1043 1044 1045 1046 1047
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1048
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1049 1050
}

1051
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1052
{
1053
	struct mem_cgroup *memcg = NULL;
1054 1055 1056

	if (!mm)
		return NULL;
1057 1058 1059 1060 1061 1062 1063
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1064 1065
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1066
			break;
1067
	} while (!css_tryget(&memcg->css));
1068
	rcu_read_unlock();
1069
	return memcg;
1070 1071
}

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1092
{
1093
	struct mem_cgroup *memcg = NULL;
1094
	struct mem_cgroup *last_visited = NULL;
1095

1096 1097 1098
	if (mem_cgroup_disabled())
		return NULL;

1099 1100
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1101

1102
	if (prev && !reclaim)
1103
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1104

1105 1106
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1107
			goto out_css_put;
1108 1109
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1110

1111
	rcu_read_lock();
1112
	while (!memcg) {
1113
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1114
		struct cgroup_subsys_state *css = NULL;
1115

1116 1117 1118 1119 1120 1121 1122
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
			spin_lock(&iter->iter_lock);
			last_visited = iter->last_visited;
			if (prev && reclaim->generation != iter->generation) {
				if (last_visited) {
					css_put(&last_visited->css);
					iter->last_visited = NULL;
				}
				spin_unlock(&iter->iter_lock);
				goto out_unlock;
			}
1133
		}
K
KAMEZAWA Hiroyuki 已提交
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		/*
		 * Root is not visited by cgroup iterators so it needs an
		 * explicit visit.
		 */
		if (!last_visited) {
			css = &root->css;
		} else {
			struct cgroup *prev_cgroup, *next_cgroup;

			prev_cgroup = (last_visited == root) ? NULL
				: last_visited->css.cgroup;
			next_cgroup = cgroup_next_descendant_pre(prev_cgroup,
					root->css.cgroup);
			if (next_cgroup)
				css = cgroup_subsys_state(next_cgroup,
						mem_cgroup_subsys_id);
		}

		/*
		 * Even if we found a group we have to make sure it is alive.
		 * css && !memcg means that the groups should be skipped and
		 * we should continue the tree walk.
		 * last_visited css is safe to use because it is protected by
		 * css_get and the tree walk is rcu safe.
		 */
		if (css == &root->css || (css && css_tryget(css)))
			memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1162

1163
		if (reclaim) {
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			struct mem_cgroup *curr = memcg;

			if (last_visited)
				css_put(&last_visited->css);

			if (css && !memcg)
				curr = mem_cgroup_from_css(css);

			/* make sure that the cached memcg is not removed */
			if (curr)
				css_get(&curr->css);
			iter->last_visited = curr;

1177 1178 1179 1180
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
1181 1182 1183
			spin_unlock(&iter->iter_lock);
		} else if (css && !memcg) {
			last_visited = mem_cgroup_from_css(css);
1184
		}
1185 1186

		if (prev && !css)
1187
			goto out_unlock;
1188
	}
1189 1190
out_unlock:
	rcu_read_unlock();
1191 1192 1193 1194
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1195
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1196
}
K
KAMEZAWA Hiroyuki 已提交
1197

1198 1199 1200 1201 1202 1203 1204
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1205 1206 1207 1208 1209 1210
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1211

1212 1213 1214 1215 1216 1217
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1218
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1219
	     iter != NULL;				\
1220
	     iter = mem_cgroup_iter(root, iter, NULL))
1221

1222
#define for_each_mem_cgroup(iter)			\
1223
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1224
	     iter != NULL;				\
1225
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1226

1227
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1228
{
1229
	struct mem_cgroup *memcg;
1230 1231

	rcu_read_lock();
1232 1233
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1234 1235 1236 1237
		goto out;

	switch (idx) {
	case PGFAULT:
1238 1239 1240 1241
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1242 1243 1244 1245 1246 1247 1248
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1249
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1250

1251 1252 1253
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1254
 * @memcg: memcg of the wanted lruvec
1255 1256 1257 1258 1259 1260 1261 1262 1263
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1264
	struct lruvec *lruvec;
1265

1266 1267 1268 1269
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1270 1271

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1282 1283
}

K
KAMEZAWA Hiroyuki 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1297

1298
/**
1299
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1300
 * @page: the page
1301
 * @zone: zone of the page
1302
 */
1303
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1304 1305
{
	struct mem_cgroup_per_zone *mz;
1306 1307
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1308
	struct lruvec *lruvec;
1309

1310 1311 1312 1313
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1314

K
KAMEZAWA Hiroyuki 已提交
1315
	pc = lookup_page_cgroup(page);
1316
	memcg = pc->mem_cgroup;
1317 1318

	/*
1319
	 * Surreptitiously switch any uncharged offlist page to root:
1320 1321 1322 1323 1324 1325 1326
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1327
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1328 1329
		pc->mem_cgroup = memcg = root_mem_cgroup;

1330
	mz = page_cgroup_zoneinfo(memcg, page);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1341
}
1342

1343
/**
1344 1345 1346 1347
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1348
 *
1349 1350
 * This function must be called when a page is added to or removed from an
 * lru list.
1351
 */
1352 1353
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1354 1355
{
	struct mem_cgroup_per_zone *mz;
1356
	unsigned long *lru_size;
1357 1358 1359 1360

	if (mem_cgroup_disabled())
		return;

1361 1362 1363 1364
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1365
}
1366

1367
/*
1368
 * Checks whether given mem is same or in the root_mem_cgroup's
1369 1370
 * hierarchy subtree
 */
1371 1372
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1373
{
1374 1375
	if (root_memcg == memcg)
		return true;
1376
	if (!root_memcg->use_hierarchy || !memcg)
1377
		return false;
1378 1379 1380 1381 1382 1383 1384 1385
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1386
	rcu_read_lock();
1387
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1388 1389
	rcu_read_unlock();
	return ret;
1390 1391
}

1392
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1393 1394
{
	int ret;
1395
	struct mem_cgroup *curr = NULL;
1396
	struct task_struct *p;
1397

1398
	p = find_lock_task_mm(task);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1414 1415
	if (!curr)
		return 0;
1416
	/*
1417
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1418
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1419 1420
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1421
	 */
1422
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1423
	css_put(&curr->css);
1424 1425 1426
	return ret;
}

1427
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1428
{
1429
	unsigned long inactive_ratio;
1430
	unsigned long inactive;
1431
	unsigned long active;
1432
	unsigned long gb;
1433

1434 1435
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1436

1437 1438 1439 1440 1441 1442
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1443
	return inactive * inactive_ratio < active;
1444 1445
}

1446 1447 1448
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1449
/**
1450
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1451
 * @memcg: the memory cgroup
1452
 *
1453
 * Returns the maximum amount of memory @mem can be charged with, in
1454
 * pages.
1455
 */
1456
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1457
{
1458 1459
	unsigned long long margin;

1460
	margin = res_counter_margin(&memcg->res);
1461
	if (do_swap_account)
1462
		margin = min(margin, res_counter_margin(&memcg->memsw));
1463
	return margin >> PAGE_SHIFT;
1464 1465
}

1466
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1467 1468 1469 1470 1471 1472 1473
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1474
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1475 1476
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1491 1492 1493 1494

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1495
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1496
{
1497
	atomic_inc(&memcg_moving);
1498
	atomic_inc(&memcg->moving_account);
1499 1500 1501
	synchronize_rcu();
}

1502
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1503
{
1504 1505 1506 1507
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1508 1509
	if (memcg) {
		atomic_dec(&memcg_moving);
1510
		atomic_dec(&memcg->moving_account);
1511
	}
1512
}
1513

1514 1515 1516
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1517 1518
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1519 1520 1521 1522 1523 1524 1525
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1526
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1527 1528
{
	VM_BUG_ON(!rcu_read_lock_held());
1529
	return atomic_read(&memcg->moving_account) > 0;
1530
}
1531

1532
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1533
{
1534 1535
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1536
	bool ret = false;
1537 1538 1539 1540 1541 1542 1543 1544 1545
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1546

1547 1548
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1549 1550
unlock:
	spin_unlock(&mc.lock);
1551 1552 1553
	return ret;
}

1554
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1555 1556
{
	if (mc.moving_task && current != mc.moving_task) {
1557
		if (mem_cgroup_under_move(memcg)) {
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1570 1571 1572 1573
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1574
 * see mem_cgroup_stolen(), too.
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1588
#define K(x) ((x) << (PAGE_SHIFT-10))
1589
/**
1590
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1608 1609
	struct mem_cgroup *iter;
	unsigned int i;
1610

1611
	if (!p)
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1630
	pr_info("Task in %s killed", memcg_name);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1643
	pr_cont(" as a result of limit of %s\n", memcg_name);
1644 1645
done:

1646
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1647 1648 1649
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1650
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1651 1652 1653
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1654
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1655 1656 1657
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1682 1683
}

1684 1685 1686 1687
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1688
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1689 1690
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1691 1692
	struct mem_cgroup *iter;

1693
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1694
		num++;
1695 1696 1697
	return num;
}

D
David Rientjes 已提交
1698 1699 1700
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1701
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1702 1703 1704
{
	u64 limit;

1705 1706
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1707
	/*
1708
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1709
	 */
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1724 1725
}

