memcontrol.c 145.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

A
Andrew Morton 已提交
64
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68

/* for remember boot option*/
A
Andrew Morton 已提交
69
#ifdef CONFIG_MEMCG_SWAP_ENABLED
70 71 72 73 74
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75
#else
76
#define do_swap_account		0
77 78 79
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97 98 99 100
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

101 102 103
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
104 105
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
106 107
	MEM_CGROUP_EVENTS_NSTATS,
};
108 109 110 111 112 113 114 115

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

116 117 118 119 120 121 122 123 124
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
125
	MEM_CGROUP_TARGET_NUMAINFO,
126 127
	MEM_CGROUP_NTARGETS,
};
128 129 130
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
131

132
struct mem_cgroup_stat_cpu {
133
	long count[MEM_CGROUP_STAT_NSTATS];
134
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135
	unsigned long nr_page_events;
136
	unsigned long targets[MEM_CGROUP_NTARGETS];
137 138
};

139 140 141 142 143 144 145
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

146 147 148 149
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
150
	struct lruvec		lruvec;
151
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
152

153 154
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

155 156 157 158
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
159
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
160
						/* use container_of	   */
161 162 163 164 165 166 167 168 169 170
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

191 192 193 194 195
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
196
/* For threshold */
197
struct mem_cgroup_threshold_ary {
198
	/* An array index points to threshold just below or equal to usage. */
199
	int current_threshold;
200 201 202 203 204
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
205 206 207 208 209 210 211 212 213 214 215 216

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
217 218 219 220 221
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
222

223 224
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225

B
Balbir Singh 已提交
226 227 228 229 230 231 232
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 234 235
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
236 237 238 239 240 241 242
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
261 262
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
263 264 265 266
		 */
		struct work_struct work_freeing;
	};

267 268 269 270
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
271
	struct mem_cgroup_lru_info info;
272 273 274
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
275 276
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
277
#endif
278 279 280 281
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
282 283 284 285

	bool		oom_lock;
	atomic_t	under_oom;

286
	atomic_t	refcnt;
287

288
	int	swappiness;
289 290
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
291

292 293 294
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

295 296 297 298
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
299
	struct mem_cgroup_thresholds thresholds;
300

301
	/* thresholds for mem+swap usage. RCU-protected */
302
	struct mem_cgroup_thresholds memsw_thresholds;
303

K
KAMEZAWA Hiroyuki 已提交
304 305
	/* For oom notifier event fd */
	struct list_head oom_notify;
306

307 308 309 310 311
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
312 313 314 315
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
316 317
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
318
	/*
319
	 * percpu counter.
320
	 */
321
	struct mem_cgroup_stat_cpu __percpu *stat;
322 323 324 325 326 327
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
328 329 330 331

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
332 333
};

334 335 336 337 338 339
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
340
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
341
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
342 343 344
	NR_MOVE_TYPE,
};

345 346
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
347
	spinlock_t	  lock; /* for from, to */
348 349 350
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
351
	unsigned long moved_charge;
352
	unsigned long moved_swap;
353 354 355
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
356
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 358
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
359

D
Daisuke Nishimura 已提交
360 361 362 363 364 365
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

366 367 368 369 370 371
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

372 373 374 375
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
376 377
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
378

379 380
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381
	MEM_CGROUP_CHARGE_TYPE_ANON,
382
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
K
KAMEZAWA Hiroyuki 已提交
383
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
384
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
385 386 387
	NR_CHARGE_TYPE,
};

388
/* for encoding cft->private value on file */
389 390 391
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
392 393
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
394
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
395 396
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
397

398 399 400 401 402 403 404 405
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

406 407
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
408 409

/* Writing them here to avoid exposing memcg's inner layout */
A
Andrew Morton 已提交
410
#ifdef CONFIG_MEMCG_KMEM
G
Glauber Costa 已提交
411
#include <net/sock.h>
G
Glauber Costa 已提交
412
#include <net/ip.h>
G
Glauber Costa 已提交
413 414 415 416

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
417
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
418
		struct mem_cgroup *memcg;
419
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
420 421 422

		BUG_ON(!sk->sk_prot->proto_cgroup);

423 424 425 426 427 428 429 430 431 432 433 434 435 436
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
437 438
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
439 440
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
441
			mem_cgroup_get(memcg);
442
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
443 444 445 446 447 448 449 450
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
451
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
452 453 454 455 456 457
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
458

459
#ifdef CONFIG_INET
G
Glauber Costa 已提交
460 461 462 463 464 465 466 467
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
468
#endif /* CONFIG_INET */
A
Andrew Morton 已提交
469
#endif /* CONFIG_MEMCG_KMEM */
G
Glauber Costa 已提交
470

A
Andrew Morton 已提交
471
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
472 473 474 475 476 477 478 479 480 481 482 483
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

484
static void drain_all_stock_async(struct mem_cgroup *memcg);
485

486
static struct mem_cgroup_per_zone *
487
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
488
{
489
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
490 491
}

492
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
493
{
494
	return &memcg->css;
495 496
}

497
static struct mem_cgroup_per_zone *
498
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
499
{
500 501
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
502

503
	return mem_cgroup_zoneinfo(memcg, nid, zid);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
522
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
523
				struct mem_cgroup_per_zone *mz,
524 525
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
526 527 528 529 530 531 532 533
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

534 535 536
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
553 554 555
}

static void
556
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
557 558 559 560 561 562 563 564 565
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

566
static void
567
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
568 569 570 571
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
572
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
	spin_unlock(&mctz->lock);
}


577
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
578
{
579
	unsigned long long excess;
580 581
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
582 583
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
584 585 586
	mctz = soft_limit_tree_from_page(page);

	/*
587 588
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
589
	 */
590 591 592
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
593 594 595 596
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
597
		if (excess || mz->on_tree) {
598 599 600
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
601
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
602
			/*
603 604
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
605
			 */
606
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
607 608
			spin_unlock(&mctz->lock);
		}
609 610 611
	}
}

612
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
613 614 615 616 617
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
618
	for_each_node(node) {
619
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
620
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
621
			mctz = soft_limit_tree_node_zone(node, zone);
622
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
623 624 625 626
		}
	}
}

627 628 629 630
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
631
	struct mem_cgroup_per_zone *mz;
632 633

retry:
634
	mz = NULL;
635 636 637 638 639 640 641 642 643 644
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
645 646 647
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
683
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
684
				 enum mem_cgroup_stat_index idx)
685
{
686
	long val = 0;
687 688
	int cpu;

689 690
	get_online_cpus();
	for_each_online_cpu(cpu)
691
		val += per_cpu(memcg->stat->count[idx], cpu);
692
#ifdef CONFIG_HOTPLUG_CPU
693 694 695
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
696 697
#endif
	put_online_cpus();
698 699 700
	return val;
}

701
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
702 703 704
					 bool charge)
{
	int val = (charge) ? 1 : -1;
705
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
706 707
}

708
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
709 710 711 712 713 714
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
715
		val += per_cpu(memcg->stat->events[idx], cpu);
716
#ifdef CONFIG_HOTPLUG_CPU
717 718 719
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
720 721 722 723
#endif
	return val;
}

724
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
725
					 bool anon, int nr_pages)
726
{
727 728
	preempt_disable();

729 730 731 732 733 734
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
735
				nr_pages);
736
	else
737
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
738
				nr_pages);
739

740 741
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
742
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
743
	else {
744
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
745 746
		nr_pages = -nr_pages; /* for event */
	}
747

748
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
749

750
	preempt_enable();
751 752
}

753
unsigned long
754
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
755 756 757 758 759 760 761 762
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
763
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
764
			unsigned int lru_mask)
765 766
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
767
	enum lru_list lru;
768 769
	unsigned long ret = 0;

770
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
771

H
Hugh Dickins 已提交
772 773 774
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
775 776 777 778 779
	}
	return ret;
}

static unsigned long
780
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
781 782
			int nid, unsigned int lru_mask)
{
783 784 785
	u64 total = 0;
	int zid;

786
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
787 788
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
789

790 791
	return total;
}
792

793
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
794
			unsigned int lru_mask)
795
{
796
	int nid;
797 798
	u64 total = 0;

799
	for_each_node_state(nid, N_HIGH_MEMORY)
800
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
801
	return total;
802 803
}

804 805
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
806 807 808
{
	unsigned long val, next;

809
	val = __this_cpu_read(memcg->stat->nr_page_events);
810
	next = __this_cpu_read(memcg->stat->targets[target]);
811
	/* from time_after() in jiffies.h */
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
828
	}
829
	return false;
830 831 832 833 834 835
}

/*
 * Check events in order.
 *
 */
836
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
837
{
838
	preempt_disable();
839
	/* threshold event is triggered in finer grain than soft limit */
840 841
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
842 843
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
844 845 846 847 848 849 850 851 852

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

853
		mem_cgroup_threshold(memcg);
854
		if (unlikely(do_softlimit))
855
			mem_cgroup_update_tree(memcg, page);
856
#if MAX_NUMNODES > 1
857
		if (unlikely(do_numainfo))
858
			atomic_inc(&memcg->numainfo_events);
859
#endif
860 861
	} else
		preempt_enable();
862 863
}

G
Glauber Costa 已提交
864
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
865 866 867 868 869 870
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

871
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
872
{
873 874 875 876 877 878 879 880
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

881 882 883 884
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

885
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
886
{
887
	struct mem_cgroup *memcg = NULL;
888 889 890

	if (!mm)
		return NULL;
891 892 893 894 895 896 897
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
898 899
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
900
			break;
901
	} while (!css_tryget(&memcg->css));
902
	rcu_read_unlock();
903
	return memcg;
904 905
}

