memcontrol.c 184.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
95 96 97 98 99
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 101 102
	MEM_CGROUP_STAT_NSTATS,
};

103 104 105
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
106
	"rss_huge",
107 108 109 110
	"mapped_file",
	"swap",
};

111 112 113
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 115
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 117
	MEM_CGROUP_EVENTS_NSTATS,
};
118 119 120 121 122 123 124 125

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

126 127 128 129 130 131 132 133
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

134 135 136 137 138 139 140 141 142
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
143
	MEM_CGROUP_TARGET_NUMAINFO,
144 145
	MEM_CGROUP_NTARGETS,
};
146 147 148
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
149

150
struct mem_cgroup_stat_cpu {
151
	long count[MEM_CGROUP_STAT_NSTATS];
152
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153
	unsigned long nr_page_events;
154
	unsigned long targets[MEM_CGROUP_NTARGETS];
155 156
};

157
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
158 159 160 161
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
162
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
163 164
	unsigned long last_dead_count;

165 166 167 168
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

169 170 171 172
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
173
	struct lruvec		lruvec;
174
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
175

176 177
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

178 179 180 181
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
182
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183
						/* use container_of	   */
184 185 186 187 188 189 190
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
191
	struct mem_cgroup_per_node *nodeinfo[0];
192 193
};

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

214 215 216 217 218
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
219
/* For threshold */
220
struct mem_cgroup_threshold_ary {
221
	/* An array index points to threshold just below or equal to usage. */
222
	int current_threshold;
223 224 225 226 227
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
228 229 230 231 232 233 234 235 236 237 238 239

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
240 241 242 243 244
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
245

246 247
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
248

B
Balbir Singh 已提交
249 250 251 252 253 254 255
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
256 257 258
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
259 260 261 262 263 264 265
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
266

267 268 269
	/* vmpressure notifications */
	struct vmpressure vmpressure;

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
287 288
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
289 290 291 292
		 */
		struct work_struct work_freeing;
	};

293 294 295 296
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
297 298 299 300
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
301
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
302 303 304 305

	bool		oom_lock;
	atomic_t	under_oom;

306
	atomic_t	refcnt;
307

308
	int	swappiness;
309 310
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
311

312 313 314
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

315 316 317 318
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
319
	struct mem_cgroup_thresholds thresholds;
320

321
	/* thresholds for mem+swap usage. RCU-protected */
322
	struct mem_cgroup_thresholds memsw_thresholds;
323

K
KAMEZAWA Hiroyuki 已提交
324 325
	/* For oom notifier event fd */
	struct list_head oom_notify;
326

327 328 329 330 331
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
332 333 334 335
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
336 337
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
338
	/*
339
	 * percpu counter.
340
	 */
341
	struct mem_cgroup_stat_cpu __percpu *stat;
342 343 344 345 346 347
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
348

M
Michal Hocko 已提交
349
	atomic_t	dead_count;
M
Michal Hocko 已提交
350
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
351 352
	struct tcp_memcontrol tcp_mem;
#endif
353 354 355 356 357 358 359 360
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
361 362 363 364 365 366 367

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
368

369 370 371 372 373 374 375 376
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 *
	 * WARNING: This has to be the last element of the struct. Don't
	 * add new fields after this point.
	 */
	struct mem_cgroup_lru_info info;
B
Balbir Singh 已提交
377 378
};

379 380 381 382 383 384
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

385 386 387
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
388
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
389
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
390 391
};

392 393 394
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
395 396 397 398 399 400

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
401 402 403 404 405 406

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

407 408 409 410 411
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

412 413 414 415 416
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

417 418 419 420 421 422 423 424 425 426 427
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
428 429
#endif

430 431
/* Stuffs for move charges at task migration. */
/*
432 433
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
434 435
 */
enum move_type {
436
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
437
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
438 439 440
	NR_MOVE_TYPE,
};

441 442
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
443
	spinlock_t	  lock; /* for from, to */
444 445
	struct mem_cgroup *from;
	struct mem_cgroup *to;
446
	unsigned long immigrate_flags;
447
	unsigned long precharge;
448
	unsigned long moved_charge;
449
	unsigned long moved_swap;
450 451 452
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
453
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
454 455
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
456

D
Daisuke Nishimura 已提交
457 458
static bool move_anon(void)
{
459
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
460 461
}

462 463
static bool move_file(void)
{
464
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
465 466
}

467 468 469 470
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
471 472
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
473

474 475
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
476
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
477
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
478
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
479 480 481
	NR_CHARGE_TYPE,
};

482
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
483 484 485 486
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
487
	_KMEM,
G
Glauber Costa 已提交
488 489
};

490 491
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
492
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
493 494
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
495

496 497 498 499 500 501 502 503
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

504 505 506 507 508 509 510
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

511 512
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
513

514 515 516 517 518 519
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

538 539 540 541 542
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
543
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
544
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
545 546 547

void sock_update_memcg(struct sock *sk)
{
548
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
549
		struct mem_cgroup *memcg;
550
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
551 552 553

		BUG_ON(!sk->sk_prot->proto_cgroup);

554 555 556 557 558 559 560 561 562 563 564 565 566 567
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
568 569
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
570 571
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
572
			mem_cgroup_get(memcg);
573
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
574 575 576 577 578 579 580 581
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
582
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
583 584 585 586 587 588
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
589 590 591 592 593 594 595 596 597

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
598

599 600 601 602 603 604 605 606 607 608 609 610
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

611
#ifdef CONFIG_MEMCG_KMEM
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
630 631
int memcg_limited_groups_array_size;

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

647 648 649 650 651 652
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
653
struct static_key memcg_kmem_enabled_key;
654
EXPORT_SYMBOL(memcg_kmem_enabled_key);
655 656 657

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
658
	if (memcg_kmem_is_active(memcg)) {
659
		static_key_slow_dec(&memcg_kmem_enabled_key);
660 661
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
662 663 664 665 666
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
667 668 669 670 671 672 673 674 675 676 677 678 679
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

680
static void drain_all_stock_async(struct mem_cgroup *memcg);
681

682
static struct mem_cgroup_per_zone *
683
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
684
{
685
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
686
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
687 688
}

689
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
690
{
691
	return &memcg->css;
692 693
}

694
static struct mem_cgroup_per_zone *
695
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
696
{
697 698
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
699

700
	return mem_cgroup_zoneinfo(memcg, nid, zid);
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
719
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
720
				struct mem_cgroup_per_zone *mz,
721 722
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
723 724 725 726 727 728 729 730
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

731 732 733
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
750 751 752
}

static void
753
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
754 755 756 757 758 759 760 761 762
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

763
static void
764
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
765 766 767 768
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
769
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
770 771 772 773
	spin_unlock(&mctz->lock);
}


774
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
775
{
776
	unsigned long long excess;
777 778
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
779 780
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
781 782 783
	mctz = soft_limit_tree_from_page(page);

	/*
784 785
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
786
	 */
787 788 789
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
790 791 792 793
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
794
		if (excess || mz->on_tree) {
795 796 797
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
798
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
799
			/*
800 801
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
802
			 */
803
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
804 805
			spin_unlock(&mctz->lock);
		}
806 807 808
	}
}

809
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
810 811 812 813 814
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
815
	for_each_node(node) {
816
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
817
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
818
			mctz = soft_limit_tree_node_zone(node, zone);
819
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
820 821 822 823
		}
	}
}

824 825 826 827
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
828
	struct mem_cgroup_per_zone *mz;
829 830

retry:
831
	mz = NULL;
832 833 834 835 836 837 838 839 840 841
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
842 843 844
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
880
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
881
				 enum mem_cgroup_stat_index idx)
882
{
883
	long val = 0;
884 885
	int cpu;

886 887
	get_online_cpus();
	for_each_online_cpu(cpu)
888
		val += per_cpu(memcg->stat->count[idx], cpu);
889
#ifdef CONFIG_HOTPLUG_CPU
890 891 892
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
893 894
#endif
	put_online_cpus();
895 896 897
	return val;
}

898
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
899 900 901
					 bool charge)
{
	int val = (charge) ? 1 : -1;
902
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
903 904
}

905
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
906 907 908 909 910 911
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
912
		val += per_cpu(memcg->stat->events[idx], cpu);
913
#ifdef CONFIG_HOTPLUG_CPU
914 915 916
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
917 918 919 920
#endif
	return val;
}

921
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
922
					 struct page *page,
923
					 bool anon, int nr_pages)
924
{
925 926
	preempt_disable();

927 928 929 930 931 932
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
933
				nr_pages);
934
	else
935
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
936
				nr_pages);
937

938 939 940 941
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

942 943
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
944
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
945
	else {
946
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
947 948
		nr_pages = -nr_pages; /* for event */
	}
949

950
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
951

952
	preempt_enable();
953 954
}

955
unsigned long
956
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
957 958 959 960 961 962 963 964
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
965
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
966
			unsigned int lru_mask)
967 968
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
969
	enum lru_list lru;
970 971
	unsigned long ret = 0;

972
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
973

H
Hugh Dickins 已提交
974 975 976
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
977 978 979 980 981
	}
	return ret;
}

static unsigned long
982
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
983 984
			int nid, unsigned int lru_mask)
{
985 986 987
	u64 total = 0;
	int zid;

988
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
989 990
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
991

992 993
	return total;
}
994

995
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
996
			unsigned int lru_mask)
997
{
998
	int nid;
999 1000
	u64 total = 0;

1001
	for_each_node_state(nid, N_MEMORY)
1002
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1003
	return total;
1004 1005
}

1006 1007
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
1008 1009 1010
{
	unsigned long val, next;

1011
	val = __this_cpu_read(memcg->stat->nr_page_events);
1012
	next = __this_cpu_read(memcg->stat->targets[target]);
1013
	/* from time_after() in jiffies.h */
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1030
	}
1031
	return false;
1032 1033 1034 1035 1036 1037
}

/*
 * Check events in order.
 *
 */
1038
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1039
{
1040
	preempt_disable();
1041
	/* threshold event is triggered in finer grain than soft limit */
1042 1043
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1044 1045
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1046 1047 1048 1049 1050 1051 1052 1053 1054

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1055
		mem_cgroup_threshold(memcg);
1056
		if (unlikely(do_softlimit))
1057
			mem_cgroup_update_tree(memcg, page);
1058
#if MAX_NUMNODES > 1
1059
		if (unlikely(do_numainfo))
1060
			atomic_inc(&memcg->numainfo_events);
1061
#endif
1062 1063
	} else
		preempt_enable();
1064 1065
}

G
Glauber Costa 已提交
1066
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1067
{
1068 1069
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1070 1071
}