1726 1727
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1728 1729 1730 1731 1732 1733 1734
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1829 1830
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1831
 * @memcg: the target memcg
1832 1833 1834 1835 1836 1837 1838
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1839
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1840 1841
		int nid, bool noswap)
{
1842
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1843 1844 1845
		return true;
	if (noswap || !total_swap_pages)
		return false;
1846
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1847 1848 1849 1850
		return true;
	return false;

}
1851 1852 1853 1854 1855 1856 1857 1858
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1859
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1860 1861
{
	int nid;
1862 1863 1864 1865
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1866
	if (!atomic_read(&memcg->numainfo_events))
1867
		return;
1868
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1869 1870 1871
		return;

	/* make a nodemask where this memcg uses memory from */
1872
	memcg->scan_nodes = node_states[N_MEMORY];
1873

1874
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1875

1876 1877
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1878
	}
1879

1880 1881
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1896
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1897 1898 1899
{
	int node;

1900 1901
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1902

1903
	node = next_node(node, memcg->scan_nodes);
1904
	if (node == MAX_NUMNODES)
1905
		node = first_node(memcg->scan_nodes);
1906 1907 1908 1909 1910 1911 1912 1913 1914
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1915
	memcg->last_scanned_node = node;
1916 1917 1918
	return node;
}

1919 1920 1921 1922 1923 1924
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1925
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1926 1927 1928 1929 1930 1931 1932
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1933 1934
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1935
		     nid < MAX_NUMNODES;
1936
		     nid = next_node(nid, memcg->scan_nodes)) {
1937

1938
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1939 1940 1941 1942 1943 1944
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1945
	for_each_node_state(nid, N_MEMORY) {
1946
		if (node_isset(nid, memcg->scan_nodes))
1947
			continue;
1948
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1949 1950 1951 1952 1953
			return true;
	}
	return false;
}

1954
#else
1955
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1956 1957 1958
{
	return 0;
}
1959

1960
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1961
{
1962
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1963
}
1964 1965
#endif

1966 1967 1968 1969
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1970
{
1971
	struct mem_cgroup *victim = NULL;
1972
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1973
	int loop = 0;
1974
	unsigned long excess;
1975
	unsigned long nr_scanned;
1976 1977 1978 1979
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1980

1981
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1982

1983
	while (1) {
1984
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1985
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1986
			loop++;
1987 1988 1989 1990 1991 1992
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1993
				if (!total)
1994 1995
					break;
				/*
L
Lucas De Marchi 已提交
1996
				 * We want to do more targeted reclaim.
1997 1998 1999 2000 2001
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
2002
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2003 2004
					break;
			}
2005
			continue;
2006
		}
2007
		if (!mem_cgroup_reclaimable(victim, false))
2008
			continue;
2009 2010 2011 2012
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
2013
			break;
2014
	}
2015
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
2016
	return total;
2017 2018
}

K
KAMEZAWA Hiroyuki 已提交
2019 2020 2021
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2022
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2023
 */
2024
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2025
{
2026
	struct mem_cgroup *iter, *failed = NULL;
2027

2028
	for_each_mem_cgroup_tree(iter, memcg) {
2029
		if (iter->oom_lock) {
2030 2031 2032 2033 2034
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2035 2036
			mem_cgroup_iter_break(memcg, iter);
			break;
2037 2038
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2039
	}
K
KAMEZAWA Hiroyuki 已提交
2040

2041
	if (!failed)
2042
		return true;
2043 2044 2045 2046 2047

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2048
	for_each_mem_cgroup_tree(iter, memcg) {
2049
		if (iter == failed) {
2050 2051
			mem_cgroup_iter_break(memcg, iter);
			break;
2052 2053 2054
		}
		iter->oom_lock = false;
	}
2055
	return false;
2056
}
2057

2058
/*
2059
 * Has to be called with memcg_oom_lock
2060
 */
2061
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2062
{
K
KAMEZAWA Hiroyuki 已提交
2063 2064
	struct mem_cgroup *iter;

2065
	for_each_mem_cgroup_tree(iter, memcg)
2066 2067 2068 2069
		iter->oom_lock = false;
	return 0;
}

2070
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2071 2072 2073
{
	struct mem_cgroup *iter;

2074
	for_each_mem_cgroup_tree(iter, memcg)
2075 2076 2077
		atomic_inc(&iter->under_oom);
}

2078
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2079 2080 2081
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2082 2083 2084 2085 2086
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2087
	for_each_mem_cgroup_tree(iter, memcg)
2088
		atomic_add_unless(&iter->under_oom, -1, 0);
2089 2090
}

2091
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2092 2093
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2094
struct oom_wait_info {
2095
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2096 2097 2098 2099 2100 2101
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2102 2103
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2104 2105 2106
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2107
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2108 2109

	/*
2110
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2111 2112
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2113 2114
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2115 2116 2117 2118
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2119
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2120
{
2121 2122
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2123 2124
}

2125
static void memcg_oom_recover(struct mem_cgroup *memcg)
2126
{
2127 2128
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2129 2130
}

K
KAMEZAWA Hiroyuki 已提交
2131 2132 2133
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2134 2135
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2136
{
K
KAMEZAWA Hiroyuki 已提交
2137
	struct oom_wait_info owait;
2138
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2139

2140
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2141 2142 2143 2144
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2145
	need_to_kill = true;
2146
	mem_cgroup_mark_under_oom(memcg);
2147

2148
	/* At first, try to OOM lock hierarchy under memcg.*/
2149
	spin_lock(&memcg_oom_lock);
2150
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2151 2152 2153 2154 2155
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2156
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2157
	if (!locked || memcg->oom_kill_disable)
2158 2159
		need_to_kill = false;
	if (locked)
2160
		mem_cgroup_oom_notify(memcg);
2161
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2162

2163 2164
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2165
		mem_cgroup_out_of_memory(memcg, mask, order);
2166
	} else {
K
KAMEZAWA Hiroyuki 已提交
2167
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2168
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2169
	}
2170
	spin_lock(&memcg_oom_lock);
2171
	if (locked)
2172 2173
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2174
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2175

2176
	mem_cgroup_unmark_under_oom(memcg);
2177

K
KAMEZAWA Hiroyuki 已提交
2178 2179 2180
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2181
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2182
	return true;
2183 2184
}

2185 2186 2187
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2205 2206
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2207
 */
2208

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2222
	 * need to take move_lock_mem_cgroup(). Because we already hold
2223
	 * rcu_read_lock(), any calls to move_account will be delayed until
2224
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2225
	 */
2226
	if (!mem_cgroup_stolen(memcg))
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2244
	 * should take move_lock_mem_cgroup().
2245 2246 2247 2248
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2249 2250
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2251
{
2252
	struct mem_cgroup *memcg;
2253
	struct page_cgroup *pc = lookup_page_cgroup(page);
2254
	unsigned long uninitialized_var(flags);
2255

2256
	if (mem_cgroup_disabled())
2257
		return;
2258

2259 2260
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2261
		return;
2262 2263

	switch (idx) {
2264 2265
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2266 2267 2268
		break;
	default:
		BUG();
2269
	}
2270

2271
	this_cpu_add(memcg->stat->count[idx], val);
2272
}
2273

2274 2275 2276 2277
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2278
#define CHARGE_BATCH	32U
2279 2280
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2281
	unsigned int nr_pages;
2282
	struct work_struct work;
2283
	unsigned long flags;
2284
#define FLUSHING_CACHED_CHARGE	0
2285 2286
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2287
static DEFINE_MUTEX(percpu_charge_mutex);
2288

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2299
 */
2300
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2301 2302 2303 2304
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2305 2306 2307
	if (nr_pages > CHARGE_BATCH)
		return false;

2308
	stock = &get_cpu_var(memcg_stock);
2309 2310
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2324 2325 2326 2327
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2328
		if (do_swap_account)
2329 2330
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2343
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2344 2345
}

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2357 2358
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2359
 * This will be consumed by consume_stock() function, later.
2360
 */
2361
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2362 2363 2364
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2365
	if (stock->cached != memcg) { /* reset if necessary */
2366
		drain_stock(stock);
2367
		stock->cached = memcg;
2368
	}
2369
	stock->nr_pages += nr_pages;
2370 2371 2372 2373
	put_cpu_var(memcg_stock);
}

/*
2374
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2375 2376
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2377
 */
2378
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2379
{
2380
	int cpu, curcpu;
2381

2382 2383
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2384
	curcpu = get_cpu();
2385 2386
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2387
		struct mem_cgroup *memcg;
2388

2389 2390
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2391
			continue;
2392
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2393
			continue;
2394 2395 2396 2397 2398 2399
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2400
	}
2401
	put_cpu();
2402 2403 2404 2405 2406 2407

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2408
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2409 2410 2411
			flush_work(&stock->work);
	}
out:
2412
 	put_online_cpus();
2413 2414 2415 2416 2417 2418 2419 2420
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2421
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2422
{
2423 2424 2425 2426 2427
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2428
	drain_all_stock(root_memcg, false);
2429
	mutex_unlock(&percpu_charge_mutex);
2430 2431 2432
}

/* This is a synchronous drain interface. */
2433
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2434 2435
{
	/* called when force_empty is called */
2436
	mutex_lock(&percpu_charge_mutex);
2437
	drain_all_stock(root_memcg, true);
2438
	mutex_unlock(&percpu_charge_mutex);
2439 2440
}