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
926
{
927 928
	struct mem_cgroup *memcg = NULL;
	int id = 0;
929

930 931 932
	if (mem_cgroup_disabled())
		return NULL;

933 934
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
935

936 937
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
938

939 940
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
941

942 943 944 945 946
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
947

948
	while (!memcg) {
949
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
950
		struct cgroup_subsys_state *css;
951

952 953 954 955 956 957 958 959 960 961 962
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
963

964 965 966 967 968 969 970 971
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
972 973
		rcu_read_unlock();

974 975 976 977 978 979 980
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
981 982 983 984 985

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
986
}
K
KAMEZAWA Hiroyuki 已提交
987

988 989 990 991 992 993 994
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
995 996 997 998 999 1000
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1001

1002 1003 1004 1005 1006 1007
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1008
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1009
	     iter != NULL;				\
1010
	     iter = mem_cgroup_iter(root, iter, NULL))
1011

1012
#define for_each_mem_cgroup(iter)			\
1013
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1014
	     iter != NULL;				\
1015
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1016

1017
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1018
{
1019
	return (memcg == root_mem_cgroup);
1020 1021
}

1022 1023
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
1024
	struct mem_cgroup *memcg;
1025 1026 1027 1028 1029

	if (!mm)
		return;

	rcu_read_lock();
1030 1031
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1032 1033 1034 1035
		goto out;

	switch (idx) {
	case PGFAULT:
1036 1037 1038 1039
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1040 1041 1042 1043 1044 1045 1046 1047 1048
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1049 1050 1051
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1052
 * @memcg: memcg of the wanted lruvec
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1083

1084
/**
1085
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1086
 * @page: the page
1087
 * @zone: zone of the page
1088
 */
1089
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1090 1091
{
	struct mem_cgroup_per_zone *mz;
1092 1093
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1094

1095
	if (mem_cgroup_disabled())
1096 1097
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1098
	pc = lookup_page_cgroup(page);
1099
	memcg = pc->mem_cgroup;
1100 1101

	/*
1102
	 * Surreptitiously switch any uncharged offlist page to root:
1103 1104 1105 1106 1107 1108 1109
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1110
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1111 1112
		pc->mem_cgroup = memcg = root_mem_cgroup;

1113 1114
	mz = page_cgroup_zoneinfo(memcg, page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1115
}
1116

1117
/**
1118 1119 1120 1121
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1122
 *
1123 1124
 * This function must be called when a page is added to or removed from an
 * lru list.
1125
 */
1126 1127
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1128 1129
{
	struct mem_cgroup_per_zone *mz;
1130
	unsigned long *lru_size;
1131 1132 1133 1134

	if (mem_cgroup_disabled())
		return;

1135 1136 1137 1138
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1139
}
1140

1141
/*
1142
 * Checks whether given mem is same or in the root_mem_cgroup's
1143 1144
 * hierarchy subtree
 */
1145 1146
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1147
{
1148 1149
	if (root_memcg == memcg)
		return true;
1150
	if (!root_memcg->use_hierarchy || !memcg)
1151
		return false;
1152 1153 1154 1155 1156 1157 1158 1159
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1160
	rcu_read_lock();
1161
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1162 1163
	rcu_read_unlock();
	return ret;
1164 1165
}

1166
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1167 1168
{
	int ret;
1169
	struct mem_cgroup *curr = NULL;
1170
	struct task_struct *p;
1171

1172
	p = find_lock_task_mm(task);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1188 1189
	if (!curr)
		return 0;
1190
	/*
1191
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1192
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1193 1194
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1195
	 */
1196
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1197
	css_put(&curr->css);
1198 1199 1200
	return ret;
}

1201
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1202
{
1203
	unsigned long inactive_ratio;
1204
	unsigned long inactive;
1205
	unsigned long active;
1206
	unsigned long gb;
1207

1208 1209
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1210

1211 1212 1213 1214 1215 1216
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1217
	return inactive * inactive_ratio < active;
1218 1219
}

1220
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1221 1222 1223 1224
{
	unsigned long active;
	unsigned long inactive;

1225 1226
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1227 1228 1229 1230

	return (active > inactive);
}

1231 1232 1233
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1234
/**
1235
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1236
 * @memcg: the memory cgroup
1237
 *
1238
 * Returns the maximum amount of memory @mem can be charged with, in
1239
 * pages.
1240
 */
1241
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1242
{
1243 1244
	unsigned long long margin;

1245
	margin = res_counter_margin(&memcg->res);
1246
	if (do_swap_account)
1247
		margin = min(margin, res_counter_margin(&memcg->memsw));
1248
	return margin >> PAGE_SHIFT;
1249 1250
}

1251
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1252 1253 1254 1255 1256 1257 1258
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1259
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1260 1261
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1276 1277 1278 1279

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1280
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1281
{
1282
	atomic_inc(&memcg_moving);
1283
	atomic_inc(&memcg->moving_account);
1284 1285 1286
	synchronize_rcu();
}

1287
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1288
{
1289 1290 1291 1292
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1293 1294
	if (memcg) {
		atomic_dec(&memcg_moving);
1295
		atomic_dec(&memcg->moving_account);
1296
	}
1297
}
1298

1299 1300 1301
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1302 1303
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1304 1305 1306 1307 1308 1309 1310
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1311
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1312 1313
{
	VM_BUG_ON(!rcu_read_lock_held());
1314
	return atomic_read(&memcg->moving_account) > 0;
1315
}
1316

1317
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1318
{
1319 1320
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1321
	bool ret = false;
1322 1323 1324 1325 1326 1327 1328 1329 1330
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1331

1332 1333
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1334 1335
unlock:
	spin_unlock(&mc.lock);
1336 1337 1338
	return ret;
}

1339
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1340 1341
{
	if (mc.moving_task && current != mc.moving_task) {
1342
		if (mem_cgroup_under_move(memcg)) {
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1355 1356 1357 1358
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1359
 * see mem_cgroup_stolen(), too.
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1373
/**
1374
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1393
	if (!memcg || !p)
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1439 1440 1441 1442
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1443
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1444 1445
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1446 1447
	struct mem_cgroup *iter;

1448
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1449
		num++;
1450 1451 1452
	return num;
}

D
David Rientjes 已提交
1453 1454 1455
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1456
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1457 1458 1459 1460
{
	u64 limit;
	u64 memsw;

1461 1462 1463
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1464 1465 1466 1467 1468 1469 1470 1471
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1472 1473
void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
			      int order)
1474 1475 1476 1477 1478 1479 1480
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1575 1576
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1577
 * @memcg: the target memcg
1578 1579 1580 1581 1582 1583 1584
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1585
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1586 1587
		int nid, bool noswap)
{
1588
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1589 1590 1591
		return true;
	if (noswap || !total_swap_pages)
		return false;
1592
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1593 1594 1595 1596
		return true;
	return false;

}
1597 1598 1599 1600 1601 1602 1603 1604
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1605
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1606 1607
{
	int nid;
1608 1609 1610 1611
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1612
	if (!atomic_read(&memcg->numainfo_events))
1613
		return;
1614
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1615 1616 1617
		return;

	/* make a nodemask where this memcg uses memory from */
1618
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1619 1620 1621

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1622 1623
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1624
	}
1625

1626 1627
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1642
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1643 1644 1645
{
	int node;

1646 1647
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1648

1649
	node = next_node(node, memcg->scan_nodes);
1650
	if (node == MAX_NUMNODES)
1651
		node = first_node(memcg->scan_nodes);
1652 1653 1654 1655 1656 1657 1658 1659 1660
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1661
	memcg->last_scanned_node = node;
1662 1663 1664
	return node;
}

1665 1666 1667 1668 1669 1670
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1671
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1672 1673 1674 1675 1676 1677 1678
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1679 1680
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1681
		     nid < MAX_NUMNODES;
1682
		     nid = next_node(nid, memcg->scan_nodes)) {
1683

1684
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1685 1686 1687 1688 1689 1690 1691
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1692
		if (node_isset(nid, memcg->scan_nodes))
1693
			continue;
1694
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1695 1696 1697 1698 1699
			return true;
	}
	return false;
}

1700
#else
1701
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1702 1703 1704
{
	return 0;
}
1705

1706
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1707
{
1708
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1709
}
1710 1711
#endif

1712 1713 1714 1715
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1716
{
1717
	struct mem_cgroup *victim = NULL;
1718
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1719
	int loop = 0;
1720
	unsigned long excess;
1721
	unsigned long nr_scanned;
1722 1723 1724 1725
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1726

1727
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1728

1729
	while (1) {
1730
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1731
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1732
			loop++;
1733 1734 1735 1736 1737 1738
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1739
				if (!total)
1740 1741
					break;
				/*
L
Lucas De Marchi 已提交
1742
				 * We want to do more targeted reclaim.
1743 1744 1745 1746 1747
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1748
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1749 1750
					break;
			}
1751
			continue;
1752
		}
1753
		if (!mem_cgroup_reclaimable(victim, false))
1754
			continue;
1755 1756 1757 1758
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1759
			break;
1760
	}
1761
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1762
	return total;
1763 1764
}

K
KAMEZAWA Hiroyuki 已提交
1765 1766 1767
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1768
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1769
 */
1770
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1771
{
1772
	struct mem_cgroup *iter, *failed = NULL;
1773