1072
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1073
{
1074 1075 1076 1077 1078 1079 1080 1081
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1082
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1083 1084
}

1085
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1086
{
1087
	struct mem_cgroup *memcg = NULL;
1088 1089 1090

	if (!mm)
		return NULL;
1091 1092 1093 1094 1095 1096 1097
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1098 1099
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1100
			break;
1101
	} while (!css_tryget(&memcg->css));
1102
	rcu_read_unlock();
1103
	return memcg;
1104 1105
}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
		struct mem_cgroup *last_visited)
{
	struct cgroup *prev_cgroup, *next_cgroup;

	/*
	 * Root is not visited by cgroup iterators so it needs an
	 * explicit visit.
	 */
	if (!last_visited)
		return root;

	prev_cgroup = (last_visited == root) ? NULL
		: last_visited->css.cgroup;
skip_node:
	next_cgroup = cgroup_next_descendant_pre(
			prev_cgroup, root->css.cgroup);

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
	if (next_cgroup) {
		struct mem_cgroup *mem = mem_cgroup_from_cont(
				next_cgroup);
		if (css_tryget(&mem->css))
			return mem;
		else {
			prev_cgroup = next_cgroup;
			goto skip_node;
		}
	}

	return NULL;
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1171
{
1172
	struct mem_cgroup *memcg = NULL;
1173
	struct mem_cgroup *last_visited = NULL;
M
Michal Hocko 已提交
1174
	unsigned long uninitialized_var(dead_count);
1175

1176 1177 1178
	if (mem_cgroup_disabled())
		return NULL;

1179 1180
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1181

1182
	if (prev && !reclaim)
1183
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1184

1185 1186
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1187
			goto out_css_put;
1188 1189
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1190

1191
	rcu_read_lock();
1192
	while (!memcg) {
1193
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1194

1195 1196 1197 1198 1199 1200 1201
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1202 1203
			last_visited = iter->last_visited;
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1204
				iter->last_visited = NULL;
1205 1206
				goto out_unlock;
			}
M
Michal Hocko 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

			/*
			 * If the dead_count mismatches, a destruction
			 * has happened or is happening concurrently.
			 * If the dead_count matches, a destruction
			 * might still happen concurrently, but since
			 * we checked under RCU, that destruction
			 * won't free the object until we release the
			 * RCU reader lock.  Thus, the dead_count
			 * check verifies the pointer is still valid,
			 * css_tryget() verifies the cgroup pointed to
			 * is alive.
			 */
			dead_count = atomic_read(&root->dead_count);
			smp_rmb();
			last_visited = iter->last_visited;
			if (last_visited) {
				if ((dead_count != iter->last_dead_count) ||
					!css_tryget(&last_visited->css)) {
					last_visited = NULL;
				}
			}
1229
		}
K
KAMEZAWA Hiroyuki 已提交
1230

1231
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1232

1233
		if (reclaim) {
1234 1235 1236
			if (last_visited)
				css_put(&last_visited->css);

M
Michal Hocko 已提交
1237
			iter->last_visited = memcg;
M
Michal Hocko 已提交
1238 1239
			smp_wmb();
			iter->last_dead_count = dead_count;
1240

M
Michal Hocko 已提交
1241
			if (!memcg)
1242 1243 1244 1245
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1246

M
Michal Hocko 已提交
1247
		if (prev && !memcg)
1248
			goto out_unlock;
1249
	}
1250 1251
out_unlock:
	rcu_read_unlock();
1252 1253 1254 1255
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1256
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1257
}
K
KAMEZAWA Hiroyuki 已提交
1258

1259 1260 1261 1262 1263 1264 1265
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1266 1267 1268 1269 1270 1271
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1272

1273 1274 1275 1276 1277 1278
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1279
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1280
	     iter != NULL;				\
1281
	     iter = mem_cgroup_iter(root, iter, NULL))
1282

1283
#define for_each_mem_cgroup(iter)			\
1284
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1285
	     iter != NULL;				\
1286
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1287

1288
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1289
{
1290
	struct mem_cgroup *memcg;
1291 1292

	rcu_read_lock();
1293 1294
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1295 1296 1297 1298
		goto out;

	switch (idx) {
	case PGFAULT:
1299 1300 1301 1302
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1303 1304 1305 1306 1307 1308 1309
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1310
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1311

1312 1313 1314
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1315
 * @memcg: memcg of the wanted lruvec
1316 1317 1318 1319 1320 1321 1322 1323 1324
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1325
	struct lruvec *lruvec;
1326

1327 1328 1329 1330
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1331 1332

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1343 1344
}

K
KAMEZAWA Hiroyuki 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1358

1359
/**
1360
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1361
 * @page: the page
1362
 * @zone: zone of the page
1363
 */
1364
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1365 1366
{
	struct mem_cgroup_per_zone *mz;
1367 1368
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1369
	struct lruvec *lruvec;
1370

1371 1372 1373 1374
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1375

K
KAMEZAWA Hiroyuki 已提交
1376
	pc = lookup_page_cgroup(page);
1377
	memcg = pc->mem_cgroup;
1378 1379

	/*
1380
	 * Surreptitiously switch any uncharged offlist page to root:
1381 1382 1383 1384 1385 1386 1387
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1388
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1389 1390
		pc->mem_cgroup = memcg = root_mem_cgroup;

1391
	mz = page_cgroup_zoneinfo(memcg, page);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1402
}
1403

1404
/**
1405 1406 1407 1408
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1409
 *
1410 1411
 * This function must be called when a page is added to or removed from an
 * lru list.
1412
 */
1413 1414
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1415 1416
{
	struct mem_cgroup_per_zone *mz;
1417
	unsigned long *lru_size;
1418 1419 1420 1421

	if (mem_cgroup_disabled())
		return;

1422 1423 1424 1425
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1426
}
1427

1428
/*
1429
 * Checks whether given mem is same or in the root_mem_cgroup's
1430 1431
 * hierarchy subtree
 */
1432 1433
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1434
{
1435 1436
	if (root_memcg == memcg)
		return true;
1437
	if (!root_memcg->use_hierarchy || !memcg)
1438
		return false;
1439 1440 1441 1442 1443 1444 1445 1446
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1447
	rcu_read_lock();
1448
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1449 1450
	rcu_read_unlock();
	return ret;
1451 1452
}

1453
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1454 1455
{
	int ret;
1456
	struct mem_cgroup *curr = NULL;
1457
	struct task_struct *p;
1458

1459
	p = find_lock_task_mm(task);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1475 1476
	if (!curr)
		return 0;
1477
	/*
1478
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1479
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1480 1481
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1482
	 */
1483
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1484
	css_put(&curr->css);
1485 1486 1487
	return ret;
}

1488
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1489
{
1490
	unsigned long inactive_ratio;
1491
	unsigned long inactive;
1492
	unsigned long active;
1493
	unsigned long gb;
1494

1495 1496
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1497

1498 1499 1500 1501 1502 1503
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1504
	return inactive * inactive_ratio < active;
1505 1506
}

1507 1508 1509
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1510
/**
1511
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1512
 * @memcg: the memory cgroup
1513
 *
1514
 * Returns the maximum amount of memory @mem can be charged with, in
1515
 * pages.
1516
 */
1517
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1518
{
1519 1520
	unsigned long long margin;

1521
	margin = res_counter_margin(&memcg->res);
1522
	if (do_swap_account)
1523
		margin = min(margin, res_counter_margin(&memcg->memsw));
1524
	return margin >> PAGE_SHIFT;
1525 1526
}

1527
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1528 1529 1530 1531 1532 1533 1534
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1535
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1536 1537
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1552 1553 1554 1555

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1556
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1557
{
1558
	atomic_inc(&memcg_moving);
1559
	atomic_inc(&memcg->moving_account);
1560 1561 1562
	synchronize_rcu();
}

1563
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1564
{
1565 1566 1567 1568
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1569 1570
	if (memcg) {
		atomic_dec(&memcg_moving);
1571
		atomic_dec(&memcg->moving_account);
1572
	}
1573
}
1574

1575 1576 1577
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1578 1579
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1580 1581 1582 1583 1584 1585 1586
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1587
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1588 1589
{
	VM_BUG_ON(!rcu_read_lock_held());
1590
	return atomic_read(&memcg->moving_account) > 0;
1591
}
1592

1593
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1594
{
1595 1596
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1597
	bool ret = false;
1598 1599 1600 1601 1602 1603 1604 1605 1606
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1607

1608 1609
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1610 1611
unlock:
	spin_unlock(&mc.lock);
1612 1613 1614
	return ret;
}

1615
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1616 1617
{
	if (mc.moving_task && current != mc.moving_task) {
1618
		if (mem_cgroup_under_move(memcg)) {
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1631 1632 1633 1634
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1635
 * see mem_cgroup_stolen(), too.
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1649
#define K(x) ((x) << (PAGE_SHIFT-10))
1650
/**
1651
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1669 1670
	struct mem_cgroup *iter;
	unsigned int i;
1671

1672
	if (!p)
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1691
	pr_info("Task in %s killed", memcg_name);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1704
	pr_cont(" as a result of limit of %s\n", memcg_name);
1705 1706
done:

1707
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1708 1709 1710
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1711
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1712 1713 1714
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1715
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1716 1717 1718
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1743 1744
}

1745 1746 1747 1748
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1749
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1750 1751
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1752 1753
	struct mem_cgroup *iter;

1754
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1755
		num++;
1756 1757 1758
	return num;
}

D
David Rientjes 已提交
1759 1760 1761
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1762
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1763 1764 1765
{
	u64 limit;

1766 1767
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1768
	/*
1769
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1770
	 */
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1785 1786
}

1787 1788
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1789 1790 1791 1792 1793 1794 1795
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1796
	/*
1797 1798 1799
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1800
	 */
1801
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1802 1803 1804 1805 1806
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1890 1891
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1892
 * @memcg: the target memcg
1893 1894 1895 1896 1897 1898 1899
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1900
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1901 1902
		int nid, bool noswap)
{
1903
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1904 1905 1906
		return true;
	if (noswap || !total_swap_pages)
		return false;
1907
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1908 1909 1910 1911
		return true;
	return false;

}
1912 1913 1914 1915 1916 1917 1918 1919
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1920
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1921 1922
{
	int nid;
1923 1924 1925 1926
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1927
	if (!atomic_read(&memcg->numainfo_events))
1928
		return;
1929
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1930 1931 1932
		return;

	/* make a nodemask where this memcg uses memory from */
1933
	memcg->scan_nodes = node_states[N_MEMORY];
1934