2441 2442 2443 2444
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2445
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2446 2447 2448
{
	int i;

2449
	spin_lock(&memcg->pcp_counter_lock);
2450
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2451
		long x = per_cpu(memcg->stat->count[i], cpu);
2452

2453 2454
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2455
	}
2456
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2457
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2458

2459 2460
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2461
	}
2462
	spin_unlock(&memcg->pcp_counter_lock);
2463 2464 2465
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2466 2467 2468 2469 2470
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2471
	struct mem_cgroup *iter;
2472

2473
	if (action == CPU_ONLINE)
2474 2475
		return NOTIFY_OK;

2476
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2477
		return NOTIFY_OK;
2478

2479
	for_each_mem_cgroup(iter)
2480 2481
		mem_cgroup_drain_pcp_counter(iter, cpu);

2482 2483 2484 2485 2486
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2497
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2498 2499
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2500
{
2501
	unsigned long csize = nr_pages * PAGE_SIZE;
2502 2503 2504 2505 2506
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2507
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2508 2509 2510 2511

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2512
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2513 2514 2515
		if (likely(!ret))
			return CHARGE_OK;

2516
		res_counter_uncharge(&memcg->res, csize);
2517 2518 2519 2520
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2521 2522 2523 2524
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2525
	if (nr_pages > min_pages)
2526 2527 2528 2529 2530
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2531 2532 2533
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2534
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2535
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2536
		return CHARGE_RETRY;
2537
	/*
2538 2539 2540 2541 2542 2543 2544
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2545
	 */
2546
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2560
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2561 2562 2563 2564 2565
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2566
/*
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2586
 */
2587
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2588
				   gfp_t gfp_mask,
2589
				   unsigned int nr_pages,
2590
				   struct mem_cgroup **ptr,
2591
				   bool oom)
2592
{
2593
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2594
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2595
	struct mem_cgroup *memcg = NULL;
2596
	int ret;
2597

K
KAMEZAWA Hiroyuki 已提交
2598 2599 2600 2601 2602 2603 2604 2605
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2606

2607
	/*
2608 2609
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2610
	 * thread group leader migrates. It's possible that mm is not
2611
	 * set, if so charge the root memcg (happens for pagecache usage).
2612
	 */
2613
	if (!*ptr && !mm)
2614
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2615
again:
2616 2617 2618
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2619
			goto done;
2620
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2621
			goto done;
2622
		css_get(&memcg->css);
2623
	} else {
K
KAMEZAWA Hiroyuki 已提交
2624
		struct task_struct *p;
2625

K
KAMEZAWA Hiroyuki 已提交
2626 2627 2628
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2629
		 * Because we don't have task_lock(), "p" can exit.
2630
		 * In that case, "memcg" can point to root or p can be NULL with
2631 2632 2633 2634 2635 2636
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2637
		 */
2638
		memcg = mem_cgroup_from_task(p);
2639 2640 2641
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2642 2643 2644
			rcu_read_unlock();
			goto done;
		}
2645
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2658
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2659 2660 2661 2662 2663
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2664

2665 2666
	do {
		bool oom_check;
2667

2668
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2669
		if (fatal_signal_pending(current)) {
2670
			css_put(&memcg->css);
2671
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2672
		}
2673

2674 2675 2676 2677
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2678
		}
2679

2680 2681
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2682 2683 2684 2685
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2686
			batch = nr_pages;
2687 2688
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2689
			goto again;
2690
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2691
			css_put(&memcg->css);
2692 2693
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2694
			if (!oom) {
2695
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2696
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2697
			}
2698 2699 2700 2701
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2702
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2703
			goto bypass;
2704
		}
2705 2706
	} while (ret != CHARGE_OK);

2707
	if (batch > nr_pages)
2708 2709
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2710
done:
2711
	*ptr = memcg;
2712 2713
	return 0;
nomem:
2714
	*ptr = NULL;
2715
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2716
bypass:
2717 2718
	*ptr = root_mem_cgroup;
	return -EINTR;
2719
}
2720

2721 2722 2723 2724 2725
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2726
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2727
				       unsigned int nr_pages)
2728
{
2729
	if (!mem_cgroup_is_root(memcg)) {
2730 2731
		unsigned long bytes = nr_pages * PAGE_SIZE;

2732
		res_counter_uncharge(&memcg->res, bytes);
2733
		if (do_swap_account)
2734
			res_counter_uncharge(&memcg->memsw, bytes);
2735
	}
2736 2737
}

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2756 2757
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2758 2759 2760
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2772
	return mem_cgroup_from_css(css);
2773 2774
}

2775
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2776
{
2777
	struct mem_cgroup *memcg = NULL;
2778
	struct page_cgroup *pc;
2779
	unsigned short id;
2780 2781
	swp_entry_t ent;

2782 2783 2784
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2785
	lock_page_cgroup(pc);
2786
	if (PageCgroupUsed(pc)) {
2787 2788 2789
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2790
	} else if (PageSwapCache(page)) {
2791
		ent.val = page_private(page);
2792
		id = lookup_swap_cgroup_id(ent);
2793
		rcu_read_lock();
2794 2795 2796
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2797
		rcu_read_unlock();
2798
	}
2799
	unlock_page_cgroup(pc);
2800
	return memcg;
2801 2802
}

2803
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2804
				       struct page *page,
2805
				       unsigned int nr_pages,
2806 2807
				       enum charge_type ctype,
				       bool lrucare)
2808
{
2809
	struct page_cgroup *pc = lookup_page_cgroup(page);
2810
	struct zone *uninitialized_var(zone);
2811
	struct lruvec *lruvec;
2812
	bool was_on_lru = false;
2813
	bool anon;
2814

2815
	lock_page_cgroup(pc);
2816
	VM_BUG_ON(PageCgroupUsed(pc));
2817 2818 2819 2820
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2821 2822 2823 2824 2825 2826 2827 2828 2829

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2830
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2831
			ClearPageLRU(page);
2832
			del_page_from_lru_list(page, lruvec, page_lru(page));
2833 2834 2835 2836
			was_on_lru = true;
		}
	}

2837
	pc->mem_cgroup = memcg;
2838 2839 2840 2841 2842 2843 2844
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2845
	smp_wmb();
2846
	SetPageCgroupUsed(pc);
2847

2848 2849
	if (lrucare) {
		if (was_on_lru) {
2850
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2851 2852
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2853
			add_page_to_lru_list(page, lruvec, page_lru(page));
2854 2855 2856 2857
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2858
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2859 2860 2861 2862 2863
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2864
	unlock_page_cgroup(pc);
2865

2866 2867 2868 2869 2870
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2871
	memcg_check_events(memcg, page);
2872
}
2873

2874 2875
static DEFINE_MUTEX(set_limit_mutex);

2876 2877 2878 2879 2880 2881 2882
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2970 2971 2972 2973 2974 2975 2976

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2977 2978
}

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3062 3063
static void kmem_cache_destroy_work_func(struct work_struct *w);

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

3083 3084
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3117 3118
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3119 3120 3121 3122 3123 3124
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3125 3126 3127
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3128 3129 3130 3131
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

3132 3133
	INIT_WORK(&s->memcg_params->destroy,
			kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3134
	if (memcg) {
3135
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3136
		s->memcg_params->root_cache = root_cache;
3137 3138 3139
	} else
		s->memcg_params->is_root_cache = true;

3140 3141 3142 3143 3144
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;
	mem_cgroup_put(memcg);

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

out:
3171 3172 3173
	kfree(s->memcg_params);
}

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3205 3206 3207 3208 3209 3210 3211 3212 3213
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3235 3236 3237 3238 3239 3240 3241 3242
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3263 3264 3265 3266 3267 3268 3269
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	char *name;
	struct dentry *dentry;

	rcu_read_lock();
	dentry = rcu_dereference(memcg->css.cgroup->dentry);
	rcu_read_unlock();

	BUG_ON(dentry == NULL);

	name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), dentry->d_name.name);

	return name;
}

static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	char *name;
	struct kmem_cache *new;

	name = memcg_cache_name(memcg, s);
	if (!name)
		return NULL;

	new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
G
Glauber Costa 已提交
3298
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3299

3300 3301 3302
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
	kfree(name);
	return new;
}

/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
G
Glauber Costa 已提交
3338
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3390
		cancel_work_sync(&c->memcg_params->destroy);
3391 3392 3393 3394 3395
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3396 3397 3398 3399 3400 3401
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 * Called with rcu_read_lock.
 */
3434 3435
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
	if (cw == NULL)
		return;

	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css)) {
		kfree(cw);
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3496 3497 3498
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
	rcu_read_unlock();

	if (!memcg_can_account_kmem(memcg))
		return cachep;

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
	if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
		/*
		 * If we are in a safe context (can wait, and not in interrupt
		 * context), we could be be predictable and return right away.
		 * This would guarantee that the allocation being performed
		 * already belongs in the new cache.
		 *
		 * However, there are some clashes that can arrive from locking.
		 * For instance, because we acquire the slab_mutex while doing
		 * kmem_cache_dup, this means no further allocation could happen
		 * with the slab_mutex held.
		 *
		 * Also, because cache creation issue get_online_cpus(), this
		 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
		 * that ends up reversed during cpu hotplug. (cpuset allocates
		 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
		 * better to defer everything.
		 */
		memcg_create_cache_enqueue(memcg, cachep);
		return cachep;
	}

	return cachep->memcg_params->memcg_caches[idx];
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3634 3635 3636 3637
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3638 3639
#endif /* CONFIG_MEMCG_KMEM */