1774
	for_each_mem_cgroup_tree(iter, memcg) {
1775
		if (iter->oom_lock) {
1776 1777 1778 1779 1780
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1781 1782
			mem_cgroup_iter_break(memcg, iter);
			break;
1783 1784
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1785
	}
K
KAMEZAWA Hiroyuki 已提交
1786

1787
	if (!failed)
1788
		return true;
1789 1790 1791 1792 1793

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1794
	for_each_mem_cgroup_tree(iter, memcg) {
1795
		if (iter == failed) {
1796 1797
			mem_cgroup_iter_break(memcg, iter);
			break;
1798 1799 1800
		}
		iter->oom_lock = false;
	}
1801
	return false;
1802
}
1803

1804
/*
1805
 * Has to be called with memcg_oom_lock
1806
 */
1807
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1808
{
K
KAMEZAWA Hiroyuki 已提交
1809 1810
	struct mem_cgroup *iter;

1811
	for_each_mem_cgroup_tree(iter, memcg)
1812 1813 1814 1815
		iter->oom_lock = false;
	return 0;
}

1816
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1817 1818 1819
{
	struct mem_cgroup *iter;

1820
	for_each_mem_cgroup_tree(iter, memcg)
1821 1822 1823
		atomic_inc(&iter->under_oom);
}

1824
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1825 1826 1827
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1828 1829 1830 1831 1832
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1833
	for_each_mem_cgroup_tree(iter, memcg)
1834
		atomic_add_unless(&iter->under_oom, -1, 0);
1835 1836
}

1837
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1838 1839
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1840
struct oom_wait_info {
1841
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1842 1843 1844 1845 1846 1847
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1848 1849
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1850 1851 1852
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1853
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1854 1855

	/*
1856
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1857 1858
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1859 1860
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1861 1862 1863 1864
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1865
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1866
{
1867 1868
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1869 1870
}

1871
static void memcg_oom_recover(struct mem_cgroup *memcg)
1872
{
1873 1874
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1875 1876
}

K
KAMEZAWA Hiroyuki 已提交
1877 1878 1879
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1880 1881
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1882
{
K
KAMEZAWA Hiroyuki 已提交
1883
	struct oom_wait_info owait;
1884
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1885

1886
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1887 1888 1889 1890
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1891
	need_to_kill = true;
1892
	mem_cgroup_mark_under_oom(memcg);
1893

1894
	/* At first, try to OOM lock hierarchy under memcg.*/
1895
	spin_lock(&memcg_oom_lock);
1896
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1897 1898 1899 1900 1901
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1902
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1903
	if (!locked || memcg->oom_kill_disable)
1904 1905
		need_to_kill = false;
	if (locked)
1906
		mem_cgroup_oom_notify(memcg);
1907
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1908

1909 1910
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1911
		mem_cgroup_out_of_memory(memcg, mask, order);
1912
	} else {
K
KAMEZAWA Hiroyuki 已提交
1913
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1914
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1915
	}
1916
	spin_lock(&memcg_oom_lock);
1917
	if (locked)
1918 1919
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1920
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1921

1922
	mem_cgroup_unmark_under_oom(memcg);
1923

K
KAMEZAWA Hiroyuki 已提交
1924 1925 1926
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1927
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1928
	return true;
1929 1930
}

1931 1932 1933
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1951 1952
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1953
 */
1954

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
1968
	 * need to take move_lock_mem_cgroup(). Because we already hold
1969
	 * rcu_read_lock(), any calls to move_account will be delayed until
1970
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1971
	 */
1972
	if (!mem_cgroup_stolen(memcg))
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
1990
	 * should take move_lock_mem_cgroup().
1991 1992 1993 1994
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1995 1996
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1997
{
1998
	struct mem_cgroup *memcg;
1999
	struct page_cgroup *pc = lookup_page_cgroup(page);
2000
	unsigned long uninitialized_var(flags);
2001

2002
	if (mem_cgroup_disabled())
2003
		return;
2004

2005 2006
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2007
		return;
2008 2009

	switch (idx) {
2010 2011
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2012 2013 2014
		break;
	default:
		BUG();
2015
	}
2016

2017
	this_cpu_add(memcg->stat->count[idx], val);
2018
}
2019

2020 2021 2022 2023
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2024
#define CHARGE_BATCH	32U
2025 2026
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2027
	unsigned int nr_pages;
2028
	struct work_struct work;
2029
	unsigned long flags;
2030
#define FLUSHING_CACHED_CHARGE	0
2031 2032
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2033
static DEFINE_MUTEX(percpu_charge_mutex);
2034 2035

/*
2036
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2037 2038 2039 2040
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2041
static bool consume_stock(struct mem_cgroup *memcg)
2042 2043 2044 2045 2046
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2047
	if (memcg == stock->cached && stock->nr_pages)
2048
		stock->nr_pages--;
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2062 2063 2064 2065
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2066
		if (do_swap_account)
2067 2068
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2081
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2082 2083 2084 2085
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2086
 * This will be consumed by consume_stock() function, later.
2087
 */
2088
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2089 2090 2091
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2092
	if (stock->cached != memcg) { /* reset if necessary */
2093
		drain_stock(stock);
2094
		stock->cached = memcg;
2095
	}
2096
	stock->nr_pages += nr_pages;
2097 2098 2099 2100
	put_cpu_var(memcg_stock);
}

/*
2101
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2102 2103
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2104
 */
2105
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2106
{
2107
	int cpu, curcpu;
2108

2109 2110
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2111
	curcpu = get_cpu();
2112 2113
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2114
		struct mem_cgroup *memcg;
2115

2116 2117
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2118
			continue;
2119
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2120
			continue;
2121 2122 2123 2124 2125 2126
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2127
	}
2128
	put_cpu();
2129 2130 2131 2132 2133 2134

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2135
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2136 2137 2138
			flush_work(&stock->work);
	}
out:
2139
 	put_online_cpus();
2140 2141 2142 2143 2144 2145 2146 2147
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2148
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2149
{
2150 2151 2152 2153 2154
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2155
	drain_all_stock(root_memcg, false);
2156
	mutex_unlock(&percpu_charge_mutex);
2157 2158 2159
}

/* This is a synchronous drain interface. */
2160
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2161 2162
{
	/* called when force_empty is called */
2163
	mutex_lock(&percpu_charge_mutex);
2164
	drain_all_stock(root_memcg, true);
2165
	mutex_unlock(&percpu_charge_mutex);
2166 2167
}

2168 2169 2170 2171
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2172
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2173 2174 2175
{
	int i;

2176
	spin_lock(&memcg->pcp_counter_lock);
2177
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2178
		long x = per_cpu(memcg->stat->count[i], cpu);
2179

2180 2181
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2182
	}
2183
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2184
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2185

2186 2187
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2188
	}
2189
	spin_unlock(&memcg->pcp_counter_lock);
2190 2191 2192
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2193 2194 2195 2196 2197
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2198
	struct mem_cgroup *iter;
2199

2200
	if (action == CPU_ONLINE)
2201 2202
		return NOTIFY_OK;

2203
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2204
		return NOTIFY_OK;
2205

2206
	for_each_mem_cgroup(iter)
2207 2208
		mem_cgroup_drain_pcp_counter(iter, cpu);

2209 2210 2211 2212 2213
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2224
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2225
				unsigned int nr_pages, bool oom_check)
2226
{
2227
	unsigned long csize = nr_pages * PAGE_SIZE;
2228 2229 2230 2231 2232
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2233
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2234 2235 2236 2237

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2238
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2239 2240 2241
		if (likely(!ret))
			return CHARGE_OK;

2242
		res_counter_uncharge(&memcg->res, csize);
2243 2244 2245 2246
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2247
	/*
2248 2249
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2250 2251 2252 2253
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2254
	if (nr_pages == CHARGE_BATCH)
2255 2256 2257 2258 2259
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2260
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2261
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2262
		return CHARGE_RETRY;
2263
	/*
2264 2265 2266 2267 2268 2269 2270
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2271
	 */
2272
	if (nr_pages == 1 && ret)
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2286
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2287 2288 2289 2290 2291
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2292
/*
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2312
 */
2313
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2314
				   gfp_t gfp_mask,
2315
				   unsigned int nr_pages,
2316
				   struct mem_cgroup **ptr,
2317
				   bool oom)
2318
{
2319
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2320
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2321
	struct mem_cgroup *memcg = NULL;
2322
	int ret;
2323

K
KAMEZAWA Hiroyuki 已提交
2324 2325 2326 2327 2328 2329 2330 2331
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2332

2333
	/*
2334 2335
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2336 2337 2338
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2339
	if (!*ptr && !mm)
2340
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2341
again:
2342 2343 2344 2345
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2346
			goto done;
2347
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2348
			goto done;
2349
		css_get(&memcg->css);
2350
	} else {
K
KAMEZAWA Hiroyuki 已提交
2351
		struct task_struct *p;
2352

K
KAMEZAWA Hiroyuki 已提交
2353 2354 2355
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2356
		 * Because we don't have task_lock(), "p" can exit.
2357
		 * In that case, "memcg" can point to root or p can be NULL with
2358 2359 2360 2361 2362 2363
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2364
		 */
2365
		memcg = mem_cgroup_from_task(p);
2366 2367 2368
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2369 2370 2371
			rcu_read_unlock();
			goto done;
		}
2372
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2385
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2386 2387 2388 2389 2390
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2391

2392 2393
	do {
		bool oom_check;
2394

2395
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2396
		if (fatal_signal_pending(current)) {
2397
			css_put(&memcg->css);
2398
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2399
		}
2400

