memcontrol.c 180.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

131 132 133 134 135 136 137 138 139
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
140
	MEM_CGROUP_TARGET_NUMAINFO,
141 142
	MEM_CGROUP_NTARGETS,
};
143 144 145
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
146

147
struct mem_cgroup_stat_cpu {
148
	long count[MEM_CGROUP_STAT_NSTATS];
149
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
150
	unsigned long nr_page_events;
151
	unsigned long targets[MEM_CGROUP_NTARGETS];
152 153
};

154 155 156 157 158 159 160
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

161 162 163 164
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
165
	struct lruvec		lruvec;
166
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
167

168 169
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

170 171 172 173
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
174
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
175
						/* use container_of	   */
176 177 178 179 180 181 182
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
183
	struct mem_cgroup_per_node *nodeinfo[0];
184 185
};

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

206 207 208 209 210
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
211
/* For threshold */
212
struct mem_cgroup_threshold_ary {
213
	/* An array index points to threshold just below or equal to usage. */
214
	int current_threshold;
215 216 217 218 219
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
220 221 222 223 224 225 226 227 228 229 230 231

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
232 233 234 235 236
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
237

238 239
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
240

B
Balbir Singh 已提交
241 242 243 244 245 246 247
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
248 249 250
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
251 252 253 254 255 256 257
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
276 277
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
278 279 280 281
		 */
		struct work_struct work_freeing;
	};

282 283 284 285
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
286 287 288 289
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
290
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
291 292 293 294

	bool		oom_lock;
	atomic_t	under_oom;

295
	atomic_t	refcnt;
296

297
	int	swappiness;
298 299
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
300

301 302 303
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

304 305 306 307
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
308
	struct mem_cgroup_thresholds thresholds;
309

310
	/* thresholds for mem+swap usage. RCU-protected */
311
	struct mem_cgroup_thresholds memsw_thresholds;
312

K
KAMEZAWA Hiroyuki 已提交
313 314
	/* For oom notifier event fd */
	struct list_head oom_notify;
315

316 317 318 319 320
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
321 322 323 324
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
325 326
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
327
	/*
328
	 * percpu counter.
329
	 */
330
	struct mem_cgroup_stat_cpu __percpu *stat;
331 332 333 334 335 336
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
337

M
Michal Hocko 已提交
338
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
339 340
	struct tcp_memcontrol tcp_mem;
#endif
341 342 343 344 345 346 347 348
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 *
	 * WARNING: This has to be the last element of the struct. Don't
	 * add new fields after this point.
	 */
	struct mem_cgroup_lru_info info;
B
Balbir Singh 已提交
364 365
};

366 367 368 369 370 371
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

372 373 374
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
375
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
376
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
377 378
};

379 380 381
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
382 383 384 385 386 387

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
388 389 390 391 392 393

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

394 395 396 397 398
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

399 400 401 402 403
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

404 405 406 407 408 409 410 411 412 413 414
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
415 416
#endif

417 418
/* Stuffs for move charges at task migration. */
/*
419 420
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 422
 */
enum move_type {
423
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
424
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
425 426 427
	NR_MOVE_TYPE,
};

428 429
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
430
	spinlock_t	  lock; /* for from, to */
431 432
	struct mem_cgroup *from;
	struct mem_cgroup *to;
433
	unsigned long immigrate_flags;
434
	unsigned long precharge;
435
	unsigned long moved_charge;
436
	unsigned long moved_swap;
437 438 439
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
440
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 442
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
443

D
Daisuke Nishimura 已提交
444 445
static bool move_anon(void)
{
446
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
447 448
}

449 450
static bool move_file(void)
{
451
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 453
}

454 455 456 457
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
458 459
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
460

461 462
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
464
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
466 467 468
	NR_CHARGE_TYPE,
};

469
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
470 471 472 473
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
474
	_KMEM,
G
Glauber Costa 已提交
475 476
};

477 478
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
479
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
480 481
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
482

483 484 485 486 487 488 489 490
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

491 492
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
493

494 495 496 497 498 499
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

500 501 502 503 504
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
505
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
506
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
507 508 509

void sock_update_memcg(struct sock *sk)
{
510
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
511
		struct mem_cgroup *memcg;
512
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
513 514 515

		BUG_ON(!sk->sk_prot->proto_cgroup);

516 517 518 519 520 521 522 523 524 525 526 527 528 529
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
530 531
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
532 533
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
534
			mem_cgroup_get(memcg);
535
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
536 537 538 539 540 541 542 543
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
544
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
545 546 547 548 549 550
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
551 552 553 554 555 556 557 558 559

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
560

561 562 563 564 565 566 567 568 569 570 571 572
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