3640 3641
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3642
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3643 3644
/*
 * Because tail pages are not marked as "used", set it. We're under
3645 3646 3647
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3648
 */
3649
void mem_cgroup_split_huge_fixup(struct page *head)
3650 3651
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3652 3653
	struct page_cgroup *pc;
	int i;
3654

3655 3656
	if (mem_cgroup_disabled())
		return;
3657 3658 3659 3660 3661 3662
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3663
}
3664
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3665

3666
/**
3667
 * mem_cgroup_move_account - move account of the page
3668
 * @page: the page
3669
 * @nr_pages: number of regular pages (>1 for huge pages)
3670 3671 3672 3673 3674
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3675
 * - page is not on LRU (isolate_page() is useful.)
3676
 * - compound_lock is held when nr_pages > 1
3677
 *
3678 3679
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3680
 */
3681 3682 3683 3684
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3685
				   struct mem_cgroup *to)
3686
{
3687 3688
	unsigned long flags;
	int ret;
3689
	bool anon = PageAnon(page);
3690

3691
	VM_BUG_ON(from == to);
3692
	VM_BUG_ON(PageLRU(page));
3693 3694 3695 3696 3697 3698 3699
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3700
	if (nr_pages > 1 && !PageTransHuge(page))
3701 3702 3703 3704 3705 3706 3707 3708
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3709
	move_lock_mem_cgroup(from, &flags);
3710

3711
	if (!anon && page_mapped(page)) {
3712 3713 3714 3715 3716
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3717
	}
3718
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3719

3720
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3721
	pc->mem_cgroup = to;
3722
	mem_cgroup_charge_statistics(to, anon, nr_pages);
3723
	move_unlock_mem_cgroup(from, &flags);
3724 3725
	ret = 0;
unlock:
3726
	unlock_page_cgroup(pc);
3727 3728 3729
	/*
	 * check events
	 */
3730 3731
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3732
out:
3733 3734 3735
	return ret;
}

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3756
 */
3757 3758
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3759
				  struct mem_cgroup *child)
3760 3761
{
	struct mem_cgroup *parent;
3762
	unsigned int nr_pages;
3763
	unsigned long uninitialized_var(flags);
3764 3765
	int ret;

3766
	VM_BUG_ON(mem_cgroup_is_root(child));
3767

3768 3769 3770 3771 3772
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3773

3774
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3775

3776 3777 3778 3779 3780 3781
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3782

3783 3784
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3785
		flags = compound_lock_irqsave(page);
3786
	}
3787

3788
	ret = mem_cgroup_move_account(page, nr_pages,
3789
				pc, child, parent);
3790 3791
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3792

3793
	if (nr_pages > 1)
3794
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3795
	putback_lru_page(page);
3796
put:
3797
	put_page(page);
3798
out:
3799 3800 3801
	return ret;
}

3802 3803 3804 3805 3806 3807 3808
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3809
				gfp_t gfp_mask, enum charge_type ctype)
3810
{
3811
	struct mem_cgroup *memcg = NULL;
3812
	unsigned int nr_pages = 1;
3813
	bool oom = true;
3814
	int ret;
A
Andrea Arcangeli 已提交
3815

A
Andrea Arcangeli 已提交
3816
	if (PageTransHuge(page)) {
3817
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3818
		VM_BUG_ON(!PageTransHuge(page));
3819 3820 3821 3822 3823
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3824
	}
3825

3826
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3827
	if (ret == -ENOMEM)
3828
		return ret;
3829
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3830 3831 3832
	return 0;
}

3833 3834
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3835
{
3836
	if (mem_cgroup_disabled())
3837
		return 0;
3838 3839 3840
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3841
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3842
					MEM_CGROUP_CHARGE_TYPE_ANON);
3843 3844
}

3845 3846 3847
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3848
 * struct page_cgroup is acquired. This refcnt will be consumed by
3849 3850
 * "commit()" or removed by "cancel()"
 */
3851 3852 3853 3854
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3855
{
3856
	struct mem_cgroup *memcg;
3857
	struct page_cgroup *pc;
3858
	int ret;
3859

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3870 3871
	if (!do_swap_account)
		goto charge_cur_mm;
3872 3873
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3874
		goto charge_cur_mm;
3875 3876
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3877
	css_put(&memcg->css);
3878 3879
	if (ret == -EINTR)
		ret = 0;
3880
	return ret;
3881
charge_cur_mm:
3882 3883 3884 3885
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3886 3887
}

3888 3889 3890 3891 3892 3893
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3908 3909 3910
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3911 3912 3913 3914 3915 3916 3917 3918 3919
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3920
static void
3921
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3922
					enum charge_type ctype)
3923
{
3924
	if (mem_cgroup_disabled())
3925
		return;
3926
	if (!memcg)
3927
		return;
3928

3929
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3930 3931 3932
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3933 3934 3935
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3936
	 */
3937
	if (do_swap_account && PageSwapCache(page)) {
3938
		swp_entry_t ent = {.val = page_private(page)};
3939
		mem_cgroup_uncharge_swap(ent);
3940
	}
3941 3942
}

3943 3944
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3945
{
3946
	__mem_cgroup_commit_charge_swapin(page, memcg,
3947
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3948 3949
}

3950 3951
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3952
{
3953 3954 3955 3956
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3957
	if (mem_cgroup_disabled())
3958 3959 3960 3961 3962 3963 3964
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3965 3966
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3967 3968 3969 3970
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3971 3972
}

3973
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3974 3975
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3976 3977 3978
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3979

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3991
		batch->memcg = memcg;
3992 3993
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3994
	 * In those cases, all pages freed continuously can be expected to be in
3995 3996 3997 3998 3999 4000 4001 4002
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4003
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4004 4005
		goto direct_uncharge;

4006 4007 4008 4009 4010
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4011
	if (batch->memcg != memcg)
4012 4013
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4014
	batch->nr_pages++;
4015
	if (uncharge_memsw)
4016
		batch->memsw_nr_pages++;
4017 4018
	return;
direct_uncharge:
4019
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4020
	if (uncharge_memsw)
4021 4022 4023
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4024
}
4025

4026
/*
4027
 * uncharge if !page_mapped(page)
4028
 */
4029
static struct mem_cgroup *
4030 4031
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4032
{
4033
	struct mem_cgroup *memcg = NULL;
4034 4035
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4036
	bool anon;
4037

4038
	if (mem_cgroup_disabled())
4039
		return NULL;
4040

4041
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
4042

A
Andrea Arcangeli 已提交
4043
	if (PageTransHuge(page)) {
4044
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4045 4046
		VM_BUG_ON(!PageTransHuge(page));
	}
4047
	/*
4048
	 * Check if our page_cgroup is valid
4049
	 */
4050
	pc = lookup_page_cgroup(page);
4051
	if (unlikely(!PageCgroupUsed(pc)))
4052
		return NULL;
4053

4054
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4055

4056
	memcg = pc->mem_cgroup;
4057

K
KAMEZAWA Hiroyuki 已提交
4058 4059 4060
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4061 4062
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4063
	switch (ctype) {
4064
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4065 4066 4067 4068 4069
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4070 4071
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4072
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4073
		/* See mem_cgroup_prepare_migration() */
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4095
	}
K
KAMEZAWA Hiroyuki 已提交
4096

4097
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4098

4099
	ClearPageCgroupUsed(pc);
4100 4101 4102 4103 4104 4105
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4106

4107
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4108
	/*
4109
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4110 4111
	 * will never be freed.
	 */
4112
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4113
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4114 4115
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4116
	}
4117 4118 4119 4120 4121 4122
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4123
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4124

4125
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4126 4127 4128

unlock_out:
	unlock_page_cgroup(pc);
4129
	return NULL;
4130 4131
}

4132 4133
void mem_cgroup_uncharge_page(struct page *page)
{
4134 4135 4136
	/* early check. */
	if (page_mapped(page))
		return;
4137
	VM_BUG_ON(page->mapping && !PageAnon(page));
4138 4139
	if (PageSwapCache(page))
		return;
4140
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4141 4142 4143 4144 4145
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4146
	VM_BUG_ON(page->mapping);
4147
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4148 4149
}

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4164 4165
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4186 4187 4188 4189 4190 4191
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4192
	memcg_oom_recover(batch->memcg);
4193 4194 4195 4196
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4197
#ifdef CONFIG_SWAP
4198
/*
4199
 * called after __delete_from_swap_cache() and drop "page" account.
4200 4201
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4202 4203
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4204 4205
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4206 4207 4208 4209 4210
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4211
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4212

K
KAMEZAWA Hiroyuki 已提交
4213 4214 4215 4216 4217
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4218
		swap_cgroup_record(ent, css_id(&memcg->css));
4219
}
4220
#endif
4221

A
Andrew Morton 已提交
4222
#ifdef CONFIG_MEMCG_SWAP
4223 4224 4225 4226 4227
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4228
{
4229
	struct mem_cgroup *memcg;
4230
	unsigned short id;
4231 4232 4233 4234

	if (!do_swap_account)
		return;