2401 2402 2403 2404
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2405
		}
2406

2407
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2408 2409 2410 2411
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2412
			batch = nr_pages;
2413 2414
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2415
			goto again;
2416
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2417
			css_put(&memcg->css);
2418 2419
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2420
			if (!oom) {
2421
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2422
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2423
			}
2424 2425 2426 2427
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2428
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2429
			goto bypass;
2430
		}
2431 2432
	} while (ret != CHARGE_OK);

2433
	if (batch > nr_pages)
2434 2435
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2436
done:
2437
	*ptr = memcg;
2438 2439
	return 0;
nomem:
2440
	*ptr = NULL;
2441
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2442
bypass:
2443 2444
	*ptr = root_mem_cgroup;
	return -EINTR;
2445
}
2446

2447 2448 2449 2450 2451
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2452
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2453
				       unsigned int nr_pages)
2454
{
2455
	if (!mem_cgroup_is_root(memcg)) {
2456 2457
		unsigned long bytes = nr_pages * PAGE_SIZE;

2458
		res_counter_uncharge(&memcg->res, bytes);
2459
		if (do_swap_account)
2460
			res_counter_uncharge(&memcg->memsw, bytes);
2461
	}
2462 2463
}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2501
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2502
{
2503
	struct mem_cgroup *memcg = NULL;
2504
	struct page_cgroup *pc;
2505
	unsigned short id;
2506 2507
	swp_entry_t ent;

2508 2509 2510
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2511
	lock_page_cgroup(pc);
2512
	if (PageCgroupUsed(pc)) {
2513 2514 2515
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2516
	} else if (PageSwapCache(page)) {
2517
		ent.val = page_private(page);
2518
		id = lookup_swap_cgroup_id(ent);
2519
		rcu_read_lock();
2520 2521 2522
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2523
		rcu_read_unlock();
2524
	}
2525
	unlock_page_cgroup(pc);
2526
	return memcg;
2527 2528
}

2529
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2530
				       struct page *page,
2531
				       unsigned int nr_pages,
2532 2533
				       enum charge_type ctype,
				       bool lrucare)
2534
{
2535
	struct page_cgroup *pc = lookup_page_cgroup(page);
2536
	struct zone *uninitialized_var(zone);
2537
	struct lruvec *lruvec;
2538
	bool was_on_lru = false;
2539
	bool anon;
2540

2541 2542 2543
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2544
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2545 2546 2547 2548 2549 2550
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2551 2552 2553 2554 2555 2556 2557 2558 2559

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2560
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2561
			ClearPageLRU(page);
2562
			del_page_from_lru_list(page, lruvec, page_lru(page));
2563 2564 2565 2566
			was_on_lru = true;
		}
	}

2567
	pc->mem_cgroup = memcg;
2568 2569 2570 2571 2572 2573 2574
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2575
	smp_wmb();
2576
	SetPageCgroupUsed(pc);
2577

2578 2579
	if (lrucare) {
		if (was_on_lru) {
2580
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2581 2582
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2583
			add_page_to_lru_list(page, lruvec, page_lru(page));
2584 2585 2586 2587
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2588
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2589 2590 2591 2592 2593
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2594
	unlock_page_cgroup(pc);
2595

2596 2597 2598 2599 2600
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2601
	memcg_check_events(memcg, page);
2602
}
2603

2604 2605
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2606
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2607 2608
/*
 * Because tail pages are not marked as "used", set it. We're under
2609 2610 2611
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2612
 */
2613
void mem_cgroup_split_huge_fixup(struct page *head)
2614 2615
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2616 2617
	struct page_cgroup *pc;
	int i;
2618

2619 2620
	if (mem_cgroup_disabled())
		return;
2621 2622 2623 2624 2625 2626
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2627
}
2628
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2629

2630
/**
2631
 * mem_cgroup_move_account - move account of the page
2632
 * @page: the page
2633
 * @nr_pages: number of regular pages (>1 for huge pages)
2634 2635 2636 2637 2638
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2639
 * - page is not on LRU (isolate_page() is useful.)
2640
 * - compound_lock is held when nr_pages > 1
2641
 *
2642 2643
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2644
 */
2645 2646 2647 2648
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2649
				   struct mem_cgroup *to)
2650
{
2651 2652
	unsigned long flags;
	int ret;
2653
	bool anon = PageAnon(page);
2654

2655
	VM_BUG_ON(from == to);
2656
	VM_BUG_ON(PageLRU(page));
2657 2658 2659 2660 2661 2662 2663
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2664
	if (nr_pages > 1 && !PageTransHuge(page))
2665 2666 2667 2668 2669 2670 2671 2672
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2673
	move_lock_mem_cgroup(from, &flags);
2674

2675
	if (!anon && page_mapped(page)) {
2676 2677 2678 2679 2680
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2681
	}
2682
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2683

2684
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2685
	pc->mem_cgroup = to;
2686
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2687 2688 2689
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2690
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2691
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2692
	 * status here.
2693
	 */
2694
	move_unlock_mem_cgroup(from, &flags);
2695 2696
	ret = 0;
unlock:
2697
	unlock_page_cgroup(pc);
2698 2699 2700
	/*
	 * check events
	 */
2701 2702
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2703
out:
2704 2705 2706 2707 2708 2709 2710
	return ret;
}

/*
 * move charges to its parent.
 */

2711 2712
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2713
				  struct mem_cgroup *child)
2714 2715
{
	struct mem_cgroup *parent;
2716
	unsigned int nr_pages;
2717
	unsigned long uninitialized_var(flags);
2718 2719 2720
	int ret;

	/* Is ROOT ? */
2721
	if (mem_cgroup_is_root(child))
2722 2723
		return -EINVAL;

2724 2725 2726 2727 2728
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2729

2730
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2731

2732 2733 2734 2735 2736 2737
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2738

2739
	if (nr_pages > 1)
2740 2741
		flags = compound_lock_irqsave(page);

2742
	ret = mem_cgroup_move_account(page, nr_pages,
2743
				pc, child, parent);
2744 2745
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2746

2747
	if (nr_pages > 1)
2748
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2749
	putback_lru_page(page);
2750
put:
2751
	put_page(page);
2752
out:
2753 2754 2755
	return ret;
}

2756 2757 2758 2759 2760 2761 2762
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2763
				gfp_t gfp_mask, enum charge_type ctype)
2764
{
2765
	struct mem_cgroup *memcg = NULL;
2766
	unsigned int nr_pages = 1;
2767
	bool oom = true;
2768
	int ret;
A
Andrea Arcangeli 已提交
2769

A
Andrea Arcangeli 已提交
2770
	if (PageTransHuge(page)) {
2771
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2772
		VM_BUG_ON(!PageTransHuge(page));
2773 2774 2775 2776 2777
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2778
	}
2779

2780
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2781
	if (ret == -ENOMEM)
2782
		return ret;
2783
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2784 2785 2786
	return 0;
}

2787 2788
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2789
{
2790
	if (mem_cgroup_disabled())
2791
		return 0;
2792 2793 2794
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2795
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2796
					MEM_CGROUP_CHARGE_TYPE_ANON);
2797 2798
}

D
Daisuke Nishimura 已提交
2799 2800 2801 2802
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2803 2804
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2805
{
2806
	struct mem_cgroup *memcg = NULL;
2807
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2808 2809
	int ret;

2810
	if (mem_cgroup_disabled())
2811
		return 0;
2812 2813
	if (PageCompound(page))
		return 0;
2814

2815
	if (unlikely(!mm))
2816
		mm = &init_mm;
2817 2818
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2819

2820
	if (!PageSwapCache(page))
2821
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2822
	else { /* page is swapcache/shmem */
2823
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2824
		if (!ret)
2825 2826
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2827
	return ret;
2828 2829
}

2830 2831 2832
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2833
 * struct page_cgroup is acquired. This refcnt will be consumed by
2834 2835
 * "commit()" or removed by "cancel()"
 */
2836 2837
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2838
				 gfp_t mask, struct mem_cgroup **memcgp)
2839
{
2840
	struct mem_cgroup *memcg;
2841
	int ret;
2842

2843
	*memcgp = NULL;
2844

2845
	if (mem_cgroup_disabled())
2846 2847 2848 2849 2850 2851
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2852 2853 2854
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2855 2856
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2857
		goto charge_cur_mm;
2858 2859
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2860
		goto charge_cur_mm;
2861 2862
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2863
	css_put(&memcg->css);
2864 2865
	if (ret == -EINTR)
		ret = 0;
2866
	return ret;
2867 2868 2869
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2870 2871 2872 2873
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2874 2875
}

D
Daisuke Nishimura 已提交
2876
static void
2877
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2878
					enum charge_type ctype)
2879
{
2880
	if (mem_cgroup_disabled())
2881
		return;
2882
	if (!memcg)
2883
		return;
2884
	cgroup_exclude_rmdir(&memcg->css);
2885

2886
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2887 2888 2889
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2890 2891 2892
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2893
	 */
2894
	if (do_swap_account && PageSwapCache(page)) {
2895
		swp_entry_t ent = {.val = page_private(page)};
2896
		mem_cgroup_uncharge_swap(ent);
2897
	}
2898 2899 2900 2901 2902
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2903
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2904 2905
}

2906 2907
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2908
{
2909
	__mem_cgroup_commit_charge_swapin(page, memcg,
2910
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
2911 2912
}

2913
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2914
{
2915
	if (mem_cgroup_disabled())
2916
		return;
2917
	if (!memcg)
2918
		return;
2919
	__mem_cgroup_cancel_charge(memcg, 1);
2920 2921
}