573
#ifdef CONFIG_MEMCG_KMEM
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
592 593
int memcg_limited_groups_array_size;

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

609 610 611 612 613 614
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
615
struct static_key memcg_kmem_enabled_key;
616
EXPORT_SYMBOL(memcg_kmem_enabled_key);
617 618 619

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
620
	if (memcg_kmem_is_active(memcg)) {
621
		static_key_slow_dec(&memcg_kmem_enabled_key);
622 623
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
624 625 626 627 628
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
629 630 631 632 633 634 635 636 637 638 639 640 641
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

642
static void drain_all_stock_async(struct mem_cgroup *memcg);
643

644
static struct mem_cgroup_per_zone *
645
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
646
{
647
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
648
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
649 650
}

651
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
652
{
653
	return &memcg->css;
654 655
}

656
static struct mem_cgroup_per_zone *
657
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
658
{
659 660
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
661

662
	return mem_cgroup_zoneinfo(memcg, nid, zid);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
681
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
682
				struct mem_cgroup_per_zone *mz,
683 684
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
685 686 687 688 689 690 691 692
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

693 694 695
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
712 713 714
}

static void
715
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
716 717 718 719 720 721 722 723 724
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

725
static void
726
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
727 728 729 730
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
731
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
732 733 734 735
	spin_unlock(&mctz->lock);
}


736
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
737
{
738
	unsigned long long excess;
739 740
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
741 742
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
743 744 745
	mctz = soft_limit_tree_from_page(page);

	/*
746 747
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
748
	 */
749 750 751
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
752 753 754 755
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
756
		if (excess || mz->on_tree) {
757 758 759
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
760
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
761
			/*
762 763
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
764
			 */
765
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
766 767
			spin_unlock(&mctz->lock);
		}
768 769 770
	}
}

771
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
772 773 774 775 776
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
777
	for_each_node(node) {
778
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
779
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
780
			mctz = soft_limit_tree_node_zone(node, zone);
781
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
782 783 784 785
		}
	}
}

786 787 788 789
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
790
	struct mem_cgroup_per_zone *mz;
791 792

retry:
793
	mz = NULL;
794 795 796 797 798 799 800 801 802 803
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
804 805 806
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
842
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
843
				 enum mem_cgroup_stat_index idx)
844
{
845
	long val = 0;
846 847
	int cpu;

848 849
	get_online_cpus();
	for_each_online_cpu(cpu)
850
		val += per_cpu(memcg->stat->count[idx], cpu);
851
#ifdef CONFIG_HOTPLUG_CPU
852 853 854
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
855 856
#endif
	put_online_cpus();
857 858 859
	return val;
}

860
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
861 862 863
					 bool charge)
{
	int val = (charge) ? 1 : -1;
864
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
865 866
}

867
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
868 869 870 871 872 873
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
874
		val += per_cpu(memcg->stat->events[idx], cpu);
875
#ifdef CONFIG_HOTPLUG_CPU
876 877 878
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
879 880 881 882
#endif
	return val;
}

883
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
884
					 bool anon, int nr_pages)
885
{
886 887
	preempt_disable();

888 889 890 891 892 893
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
894
				nr_pages);
895
	else
896
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
897
				nr_pages);
898

899 900
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
901
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
902
	else {
903
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
904 905
		nr_pages = -nr_pages; /* for event */
	}
906

907
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
908

909
	preempt_enable();
910 911
}

912
unsigned long
913
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
914 915 916 917 918 919 920 921
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
922
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
923
			unsigned int lru_mask)
924 925
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
926
	enum lru_list lru;
927 928
	unsigned long ret = 0;

929
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
930

H
Hugh Dickins 已提交
931 932 933
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
934 935 936 937 938
	}
	return ret;
}

static unsigned long
939
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
940 941
			int nid, unsigned int lru_mask)
{
942 943 944
	u64 total = 0;
	int zid;

945
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
946 947
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
948

949 950
	return total;
}
951

952
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
953
			unsigned int lru_mask)
954
{
955
	int nid;
956 957
	u64 total = 0;

958
	for_each_node_state(nid, N_MEMORY)
959
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
960
	return total;
961 962
}

963 964
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
965 966 967
{
	unsigned long val, next;

968
	val = __this_cpu_read(memcg->stat->nr_page_events);
969
	next = __this_cpu_read(memcg->stat->targets[target]);
970
	/* from time_after() in jiffies.h */
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
987
	}
988
	return false;
989 990 991 992 993 994
}