1935
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1936

1937 1938
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1939
	}
1940

1941 1942
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1957
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1958 1959 1960
{
	int node;

1961 1962
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1963

1964
	node = next_node(node, memcg->scan_nodes);
1965
	if (node == MAX_NUMNODES)
1966
		node = first_node(memcg->scan_nodes);
1967 1968 1969 1970 1971 1972 1973 1974 1975
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1976
	memcg->last_scanned_node = node;
1977 1978 1979
	return node;
}

1980 1981 1982 1983 1984 1985
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1986
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1987 1988 1989 1990 1991 1992 1993
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1994 1995
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1996
		     nid < MAX_NUMNODES;
1997
		     nid = next_node(nid, memcg->scan_nodes)) {
1998

1999
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2000 2001 2002 2003 2004 2005
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
2006
	for_each_node_state(nid, N_MEMORY) {
2007
		if (node_isset(nid, memcg->scan_nodes))
2008
			continue;
2009
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2010 2011 2012 2013 2014
			return true;
	}
	return false;
}

2015
#else
2016
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2017 2018 2019
{
	return 0;
}
2020

2021
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2022
{
2023
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2024
}
2025 2026
#endif

2027 2028 2029 2030
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
2031
{
2032
	struct mem_cgroup *victim = NULL;
2033
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
2034
	int loop = 0;
2035
	unsigned long excess;
2036
	unsigned long nr_scanned;
2037 2038 2039 2040
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
2041

2042
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
2043

2044
	while (1) {
2045
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2046
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
2047
			loop++;
2048 2049 2050 2051 2052 2053
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
2054
				if (!total)
2055 2056
					break;
				/*
L
Lucas De Marchi 已提交
2057
				 * We want to do more targeted reclaim.
2058 2059 2060 2061 2062
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
2063
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2064 2065
					break;
			}
2066
			continue;
2067
		}
2068
		if (!mem_cgroup_reclaimable(victim, false))
2069
			continue;
2070 2071 2072 2073
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
2074
			break;
2075
	}
2076
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
2077
	return total;
2078 2079
}

K
KAMEZAWA Hiroyuki 已提交
2080 2081 2082
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2083
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2084
 */
2085
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2086
{
2087
	struct mem_cgroup *iter, *failed = NULL;
2088

2089
	for_each_mem_cgroup_tree(iter, memcg) {
2090
		if (iter->oom_lock) {
2091 2092 2093 2094 2095
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2096 2097
			mem_cgroup_iter_break(memcg, iter);
			break;
2098 2099
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2100
	}
K
KAMEZAWA Hiroyuki 已提交
2101

2102
	if (!failed)
2103
		return true;
2104 2105 2106 2107 2108

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2109
	for_each_mem_cgroup_tree(iter, memcg) {
2110
		if (iter == failed) {
2111 2112
			mem_cgroup_iter_break(memcg, iter);
			break;
2113 2114 2115
		}
		iter->oom_lock = false;
	}
2116
	return false;
2117
}
2118

2119
/*
2120
 * Has to be called with memcg_oom_lock
2121
 */
2122
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2123
{
K
KAMEZAWA Hiroyuki 已提交
2124 2125
	struct mem_cgroup *iter;

2126
	for_each_mem_cgroup_tree(iter, memcg)
2127 2128 2129 2130
		iter->oom_lock = false;
	return 0;
}

2131
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2132 2133 2134
{
	struct mem_cgroup *iter;

2135
	for_each_mem_cgroup_tree(iter, memcg)
2136 2137 2138
		atomic_inc(&iter->under_oom);
}

2139
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2140 2141 2142
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2143 2144 2145 2146 2147
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2148
	for_each_mem_cgroup_tree(iter, memcg)
2149
		atomic_add_unless(&iter->under_oom, -1, 0);
2150 2151
}

2152
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2153 2154
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2155
struct oom_wait_info {
2156
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2157 2158 2159 2160 2161 2162
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2163 2164
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2165 2166 2167
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2168
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2169 2170

	/*
2171
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2172 2173
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2174 2175
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2176 2177 2178 2179
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2180
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2181
{
2182 2183
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2184 2185
}

2186
static void memcg_oom_recover(struct mem_cgroup *memcg)
2187
{
2188 2189
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2190 2191
}

K
KAMEZAWA Hiroyuki 已提交
2192 2193 2194
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2195 2196
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2197
{
K
KAMEZAWA Hiroyuki 已提交
2198
	struct oom_wait_info owait;
2199
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2200

2201
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2202 2203 2204 2205
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2206
	need_to_kill = true;
2207
	mem_cgroup_mark_under_oom(memcg);
2208

2209
	/* At first, try to OOM lock hierarchy under memcg.*/
2210
	spin_lock(&memcg_oom_lock);
2211
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2212 2213 2214 2215 2216
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2217
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2218
	if (!locked || memcg->oom_kill_disable)
2219 2220
		need_to_kill = false;
	if (locked)
2221
		mem_cgroup_oom_notify(memcg);
2222
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2223

2224 2225
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2226
		mem_cgroup_out_of_memory(memcg, mask, order);
2227
	} else {
K
KAMEZAWA Hiroyuki 已提交
2228
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2229
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2230
	}
2231
	spin_lock(&memcg_oom_lock);
2232
	if (locked)
2233 2234
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2235
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2236

2237
	mem_cgroup_unmark_under_oom(memcg);
2238

K
KAMEZAWA Hiroyuki 已提交
2239 2240 2241
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2242
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2243
	return true;
2244 2245
}

2246 2247 2248
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2266 2267
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2268
 */
2269

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2283
	 * need to take move_lock_mem_cgroup(). Because we already hold
2284
	 * rcu_read_lock(), any calls to move_account will be delayed until
2285
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2286
	 */
2287
	if (!mem_cgroup_stolen(memcg))
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2305
	 * should take move_lock_mem_cgroup().
2306 2307 2308 2309
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2310 2311
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2312
{
2313
	struct mem_cgroup *memcg;
2314
	struct page_cgroup *pc = lookup_page_cgroup(page);
2315
	unsigned long uninitialized_var(flags);
2316

2317
	if (mem_cgroup_disabled())
2318
		return;
2319

2320 2321
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2322
		return;
2323 2324

	switch (idx) {
2325 2326
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2327 2328 2329
		break;
	default:
		BUG();
2330
	}
2331

2332
	this_cpu_add(memcg->stat->count[idx], val);
2333
}
2334

2335 2336 2337 2338
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2339
#define CHARGE_BATCH	32U
2340 2341
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2342
	unsigned int nr_pages;
2343
	struct work_struct work;
2344
	unsigned long flags;
2345
#define FLUSHING_CACHED_CHARGE	0
2346 2347
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2348
static DEFINE_MUTEX(percpu_charge_mutex);
2349

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2360
 */
2361
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2362 2363 2364 2365
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2366 2367 2368
	if (nr_pages > CHARGE_BATCH)
		return false;

2369
	stock = &get_cpu_var(memcg_stock);
2370 2371
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2385 2386 2387 2388
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2389
		if (do_swap_account)
2390 2391
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2404
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2405 2406
}

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2418 2419
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2420
 * This will be consumed by consume_stock() function, later.
2421
 */
2422
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2423 2424 2425
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2426
	if (stock->cached != memcg) { /* reset if necessary */
2427
		drain_stock(stock);
2428
		stock->cached = memcg;
2429
	}
2430
	stock->nr_pages += nr_pages;
2431 2432 2433 2434
	put_cpu_var(memcg_stock);
}

/*
2435
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2436 2437
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2438
 */
2439
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2440
{
2441
	int cpu, curcpu;
2442

2443 2444
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2445
	curcpu = get_cpu();
2446 2447
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2448
		struct mem_cgroup *memcg;
2449

2450 2451
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2452
			continue;
2453
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2454
			continue;
2455 2456 2457 2458 2459 2460
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2461
	}
2462
	put_cpu();
2463 2464 2465 2466 2467 2468

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2469
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2470 2471 2472
			flush_work(&stock->work);
	}
out:
2473
 	put_online_cpus();
2474 2475 2476 2477 2478 2479 2480 2481
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2482
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2483
{
2484 2485 2486 2487 2488
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2489
	drain_all_stock(root_memcg, false);
2490
	mutex_unlock(&percpu_charge_mutex);
2491 2492 2493
}

/* This is a synchronous drain interface. */
2494
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2495 2496
{
	/* called when force_empty is called */
2497
	mutex_lock(&percpu_charge_mutex);
2498
	drain_all_stock(root_memcg, true);
2499
	mutex_unlock(&percpu_charge_mutex);
2500 2501
}

2502 2503 2504 2505
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2506
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2507 2508 2509
{
	int i;

2510
	spin_lock(&memcg->pcp_counter_lock);
2511
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2512
		long x = per_cpu(memcg->stat->count[i], cpu);
2513

2514 2515
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2516
	}
2517
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2518
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2519

2520 2521
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2522
	}
2523
	spin_unlock(&memcg->pcp_counter_lock);
2524 2525 2526
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2527 2528 2529 2530 2531
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2532
	struct mem_cgroup *iter;
2533

2534
	if (action == CPU_ONLINE)
2535 2536
		return NOTIFY_OK;

2537
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2538
		return NOTIFY_OK;
2539

2540
	for_each_mem_cgroup(iter)
2541 2542
		mem_cgroup_drain_pcp_counter(iter, cpu);

2543 2544 2545 2546 2547
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2558
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2559 2560
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2561
{
2562
	unsigned long csize = nr_pages * PAGE_SIZE;
2563 2564 2565 2566 2567
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2568
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2569 2570 2571 2572

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2573
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2574 2575 2576
		if (likely(!ret))
			return CHARGE_OK;

2577
		res_counter_uncharge(&memcg->res, csize);
2578 2579 2580 2581
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2582 2583 2584 2585
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2586
	if (nr_pages > min_pages)
2587 2588 2589 2590 2591
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2592 2593 2594
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2595
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2596
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2597
		return CHARGE_RETRY;
2598
	/*
2599 2600 2601 2602 2603 2604 2605
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2606
	 */
2607
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2621
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2622 2623 2624 2625 2626
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2627
/*
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2647
 */
2648
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2649
				   gfp_t gfp_mask,
2650
				   unsigned int nr_pages,
2651
				   struct mem_cgroup **ptr,
2652
				   bool oom)
2653
{
2654
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2655
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2656
	struct mem_cgroup *memcg = NULL;
2657
	int ret;
2658

K
KAMEZAWA Hiroyuki 已提交
2659 2660 2661 2662 2663 2664 2665 2666
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2667