2922
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2923 2924
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2925 2926 2927
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2928

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2940
		batch->memcg = memcg;
2941 2942
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2943
	 * In those cases, all pages freed continuously can be expected to be in
2944 2945 2946 2947 2948 2949 2950 2951
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2952
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2953 2954
		goto direct_uncharge;

2955 2956 2957 2958 2959
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2960
	if (batch->memcg != memcg)
2961 2962
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2963
	batch->nr_pages++;
2964
	if (uncharge_memsw)
2965
		batch->memsw_nr_pages++;
2966 2967
	return;
direct_uncharge:
2968
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2969
	if (uncharge_memsw)
2970 2971 2972
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2973
}
2974

2975
/*
2976
 * uncharge if !page_mapped(page)
2977
 */
2978
static struct mem_cgroup *
2979 2980
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
2981
{
2982
	struct mem_cgroup *memcg = NULL;
2983 2984
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2985
	bool anon;
2986

2987
	if (mem_cgroup_disabled())
2988
		return NULL;
2989

2990
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
2991

A
Andrea Arcangeli 已提交
2992
	if (PageTransHuge(page)) {
2993
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2994 2995
		VM_BUG_ON(!PageTransHuge(page));
	}
2996
	/*
2997
	 * Check if our page_cgroup is valid
2998
	 */
2999
	pc = lookup_page_cgroup(page);
3000
	if (unlikely(!PageCgroupUsed(pc)))
3001
		return NULL;
3002

3003
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3004

3005
	memcg = pc->mem_cgroup;
3006

K
KAMEZAWA Hiroyuki 已提交
3007 3008 3009
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3010 3011
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3012
	switch (ctype) {
3013
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3014 3015 3016 3017 3018
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3019 3020
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3021
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3022
		/* See mem_cgroup_prepare_migration() */
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3044
	}
K
KAMEZAWA Hiroyuki 已提交
3045

3046
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3047

3048
	ClearPageCgroupUsed(pc);
3049 3050 3051 3052 3053 3054
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3055

3056
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3057
	/*
3058
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3059 3060
	 * will never be freed.
	 */
3061
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3062
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3063 3064
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3065
	}
3066 3067 3068 3069 3070 3071
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3072
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3073

3074
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3075 3076 3077

unlock_out:
	unlock_page_cgroup(pc);
3078
	return NULL;
3079 3080
}

3081 3082
void mem_cgroup_uncharge_page(struct page *page)
{
3083 3084 3085
	/* early check. */
	if (page_mapped(page))
		return;
3086
	VM_BUG_ON(page->mapping && !PageAnon(page));
3087 3088
	if (PageSwapCache(page))
		return;
3089
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3090 3091 3092 3093 3094
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3095
	VM_BUG_ON(page->mapping);
3096
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3097 3098
}

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3113 3114
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3135 3136 3137 3138 3139 3140
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3141
	memcg_oom_recover(batch->memcg);
3142 3143 3144 3145
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3146
#ifdef CONFIG_SWAP
3147
/*
3148
 * called after __delete_from_swap_cache() and drop "page" account.
3149 3150
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3151 3152
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3153 3154
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3155 3156 3157 3158 3159
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3160
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3161

K
KAMEZAWA Hiroyuki 已提交
3162 3163 3164 3165 3166
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3167
		swap_cgroup_record(ent, css_id(&memcg->css));
3168
}
3169
#endif
3170

A
Andrew Morton 已提交
3171
#ifdef CONFIG_MEMCG_SWAP
3172 3173 3174 3175 3176
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3177
{
3178
	struct mem_cgroup *memcg;
3179
	unsigned short id;
3180 3181 3182 3183

	if (!do_swap_account)
		return;

3184 3185 3186
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3187
	if (memcg) {
3188 3189 3190 3191
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3192
		if (!mem_cgroup_is_root(memcg))
3193
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3194
		mem_cgroup_swap_statistics(memcg, false);
3195 3196
		mem_cgroup_put(memcg);
	}
3197
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3198
}
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3215
				struct mem_cgroup *from, struct mem_cgroup *to)
3216 3217 3218 3219 3220 3221 3222 3223
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3224
		mem_cgroup_swap_statistics(to, true);
3225
		/*
3226 3227 3228 3229 3230 3231
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3232 3233 3234 3235 3236 3237 3238 3239
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3240
				struct mem_cgroup *from, struct mem_cgroup *to)
3241 3242 3243
{
	return -EINVAL;
}
3244
#endif
K
KAMEZAWA Hiroyuki 已提交
3245

3246
/*
3247 3248
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3249
 */
3250 3251
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3252
{
3253
	struct mem_cgroup *memcg = NULL;
3254
	struct page_cgroup *pc;
3255
	enum charge_type ctype;
3256

3257
	*memcgp = NULL;
3258

A
Andrea Arcangeli 已提交
3259
	VM_BUG_ON(PageTransHuge(page));
3260
	if (mem_cgroup_disabled())
3261
		return;
3262

3263 3264 3265
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3266 3267
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3299
	}
3300
	unlock_page_cgroup(pc);
3301 3302 3303 3304
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3305
	if (!memcg)
3306
		return;
3307

3308
	*memcgp = memcg;
3309 3310 3311 3312 3313 3314 3315
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3316
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3317 3318 3319 3320
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3321 3322 3323 3324 3325
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3326
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3327
}
3328

3329
/* remove redundant charge if migration failed*/
3330
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3331
	struct page *oldpage, struct page *newpage, bool migration_ok)
3332
{
3333
	struct page *used, *unused;
3334
	struct page_cgroup *pc;
3335
	bool anon;
3336

3337
	if (!memcg)
3338
		return;
3339
	/* blocks rmdir() */
3340
	cgroup_exclude_rmdir(&memcg->css);
3341
	if (!migration_ok) {
3342 3343
		used = oldpage;
		unused = newpage;
3344
	} else {
3345
		used = newpage;
3346 3347
		unused = oldpage;
	}
3348
	anon = PageAnon(used);
3349 3350 3351 3352
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3353
	css_put(&memcg->css);
3354
	/*
3355 3356 3357
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3358
	 */
3359 3360 3361 3362 3363
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3364
	/*
3365 3366 3367 3368 3369 3370
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3371
	 */
3372
	if (anon)
3373
		mem_cgroup_uncharge_page(used);
3374
	/*
3375 3376
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3377 3378 3379
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3380
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3381
}
3382

3383 3384 3385 3386 3387 3388 3389 3390
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3391
	struct mem_cgroup *memcg = NULL;
3392 3393 3394 3395 3396 3397 3398 3399 3400
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3401 3402 3403 3404 3405
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3406 3407
	unlock_page_cgroup(pc);

3408 3409 3410 3411 3412 3413 3414
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;

3415 3416 3417 3418 3419 3420 3421 3422
	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3423
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3424 3425
}

3426 3427 3428 3429 3430 3431
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3432 3433 3434 3435 3436
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3456
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3457 3458 3459 3460 3461
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3462 3463
static DEFINE_MUTEX(set_limit_mutex);

3464
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3465
				unsigned long long val)
3466
{
3467
	int retry_count;
3468
	u64 memswlimit, memlimit;
3469
	int ret = 0;
3470 3471
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3472
	int enlarge;
3473 3474 3475 3476 3477 3478 3479 3480 3481

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3482

3483
	enlarge = 0;
3484
	while (retry_count) {
3485 3486 3487 3488
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3489 3490 3491
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3492
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3493 3494 3495 3496 3497 3498
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3499 3500
			break;
		}
3501 3502 3503 3504 3505

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3506
		ret = res_counter_set_limit(&memcg->res, val);
3507 3508 3509 3510 3511 3512
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3513 3514 3515 3516 3517
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3518 3519
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3520 3521 3522 3523 3524 3525
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3526
	}
3527 3528
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3529

3530 3531 3532
	return ret;
}

L
Li Zefan 已提交
3533 3534
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3535
{
3536
	int retry_count;
3537
	u64 memlimit, memswlimit, oldusage, curusage;
3538 3539
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3540
	int enlarge = 0;
3541

3542 3543 3544
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3545 3546 3547 3548 3549 3550 3551 3552
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3553
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3554 3555 3556 3557 3558 3559 3560 3561
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3562 3563 3564
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3565
		ret = res_counter_set_limit(&memcg->memsw, val);
3566 3567 3568 3569 3570 3571
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3572 3573 3574 3575 3576
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3577 3578 3579
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3580
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3581
		/* Usage is reduced ? */
3582
		if (curusage >= oldusage)
3583
			retry_count--;
3584 3585
		else
			oldusage = curusage;
3586
	}
3587 3588
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3589 3590 3591
	return ret;
}

3592
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3593 3594
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3595 3596 3597 3598 3599 3600
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3601
	unsigned long long excess;
3602
	unsigned long nr_scanned;
3603 3604 3605 3606

	if (order > 0)
		return 0;

3607
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3621
		nr_scanned = 0;
3622
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3623
						    gfp_mask, &nr_scanned);
3624
		nr_reclaimed += reclaimed;
3625
		*total_scanned += nr_scanned;
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3648
				if (next_mz == mz)
3649
					css_put(&next_mz->memcg->css);
3650
				else /* next_mz == NULL or other memcg */
3651 3652 3653
					break;
			} while (1);
		}
3654 3655
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3656 3657 3658 3659 3660 3661 3662 3663
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3664
		/* If excess == 0, no tree ops */
3665
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3666
		spin_unlock(&mctz->lock);
3667
		css_put(&mz->memcg->css);
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3680
		css_put(&next_mz->memcg->css);
3681 3682 3683
	return nr_reclaimed;
}