4235 4236 4237
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4238
	if (memcg) {
4239 4240 4241 4242
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4243
		if (!mem_cgroup_is_root(memcg))
4244
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4245
		mem_cgroup_swap_statistics(memcg, false);
4246 4247
		mem_cgroup_put(memcg);
	}
4248
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4249
}
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4266
				struct mem_cgroup *from, struct mem_cgroup *to)
4267 4268 4269 4270 4271 4272 4273 4274
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4275
		mem_cgroup_swap_statistics(to, true);
4276
		/*
4277 4278 4279 4280 4281 4282
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4283 4284 4285 4286 4287 4288 4289 4290
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4291
				struct mem_cgroup *from, struct mem_cgroup *to)
4292 4293 4294
{
	return -EINVAL;
}
4295
#endif
K
KAMEZAWA Hiroyuki 已提交
4296

4297
/*
4298 4299
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4300
 */
4301 4302
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4303
{
4304
	struct mem_cgroup *memcg = NULL;
4305
	unsigned int nr_pages = 1;
4306
	struct page_cgroup *pc;
4307
	enum charge_type ctype;
4308

4309
	*memcgp = NULL;
4310

4311
	if (mem_cgroup_disabled())
4312
		return;
4313

4314 4315 4316
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4317 4318 4319
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4320 4321
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4353
	}
4354
	unlock_page_cgroup(pc);
4355 4356 4357 4358
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4359
	if (!memcg)
4360
		return;
4361

4362
	*memcgp = memcg;
4363 4364 4365 4366 4367 4368 4369
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4370
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4371
	else
4372
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4373 4374 4375 4376 4377
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4378
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4379
}
4380

4381
/* remove redundant charge if migration failed*/
4382
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4383
	struct page *oldpage, struct page *newpage, bool migration_ok)
4384
{
4385
	struct page *used, *unused;
4386
	struct page_cgroup *pc;
4387
	bool anon;
4388

4389
	if (!memcg)
4390
		return;
4391

4392
	if (!migration_ok) {
4393 4394
		used = oldpage;
		unused = newpage;
4395
	} else {
4396
		used = newpage;
4397 4398
		unused = oldpage;
	}
4399
	anon = PageAnon(used);
4400 4401 4402 4403
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4404
	css_put(&memcg->css);
4405
	/*
4406 4407 4408
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4409
	 */
4410 4411 4412 4413 4414
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4415
	/*
4416 4417 4418 4419 4420 4421
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4422
	 */
4423
	if (anon)
4424
		mem_cgroup_uncharge_page(used);
4425
}
4426

4427 4428 4429 4430 4431 4432 4433 4434
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4435
	struct mem_cgroup *memcg = NULL;
4436 4437 4438 4439 4440 4441 4442 4443 4444
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4445 4446 4447 4448 4449
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
4450 4451
	unlock_page_cgroup(pc);

4452 4453 4454 4455 4456 4457
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4458 4459 4460 4461 4462
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4463
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4464 4465
}

4466 4467 4468 4469 4470 4471
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4472 4473 4474 4475 4476
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4496 4497
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4498 4499 4500 4501
	}
}
#endif

4502
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4503
				unsigned long long val)
4504
{
4505
	int retry_count;
4506
	u64 memswlimit, memlimit;
4507
	int ret = 0;
4508 4509
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4510
	int enlarge;
4511 4512 4513 4514 4515 4516 4517 4518 4519

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4520

4521
	enlarge = 0;
4522
	while (retry_count) {
4523 4524 4525 4526
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4527 4528 4529
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4530
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4531 4532 4533 4534 4535 4536
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4537 4538
			break;
		}
4539 4540 4541 4542 4543

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4544
		ret = res_counter_set_limit(&memcg->res, val);
4545 4546 4547 4548 4549 4550
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4551 4552 4553 4554 4555
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4556 4557
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4558 4559 4560 4561 4562 4563
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4564
	}
4565 4566
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4567

4568 4569 4570
	return ret;
}

L
Li Zefan 已提交
4571 4572
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4573
{
4574
	int retry_count;
4575
	u64 memlimit, memswlimit, oldusage, curusage;
4576 4577
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4578
	int enlarge = 0;
4579

4580 4581 4582
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4583 4584 4585 4586 4587 4588 4589 4590
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4591
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4592 4593 4594 4595 4596 4597 4598 4599
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4600 4601 4602
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4603
		ret = res_counter_set_limit(&memcg->memsw, val);
4604 4605 4606 4607 4608 4609
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4610 4611 4612 4613 4614
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4615 4616 4617
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4618
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4619
		/* Usage is reduced ? */
4620
		if (curusage >= oldusage)
4621
			retry_count--;
4622 4623
		else
			oldusage = curusage;
4624
	}
4625 4626
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4627 4628 4629
	return ret;
}

4630
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4631 4632
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4633 4634 4635 4636 4637 4638
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4639
	unsigned long long excess;
4640
	unsigned long nr_scanned;
4641 4642 4643 4644

	if (order > 0)
		return 0;

4645
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4659
		nr_scanned = 0;
4660
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4661
						    gfp_mask, &nr_scanned);
4662
		nr_reclaimed += reclaimed;
4663
		*total_scanned += nr_scanned;
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4686
				if (next_mz == mz)
4687
					css_put(&next_mz->memcg->css);
4688
				else /* next_mz == NULL or other memcg */
4689 4690 4691
					break;
			} while (1);
		}
4692 4693
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4694 4695 4696 4697 4698 4699 4700 4701
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4702
		/* If excess == 0, no tree ops */
4703
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4704
		spin_unlock(&mctz->lock);
4705
		css_put(&mz->memcg->css);
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4718
		css_put(&next_mz->memcg->css);
4719 4720 4721
	return nr_reclaimed;
}

4722 4723 4724 4725 4726 4727 4728
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4729
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4730 4731
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4732
 */
4733
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4734
				int node, int zid, enum lru_list lru)
4735
{
4736
	struct lruvec *lruvec;
4737
	unsigned long flags;
4738
	struct list_head *list;
4739 4740
	struct page *busy;
	struct zone *zone;
4741

K
KAMEZAWA Hiroyuki 已提交
4742
	zone = &NODE_DATA(node)->node_zones[zid];
4743 4744
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4745

4746
	busy = NULL;
4747
	do {
4748
		struct page_cgroup *pc;
4749 4750
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4751
		spin_lock_irqsave(&zone->lru_lock, flags);
4752
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4753
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4754
			break;
4755
		}
4756 4757 4758
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4759
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4760
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4761 4762
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4763
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4764

4765
		pc = lookup_page_cgroup(page);
4766

4767
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4768
			/* found lock contention or "pc" is obsolete. */
4769
			busy = page;
4770 4771 4772
			cond_resched();
		} else
			busy = NULL;
4773
	} while (!list_empty(list));
4774 4775 4776
}

/*
4777 4778
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4779
 * This enables deleting this mem_cgroup.
4780 4781
 *
 * Caller is responsible for holding css reference on the memcg.
4782
 */
4783
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4784
{
4785
	int node, zid;
4786
	u64 usage;
4787

4788
	do {
4789 4790
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4791 4792
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4793
		for_each_node_state(node, N_MEMORY) {
4794
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4795 4796
				enum lru_list lru;
				for_each_lru(lru) {
4797
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4798
							node, zid, lru);
4799
				}
4800
			}
4801
		}
4802 4803
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4804
		cond_resched();
4805

4806
		/*
4807 4808 4809 4810 4811
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4812 4813 4814 4815 4816 4817
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4818 4819 4820
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4821 4822
}

4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
	struct cgroup *pos;

	/* bounce at first found */
	cgroup_for_each_child(pos, memcg->css.cgroup)
		return true;
	return false;
}

/*
4839 4840
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4841 4842 4843 4844 4845 4846 4847 4848 4849
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4860

4861
	/* returns EBUSY if there is a task or if we come here twice. */
4862 4863 4864
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4865 4866
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4867
	/* try to free all pages in this cgroup */
4868
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4869
		int progress;
4870

4871 4872 4873
		if (signal_pending(current))
			return -EINTR;

4874
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4875
						false);
4876
		if (!progress) {
4877
			nr_retries--;
4878
			/* maybe some writeback is necessary */
4879
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4880
		}
4881 4882

	}
K
KAMEZAWA Hiroyuki 已提交
4883
	lru_add_drain();
4884 4885 4886
	mem_cgroup_reparent_charges(memcg);

	return 0;
4887 4888
}

4889
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4890
{
4891 4892 4893
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4894 4895
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4896 4897 4898 4899 4900
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4901 4902 4903
}


4904 4905 4906 4907 4908 4909 4910 4911 4912
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4913
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4914
	struct cgroup *parent = cont->parent;
4915
	struct mem_cgroup *parent_memcg = NULL;
4916 4917

	if (parent)
4918
		parent_memcg = mem_cgroup_from_cont(parent);
4919

4920
	mutex_lock(&memcg_create_mutex);
4921 4922 4923 4924

	if (memcg->use_hierarchy == val)
		goto out;