2668
	/*
2669 2670
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2671
	 * thread group leader migrates. It's possible that mm is not
2672
	 * set, if so charge the root memcg (happens for pagecache usage).
2673
	 */
2674
	if (!*ptr && !mm)
2675
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2676
again:
2677 2678 2679
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2680
			goto done;
2681
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2682
			goto done;
2683
		css_get(&memcg->css);
2684
	} else {
K
KAMEZAWA Hiroyuki 已提交
2685
		struct task_struct *p;
2686

K
KAMEZAWA Hiroyuki 已提交
2687 2688 2689
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2690
		 * Because we don't have task_lock(), "p" can exit.
2691
		 * In that case, "memcg" can point to root or p can be NULL with
2692 2693 2694 2695 2696 2697
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2698
		 */
2699
		memcg = mem_cgroup_from_task(p);
2700 2701 2702
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2703 2704 2705
			rcu_read_unlock();
			goto done;
		}
2706
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2719
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2720 2721 2722 2723 2724
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2725

2726 2727
	do {
		bool oom_check;
2728

2729
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2730
		if (fatal_signal_pending(current)) {
2731
			css_put(&memcg->css);
2732
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2733
		}
2734

2735 2736 2737 2738
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2739
		}
2740

2741 2742
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2743 2744 2745 2746
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2747
			batch = nr_pages;
2748 2749
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2750
			goto again;
2751
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2752
			css_put(&memcg->css);
2753 2754
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2755
			if (!oom) {
2756
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2757
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2758
			}
2759 2760 2761 2762
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2763
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2764
			goto bypass;
2765
		}
2766 2767
	} while (ret != CHARGE_OK);

2768
	if (batch > nr_pages)
2769 2770
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2771
done:
2772
	*ptr = memcg;
2773 2774
	return 0;
nomem:
2775
	*ptr = NULL;
2776
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2777
bypass:
2778 2779
	*ptr = root_mem_cgroup;
	return -EINTR;
2780
}
2781

2782 2783 2784 2785 2786
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2787
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2788
				       unsigned int nr_pages)
2789
{
2790
	if (!mem_cgroup_is_root(memcg)) {
2791 2792
		unsigned long bytes = nr_pages * PAGE_SIZE;

2793
		res_counter_uncharge(&memcg->res, bytes);
2794
		if (do_swap_account)
2795
			res_counter_uncharge(&memcg->memsw, bytes);
2796
	}
2797 2798
}

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2817 2818
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2819 2820 2821
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2833
	return mem_cgroup_from_css(css);
2834 2835
}

2836
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2837
{
2838
	struct mem_cgroup *memcg = NULL;
2839
	struct page_cgroup *pc;
2840
	unsigned short id;
2841 2842
	swp_entry_t ent;

2843 2844 2845
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2846
	lock_page_cgroup(pc);
2847
	if (PageCgroupUsed(pc)) {
2848 2849 2850
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2851
	} else if (PageSwapCache(page)) {
2852
		ent.val = page_private(page);
2853
		id = lookup_swap_cgroup_id(ent);
2854
		rcu_read_lock();
2855 2856 2857
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2858
		rcu_read_unlock();
2859
	}
2860
	unlock_page_cgroup(pc);
2861
	return memcg;
2862 2863
}

2864
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2865
				       struct page *page,
2866
				       unsigned int nr_pages,
2867 2868
				       enum charge_type ctype,
				       bool lrucare)
2869
{
2870
	struct page_cgroup *pc = lookup_page_cgroup(page);
2871
	struct zone *uninitialized_var(zone);
2872
	struct lruvec *lruvec;
2873
	bool was_on_lru = false;
2874
	bool anon;
2875

2876
	lock_page_cgroup(pc);
2877
	VM_BUG_ON(PageCgroupUsed(pc));
2878 2879 2880 2881
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2882 2883 2884 2885 2886 2887 2888 2889 2890

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2891
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2892
			ClearPageLRU(page);
2893
			del_page_from_lru_list(page, lruvec, page_lru(page));
2894 2895 2896 2897
			was_on_lru = true;
		}
	}

2898
	pc->mem_cgroup = memcg;
2899 2900 2901 2902 2903 2904 2905
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2906
	smp_wmb();
2907
	SetPageCgroupUsed(pc);
2908

2909 2910
	if (lrucare) {
		if (was_on_lru) {
2911
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2912 2913
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2914
			add_page_to_lru_list(page, lruvec, page_lru(page));
2915 2916 2917 2918
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2919
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2920 2921 2922 2923
		anon = true;
	else
		anon = false;

2924
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2925
	unlock_page_cgroup(pc);
2926

2927 2928 2929 2930 2931
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2932
	memcg_check_events(memcg, page);
2933
}
2934

2935 2936
static DEFINE_MUTEX(set_limit_mutex);

2937 2938 2939 2940 2941 2942 2943
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3031 3032 3033 3034 3035 3036 3037

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
3038 3039
}

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3123 3124
static void kmem_cache_destroy_work_func(struct work_struct *w);

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

3144 3145
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3178 3179
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3180 3181 3182 3183 3184 3185
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3186 3187 3188
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3189 3190 3191 3192
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

3193 3194
	INIT_WORK(&s->memcg_params->destroy,
			kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3195
	if (memcg) {
3196
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3197
		s->memcg_params->root_cache = root_cache;
3198 3199 3200
	} else
		s->memcg_params->is_root_cache = true;

3201 3202 3203 3204 3205
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3230
	mem_cgroup_put(memcg);
3231
out:
3232 3233 3234
	kfree(s->memcg_params);
}

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3266 3267 3268 3269 3270 3271 3272 3273 3274
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3296 3297 3298 3299 3300 3301 3302 3303
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3324 3325 3326 3327 3328 3329 3330
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3331 3332 3333 3334 3335 3336 3337 3338 3339
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3340

3341 3342 3343
/*
 * Called with memcg_cache_mutex held
 */
3344 3345 3346 3347
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3348
	static char *tmp_name = NULL;
3349

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3368

3369
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3370
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3371

3372 3373 3374
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
G
Glauber Costa 已提交
3400
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3452
		cancel_work_sync(&c->memcg_params->destroy);
3453 3454 3455 3456 3457
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3458 3459 3460 3461 3462 3463
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3495 3496
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3497 3498 3499 3500
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3501 3502
	if (cw == NULL) {
		css_put(&memcg->css);
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3553 3554 3555
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3556 3557 3558 3559
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3560
		goto out;
3561 3562 3563 3564 3565 3566 3567 3568

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3569 3570 3571
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3572 3573
	}

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3601 3602 3603
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3699 3700 3701 3702
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3703 3704
#endif /* CONFIG_MEMCG_KMEM */

3705 3706
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3707
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3708 3709
/*
 * Because tail pages are not marked as "used", set it. We're under
3710 3711 3712
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3713
 */
3714
void mem_cgroup_split_huge_fixup(struct page *head)
3715 3716
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3717
	struct page_cgroup *pc;
3718
	struct mem_cgroup *memcg;
3719
	int i;
3720

3721 3722
	if (mem_cgroup_disabled())
		return;
3723 3724

	memcg = head_pc->mem_cgroup;
3725 3726
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3727
		pc->mem_cgroup = memcg;
3728 3729 3730
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3731 3732
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3733
}
3734
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3735

3736
/**
3737
 * mem_cgroup_move_account - move account of the page
3738
 * @page: the page
3739
 * @nr_pages: number of regular pages (>1 for huge pages)
3740 3741 3742 3743 3744
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3745
 * - page is not on LRU (isolate_page() is useful.)
3746
 * - compound_lock is held when nr_pages > 1
3747
 *
3748 3749
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3750
 */
3751 3752 3753 3754
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3755
				   struct mem_cgroup *to)
3756
{
3757 3758
	unsigned long flags;
	int ret;
3759
	bool anon = PageAnon(page);
3760

3761
	VM_BUG_ON(from == to);
3762
	VM_BUG_ON(PageLRU(page));
3763 3764 3765 3766 3767 3768 3769
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3770
	if (nr_pages > 1 && !PageTransHuge(page))
3771 3772 3773 3774 3775 3776 3777 3778
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3779
	move_lock_mem_cgroup(from, &flags);
3780

3781
	if (!anon && page_mapped(page)) {
3782 3783 3784 3785 3786
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3787
	}
3788
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3789

3790
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3791
	pc->mem_cgroup = to;
3792
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3793
	move_unlock_mem_cgroup(from, &flags);
3794 3795
	ret = 0;
unlock:
3796
	unlock_page_cgroup(pc);
3797 3798 3799
	/*
	 * check events
	 */
3800 3801
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3802
out:
3803 3804 3805
	return ret;
}

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3826
 */
3827 3828
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3829
				  struct mem_cgroup *child)
3830 3831
{
	struct mem_cgroup *parent;
3832
	unsigned int nr_pages;
3833
	unsigned long uninitialized_var(flags);
3834 3835
	int ret;

3836
	VM_BUG_ON(mem_cgroup_is_root(child));
3837

3838 3839 3840 3841 3842
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3843

3844
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3845

3846 3847 3848 3849 3850 3851
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3852

3853 3854
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3855
		flags = compound_lock_irqsave(page);
3856
	}
3857

3858
	ret = mem_cgroup_move_account(page, nr_pages,
3859
				pc, child, parent);
3860 3861
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3862

3863
	if (nr_pages > 1)
3864
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3865
	putback_lru_page(page);
3866
put:
3867
	put_page(page);
3868
out:
3869 3870 3871
	return ret;
}

3872 3873 3874 3875 3876 3877 3878
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3879
				gfp_t gfp_mask, enum charge_type ctype)
3880
{
3881
	struct mem_cgroup *memcg = NULL;
3882
	unsigned int nr_pages = 1;
3883
	bool oom = true;
3884
	int ret;
A
Andrea Arcangeli 已提交
3885

A
Andrea Arcangeli 已提交
3886
	if (PageTransHuge(page)) {
3887
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3888
		VM_BUG_ON(!PageTransHuge(page));
3889 3890 3891 3892 3893
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3894
	}
3895

3896
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3897
	if (ret == -ENOMEM)
3898
		return ret;
3899
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3900 3901 3902
	return 0;
}

3903 3904
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3905
{
3906
	if (mem_cgroup_disabled())
3907
		return 0;
3908 3909 3910
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3911
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3912
					MEM_CGROUP_CHARGE_TYPE_ANON);
3913 3914
}

3915 3916 3917
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3918
 * struct page_cgroup is acquired. This refcnt will be consumed by
3919 3920
 * "commit()" or removed by "cancel()"
 */
3921 3922 3923 3924
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3925
{
3926
	struct mem_cgroup *memcg;
3927
	struct page_cgroup *pc;
3928
	int ret;
3929