3684
/*
3685 3686 3687 3688
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
 * reclaim the pages page themselves - it just removes the page_cgroups.
 * Returns true if some page_cgroups were not freed, indicating that the caller
 * must retry this operation.
3689
 */
3690
static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3691
				int node, int zid, enum lru_list lru)
3692
{
K
KAMEZAWA Hiroyuki 已提交
3693 3694
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3695
	struct list_head *list;
3696 3697
	struct page *busy;
	struct zone *zone;
3698

K
KAMEZAWA Hiroyuki 已提交
3699
	zone = &NODE_DATA(node)->node_zones[zid];
3700
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3701
	list = &mz->lruvec.lists[lru];
3702

3703
	loop = mz->lru_size[lru];
3704 3705 3706 3707
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3708
		struct page_cgroup *pc;
3709 3710
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3711
		spin_lock_irqsave(&zone->lru_lock, flags);
3712
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3713
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3714
			break;
3715
		}
3716 3717 3718
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3719
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3720
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3721 3722
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3723
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3724

3725
		pc = lookup_page_cgroup(page);
3726

3727
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3728
			/* found lock contention or "pc" is obsolete. */
3729
			busy = page;
3730 3731 3732
			cond_resched();
		} else
			busy = NULL;
3733
	}
3734
	return !list_empty(list);
3735 3736 3737 3738 3739 3740
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3741
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3742
{
3743 3744 3745
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3746
	struct cgroup *cgrp = memcg->css.cgroup;
3747

3748
	css_get(&memcg->css);
3749 3750

	shrink = 0;
3751 3752 3753
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3754
move_account:
3755
	do {
3756
		ret = -EBUSY;
3757 3758
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
3759 3760
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3761
		drain_all_stock_sync(memcg);
3762
		ret = 0;
3763
		mem_cgroup_start_move(memcg);
3764
		for_each_node_state(node, N_HIGH_MEMORY) {
3765
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3766 3767
				enum lru_list lru;
				for_each_lru(lru) {
3768
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3769
							node, zid, lru);
3770 3771 3772
					if (ret)
						break;
				}
3773
			}
3774 3775 3776
			if (ret)
				break;
		}
3777 3778
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3779
		cond_resched();
3780
	/* "ret" should also be checked to ensure all lists are empty. */
3781
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3782
out:
3783
	css_put(&memcg->css);
3784
	return ret;
3785 3786

try_to_free:
3787 3788
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3789 3790 3791
		ret = -EBUSY;
		goto out;
	}
3792 3793
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3794 3795
	/* try to free all pages in this cgroup */
	shrink = 1;
3796
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3797
		int progress;
3798 3799 3800 3801 3802

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3803
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3804
						false);
3805
		if (!progress) {
3806
			nr_retries--;
3807
			/* maybe some writeback is necessary */
3808
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3809
		}
3810 3811

	}
K
KAMEZAWA Hiroyuki 已提交
3812
	lru_add_drain();
3813
	/* try move_account...there may be some *locked* pages. */
3814
	goto move_account;
3815 3816
}

3817
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3818 3819 3820 3821 3822
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3823 3824 3825 3826 3827 3828 3829 3830 3831
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3832
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3833
	struct cgroup *parent = cont->parent;
3834
	struct mem_cgroup *parent_memcg = NULL;
3835 3836

	if (parent)
3837
		parent_memcg = mem_cgroup_from_cont(parent);
3838 3839

	cgroup_lock();
3840 3841 3842 3843

	if (memcg->use_hierarchy == val)
		goto out;

3844
	/*
3845
	 * If parent's use_hierarchy is set, we can't make any modifications
3846 3847 3848 3849 3850 3851
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3852
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3853 3854
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3855
			memcg->use_hierarchy = val;
3856 3857 3858 3859
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3860 3861

out:
3862 3863 3864 3865 3866
	cgroup_unlock();

	return retval;
}

3867

3868
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3869
					       enum mem_cgroup_stat_index idx)
3870
{
K
KAMEZAWA Hiroyuki 已提交
3871
	struct mem_cgroup *iter;
3872
	long val = 0;
3873

3874
	/* Per-cpu values can be negative, use a signed accumulator */
3875
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3876 3877 3878 3879 3880
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3881 3882
}

3883
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3884
{
K
KAMEZAWA Hiroyuki 已提交
3885
	u64 val;
3886

3887
	if (!mem_cgroup_is_root(memcg)) {
3888
		if (!swap)
3889
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3890
		else
3891
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3892 3893
	}

3894 3895
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3896

K
KAMEZAWA Hiroyuki 已提交
3897
	if (swap)
3898
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3899 3900 3901 3902

	return val << PAGE_SHIFT;
}

3903 3904 3905
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3906
{
3907
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3908
	char str[64];
3909
	u64 val;
3910
	int type, name, len;
3911 3912 3913

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3914 3915 3916 3917

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3918 3919
	switch (type) {
	case _MEM:
3920
		if (name == RES_USAGE)
3921
			val = mem_cgroup_usage(memcg, false);
3922
		else
3923
			val = res_counter_read_u64(&memcg->res, name);
3924 3925
		break;
	case _MEMSWAP:
3926
		if (name == RES_USAGE)
3927
			val = mem_cgroup_usage(memcg, true);
3928
		else
3929
			val = res_counter_read_u64(&memcg->memsw, name);
3930 3931 3932 3933
		break;
	default:
		BUG();
	}
3934 3935 3936

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3937
}
3938 3939 3940 3941
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3942 3943
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3944
{
3945
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3946
	int type, name;
3947 3948 3949
	unsigned long long val;
	int ret;

3950 3951
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3952 3953 3954 3955

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3956
	switch (name) {
3957
	case RES_LIMIT:
3958 3959 3960 3961
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3962 3963
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3964 3965 3966
		if (ret)
			break;
		if (type == _MEM)
3967
			ret = mem_cgroup_resize_limit(memcg, val);
3968 3969
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3970
		break;
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3985 3986 3987 3988 3989
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3990 3991
}

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4019
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4020
{
4021
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4022
	int type, name;
4023

4024 4025
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4026 4027 4028 4029

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4030
	switch (name) {
4031
	case RES_MAX_USAGE:
4032
		if (type == _MEM)
4033
			res_counter_reset_max(&memcg->res);
4034
		else
4035
			res_counter_reset_max(&memcg->memsw);
4036 4037
		break;
	case RES_FAILCNT:
4038
		if (type == _MEM)
4039
			res_counter_reset_failcnt(&memcg->res);
4040
		else
4041
			res_counter_reset_failcnt(&memcg->memsw);
4042 4043
		break;
	}
4044

4045
	return 0;
4046 4047
}

4048 4049 4050 4051 4052 4053
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4054
#ifdef CONFIG_MMU
4055 4056 4057
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4058
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4059 4060 4061 4062 4063 4064 4065 4066 4067

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4068
	memcg->move_charge_at_immigrate = val;
4069 4070 4071 4072
	cgroup_unlock();

	return 0;
}
4073 4074 4075 4076 4077 4078 4079
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4080

4081
#ifdef CONFIG_NUMA
4082
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4083
				      struct seq_file *m)
4084 4085 4086 4087
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4088
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4089

4090
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4091 4092
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4093
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4094 4095 4096 4097
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4098
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4099 4100
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4101
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4102
				LRU_ALL_FILE);
4103 4104 4105 4106
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4107
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4108 4109
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4110
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4111
				LRU_ALL_ANON);
4112 4113 4114 4115
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4116
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4117 4118
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4119
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4120
				BIT(LRU_UNEVICTABLE));
4121 4122 4123 4124 4125 4126 4127
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4141
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4142
				 struct seq_file *m)
4143
{
4144
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4145 4146
	struct mem_cgroup *mi;
	unsigned int i;
4147

4148
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4149
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4150
			continue;
4151 4152
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4153
	}
L
Lee Schermerhorn 已提交
4154

4155 4156 4157 4158 4159 4160 4161 4162
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4163
	/* Hierarchical information */
4164 4165
	{
		unsigned long long limit, memsw_limit;
4166
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4167
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4168
		if (do_swap_account)
4169 4170
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4171
	}
K
KOSAKI Motohiro 已提交
4172

4173 4174 4175
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4176
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4177
			continue;
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4198
	}
K
KAMEZAWA Hiroyuki 已提交
4199

K
KOSAKI Motohiro 已提交
4200 4201 4202 4203
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4204
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4205 4206 4207 4208 4209
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4210
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4211
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4212

4213 4214 4215 4216
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4217
			}
4218 4219 4220 4221
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4222 4223 4224
	}
#endif

4225 4226 4227
	return 0;
}

K
KOSAKI Motohiro 已提交
4228 4229 4230 4231
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4232
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4233 4234 4235 4236 4237 4238 4239
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4240

K
KOSAKI Motohiro 已提交
4241 4242 4243 4244 4245 4246 4247
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4248 4249 4250

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4251 4252
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4253 4254
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4255
		return -EINVAL;
4256
	}
K
KOSAKI Motohiro 已提交
4257 4258 4259

	memcg->swappiness = val;

4260 4261
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4262 4263 4264
	return 0;
}

4265 4266 4267 4268 4269 4270 4271 4272
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4273
		t = rcu_dereference(memcg->thresholds.primary);
4274
	else
4275
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4276 4277 4278 4279 4280 4281 4282