4925
	/*
4926
	 * If parent's use_hierarchy is set, we can't make any modifications
4927 4928 4929 4930 4931 4932
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4933
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4934
				(val == 1 || val == 0)) {
4935
		if (!__memcg_has_children(memcg))
4936
			memcg->use_hierarchy = val;
4937 4938 4939 4940
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4941 4942

out:
4943
	mutex_unlock(&memcg_create_mutex);
4944 4945 4946 4947

	return retval;
}

4948

4949
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4950
					       enum mem_cgroup_stat_index idx)
4951
{
K
KAMEZAWA Hiroyuki 已提交
4952
	struct mem_cgroup *iter;
4953
	long val = 0;
4954

4955
	/* Per-cpu values can be negative, use a signed accumulator */
4956
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4957 4958 4959 4960 4961
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4962 4963
}

4964
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4965
{
K
KAMEZAWA Hiroyuki 已提交
4966
	u64 val;
4967

4968
	if (!mem_cgroup_is_root(memcg)) {
4969
		if (!swap)
4970
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4971
		else
4972
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4973 4974
	}

4975 4976
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4977

K
KAMEZAWA Hiroyuki 已提交
4978
	if (swap)
4979
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4980 4981 4982 4983

	return val << PAGE_SHIFT;
}

4984 4985 4986
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4987
{
4988
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4989
	char str[64];
4990
	u64 val;
G
Glauber Costa 已提交
4991 4992
	int name, len;
	enum res_type type;
4993 4994 4995

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4996 4997 4998 4999

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5000 5001
	switch (type) {
	case _MEM:
5002
		if (name == RES_USAGE)
5003
			val = mem_cgroup_usage(memcg, false);
5004
		else
5005
			val = res_counter_read_u64(&memcg->res, name);
5006 5007
		break;
	case _MEMSWAP:
5008
		if (name == RES_USAGE)
5009
			val = mem_cgroup_usage(memcg, true);
5010
		else
5011
			val = res_counter_read_u64(&memcg->memsw, name);
5012
		break;
5013 5014 5015
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5016 5017 5018
	default:
		BUG();
	}
5019 5020 5021

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5022
}
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5041
	mutex_lock(&memcg_create_mutex);
5042 5043
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5044
		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5045 5046 5047 5048 5049 5050
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5051 5052 5053 5054 5055
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5056 5057 5058 5059 5060 5061 5062
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);

5063 5064 5065 5066 5067 5068 5069
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
5070 5071 5072 5073
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5074
	mutex_unlock(&memcg_create_mutex);
5075 5076 5077 5078
#endif
	return ret;
}

5079
#ifdef CONFIG_MEMCG_KMEM
5080
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5081
{
5082
	int ret = 0;
5083 5084
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5085 5086
		goto out;

5087
	memcg->kmem_account_flags = parent->kmem_account_flags;
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5115
}
5116
#endif /* CONFIG_MEMCG_KMEM */
5117

5118 5119 5120 5121
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5122 5123
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5124
{
5125
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5126 5127
	enum res_type type;
	int name;
5128 5129 5130
	unsigned long long val;
	int ret;

5131 5132
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5133 5134 5135 5136

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5137
	switch (name) {
5138
	case RES_LIMIT:
5139 5140 5141 5142
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5143 5144
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5145 5146 5147
		if (ret)
			break;
		if (type == _MEM)
5148
			ret = mem_cgroup_resize_limit(memcg, val);
5149
		else if (type == _MEMSWAP)
5150
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5151 5152 5153 5154
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5155
		break;
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5170 5171 5172 5173 5174
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5175 5176
}

5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5204
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5205
{
5206
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5207 5208
	int name;
	enum res_type type;
5209

5210 5211
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5212 5213 5214 5215

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5216
	switch (name) {
5217
	case RES_MAX_USAGE:
5218
		if (type == _MEM)
5219
			res_counter_reset_max(&memcg->res);
5220
		else if (type == _MEMSWAP)
5221
			res_counter_reset_max(&memcg->memsw);
5222 5223 5224 5225
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5226 5227
		break;
	case RES_FAILCNT:
5228
		if (type == _MEM)
5229
			res_counter_reset_failcnt(&memcg->res);
5230
		else if (type == _MEMSWAP)
5231
			res_counter_reset_failcnt(&memcg->memsw);
5232 5233 5234 5235
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5236 5237
		break;
	}
5238

5239
	return 0;
5240 5241
}

5242 5243 5244 5245 5246 5247
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5248
#ifdef CONFIG_MMU
5249 5250 5251
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5252
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5253 5254 5255

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5256

5257
	/*
5258 5259 5260 5261
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5262
	 */
5263
	memcg->move_charge_at_immigrate = val;
5264 5265
	return 0;
}
5266 5267 5268 5269 5270 5271 5272
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5273

5274
#ifdef CONFIG_NUMA
5275
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5276
				      struct seq_file *m)
5277 5278 5279 5280
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5281
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5282

5283
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5284
	seq_printf(m, "total=%lu", total_nr);
5285
	for_each_node_state(nid, N_MEMORY) {
5286
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5287 5288 5289 5290
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5291
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5292
	seq_printf(m, "file=%lu", file_nr);
5293
	for_each_node_state(nid, N_MEMORY) {
5294
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5295
				LRU_ALL_FILE);
5296 5297 5298 5299
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5300
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5301
	seq_printf(m, "anon=%lu", anon_nr);
5302
	for_each_node_state(nid, N_MEMORY) {
5303
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5304
				LRU_ALL_ANON);
5305 5306 5307 5308
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5309
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5310
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5311
	for_each_node_state(nid, N_MEMORY) {
5312
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5313
				BIT(LRU_UNEVICTABLE));
5314 5315 5316 5317 5318 5319 5320
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5321 5322 5323 5324 5325
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5326
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5327
				 struct seq_file *m)
5328
{
5329
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5330 5331
	struct mem_cgroup *mi;
	unsigned int i;
5332

5333
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5334
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5335
			continue;
5336 5337
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5338
	}
L
Lee Schermerhorn 已提交
5339

5340 5341 5342 5343 5344 5345 5346 5347
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5348
	/* Hierarchical information */
5349 5350
	{
		unsigned long long limit, memsw_limit;
5351
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5352
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5353
		if (do_swap_account)
5354 5355
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5356
	}
K
KOSAKI Motohiro 已提交
5357

5358 5359 5360
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5361
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5362
			continue;
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5383
	}
K
KAMEZAWA Hiroyuki 已提交
5384

K
KOSAKI Motohiro 已提交
5385 5386 5387 5388
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5389
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5390 5391 5392 5393 5394
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5395
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5396
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5397

5398 5399 5400 5401
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5402
			}
5403 5404 5405 5406
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5407 5408 5409
	}
#endif

5410 5411 5412
	return 0;
}

K
KOSAKI Motohiro 已提交
5413 5414 5415 5416
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5417
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5418 5419 5420 5421 5422 5423 5424
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5425

K
KOSAKI Motohiro 已提交
5426 5427 5428 5429 5430 5431 5432
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5433

5434
	mutex_lock(&memcg_create_mutex);
5435

K
KOSAKI Motohiro 已提交
5436
	/* If under hierarchy, only empty-root can set this value */
5437
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5438
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5439
		return -EINVAL;
5440
	}
K
KOSAKI Motohiro 已提交
5441 5442 5443

	memcg->swappiness = val;

5444
	mutex_unlock(&memcg_create_mutex);
5445

K
KOSAKI Motohiro 已提交
5446 5447 5448
	return 0;
}

5449 5450 5451 5452 5453 5454 5455 5456
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5457
		t = rcu_dereference(memcg->thresholds.primary);
5458
	else
5459
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5460 5461 5462 5463 5464 5465 5466

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5467
	 * current_threshold points to threshold just below or equal to usage.
5468 5469 5470
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5471
	i = t->current_threshold;
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5495
	t->current_threshold = i - 1;
5496 5497 5498 5499 5500 5501
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5502 5503 5504 5505 5506 5507 5508
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5519
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5520 5521 5522
{
	struct mem_cgroup_eventfd_list *ev;

5523
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5524 5525 5526 5527
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5528
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5529
{
K
KAMEZAWA Hiroyuki 已提交
5530 5531
	struct mem_cgroup *iter;

5532
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5533
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5534 5535 5536 5537
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5538 5539
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5540 5541
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5542
	enum res_type type = MEMFILE_TYPE(cft->private);
5543
	u64 threshold, usage;
5544
	int i, size, ret;
5545 5546 5547 5548 5549 5550

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5551

5552
	if (type == _MEM)
5553
		thresholds = &memcg->thresholds;
5554
	else if (type == _MEMSWAP)
5555
		thresholds = &memcg->memsw_thresholds;
5556 5557 5558 5559 5560 5561
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5562
	if (thresholds->primary)
5563 5564
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5565
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5566 5567

	/* Allocate memory for new array of thresholds */
5568
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5569
			GFP_KERNEL);
5570
	if (!new) {
5571 5572 5573
		ret = -ENOMEM;
		goto unlock;
	}
5574
	new->size = size;
5575 5576

	/* Copy thresholds (if any) to new array */
5577 5578
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5579
				sizeof(struct mem_cgroup_threshold));
5580 5581
	}

5582
	/* Add new threshold */
5583 5584
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5585 5586

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5587
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5588 5589 5590
			compare_thresholds, NULL);