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3940 3941
	if (!do_swap_account)
		goto charge_cur_mm;
3942 3943
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3944
		goto charge_cur_mm;
3945 3946
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3947
	css_put(&memcg->css);
3948 3949
	if (ret == -EINTR)
		ret = 0;
3950
	return ret;
3951
charge_cur_mm:
3952 3953 3954 3955
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3956 3957
}

3958 3959 3960 3961 3962 3963
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3978 3979 3980
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3981 3982 3983 3984 3985 3986 3987 3988 3989
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3990
static void
3991
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3992
					enum charge_type ctype)
3993
{
3994
	if (mem_cgroup_disabled())
3995
		return;
3996
	if (!memcg)
3997
		return;
3998

3999
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4000 4001 4002
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4003 4004 4005
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4006
	 */
4007
	if (do_swap_account && PageSwapCache(page)) {
4008
		swp_entry_t ent = {.val = page_private(page)};
4009
		mem_cgroup_uncharge_swap(ent);
4010
	}
4011 4012
}

4013 4014
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4015
{
4016
	__mem_cgroup_commit_charge_swapin(page, memcg,
4017
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4018 4019
}

4020 4021
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4022
{
4023 4024 4025 4026
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4027
	if (mem_cgroup_disabled())
4028 4029 4030 4031 4032 4033 4034
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4035 4036
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4037 4038 4039 4040
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4041 4042
}

4043
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4044 4045
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4046 4047 4048
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4049

4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4061
		batch->memcg = memcg;
4062 4063
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4064
	 * In those cases, all pages freed continuously can be expected to be in
4065 4066 4067 4068 4069 4070 4071 4072
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4073
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4074 4075
		goto direct_uncharge;

4076 4077 4078 4079 4080
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4081
	if (batch->memcg != memcg)
4082 4083
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4084
	batch->nr_pages++;
4085
	if (uncharge_memsw)
4086
		batch->memsw_nr_pages++;
4087 4088
	return;
direct_uncharge:
4089
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4090
	if (uncharge_memsw)
4091 4092 4093
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4094
}
4095

4096
/*
4097
 * uncharge if !page_mapped(page)
4098
 */
4099
static struct mem_cgroup *
4100 4101
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4102
{
4103
	struct mem_cgroup *memcg = NULL;
4104 4105
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4106
	bool anon;
4107

4108
	if (mem_cgroup_disabled())
4109
		return NULL;
4110

4111
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
4112

A
Andrea Arcangeli 已提交
4113
	if (PageTransHuge(page)) {
4114
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4115 4116
		VM_BUG_ON(!PageTransHuge(page));
	}
4117
	/*
4118
	 * Check if our page_cgroup is valid
4119
	 */
4120
	pc = lookup_page_cgroup(page);
4121
	if (unlikely(!PageCgroupUsed(pc)))
4122
		return NULL;
4123

4124
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4125

4126
	memcg = pc->mem_cgroup;
4127

K
KAMEZAWA Hiroyuki 已提交
4128 4129 4130
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4131 4132
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4133
	switch (ctype) {
4134
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4135 4136 4137 4138 4139
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4140 4141
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4142
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4143
		/* See mem_cgroup_prepare_migration() */
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4165
	}
K
KAMEZAWA Hiroyuki 已提交
4166

4167
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4168

4169
	ClearPageCgroupUsed(pc);
4170 4171 4172 4173 4174 4175
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4176

4177
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4178
	/*
4179
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4180 4181
	 * will never be freed.
	 */
4182
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4183
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4184 4185
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4186
	}
4187 4188 4189 4190 4191 4192
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4193
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4194

4195
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4196 4197 4198

unlock_out:
	unlock_page_cgroup(pc);
4199
	return NULL;
4200 4201
}

4202 4203
void mem_cgroup_uncharge_page(struct page *page)
{
4204 4205 4206
	/* early check. */
	if (page_mapped(page))
		return;
4207
	VM_BUG_ON(page->mapping && !PageAnon(page));
4208 4209
	if (PageSwapCache(page))
		return;
4210
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4211 4212 4213 4214 4215
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4216
	VM_BUG_ON(page->mapping);
4217
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4218 4219
}

4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4234 4235
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4256 4257 4258 4259 4260 4261
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4262
	memcg_oom_recover(batch->memcg);
4263 4264 4265 4266
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4267
#ifdef CONFIG_SWAP
4268
/*
4269
 * called after __delete_from_swap_cache() and drop "page" account.
4270 4271
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4272 4273
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4274 4275
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4276 4277 4278 4279 4280
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4281
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4282

K
KAMEZAWA Hiroyuki 已提交
4283 4284 4285 4286 4287
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4288
		swap_cgroup_record(ent, css_id(&memcg->css));
4289
}
4290
#endif
4291

A
Andrew Morton 已提交
4292
#ifdef CONFIG_MEMCG_SWAP
4293 4294 4295 4296 4297
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4298
{
4299
	struct mem_cgroup *memcg;
4300
	unsigned short id;
4301 4302 4303 4304

	if (!do_swap_account)
		return;

4305 4306 4307
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4308
	if (memcg) {
4309 4310 4311 4312
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4313
		if (!mem_cgroup_is_root(memcg))
4314
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4315
		mem_cgroup_swap_statistics(memcg, false);
4316 4317
		mem_cgroup_put(memcg);
	}
4318
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4319
}
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4336
				struct mem_cgroup *from, struct mem_cgroup *to)
4337 4338 4339 4340 4341 4342 4343 4344
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4345
		mem_cgroup_swap_statistics(to, true);
4346
		/*
4347 4348 4349 4350 4351 4352
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4353 4354 4355 4356 4357 4358 4359 4360
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4361
				struct mem_cgroup *from, struct mem_cgroup *to)
4362 4363 4364
{
	return -EINVAL;
}
4365
#endif
K
KAMEZAWA Hiroyuki 已提交
4366

4367
/*
4368 4369
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4370
 */
4371 4372
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4373
{
4374
	struct mem_cgroup *memcg = NULL;
4375
	unsigned int nr_pages = 1;
4376
	struct page_cgroup *pc;
4377
	enum charge_type ctype;
4378

4379
	*memcgp = NULL;
4380

4381
	if (mem_cgroup_disabled())
4382
		return;
4383

4384 4385 4386
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4387 4388 4389
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4390 4391
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4423
	}
4424
	unlock_page_cgroup(pc);
4425 4426 4427 4428
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4429
	if (!memcg)
4430
		return;
4431

4432
	*memcgp = memcg;
4433 4434 4435 4436 4437 4438 4439
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4440
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4441
	else
4442
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4443 4444 4445 4446 4447
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4448
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4449
}
4450

4451
/* remove redundant charge if migration failed*/
4452
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4453
	struct page *oldpage, struct page *newpage, bool migration_ok)
4454
{
4455
	struct page *used, *unused;
4456
	struct page_cgroup *pc;
4457
	bool anon;
4458

4459
	if (!memcg)
4460
		return;
4461

4462
	if (!migration_ok) {
4463 4464
		used = oldpage;
		unused = newpage;
4465
	} else {
4466
		used = newpage;
4467 4468
		unused = oldpage;
	}
4469
	anon = PageAnon(used);
4470 4471 4472 4473
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4474
	css_put(&memcg->css);
4475
	/*
4476 4477 4478
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4479
	 */
4480 4481 4482 4483 4484
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4485
	/*
4486 4487 4488 4489 4490 4491
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4492
	 */
4493
	if (anon)
4494
		mem_cgroup_uncharge_page(used);
4495
}
4496

4497 4498 4499 4500 4501 4502 4503 4504
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4505
	struct mem_cgroup *memcg = NULL;
4506 4507 4508 4509 4510 4511 4512 4513 4514
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4515 4516
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4517
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4518 4519
		ClearPageCgroupUsed(pc);
	}
4520 4521
	unlock_page_cgroup(pc);

4522 4523 4524 4525 4526 4527
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4528 4529 4530 4531 4532
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4533
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4534 4535
}

4536 4537 4538 4539 4540 4541
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4542 4543 4544 4545 4546
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4566 4567
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4568 4569 4570 4571
	}
}
#endif

4572
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4573
				unsigned long long val)
4574
{
4575
	int retry_count;
4576
	u64 memswlimit, memlimit;
4577
	int ret = 0;
4578 4579
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4580
	int enlarge;
4581 4582 4583 4584 4585 4586 4587 4588 4589

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4590

4591
	enlarge = 0;
4592
	while (retry_count) {
4593 4594 4595 4596
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4597 4598 4599
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4600
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4601 4602 4603 4604 4605 4606
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4607 4608
			break;
		}
4609 4610 4611 4612 4613

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4614
		ret = res_counter_set_limit(&memcg->res, val);
4615 4616 4617 4618 4619 4620
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4621 4622 4623 4624 4625
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4626 4627
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4628 4629 4630 4631 4632 4633
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4634
	}
4635 4636
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4637

4638 4639 4640
	return ret;
}

L
Li Zefan 已提交
4641 4642
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4643
{
4644
	int retry_count;
4645
	u64 memlimit, memswlimit, oldusage, curusage;
4646 4647
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4648
	int enlarge = 0;
4649

4650 4651 4652
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4653 4654 4655 4656 4657 4658 4659 4660
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4661
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4662 4663 4664 4665 4666 4667 4668 4669
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4670 4671 4672
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4673
		ret = res_counter_set_limit(&memcg->memsw, val);
4674 4675 4676 4677 4678 4679
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4680 4681 4682 4683 4684
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4685 4686 4687
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4688
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4689
		/* Usage is reduced ? */
4690
		if (curusage >= oldusage)
4691
			retry_count--;
4692 4693
		else
			oldusage = curusage;
4694
	}
4695 4696
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4697 4698 4699
	return ret;
}

4700
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4701 4702
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4703 4704 4705 4706 4707 4708
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4709
	unsigned long long excess;
4710
	unsigned long nr_scanned;
4711 4712 4713 4714

	if (order > 0)
		return 0;

4715
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4729
		nr_scanned = 0;
4730
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4731
						    gfp_mask, &nr_scanned);
4732
		nr_reclaimed += reclaimed;
4733
		*total_scanned += nr_scanned;
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4756
				if (next_mz == mz)
4757
					css_put(&next_mz->memcg->css);
4758
				else /* next_mz == NULL or other memcg */
4759 4760 4761
					break;
			} while (1);
		}
4762 4763
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4764 4765 4766 4767 4768 4769 4770 4771
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4772
		/* If excess == 0, no tree ops */
4773
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4774
		spin_unlock(&mctz->lock);
4775
		css_put(&mz->memcg->css);
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4788
		css_put(&next_mz->memcg->css);
4789 4790 4791
	return nr_reclaimed;
}