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4283
	 * current_threshold points to threshold just below or equal to usage.
4284 4285 4286
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4287
	i = t->current_threshold;
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4311
	t->current_threshold = i - 1;
4312 4313 4314 4315 4316 4317
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4318 4319 4320 4321 4322 4323 4324
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4335
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4336 4337 4338
{
	struct mem_cgroup_eventfd_list *ev;

4339
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4340 4341 4342 4343
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4344
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4345
{
K
KAMEZAWA Hiroyuki 已提交
4346 4347
	struct mem_cgroup *iter;

4348
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4349
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4350 4351 4352 4353
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4354 4355
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4356 4357
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4358 4359
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4360
	int i, size, ret;
4361 4362 4363 4364 4365 4366

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4367

4368
	if (type == _MEM)
4369
		thresholds = &memcg->thresholds;
4370
	else if (type == _MEMSWAP)
4371
		thresholds = &memcg->memsw_thresholds;
4372 4373 4374 4375 4376 4377
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4378
	if (thresholds->primary)
4379 4380
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4381
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4382 4383

	/* Allocate memory for new array of thresholds */
4384
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4385
			GFP_KERNEL);
4386
	if (!new) {
4387 4388 4389
		ret = -ENOMEM;
		goto unlock;
	}
4390
	new->size = size;
4391 4392

	/* Copy thresholds (if any) to new array */
4393 4394
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4395
				sizeof(struct mem_cgroup_threshold));
4396 4397
	}

4398
	/* Add new threshold */
4399 4400
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4401 4402

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4403
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4404 4405 4406
			compare_thresholds, NULL);

	/* Find current threshold */
4407
	new->current_threshold = -1;
4408
	for (i = 0; i < size; i++) {
4409
		if (new->entries[i].threshold <= usage) {
4410
			/*
4411 4412
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4413 4414
			 * it here.
			 */
4415
			++new->current_threshold;
4416 4417
		} else
			break;
4418 4419
	}

4420 4421 4422 4423 4424
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4425

4426
	/* To be sure that nobody uses thresholds */
4427 4428 4429 4430 4431 4432 4433 4434
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4435
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4436
	struct cftype *cft, struct eventfd_ctx *eventfd)
4437 4438
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4439 4440
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4441 4442
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4443
	int i, j, size;
4444 4445 4446

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4447
		thresholds = &memcg->thresholds;
4448
	else if (type == _MEMSWAP)
4449
		thresholds = &memcg->memsw_thresholds;
4450 4451 4452
	else
		BUG();

4453 4454 4455
	if (!thresholds->primary)
		goto unlock;

4456 4457 4458 4459 4460 4461
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4462 4463 4464
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4465 4466 4467
			size++;
	}

4468
	new = thresholds->spare;
4469

4470 4471
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4472 4473
		kfree(new);
		new = NULL;
4474
		goto swap_buffers;
4475 4476
	}

4477
	new->size = size;
4478 4479

	/* Copy thresholds and find current threshold */
4480 4481 4482
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4483 4484
			continue;

4485
		new->entries[j] = thresholds->primary->entries[i];
4486
		if (new->entries[j].threshold <= usage) {
4487
			/*
4488
			 * new->current_threshold will not be used
4489 4490 4491
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4492
			++new->current_threshold;
4493 4494 4495 4496
		}
		j++;
	}

4497
swap_buffers:
4498 4499
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4500 4501 4502 4503 4504 4505
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4506
	rcu_assign_pointer(thresholds->primary, new);
4507

4508
	/* To be sure that nobody uses thresholds */
4509
	synchronize_rcu();
4510
unlock:
4511 4512
	mutex_unlock(&memcg->thresholds_lock);
}
4513

K
KAMEZAWA Hiroyuki 已提交
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4526
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4527 4528 4529 4530 4531

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4532
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4533
		eventfd_signal(eventfd, 1);
4534
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4535 4536 4537 4538

	return 0;
}

4539
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4540 4541
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4542
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4543 4544 4545 4546 4547
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4548
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4549

4550
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4551 4552 4553 4554 4555 4556
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4557
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4558 4559
}

4560 4561 4562
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4563
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4564

4565
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4566

4567
	if (atomic_read(&memcg->under_oom))
4568 4569 4570 4571 4572 4573 4574 4575 4576
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4577
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4589
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4590 4591 4592
		cgroup_unlock();
		return -EINVAL;
	}
4593
	memcg->oom_kill_disable = val;
4594
	if (!val)
4595
		memcg_oom_recover(memcg);
4596 4597 4598 4599
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
4600
#ifdef CONFIG_MEMCG_KMEM
4601
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4602
{
4603
	return mem_cgroup_sockets_init(memcg, ss);
4604 4605
};

4606
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4607
{
4608
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4609
}
4610
#else
4611
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4612 4613 4614
{
	return 0;
}
G
Glauber Costa 已提交
4615

4616
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4617 4618
{
}
4619 4620
#endif

B
Balbir Singh 已提交
4621 4622
static struct cftype mem_cgroup_files[] = {
	{
4623
		.name = "usage_in_bytes",
4624
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4625
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4626 4627
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4628
	},
4629 4630
	{
		.name = "max_usage_in_bytes",
4631
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4632
		.trigger = mem_cgroup_reset,
4633
		.read = mem_cgroup_read,
4634
	},
B
Balbir Singh 已提交
4635
	{
4636
		.name = "limit_in_bytes",
4637
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4638
		.write_string = mem_cgroup_write,
4639
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4640
	},
4641 4642 4643 4644
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4645
		.read = mem_cgroup_read,
4646
	},
B
Balbir Singh 已提交
4647 4648
	{
		.name = "failcnt",
4649
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4650
		.trigger = mem_cgroup_reset,
4651
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4652
	},
4653 4654
	{
		.name = "stat",
4655
		.read_seq_string = memcg_stat_show,
4656
	},
4657 4658 4659 4660
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4661 4662 4663 4664 4665
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4666 4667 4668 4669 4670
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4671 4672 4673 4674 4675
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4676 4677
	{
		.name = "oom_control",
4678 4679
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4680 4681 4682 4683
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4684 4685 4686
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4687
		.read_seq_string = memcg_numa_stat_show,
4688 4689
	},
#endif
A
Andrew Morton 已提交
4690
#ifdef CONFIG_MEMCG_SWAP
4691 4692 4693
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4694
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4695 4696
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4697 4698 4699 4700 4701
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4702
		.read = mem_cgroup_read,
4703 4704 4705 4706 4707
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4708
		.read = mem_cgroup_read,
4709 4710 4711 4712 4713
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4714
		.read = mem_cgroup_read,
4715 4716
	},
#endif
4717
	{ },	/* terminate */
4718
};
4719

4720
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4721 4722
{
	struct mem_cgroup_per_node *pn;
4723
	struct mem_cgroup_per_zone *mz;
4724
	int zone, tmp = node;
4725 4726 4727 4728 4729 4730 4731 4732
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4733 4734
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4735
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4736 4737
	if (!pn)
		return 1;
4738 4739 4740

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4741
		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4742
		mz->usage_in_excess = 0;
4743
		mz->on_tree = false;
4744
		mz->memcg = memcg;
4745
	}
4746
	memcg->info.nodeinfo[node] = pn;
4747 4748 4749
	return 0;
}

4750
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4751
{
4752
	kfree(memcg->info.nodeinfo[node]);
4753 4754
}

4755 4756
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4757
	struct mem_cgroup *memcg;
4758
	int size = sizeof(struct mem_cgroup);
4759

4760
	/* Can be very big if MAX_NUMNODES is very big */
4761
	if (size < PAGE_SIZE)
4762
		memcg = kzalloc(size, GFP_KERNEL);
4763
	else
4764
		memcg = vzalloc(size);
4765

4766
	if (!memcg)
4767 4768
		return NULL;

4769 4770
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4771
		goto out_free;
4772 4773
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4774 4775 4776

out_free:
	if (size < PAGE_SIZE)
4777
		kfree(memcg);
4778
	else
4779
		vfree(memcg);
4780
	return NULL;
4781 4782
}

4783
/*
4784
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4785 4786 4787
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
4788
static void free_work(struct work_struct *work)
4789 4790
{
	struct mem_cgroup *memcg;
4791
	int size = sizeof(struct mem_cgroup);
4792 4793

	memcg = container_of(work, struct mem_cgroup, work_freeing);
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
4806 4807 4808 4809
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
4810
}
4811 4812

static void free_rcu(struct rcu_head *rcu_head)
4813 4814 4815 4816
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4817
	INIT_WORK(&memcg->work_freeing, free_work);
4818 4819 4820
	schedule_work(&memcg->work_freeing);
}

4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4832
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4833
{
K
KAMEZAWA Hiroyuki 已提交
4834 4835
	int node;

4836 4837
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4838

B
Bob Liu 已提交
4839
	for_each_node(node)
4840
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4841

4842
	free_percpu(memcg->stat);
4843
	call_rcu(&memcg->rcu_freeing, free_rcu);
4844 4845
}

4846
static void mem_cgroup_get(struct mem_cgroup *memcg)
4847
{
4848
	atomic_inc(&memcg->refcnt);
4849 4850
}

4851
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4852
{
4853 4854 4855
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4856 4857 4858
		if (parent)
			mem_cgroup_put(parent);
	}
4859 4860
}

4861
static void mem_cgroup_put(struct mem_cgroup *memcg)
4862
{
4863
	__mem_cgroup_put(memcg, 1);
4864 4865
}