/*
 * Check events in order.
 *
 */
995
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
996
{
997
	preempt_disable();
998
	/* threshold event is triggered in finer grain than soft limit */
999 1000
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1001 1002
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1003 1004 1005 1006 1007 1008 1009 1010 1011

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1012
		mem_cgroup_threshold(memcg);
1013
		if (unlikely(do_softlimit))
1014
			mem_cgroup_update_tree(memcg, page);
1015
#if MAX_NUMNODES > 1
1016
		if (unlikely(do_numainfo))
1017
			atomic_inc(&memcg->numainfo_events);
1018
#endif
1019 1020
	} else
		preempt_enable();
1021 1022
}

G
Glauber Costa 已提交
1023
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1024
{
1025 1026
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1027 1028
}

1029
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1030
{
1031 1032 1033 1034 1035 1036 1037 1038
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1039
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1040 1041
}

1042
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1043
{
1044
	struct mem_cgroup *memcg = NULL;
1045 1046 1047

	if (!mm)
		return NULL;
1048 1049 1050 1051 1052 1053 1054
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1055 1056
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1057
			break;
1058
	} while (!css_tryget(&memcg->css));
1059
	rcu_read_unlock();
1060
	return memcg;
1061 1062
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1083
{
1084 1085
	struct mem_cgroup *memcg = NULL;
	int id = 0;
1086

1087 1088 1089
	if (mem_cgroup_disabled())
		return NULL;

1090 1091
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1092

1093 1094
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1095

1096 1097
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1098

1099 1100 1101 1102 1103
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1104

1105
	while (!memcg) {
1106
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1107
		struct cgroup_subsys_state *css;
1108

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
1120

1121 1122 1123 1124
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
1125
				memcg = mem_cgroup_from_css(css);
1126 1127
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
1128 1129
		rcu_read_unlock();

1130 1131 1132 1133 1134 1135 1136
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1137 1138 1139 1140 1141

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1142
}
K
KAMEZAWA Hiroyuki 已提交
1143

1144 1145 1146 1147 1148 1149 1150
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1151 1152 1153 1154 1155 1156
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1157

1158 1159 1160 1161 1162 1163
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1164
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1165
	     iter != NULL;				\
1166
	     iter = mem_cgroup_iter(root, iter, NULL))
1167

1168
#define for_each_mem_cgroup(iter)			\
1169
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1170
	     iter != NULL;				\
1171
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1172

1173
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1174
{
1175
	struct mem_cgroup *memcg;
1176 1177

	rcu_read_lock();
1178 1179
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1180 1181 1182 1183
		goto out;

	switch (idx) {
	case PGFAULT:
1184 1185 1186 1187
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1188 1189 1190 1191 1192 1193 1194
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1195
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1196

1197 1198 1199
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1200
 * @memcg: memcg of the wanted lruvec
1201 1202 1203 1204 1205 1206 1207 1208 1209
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1210
	struct lruvec *lruvec;
1211

1212 1213 1214 1215
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1216 1217

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1228 1229
}

K
KAMEZAWA Hiroyuki 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1243

1244
/**
1245
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1246
 * @page: the page
1247
 * @zone: zone of the page
1248
 */
1249
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1250 1251
{
	struct mem_cgroup_per_zone *mz;
1252 1253
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1254
	struct lruvec *lruvec;
1255

1256 1257 1258 1259
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1260

K
KAMEZAWA Hiroyuki 已提交
1261
	pc = lookup_page_cgroup(page);
1262
	memcg = pc->mem_cgroup;
1263 1264

	/*
1265
	 * Surreptitiously switch any uncharged offlist page to root:
1266 1267 1268 1269 1270 1271 1272
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1273
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1274 1275
		pc->mem_cgroup = memcg = root_mem_cgroup;

1276
	mz = page_cgroup_zoneinfo(memcg, page);
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1287
}
1288

1289
/**
1290 1291 1292 1293
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1294
 *
1295 1296
 * This function must be called when a page is added to or removed from an
 * lru list.
1297
 */
1298 1299
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1300 1301
{
	struct mem_cgroup_per_zone *mz;
1302
	unsigned long *lru_size;
1303 1304 1305 1306

	if (mem_cgroup_disabled())
		return;

1307 1308 1309 1310
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1311
}
1312

1313
/*
1314
 * Checks whether given mem is same or in the root_mem_cgroup's
1315 1316
 * hierarchy subtree
 */
1317 1318
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1319
{
1320 1321
	if (root_memcg == memcg)
		return true;
1322
	if (!root_memcg->use_hierarchy || !memcg)
1323
		return false;
1324 1325 1326 1327 1328 1329 1330 1331
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1332
	rcu_read_lock();
1333
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1334 1335
	rcu_read_unlock();
	return ret;
1336 1337
}