4792 4793 4794 4795 4796 4797 4798
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4799
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4800 4801
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4802
 */
4803
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4804
				int node, int zid, enum lru_list lru)
4805
{
4806
	struct lruvec *lruvec;
4807
	unsigned long flags;
4808
	struct list_head *list;
4809 4810
	struct page *busy;
	struct zone *zone;
4811

K
KAMEZAWA Hiroyuki 已提交
4812
	zone = &NODE_DATA(node)->node_zones[zid];
4813 4814
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4815

4816
	busy = NULL;
4817
	do {
4818
		struct page_cgroup *pc;
4819 4820
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4821
		spin_lock_irqsave(&zone->lru_lock, flags);
4822
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4823
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4824
			break;
4825
		}
4826 4827 4828
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4829
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4830
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4831 4832
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4833
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4834

4835
		pc = lookup_page_cgroup(page);
4836

4837
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4838
			/* found lock contention or "pc" is obsolete. */
4839
			busy = page;
4840 4841 4842
			cond_resched();
		} else
			busy = NULL;
4843
	} while (!list_empty(list));
4844 4845 4846
}

/*
4847 4848
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4849
 * This enables deleting this mem_cgroup.
4850 4851
 *
 * Caller is responsible for holding css reference on the memcg.
4852
 */
4853
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4854
{
4855
	int node, zid;
4856
	u64 usage;
4857

4858
	do {
4859 4860
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4861 4862
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4863
		for_each_node_state(node, N_MEMORY) {
4864
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4865 4866
				enum lru_list lru;
				for_each_lru(lru) {
4867
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4868
							node, zid, lru);
4869
				}
4870
			}
4871
		}
4872 4873
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4874
		cond_resched();
4875

4876
		/*
4877 4878 4879 4880 4881
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4882 4883 4884 4885 4886 4887
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4888 4889 4890
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4891 4892
}

4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
	struct cgroup *pos;

	/* bounce at first found */
	cgroup_for_each_child(pos, memcg->css.cgroup)
		return true;
	return false;
}

/*
4909 4910
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4911 4912 4913 4914 4915 4916 4917 4918 4919
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4930

4931
	/* returns EBUSY if there is a task or if we come here twice. */
4932 4933 4934
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4935 4936
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4937
	/* try to free all pages in this cgroup */
4938
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4939
		int progress;
4940

4941 4942 4943
		if (signal_pending(current))
			return -EINTR;

4944
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4945
						false);
4946
		if (!progress) {
4947
			nr_retries--;
4948
			/* maybe some writeback is necessary */
4949
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4950
		}
4951 4952

	}
K
KAMEZAWA Hiroyuki 已提交
4953
	lru_add_drain();
4954 4955 4956
	mem_cgroup_reparent_charges(memcg);

	return 0;
4957 4958
}

4959
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4960
{
4961 4962 4963
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4964 4965
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4966 4967 4968 4969 4970
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4971 4972 4973
}


4974 4975 4976 4977 4978 4979 4980 4981 4982
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4983
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4984
	struct cgroup *parent = cont->parent;
4985
	struct mem_cgroup *parent_memcg = NULL;
4986 4987

	if (parent)
4988
		parent_memcg = mem_cgroup_from_cont(parent);
4989

4990
	mutex_lock(&memcg_create_mutex);
4991 4992 4993 4994

	if (memcg->use_hierarchy == val)
		goto out;

4995
	/*
4996
	 * If parent's use_hierarchy is set, we can't make any modifications
4997 4998 4999 5000 5001 5002
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5003
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5004
				(val == 1 || val == 0)) {
5005
		if (!__memcg_has_children(memcg))
5006
			memcg->use_hierarchy = val;
5007 5008 5009 5010
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5011 5012

out:
5013
	mutex_unlock(&memcg_create_mutex);
5014 5015 5016 5017

	return retval;
}

5018

5019
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5020
					       enum mem_cgroup_stat_index idx)
5021
{
K
KAMEZAWA Hiroyuki 已提交
5022
	struct mem_cgroup *iter;
5023
	long val = 0;
5024

5025
	/* Per-cpu values can be negative, use a signed accumulator */
5026
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5027 5028 5029 5030 5031
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5032 5033
}

5034
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5035
{
K
KAMEZAWA Hiroyuki 已提交
5036
	u64 val;
5037

5038
	if (!mem_cgroup_is_root(memcg)) {
5039
		if (!swap)
5040
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5041
		else
5042
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5043 5044
	}

5045 5046 5047 5048
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5049 5050
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5051

K
KAMEZAWA Hiroyuki 已提交
5052
	if (swap)
5053
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5054 5055 5056 5057

	return val << PAGE_SHIFT;
}

5058 5059 5060
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5061
{
5062
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5063
	char str[64];
5064
	u64 val;
G
Glauber Costa 已提交
5065 5066
	int name, len;
	enum res_type type;
5067 5068 5069

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5070

5071 5072
	switch (type) {
	case _MEM:
5073
		if (name == RES_USAGE)
5074
			val = mem_cgroup_usage(memcg, false);
5075
		else
5076
			val = res_counter_read_u64(&memcg->res, name);
5077 5078
		break;
	case _MEMSWAP:
5079
		if (name == RES_USAGE)
5080
			val = mem_cgroup_usage(memcg, true);
5081
		else
5082
			val = res_counter_read_u64(&memcg->memsw, name);
5083
		break;
5084 5085 5086
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5087 5088 5089
	default:
		BUG();
	}
5090 5091 5092

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5093
}
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5112
	mutex_lock(&memcg_create_mutex);
5113 5114
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5115
		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5116 5117 5118 5119 5120 5121
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5122 5123 5124 5125 5126
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5127 5128 5129 5130 5131 5132 5133
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);

5134 5135 5136 5137 5138 5139 5140
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
5141 5142 5143 5144
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5145
	mutex_unlock(&memcg_create_mutex);
5146 5147 5148 5149
#endif
	return ret;
}

5150
#ifdef CONFIG_MEMCG_KMEM
5151
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5152
{
5153
	int ret = 0;
5154 5155
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5156 5157
		goto out;

5158
	memcg->kmem_account_flags = parent->kmem_account_flags;
5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5186
}
5187
#endif /* CONFIG_MEMCG_KMEM */
5188

5189 5190 5191 5192
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5193 5194
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5195
{
5196
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5197 5198
	enum res_type type;
	int name;
5199 5200 5201
	unsigned long long val;
	int ret;

5202 5203
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5204

5205
	switch (name) {
5206
	case RES_LIMIT:
5207 5208 5209 5210
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5211 5212
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5213 5214 5215
		if (ret)
			break;
		if (type == _MEM)
5216
			ret = mem_cgroup_resize_limit(memcg, val);
5217
		else if (type == _MEMSWAP)
5218
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5219 5220 5221 5222
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5223
		break;
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5238 5239 5240 5241 5242
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5243 5244
}

5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5272
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5273
{
5274
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5275 5276
	int name;
	enum res_type type;
5277

5278 5279
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5280

5281
	switch (name) {
5282
	case RES_MAX_USAGE:
5283
		if (type == _MEM)
5284
			res_counter_reset_max(&memcg->res);
5285
		else if (type == _MEMSWAP)
5286
			res_counter_reset_max(&memcg->memsw);
5287 5288 5289 5290
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5291 5292
		break;
	case RES_FAILCNT:
5293
		if (type == _MEM)
5294
			res_counter_reset_failcnt(&memcg->res);
5295
		else if (type == _MEMSWAP)
5296
			res_counter_reset_failcnt(&memcg->memsw);
5297 5298 5299 5300
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5301 5302
		break;
	}
5303

5304
	return 0;
5305 5306
}

5307 5308 5309 5310 5311 5312
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5313
#ifdef CONFIG_MMU
5314 5315 5316
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5317
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5318 5319 5320

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5321

5322
	/*
5323 5324 5325 5326
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5327
	 */
5328
	memcg->move_charge_at_immigrate = val;
5329 5330
	return 0;
}
5331 5332 5333 5334 5335 5336 5337
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5338

5339
#ifdef CONFIG_NUMA
5340
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5341
				      struct seq_file *m)
5342 5343 5344 5345
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5346
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5347

5348
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5349
	seq_printf(m, "total=%lu", total_nr);
5350
	for_each_node_state(nid, N_MEMORY) {
5351
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5352 5353 5354 5355
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5356
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5357
	seq_printf(m, "file=%lu", file_nr);
5358
	for_each_node_state(nid, N_MEMORY) {
5359
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5360
				LRU_ALL_FILE);
5361 5362 5363 5364
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5365
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5366
	seq_printf(m, "anon=%lu", anon_nr);
5367
	for_each_node_state(nid, N_MEMORY) {
5368
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5369
				LRU_ALL_ANON);
5370 5371 5372 5373
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5374
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5375
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5376
	for_each_node_state(nid, N_MEMORY) {
5377
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5378
				BIT(LRU_UNEVICTABLE));
5379 5380 5381 5382 5383 5384 5385
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5386 5387 5388 5389 5390
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5391
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5392
				 struct seq_file *m)
5393
{
5394
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5395 5396
	struct mem_cgroup *mi;
	unsigned int i;
5397

5398
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5399
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5400
			continue;
5401 5402
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5403
	}
L
Lee Schermerhorn 已提交
5404

5405 5406 5407 5408 5409 5410 5411 5412
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5413
	/* Hierarchical information */
5414 5415
	{
		unsigned long long limit, memsw_limit;
5416
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5417
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5418
		if (do_swap_account)
5419 5420
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5421
	}
K
KOSAKI Motohiro 已提交
5422

5423 5424 5425
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5426
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5427
			continue;
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5448
	}
K
KAMEZAWA Hiroyuki 已提交
5449

K
KOSAKI Motohiro 已提交
5450 5451 5452 5453
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5454
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5455 5456 5457 5458 5459
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5460
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5461
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5462

5463 5464 5465 5466
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5467
			}
5468 5469 5470 5471
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5472 5473 5474
	}
#endif

5475 5476 5477
	return 0;
}

K
KOSAKI Motohiro 已提交
5478 5479 5480 5481
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5482
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5483 5484 5485 5486 5487 5488 5489
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5490

K
KOSAKI Motohiro 已提交
5491 5492 5493 5494 5495 5496 5497
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5498