	/* Find current threshold */
5591
	new->current_threshold = -1;
5592
	for (i = 0; i < size; i++) {
5593
		if (new->entries[i].threshold <= usage) {
5594
			/*
5595 5596
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5597 5598
			 * it here.
			 */
5599
			++new->current_threshold;
5600 5601
		} else
			break;
5602 5603
	}

5604 5605 5606 5607 5608
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5609

5610
	/* To be sure that nobody uses thresholds */
5611 5612 5613 5614 5615 5616 5617 5618
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5619
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5620
	struct cftype *cft, struct eventfd_ctx *eventfd)
5621 5622
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5623 5624
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5625
	enum res_type type = MEMFILE_TYPE(cft->private);
5626
	u64 usage;
5627
	int i, j, size;
5628 5629 5630

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5631
		thresholds = &memcg->thresholds;
5632
	else if (type == _MEMSWAP)
5633
		thresholds = &memcg->memsw_thresholds;
5634 5635 5636
	else
		BUG();

5637 5638 5639
	if (!thresholds->primary)
		goto unlock;

5640 5641 5642 5643 5644 5645
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5646 5647 5648
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5649 5650 5651
			size++;
	}

5652
	new = thresholds->spare;
5653

5654 5655
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5656 5657
		kfree(new);
		new = NULL;
5658
		goto swap_buffers;
5659 5660
	}

5661
	new->size = size;
5662 5663

	/* Copy thresholds and find current threshold */
5664 5665 5666
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5667 5668
			continue;

5669
		new->entries[j] = thresholds->primary->entries[i];
5670
		if (new->entries[j].threshold <= usage) {
5671
			/*
5672
			 * new->current_threshold will not be used
5673 5674 5675
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5676
			++new->current_threshold;
5677 5678 5679 5680
		}
		j++;
	}

5681
swap_buffers:
5682 5683
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5684 5685 5686 5687 5688 5689
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5690
	rcu_assign_pointer(thresholds->primary, new);
5691

5692
	/* To be sure that nobody uses thresholds */
5693
	synchronize_rcu();
5694
unlock:
5695 5696
	mutex_unlock(&memcg->thresholds_lock);
}
5697

K
KAMEZAWA Hiroyuki 已提交
5698 5699 5700 5701 5702
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5703
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5704 5705 5706 5707 5708 5709

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5710
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5711 5712 5713 5714 5715

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5716
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5717
		eventfd_signal(eventfd, 1);
5718
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5719 5720 5721 5722

	return 0;
}

5723
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5724 5725
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5726
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5727
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5728
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5729 5730 5731

	BUG_ON(type != _OOM_TYPE);

5732
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5733

5734
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5735 5736 5737 5738 5739 5740
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5741
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5742 5743
}

5744 5745 5746
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5747
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5748

5749
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5750

5751
	if (atomic_read(&memcg->under_oom))
5752 5753 5754 5755 5756 5757 5758 5759 5760
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5761
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5762 5763 5764 5765 5766 5767 5768 5769
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

5770
	mutex_lock(&memcg_create_mutex);
5771
	/* oom-kill-disable is a flag for subhierarchy. */
5772
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5773
		mutex_unlock(&memcg_create_mutex);
5774 5775
		return -EINVAL;
	}
5776
	memcg->oom_kill_disable = val;
5777
	if (!val)
5778
		memcg_oom_recover(memcg);
5779
	mutex_unlock(&memcg_create_mutex);
5780 5781 5782
	return 0;
}

A
Andrew Morton 已提交
5783
#ifdef CONFIG_MEMCG_KMEM
5784
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5785
{
5786 5787
	int ret;

5788
	memcg->kmemcg_id = -1;
5789 5790 5791
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5792

5793
	return mem_cgroup_sockets_init(memcg, ss);
5794 5795
};

5796
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5797
{
5798
	mem_cgroup_sockets_destroy(memcg);
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5813
}
5814
#else
5815
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5816 5817 5818
{
	return 0;
}
G
Glauber Costa 已提交
5819

5820
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5821 5822
{
}
5823 5824
#endif

B
Balbir Singh 已提交
5825 5826
static struct cftype mem_cgroup_files[] = {
	{
5827
		.name = "usage_in_bytes",
5828
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5829
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5830 5831
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5832
	},
5833 5834
	{
		.name = "max_usage_in_bytes",
5835
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5836
		.trigger = mem_cgroup_reset,
5837
		.read = mem_cgroup_read,
5838
	},
B
Balbir Singh 已提交
5839
	{
5840
		.name = "limit_in_bytes",
5841
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5842
		.write_string = mem_cgroup_write,
5843
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5844
	},
5845 5846 5847 5848
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5849
		.read = mem_cgroup_read,
5850
	},
B
Balbir Singh 已提交
5851 5852
	{
		.name = "failcnt",
5853
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5854
		.trigger = mem_cgroup_reset,
5855
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5856
	},
5857 5858
	{
		.name = "stat",
5859
		.read_seq_string = memcg_stat_show,
5860
	},
5861 5862 5863 5864
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5865 5866 5867 5868 5869
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5870 5871 5872 5873 5874
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5875 5876 5877 5878 5879
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5880 5881
	{
		.name = "oom_control",
5882 5883
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5884 5885 5886 5887
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5888 5889 5890
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5891
		.read_seq_string = memcg_numa_stat_show,
5892 5893
	},
#endif
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5918 5919 5920 5921 5922 5923
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5924
#endif
5925
	{ },	/* terminate */
5926
};
5927

5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5958
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5959 5960
{
	struct mem_cgroup_per_node *pn;
5961
	struct mem_cgroup_per_zone *mz;
5962
	int zone, tmp = node;
5963 5964 5965 5966 5967 5968 5969 5970
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5971 5972
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5973
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5974 5975
	if (!pn)
		return 1;
5976 5977

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5978 5979
		int prio;

5980
		mz = &pn->zoneinfo[zone];
5981
		lruvec_init(&mz->lruvec);
5982 5983
		for (prio = 0; prio < DEF_PRIORITY + 1; prio++)
			spin_lock_init(&mz->reclaim_iter[prio].iter_lock);
5984
		mz->usage_in_excess = 0;
5985
		mz->on_tree = false;
5986
		mz->memcg = memcg;
5987
	}
5988
	memcg->info.nodeinfo[node] = pn;
5989 5990 5991
	return 0;
}

5992
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5993
{
5994
	kfree(memcg->info.nodeinfo[node]);
5995 5996
}

5997 5998
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5999
	struct mem_cgroup *memcg;
6000
	size_t size = memcg_size();
6001

6002
	/* Can be very big if nr_node_ids is very big */
6003
	if (size < PAGE_SIZE)
6004
		memcg = kzalloc(size, GFP_KERNEL);
6005
	else
6006
		memcg = vzalloc(size);
6007

6008
	if (!memcg)
6009 6010
		return NULL;

6011 6012
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6013
		goto out_free;
6014 6015
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6016 6017 6018

out_free:
	if (size < PAGE_SIZE)
6019
		kfree(memcg);
6020
	else
6021
		vfree(memcg);
6022
	return NULL;
6023 6024
}

6025
/*
6026 6027 6028 6029 6030 6031 6032 6033
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6034
 */
6035 6036

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6037
{
6038
	int node;
6039
	size_t size = memcg_size();
6040

6041 6042 6043 6044 6045 6046 6047 6048
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6060
	disarm_static_keys(memcg);
6061 6062 6063 6064
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6065
}
6066

6067

6068
/*
6069 6070 6071
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
6072
 */
6073
static void free_work(struct work_struct *work)
6074
{
6075
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6076

6077 6078 6079
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
6080

6081 6082 6083
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6084

6085 6086 6087
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
6088 6089
}

6090
static void mem_cgroup_get(struct mem_cgroup *memcg)
6091
{
6092
	atomic_inc(&memcg->refcnt);
6093 6094
}

6095
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6096
{
6097 6098
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6099
		call_rcu(&memcg->rcu_freeing, free_rcu);
6100 6101 6102
		if (parent)
			mem_cgroup_put(parent);
	}
6103 6104
}

6105
static void mem_cgroup_put(struct mem_cgroup *memcg)
6106
{
6107
	__mem_cgroup_put(memcg, 1);
6108 6109
}

6110 6111 6112
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6113
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6114
{
6115
	if (!memcg->res.parent)
6116
		return NULL;
6117
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6118
}
G
Glauber Costa 已提交
6119
EXPORT_SYMBOL(parent_mem_cgroup);
6120

6121
static void __init mem_cgroup_soft_limit_tree_init(void)
6122 6123 6124 6125 6126
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6127
	for_each_node(node) {
6128 6129 6130 6131
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6132
		BUG_ON(!rtpn);
6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6144
static struct cgroup_subsys_state * __ref
6145
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6146
{
6147
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6148
	long error = -ENOMEM;
6149
	int node;
B
Balbir Singh 已提交
6150

6151 6152
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6153
		return ERR_PTR(error);
6154

B
Bob Liu 已提交
6155
	for_each_node(node)
6156
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6157
			goto free_out;
6158

6159
	/* root ? */
6160
	if (cont->parent == NULL) {
6161
		root_mem_cgroup = memcg;
6162 6163 6164
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6165
	}
6166