4866 4867 4868
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4869
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4870
{
4871
	if (!memcg->res.parent)
4872
		return NULL;
4873
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4874
}
G
Glauber Costa 已提交
4875
EXPORT_SYMBOL(parent_mem_cgroup);
4876

A
Andrew Morton 已提交
4877
#ifdef CONFIG_MEMCG_SWAP
4878 4879
static void __init enable_swap_cgroup(void)
{
4880
	if (!mem_cgroup_disabled() && really_do_swap_account)
4881 4882 4883 4884 4885 4886 4887 4888
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4889 4890 4891 4892 4893 4894
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4895
	for_each_node(node) {
4896 4897 4898 4899 4900
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4901
			goto err_cleanup;
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4912 4913

err_cleanup:
B
Bob Liu 已提交
4914
	for_each_node(node) {
4915 4916 4917 4918 4919 4920 4921
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4922 4923
}

L
Li Zefan 已提交
4924
static struct cgroup_subsys_state * __ref
4925
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4926
{
4927
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4928
	long error = -ENOMEM;
4929
	int node;
B
Balbir Singh 已提交
4930

4931 4932
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4933
		return ERR_PTR(error);
4934

B
Bob Liu 已提交
4935
	for_each_node(node)
4936
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4937
			goto free_out;
4938

4939
	/* root ? */
4940
	if (cont->parent == NULL) {
4941
		int cpu;
4942
		enable_swap_cgroup();
4943
		parent = NULL;
4944 4945
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4946
		root_mem_cgroup = memcg;
4947 4948 4949 4950 4951
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4952
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4953
	} else {
4954
		parent = mem_cgroup_from_cont(cont->parent);
4955 4956
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4957
	}
4958

4959
	if (parent && parent->use_hierarchy) {
4960 4961
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4962 4963 4964 4965 4966 4967 4968
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4969
	} else {
4970 4971
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4972
	}
4973 4974
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4975

K
KOSAKI Motohiro 已提交
4976
	if (parent)
4977 4978 4979 4980
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
4981
	spin_lock_init(&memcg->move_lock);
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
4993
	return &memcg->css;
4994
free_out:
4995
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4996
	return ERR_PTR(error);
B
Balbir Singh 已提交
4997 4998
}

4999
static int mem_cgroup_pre_destroy(struct cgroup *cont)
5000
{
5001
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5002

5003
	return mem_cgroup_force_empty(memcg, false);
5004 5005
}

5006
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
5007
{
5008
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5009

5010
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5011

5012
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5013 5014
}

5015
#ifdef CONFIG_MMU
5016
/* Handlers for move charge at task migration. */
5017 5018
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5019
{
5020 5021
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5022
	struct mem_cgroup *memcg = mc.to;
5023

5024
	if (mem_cgroup_is_root(memcg)) {
5025 5026 5027 5028 5029 5030 5031 5032
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5033
		 * "memcg" cannot be under rmdir() because we've already checked
5034 5035 5036 5037
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5038
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5039
			goto one_by_one;
5040
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5041
						PAGE_SIZE * count, &dummy)) {
5042
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5059 5060
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5061
		if (ret)
5062
			/* mem_cgroup_clear_mc() will do uncharge later */
5063
			return ret;
5064 5065
		mc.precharge++;
	}
5066 5067 5068 5069
	return ret;
}

/**
5070
 * get_mctgt_type - get target type of moving charge
5071 5072 5073
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5074
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5075 5076 5077 5078 5079 5080
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5081 5082 5083
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5084 5085 5086 5087 5088
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5089
	swp_entry_t	ent;
5090 5091 5092
};

enum mc_target_type {
5093
	MC_TARGET_NONE = 0,
5094
	MC_TARGET_PAGE,
5095
	MC_TARGET_SWAP,
5096 5097
};

D
Daisuke Nishimura 已提交
5098 5099
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5100
{
D
Daisuke Nishimura 已提交
5101
	struct page *page = vm_normal_page(vma, addr, ptent);
5102

D
Daisuke Nishimura 已提交
5103 5104 5105 5106
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5107
		if (!move_anon())
D
Daisuke Nishimura 已提交
5108
			return NULL;
5109 5110
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5111 5112 5113 5114 5115 5116 5117
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5118
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5119 5120 5121 5122 5123 5124 5125 5126
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5127 5128 5129 5130 5131
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5132 5133 5134 5135 5136
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5137 5138 5139 5140 5141 5142 5143
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5144

5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5164 5165 5166 5167 5168 5169
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5170
		if (do_swap_account)
5171 5172
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5173
	}
5174
#endif
5175 5176 5177
	return page;
}

5178
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5179 5180 5181 5182
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5183
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5184 5185 5186 5187 5188 5189
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5190 5191
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5192 5193

	if (!page && !ent.val)
5194
		return ret;
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5210 5211
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5212
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5213 5214 5215
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5216 5217 5218 5219
	}
	return ret;
}

5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5255 5256 5257 5258 5259 5260 5261 5262
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5263 5264 5265 5266
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5267
		return 0;
5268
	}
5269

5270 5271
	if (pmd_trans_unstable(pmd))
		return 0;
5272 5273
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5274
		if (get_mctgt_type(vma, addr, *pte, NULL))
5275 5276 5277 5278
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5279 5280 5281
	return 0;
}

5282 5283 5284 5285 5286
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5287
	down_read(&mm->mmap_sem);
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5299
	up_read(&mm->mmap_sem);
5300 5301 5302 5303 5304 5305 5306 5307 5308

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5309 5310 5311 5312 5313
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5314 5315
}

5316 5317
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5318
{
5319 5320 5321
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5322
	/* we must uncharge all the leftover precharges from mc.to */
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5334
	}
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5369
	spin_lock(&mc.lock);
5370 5371
	mc.from = NULL;
	mc.to = NULL;
5372
	spin_unlock(&mc.lock);
5373
	mem_cgroup_end_move(from);
5374 5375
}

5376 5377
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5378
{
5379
	struct task_struct *p = cgroup_taskset_first(tset);
5380
	int ret = 0;
5381
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5382

5383
	if (memcg->move_charge_at_immigrate) {
5384 5385 5386
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5387
		VM_BUG_ON(from == memcg);
5388 5389 5390 5391 5392

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5393 5394 5395 5396
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5397
			VM_BUG_ON(mc.moved_charge);
5398
			VM_BUG_ON(mc.moved_swap);
5399
			mem_cgroup_start_move(from);
5400
			spin_lock(&mc.lock);
5401
			mc.from = from;
5402
			mc.to = memcg;
5403
			spin_unlock(&mc.lock);
5404
			/* We set mc.moving_task later */
5405 5406 5407 5408

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5409 5410
		}
		mmput(mm);
5411 5412 5413 5414
	}
	return ret;
}

5415 5416
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5417
{
5418
	mem_cgroup_clear_mc();
5419 5420
}

5421 5422 5423
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5424
{
5425 5426 5427 5428
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5429 5430 5431 5432
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5433

5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5445
		if (mc.precharge < HPAGE_PMD_NR) {
5446 5447 5448 5449 5450 5451 5452 5453 5454
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5455
							pc, mc.from, mc.to)) {
5456 5457 5458 5459 5460 5461 5462 5463
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5464
		return 0;
5465 5466
	}

5467 5468
	if (pmd_trans_unstable(pmd))
		return 0;
5469 5470 5471 5472
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5473
		swp_entry_t ent;
5474 5475 5476 5477

		if (!mc.precharge)
			break;

5478
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5479 5480 5481 5482 5483
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5484
			if (!mem_cgroup_move_account(page, 1, pc,
5485
						     mc.from, mc.to)) {
5486
				mc.precharge--;
5487 5488
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5489 5490
			}
			putback_lru_page(page);
5491
put:			/* get_mctgt_type() gets the page */
5492 5493
			put_page(page);
			break;
5494 5495
		case MC_TARGET_SWAP:
			ent = target.ent;
5496
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5497
				mc.precharge--;
5498 5499 5500
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5501
			break;
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5516
		ret = mem_cgroup_do_precharge(1);
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5560
	up_read(&mm->mmap_sem);
5561 5562
}

5563 5564
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5565
{
5566
	struct task_struct *p = cgroup_taskset_first(tset);
5567
	struct mm_struct *mm = get_task_mm(p);
5568 5569

	if (mm) {
5570 5571
		if (mc.to)
			mem_cgroup_move_charge(mm);
5572 5573
		mmput(mm);
	}
5574 5575
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5576
}
5577
#else	/* !CONFIG_MMU */
5578 5579
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5580 5581 5582
{
	return 0;
}
5583 5584
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5585 5586
{
}
5587 5588
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5589 5590 5591
{
}
#endif
B
Balbir Singh 已提交
5592

B
Balbir Singh 已提交
5593 5594 5595 5596
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5597
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5598
	.destroy = mem_cgroup_destroy,
5599 5600
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5601
	.attach = mem_cgroup_move_task,
5602
	.base_cftypes = mem_cgroup_files,
5603
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5604
	.use_id = 1,
5605
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5606
};
5607

A
Andrew Morton 已提交
5608
#ifdef CONFIG_MEMCG_SWAP
5609 5610 5611
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5612
	if (!strcmp(s, "1"))
5613
		really_do_swap_account = 1;
5614
	else if (!strcmp(s, "0"))
5615 5616 5617
		really_do_swap_account = 0;
	return 1;
}
5618
__setup("swapaccount=", enable_swap_account);
5619 5620

#endif