5499
	mutex_lock(&memcg_create_mutex);
5500

K
KOSAKI Motohiro 已提交
5501
	/* If under hierarchy, only empty-root can set this value */
5502
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5503
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5504
		return -EINVAL;
5505
	}
K
KOSAKI Motohiro 已提交
5506 5507 5508

	memcg->swappiness = val;

5509
	mutex_unlock(&memcg_create_mutex);
5510

K
KOSAKI Motohiro 已提交
5511 5512 5513
	return 0;
}

5514 5515 5516 5517 5518 5519 5520 5521
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5522
		t = rcu_dereference(memcg->thresholds.primary);
5523
	else
5524
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5525 5526 5527 5528 5529 5530 5531

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5532
	 * current_threshold points to threshold just below or equal to usage.
5533 5534 5535
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5536
	i = t->current_threshold;
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5560
	t->current_threshold = i - 1;
5561 5562 5563 5564 5565 5566
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5567 5568 5569 5570 5571 5572 5573
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5584
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5585 5586 5587
{
	struct mem_cgroup_eventfd_list *ev;

5588
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5589 5590 5591 5592
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5593
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5594
{
K
KAMEZAWA Hiroyuki 已提交
5595 5596
	struct mem_cgroup *iter;

5597
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5598
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5599 5600 5601 5602
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5603 5604
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5605 5606
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5607
	enum res_type type = MEMFILE_TYPE(cft->private);
5608
	u64 threshold, usage;
5609
	int i, size, ret;
5610 5611 5612 5613 5614 5615

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5616

5617
	if (type == _MEM)
5618
		thresholds = &memcg->thresholds;
5619
	else if (type == _MEMSWAP)
5620
		thresholds = &memcg->memsw_thresholds;
5621 5622 5623 5624 5625 5626
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5627
	if (thresholds->primary)
5628 5629
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5630
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5631 5632

	/* Allocate memory for new array of thresholds */
5633
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5634
			GFP_KERNEL);
5635
	if (!new) {
5636 5637 5638
		ret = -ENOMEM;
		goto unlock;
	}
5639
	new->size = size;
5640 5641

	/* Copy thresholds (if any) to new array */
5642 5643
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5644
				sizeof(struct mem_cgroup_threshold));
5645 5646
	}

5647
	/* Add new threshold */
5648 5649
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5650 5651

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5652
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5653 5654 5655
			compare_thresholds, NULL);

	/* Find current threshold */
5656
	new->current_threshold = -1;
5657
	for (i = 0; i < size; i++) {
5658
		if (new->entries[i].threshold <= usage) {
5659
			/*
5660 5661
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5662 5663
			 * it here.
			 */
5664
			++new->current_threshold;
5665 5666
		} else
			break;
5667 5668
	}

5669 5670 5671 5672 5673
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5674

5675
	/* To be sure that nobody uses thresholds */
5676 5677 5678 5679 5680 5681 5682 5683
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5684
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5685
	struct cftype *cft, struct eventfd_ctx *eventfd)
5686 5687
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5688 5689
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5690
	enum res_type type = MEMFILE_TYPE(cft->private);
5691
	u64 usage;
5692
	int i, j, size;
5693 5694 5695

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5696
		thresholds = &memcg->thresholds;
5697
	else if (type == _MEMSWAP)
5698
		thresholds = &memcg->memsw_thresholds;
5699 5700 5701
	else
		BUG();

5702 5703 5704
	if (!thresholds->primary)
		goto unlock;

5705 5706 5707 5708 5709 5710
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5711 5712 5713
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5714 5715 5716
			size++;
	}

5717
	new = thresholds->spare;
5718

5719 5720
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5721 5722
		kfree(new);
		new = NULL;
5723
		goto swap_buffers;
5724 5725
	}

5726
	new->size = size;
5727 5728

	/* Copy thresholds and find current threshold */
5729 5730 5731
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5732 5733
			continue;

5734
		new->entries[j] = thresholds->primary->entries[i];
5735
		if (new->entries[j].threshold <= usage) {
5736
			/*
5737
			 * new->current_threshold will not be used
5738 5739 5740
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5741
			++new->current_threshold;
5742 5743 5744 5745
		}
		j++;
	}

5746
swap_buffers:
5747 5748
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5749 5750 5751 5752 5753 5754
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5755
	rcu_assign_pointer(thresholds->primary, new);
5756

5757
	/* To be sure that nobody uses thresholds */
5758
	synchronize_rcu();
5759
unlock:
5760 5761
	mutex_unlock(&memcg->thresholds_lock);
}
5762

K
KAMEZAWA Hiroyuki 已提交
5763 5764 5765 5766 5767
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5768
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5769 5770 5771 5772 5773 5774

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5775
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5776 5777 5778 5779 5780

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5781
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5782
		eventfd_signal(eventfd, 1);
5783
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5784 5785 5786 5787

	return 0;
}

5788
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5789 5790
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5791
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5792
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5793
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5794 5795 5796

	BUG_ON(type != _OOM_TYPE);

5797
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5798

5799
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5800 5801 5802 5803 5804 5805
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5806
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5807 5808
}

5809 5810 5811
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5812
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5813

5814
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5815

5816
	if (atomic_read(&memcg->under_oom))
5817 5818 5819 5820 5821 5822 5823 5824 5825
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5826
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5827 5828 5829 5830 5831 5832 5833 5834
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

5835
	mutex_lock(&memcg_create_mutex);
5836
	/* oom-kill-disable is a flag for subhierarchy. */
5837
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5838
		mutex_unlock(&memcg_create_mutex);
5839 5840
		return -EINVAL;
	}
5841
	memcg->oom_kill_disable = val;
5842
	if (!val)
5843
		memcg_oom_recover(memcg);
5844
	mutex_unlock(&memcg_create_mutex);
5845 5846 5847
	return 0;
}

A
Andrew Morton 已提交
5848
#ifdef CONFIG_MEMCG_KMEM
5849
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5850
{
5851 5852
	int ret;

5853
	memcg->kmemcg_id = -1;
5854 5855 5856
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5857

5858
	return mem_cgroup_sockets_init(memcg, ss);
5859
}
5860

5861
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5862
{
5863
	mem_cgroup_sockets_destroy(memcg);
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5878
}
5879
#else
5880
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5881 5882 5883
{
	return 0;
}
G
Glauber Costa 已提交
5884

5885
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5886 5887
{
}
5888 5889
#endif

B
Balbir Singh 已提交
5890 5891
static struct cftype mem_cgroup_files[] = {
	{
5892
		.name = "usage_in_bytes",
5893
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5894
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5895 5896
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5897
	},
5898 5899
	{
		.name = "max_usage_in_bytes",
5900
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5901
		.trigger = mem_cgroup_reset,
5902
		.read = mem_cgroup_read,
5903
	},
B
Balbir Singh 已提交
5904
	{
5905
		.name = "limit_in_bytes",
5906
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5907
		.write_string = mem_cgroup_write,
5908
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5909
	},
5910 5911 5912 5913
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5914
		.read = mem_cgroup_read,
5915
	},
B
Balbir Singh 已提交
5916 5917
	{
		.name = "failcnt",
5918
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5919
		.trigger = mem_cgroup_reset,
5920
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5921
	},
5922 5923
	{
		.name = "stat",
5924
		.read_seq_string = memcg_stat_show,
5925
	},
5926 5927 5928 5929
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5930 5931
	{
		.name = "use_hierarchy",
5932
		.flags = CFTYPE_INSANE,
5933 5934 5935
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5936 5937 5938 5939 5940
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5941 5942 5943 5944 5945
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5946 5947
	{
		.name = "oom_control",
5948 5949
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5950 5951 5952 5953
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5954 5955 5956 5957 5958
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5959 5960 5961
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5962
		.read_seq_string = memcg_numa_stat_show,
5963 5964
	},
#endif
5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5989 5990 5991 5992 5993 5994
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5995
#endif
5996
	{ },	/* terminate */
5997
};
5998

5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6029
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6030 6031
{
	struct mem_cgroup_per_node *pn;
6032
	struct mem_cgroup_per_zone *mz;
6033
	int zone, tmp = node;
6034 6035 6036 6037 6038 6039 6040 6041
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6042 6043
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6044
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6045 6046
	if (!pn)
		return 1;
6047 6048 6049

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6050
		lruvec_init(&mz->lruvec);
6051
		mz->usage_in_excess = 0;
6052
		mz->on_tree = false;
6053
		mz->memcg = memcg;
6054
	}
6055
	memcg->info.nodeinfo[node] = pn;
6056 6057 6058
	return 0;
}

6059
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6060
{
6061
	kfree(memcg->info.nodeinfo[node]);
6062 6063
}

6064 6065
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6066
	struct mem_cgroup *memcg;
6067
	size_t size = memcg_size();
6068

6069
	/* Can be very big if nr_node_ids is very big */
6070
	if (size < PAGE_SIZE)
6071
		memcg = kzalloc(size, GFP_KERNEL);
6072
	else
6073
		memcg = vzalloc(size);
6074

6075
	if (!memcg)
6076 6077
		return NULL;

6078 6079
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6080
		goto out_free;
6081 6082
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6083 6084 6085

out_free:
	if (size < PAGE_SIZE)
6086
		kfree(memcg);
6087
	else
6088
		vfree(memcg);
6089
	return NULL;
6090 6091
}

6092
/*
6093 6094 6095 6096 6097 6098 6099 6100
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6101
 */
6102 6103

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6104
{
6105
	int node;
6106
	size_t size = memcg_size();
6107

6108 6109 6110 6111 6112 6113 6114 6115
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6127
	disarm_static_keys(memcg);
6128 6129 6130 6131
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6132
}
6133

6134

6135
/*
6136 6137 6138
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
6139
 */
6140
static void free_work(struct work_struct *work)
6141
{
6142
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6143

6144 6145 6146
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
6147

6148 6149 6150
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6151

6152 6153 6154
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
6155 6156
}

6157
static void mem_cgroup_get(struct mem_cgroup *memcg)
6158
{
6159
	atomic_inc(&memcg->refcnt);
6160 6161
}

6162
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6163
{
6164 6165
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6166
		call_rcu(&memcg->rcu_freeing, free_rcu);
6167 6168 6169
		if (parent)
			mem_cgroup_put(parent);
	}
6170 6171
}

6172
static void mem_cgroup_put(struct mem_cgroup *memcg)
6173
{
6174
	__mem_cgroup_put(memcg, 1);
6175 6176
}

6177 6178 6179
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6180
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6181
{
6182
	if (!memcg->res.parent)
6183
		return NULL;
6184
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6185
}
G
Glauber Costa 已提交
6186
EXPORT_SYMBOL(parent_mem_cgroup);
6187