6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
mem_cgroup_css_online(struct cgroup *cont)
{
	struct mem_cgroup *memcg, *parent;
	int error = 0;

	if (!cont->parent)
		return 0;

6190
	mutex_lock(&memcg_create_mutex);
6191 6192 6193 6194 6195 6196 6197 6198
	memcg = mem_cgroup_from_cont(cont);
	parent = mem_cgroup_from_cont(cont->parent);

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6199 6200
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6201
		res_counter_init(&memcg->kmem, &parent->kmem);
6202

6203 6204 6205 6206 6207 6208 6209
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6210
	} else {
6211 6212
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6213
		res_counter_init(&memcg->kmem, NULL);
6214 6215 6216 6217 6218
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6219
		if (parent != root_mem_cgroup)
6220
			mem_cgroup_subsys.broken_hierarchy = true;
6221
	}
6222 6223

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6224
	mutex_unlock(&memcg_create_mutex);
6225 6226 6227 6228 6229 6230 6231
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
6232 6233
		if (parent->use_hierarchy)
			mem_cgroup_put(parent);
6234
	}
6235
	return error;
B
Balbir Singh 已提交
6236 6237
}

6238
static void mem_cgroup_css_offline(struct cgroup *cont)
6239
{
6240
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6241

6242
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6243
	mem_cgroup_destroy_all_caches(memcg);
6244 6245
}

6246
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6247
{
6248
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6249

6250
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6251

6252
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6253 6254
}

6255
#ifdef CONFIG_MMU
6256
/* Handlers for move charge at task migration. */
6257 6258
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6259
{
6260 6261
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6262
	struct mem_cgroup *memcg = mc.to;
6263

6264
	if (mem_cgroup_is_root(memcg)) {
6265 6266 6267 6268 6269 6270 6271 6272
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6273
		 * "memcg" cannot be under rmdir() because we've already checked
6274 6275 6276 6277
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6278
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6279
			goto one_by_one;
6280
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6281
						PAGE_SIZE * count, &dummy)) {
6282
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6299 6300
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6301
		if (ret)
6302
			/* mem_cgroup_clear_mc() will do uncharge later */
6303
			return ret;
6304 6305
		mc.precharge++;
	}
6306 6307 6308 6309
	return ret;
}

/**
6310
 * get_mctgt_type - get target type of moving charge
6311 6312 6313
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6314
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6315 6316 6317 6318 6319 6320
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6321 6322 6323
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6324 6325 6326 6327 6328
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6329
	swp_entry_t	ent;
6330 6331 6332
};

enum mc_target_type {
6333
	MC_TARGET_NONE = 0,
6334
	MC_TARGET_PAGE,
6335
	MC_TARGET_SWAP,
6336 6337
};

D
Daisuke Nishimura 已提交
6338 6339
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6340
{
D
Daisuke Nishimura 已提交
6341
	struct page *page = vm_normal_page(vma, addr, ptent);
6342

D
Daisuke Nishimura 已提交
6343 6344 6345 6346
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6347
		if (!move_anon())
D
Daisuke Nishimura 已提交
6348
			return NULL;
6349 6350
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6351 6352 6353 6354 6355 6356 6357
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6358
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6359 6360 6361 6362 6363 6364 6365 6366
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6367 6368 6369 6370
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6371
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6372 6373 6374 6375 6376
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6377 6378 6379 6380 6381 6382 6383
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6384

6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6404 6405 6406 6407 6408 6409
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6410
		if (do_swap_account)
6411
			*entry = swap;
6412
		page = find_get_page(swap_address_space(swap), swap.val);
6413
	}
6414
#endif
6415 6416 6417
	return page;
}

6418
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6419 6420 6421 6422
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6423
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6424 6425 6426 6427 6428 6429
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6430 6431
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6432 6433

	if (!page && !ent.val)
6434
		return ret;
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6450 6451
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6452
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6453 6454 6455
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6456 6457 6458 6459
	}
	return ret;
}

6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6495 6496 6497 6498 6499 6500 6501 6502
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6503 6504 6505 6506
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6507
		return 0;
6508
	}
6509

6510 6511
	if (pmd_trans_unstable(pmd))
		return 0;
6512 6513
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6514
		if (get_mctgt_type(vma, addr, *pte, NULL))
6515 6516 6517 6518
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6519 6520 6521
	return 0;
}

6522 6523 6524 6525 6526
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6527
	down_read(&mm->mmap_sem);
6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6539
	up_read(&mm->mmap_sem);
6540 6541 6542 6543 6544 6545 6546 6547 6548

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6549 6550 6551 6552 6553
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6554 6555
}

6556 6557
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6558
{
6559 6560 6561
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6562
	/* we must uncharge all the leftover precharges from mc.to */
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6574
	}
6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6609
	spin_lock(&mc.lock);
6610 6611
	mc.from = NULL;
	mc.to = NULL;
6612
	spin_unlock(&mc.lock);
6613
	mem_cgroup_end_move(from);
6614 6615
}

6616 6617
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6618
{
6619
	struct task_struct *p = cgroup_taskset_first(tset);
6620
	int ret = 0;
6621
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6622
	unsigned long move_charge_at_immigrate;
6623

6624 6625 6626 6627 6628 6629 6630
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6631 6632 6633
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6634
		VM_BUG_ON(from == memcg);
6635 6636 6637 6638 6639

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6640 6641 6642 6643
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6644
			VM_BUG_ON(mc.moved_charge);
6645
			VM_BUG_ON(mc.moved_swap);
6646
			mem_cgroup_start_move(from);
6647
			spin_lock(&mc.lock);
6648
			mc.from = from;
6649
			mc.to = memcg;
6650
			mc.immigrate_flags = move_charge_at_immigrate;
6651
			spin_unlock(&mc.lock);
6652
			/* We set mc.moving_task later */
6653 6654 6655 6656

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6657 6658
		}
		mmput(mm);
6659 6660 6661 6662
	}
	return ret;
}

6663 6664
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6665
{
6666
	mem_cgroup_clear_mc();
6667 6668
}

6669 6670 6671
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6672
{
6673 6674 6675 6676
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6677 6678 6679 6680
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6681

6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6693
		if (mc.precharge < HPAGE_PMD_NR) {
6694 6695 6696 6697 6698 6699 6700 6701 6702
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6703
							pc, mc.from, mc.to)) {
6704 6705 6706 6707 6708 6709 6710 6711
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6712
		return 0;
6713 6714
	}

6715 6716
	if (pmd_trans_unstable(pmd))
		return 0;
6717 6718 6719 6720
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6721
		swp_entry_t ent;
6722 6723 6724 6725

		if (!mc.precharge)
			break;

6726
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6727 6728 6729 6730 6731
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6732
			if (!mem_cgroup_move_account(page, 1, pc,
6733
						     mc.from, mc.to)) {
6734
				mc.precharge--;
6735 6736
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6737 6738
			}
			putback_lru_page(page);
6739
put:			/* get_mctgt_type() gets the page */
6740 6741
			put_page(page);
			break;
6742 6743
		case MC_TARGET_SWAP:
			ent = target.ent;
6744
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6745
				mc.precharge--;
6746 6747 6748
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6749
			break;
6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6764
		ret = mem_cgroup_do_precharge(1);
6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6808
	up_read(&mm->mmap_sem);
6809 6810
}

6811 6812
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6813
{
6814
	struct task_struct *p = cgroup_taskset_first(tset);
6815
	struct mm_struct *mm = get_task_mm(p);
6816 6817

	if (mm) {
6818 6819
		if (mc.to)
			mem_cgroup_move_charge(mm);
6820 6821
		mmput(mm);
	}
6822 6823
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6824
}
6825
#else	/* !CONFIG_MMU */
6826 6827
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6828 6829 6830
{
	return 0;
}
6831 6832
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6833 6834
{
}
6835 6836
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6837 6838 6839
{
}
#endif
B
Balbir Singh 已提交
6840

B
Balbir Singh 已提交
6841 6842 6843
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6844
	.css_alloc = mem_cgroup_css_alloc,
6845
	.css_online = mem_cgroup_css_online,
6846 6847
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6848 6849
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6850
	.attach = mem_cgroup_move_task,
6851
	.base_cftypes = mem_cgroup_files,
6852
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6853
	.use_id = 1,
B
Balbir Singh 已提交
6854
};
6855

A
Andrew Morton 已提交
6856
#ifdef CONFIG_MEMCG_SWAP
6857 6858 6859
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6860
	if (!strcmp(s, "1"))
6861
		really_do_swap_account = 1;
6862
	else if (!strcmp(s, "0"))
6863 6864 6865
		really_do_swap_account = 0;
	return 1;
}
6866
__setup("swapaccount=", enable_swap_account);
6867

6868 6869
static void __init memsw_file_init(void)
{
6870 6871 6872 6873 6874 6875 6876 6877 6878
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6879
}
6880

6881
#else
6882
static void __init enable_swap_cgroup(void)
6883 6884
{
}
6885
#endif
6886 6887

/*
6888 6889 6890 6891 6892 6893
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6894 6895 6896 6897
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6898
	enable_swap_cgroup();
6899
	mem_cgroup_soft_limit_tree_init();
6900
	memcg_stock_init();
6901 6902 6903
	return 0;
}
subsys_initcall(mem_cgroup_init);