6188
static void __init mem_cgroup_soft_limit_tree_init(void)
6189 6190 6191 6192 6193
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6194
	for_each_node(node) {
6195 6196 6197 6198
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6199
		BUG_ON(!rtpn);
6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6211
static struct cgroup_subsys_state * __ref
6212
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6213
{
6214
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6215
	long error = -ENOMEM;
6216
	int node;
B
Balbir Singh 已提交
6217

6218 6219
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6220
		return ERR_PTR(error);
6221

B
Bob Liu 已提交
6222
	for_each_node(node)
6223
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6224
			goto free_out;
6225

6226
	/* root ? */
6227
	if (cont->parent == NULL) {
6228
		root_mem_cgroup = memcg;
6229 6230 6231
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6232
	}
6233

6234 6235 6236 6237 6238 6239
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6240
	vmpressure_init(&memcg->vmpressure);
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
mem_cgroup_css_online(struct cgroup *cont)
{
	struct mem_cgroup *memcg, *parent;
	int error = 0;

	if (!cont->parent)
		return 0;

6258
	mutex_lock(&memcg_create_mutex);
6259 6260 6261 6262 6263 6264 6265 6266
	memcg = mem_cgroup_from_cont(cont);
	parent = mem_cgroup_from_cont(cont->parent);

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6267 6268
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6269
		res_counter_init(&memcg->kmem, &parent->kmem);
6270

6271 6272 6273 6274 6275 6276 6277
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6278
	} else {
6279 6280
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6281
		res_counter_init(&memcg->kmem, NULL);
6282 6283 6284 6285 6286
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6287
		if (parent != root_mem_cgroup)
6288
			mem_cgroup_subsys.broken_hierarchy = true;
6289
	}
6290 6291

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6292
	mutex_unlock(&memcg_create_mutex);
6293 6294 6295 6296 6297 6298 6299
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
6300 6301
		if (parent->use_hierarchy)
			mem_cgroup_put(parent);
6302
	}
6303
	return error;
B
Balbir Singh 已提交
6304 6305
}

M
Michal Hocko 已提交
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
		atomic_inc(&parent->dead_count);

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
		atomic_inc(&root_mem_cgroup->dead_count);
}

6324
static void mem_cgroup_css_offline(struct cgroup *cont)
6325
{
6326
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6327

M
Michal Hocko 已提交
6328
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6329
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6330
	mem_cgroup_destroy_all_caches(memcg);
6331 6332
}

6333
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6334
{
6335
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6336

6337
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6338

6339
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6340 6341
}

6342
#ifdef CONFIG_MMU
6343
/* Handlers for move charge at task migration. */
6344 6345
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6346
{
6347 6348
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6349
	struct mem_cgroup *memcg = mc.to;
6350

6351
	if (mem_cgroup_is_root(memcg)) {
6352 6353 6354 6355 6356 6357 6358 6359
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6360
		 * "memcg" cannot be under rmdir() because we've already checked
6361 6362 6363 6364
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6365
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6366
			goto one_by_one;
6367
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6368
						PAGE_SIZE * count, &dummy)) {
6369
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6386 6387
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6388
		if (ret)
6389
			/* mem_cgroup_clear_mc() will do uncharge later */
6390
			return ret;
6391 6392
		mc.precharge++;
	}
6393 6394 6395 6396
	return ret;
}

/**
6397
 * get_mctgt_type - get target type of moving charge
6398 6399 6400
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6401
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6402 6403 6404 6405 6406 6407
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6408 6409 6410
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6411 6412 6413 6414 6415
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6416
	swp_entry_t	ent;
6417 6418 6419
};

enum mc_target_type {
6420
	MC_TARGET_NONE = 0,
6421
	MC_TARGET_PAGE,
6422
	MC_TARGET_SWAP,
6423 6424
};

D
Daisuke Nishimura 已提交
6425 6426
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6427
{
D
Daisuke Nishimura 已提交
6428
	struct page *page = vm_normal_page(vma, addr, ptent);
6429

D
Daisuke Nishimura 已提交
6430 6431 6432 6433
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6434
		if (!move_anon())
D
Daisuke Nishimura 已提交
6435
			return NULL;
6436 6437
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6438 6439 6440 6441 6442 6443 6444
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6445
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6446 6447 6448 6449 6450 6451 6452 6453
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6454 6455 6456 6457
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6458
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6459 6460 6461 6462 6463
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6464 6465 6466 6467 6468 6469 6470
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6471

6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6491 6492 6493 6494 6495 6496
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6497
		if (do_swap_account)
6498
			*entry = swap;
6499
		page = find_get_page(swap_address_space(swap), swap.val);
6500
	}
6501
#endif
6502 6503 6504
	return page;
}

6505
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6506 6507 6508 6509
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6510
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6511 6512 6513 6514 6515 6516
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6517 6518
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6519 6520

	if (!page && !ent.val)
6521
		return ret;
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6537 6538
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6539
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6540 6541 6542
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6543 6544 6545 6546
	}
	return ret;
}

6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6582 6583 6584 6585 6586 6587 6588 6589
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6590 6591 6592 6593
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6594
		return 0;
6595
	}
6596

6597 6598
	if (pmd_trans_unstable(pmd))
		return 0;
6599 6600
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6601
		if (get_mctgt_type(vma, addr, *pte, NULL))
6602 6603 6604 6605
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6606 6607 6608
	return 0;
}

6609 6610 6611 6612 6613
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6614
	down_read(&mm->mmap_sem);
6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6626
	up_read(&mm->mmap_sem);
6627 6628 6629 6630 6631 6632 6633 6634 6635

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6636 6637 6638 6639 6640
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6641 6642
}

6643 6644
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6645
{
6646 6647 6648
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6649
	/* we must uncharge all the leftover precharges from mc.to */
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6661
	}
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6696
	spin_lock(&mc.lock);
6697 6698
	mc.from = NULL;
	mc.to = NULL;
6699
	spin_unlock(&mc.lock);
6700
	mem_cgroup_end_move(from);
6701 6702
}

6703 6704
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6705
{
6706
	struct task_struct *p = cgroup_taskset_first(tset);
6707
	int ret = 0;
6708
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6709
	unsigned long move_charge_at_immigrate;
6710

6711 6712 6713 6714 6715 6716 6717
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6718 6719 6720
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6721
		VM_BUG_ON(from == memcg);
6722 6723 6724 6725 6726

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6727 6728 6729 6730
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6731
			VM_BUG_ON(mc.moved_charge);
6732
			VM_BUG_ON(mc.moved_swap);
6733
			mem_cgroup_start_move(from);
6734
			spin_lock(&mc.lock);
6735
			mc.from = from;
6736
			mc.to = memcg;
6737
			mc.immigrate_flags = move_charge_at_immigrate;
6738
			spin_unlock(&mc.lock);
6739
			/* We set mc.moving_task later */
6740 6741 6742 6743

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6744 6745
		}
		mmput(mm);
6746 6747 6748 6749
	}
	return ret;
}

6750 6751
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6752
{
6753
	mem_cgroup_clear_mc();
6754 6755
}

6756 6757 6758
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6759
{
6760 6761 6762 6763
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6764 6765 6766 6767
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6768

6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6780
		if (mc.precharge < HPAGE_PMD_NR) {
6781 6782 6783 6784 6785 6786 6787 6788 6789
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6790
							pc, mc.from, mc.to)) {
6791 6792 6793 6794 6795 6796 6797 6798
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6799
		return 0;
6800 6801
	}

6802 6803
	if (pmd_trans_unstable(pmd))
		return 0;
6804 6805 6806 6807
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6808
		swp_entry_t ent;
6809 6810 6811 6812

		if (!mc.precharge)
			break;

6813
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6814 6815 6816 6817 6818
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6819
			if (!mem_cgroup_move_account(page, 1, pc,
6820
						     mc.from, mc.to)) {
6821
				mc.precharge--;
6822 6823
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6824 6825
			}
			putback_lru_page(page);
6826
put:			/* get_mctgt_type() gets the page */
6827 6828
			put_page(page);
			break;
6829 6830
		case MC_TARGET_SWAP:
			ent = target.ent;
6831
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6832
				mc.precharge--;
6833 6834 6835
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6836
			break;
6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6851
		ret = mem_cgroup_do_precharge(1);
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6895
	up_read(&mm->mmap_sem);
6896 6897
}

6898 6899
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6900
{
6901
	struct task_struct *p = cgroup_taskset_first(tset);
6902
	struct mm_struct *mm = get_task_mm(p);
6903 6904

	if (mm) {
6905 6906
		if (mc.to)
			mem_cgroup_move_charge(mm);
6907 6908
		mmput(mm);
	}
6909 6910
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6911
}
6912
#else	/* !CONFIG_MMU */
6913 6914
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6915 6916 6917
{
	return 0;
}
6918 6919
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6920 6921
{
}
6922 6923
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6924 6925 6926
{
}
#endif
B
Balbir Singh 已提交
6927

6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
static void mem_cgroup_bind(struct cgroup *root)
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
	if (cgroup_sane_behavior(root))
		mem_cgroup_from_cont(root)->use_hierarchy = true;
}

B
Balbir Singh 已提交
6943 6944 6945
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6946
	.css_alloc = mem_cgroup_css_alloc,
6947
	.css_online = mem_cgroup_css_online,
6948 6949
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6950 6951
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6952
	.attach = mem_cgroup_move_task,
6953
	.bind = mem_cgroup_bind,
6954
	.base_cftypes = mem_cgroup_files,
6955
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6956
	.use_id = 1,
B
Balbir Singh 已提交
6957
};
6958

A
Andrew Morton 已提交
6959
#ifdef CONFIG_MEMCG_SWAP
6960 6961 6962
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6963
	if (!strcmp(s, "1"))
6964
		really_do_swap_account = 1;
6965
	else if (!strcmp(s, "0"))
6966 6967 6968
		really_do_swap_account = 0;
	return 1;
}
6969
__setup("swapaccount=", enable_swap_account);
6970

6971 6972
static void __init memsw_file_init(void)
{
6973 6974 6975 6976 6977 6978 6979 6980 6981
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6982
}
6983

6984
#else
6985
static void __init enable_swap_cgroup(void)
6986 6987
{
}
6988
#endif
6989 6990

/*
6991 6992 6993 6994 6995 6996
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6997 6998 6999 7000
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7001
	enable_swap_cgroup();
7002
	mem_cgroup_soft_limit_tree_init();
7003
	memcg_stock_init();
7004 7005 7006
	return 0;
}
subsys_initcall(mem_cgroup_init);