1338
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1339 1340
{
	int ret;
1341
	struct mem_cgroup *curr = NULL;
1342
	struct task_struct *p;
1343

1344
	p = find_lock_task_mm(task);
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1360 1361
	if (!curr)
		return 0;
1362
	/*
1363
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1364
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1365 1366
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1367
	 */
1368
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1369
	css_put(&curr->css);
1370 1371 1372
	return ret;
}

1373
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1374
{
1375
	unsigned long inactive_ratio;
1376
	unsigned long inactive;
1377
	unsigned long active;
1378
	unsigned long gb;
1379

1380 1381
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1382

1383 1384 1385 1386 1387 1388
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1389
	return inactive * inactive_ratio < active;
1390 1391
}

1392
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1393 1394 1395 1396
{
	unsigned long active;
	unsigned long inactive;

1397 1398
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1399 1400 1401 1402

	return (active > inactive);
}

1403 1404 1405
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1406
/**
1407
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1408
 * @memcg: the memory cgroup
1409
 *
1410
 * Returns the maximum amount of memory @mem can be charged with, in
1411
 * pages.
1412
 */
1413
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1414
{
1415 1416
	unsigned long long margin;

1417
	margin = res_counter_margin(&memcg->res);
1418
	if (do_swap_account)
1419
		margin = min(margin, res_counter_margin(&memcg->memsw));
1420
	return margin >> PAGE_SHIFT;
1421 1422
}

1423
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1424 1425 1426 1427 1428 1429 1430
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1431
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1432 1433
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1448 1449 1450 1451

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1452
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1453
{
1454
	atomic_inc(&memcg_moving);
1455
	atomic_inc(&memcg->moving_account);
1456 1457 1458
	synchronize_rcu();
}

1459
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1460
{
1461 1462 1463 1464
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1465 1466
	if (memcg) {
		atomic_dec(&memcg_moving);
1467
		atomic_dec(&memcg->moving_account);
1468
	}
1469
}
1470

1471 1472 1473
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1474 1475
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1476 1477 1478 1479 1480 1481 1482
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1483
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1484 1485
{
	VM_BUG_ON(!rcu_read_lock_held());
1486
	return atomic_read(&memcg->moving_account) > 0;
1487
}
1488

1489
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1490
{
1491 1492
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1493
	bool ret = false;
1494 1495 1496 1497 1498 1499 1500 1501 1502
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1503

1504 1505
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1506 1507
unlock:
	spin_unlock(&mc.lock);
1508 1509 1510
	return ret;
}

1511
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1512 1513
{
	if (mc.moving_task && current != mc.moving_task) {
1514
		if (mem_cgroup_under_move(memcg)) {
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1527 1528 1529 1530
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1531
 * see mem_cgroup_stolen(), too.
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1545
#define K(x) ((x) << (PAGE_SHIFT-10))
1546
/**
1547
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1565 1566
	struct mem_cgroup *iter;
	unsigned int i;
1567

1568
	if (!p)
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1587
	pr_info("Task in %s killed", memcg_name);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1600
	pr_cont(" as a result of limit of %s\n", memcg_name);
1601 1602
done:

1603
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1604 1605 1606
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1607
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1608 1609 1610
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1611
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1612 1613 1614
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1639 1640
}

1641 1642 1643 1644
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1645
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1646 1647
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1648 1649
	struct mem_cgroup *iter;

1650
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1651
		num++;
1652 1653 1654
	return num;
}

D
David Rientjes 已提交
1655 1656 1657
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1658
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1659 1660 1661
{
	u64 limit;

1662 1663
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1664
	/*
1665
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1666
	 */
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1681 1682
}

1683 1684
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1685 1686 1687 1688 1689 1690 1691
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1786 1787
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1788
 * @memcg: the target memcg
1789 1790 1791 1792 1793 1794 1795
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1796
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1797 1798
		int nid, bool noswap)
{
1799
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1800 1801 1802
		return true;
	if (noswap || !total_swap_pages)
		return false;
1803
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1804 1805 1806 1807
		return true;
	return false;

}
1808 1809 1810 1811 1812 1813 1814 1815
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1816
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1817 1818
{
	int nid;
1819 1820 1821 1822
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1823
	if (!atomic_read(&memcg->numainfo_events))
1824
		return;
1825
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1826 1827 1828
		return;

	/* make a nodemask where this memcg uses memory from */
1829
	memcg->scan_nodes = node_states[N_MEMORY];
1830

1831
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1832

1833 1834
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1835
	}
1836

1837 1838
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1853
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1854 1855 1856
{
	int node;

1857 1858
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1859

1860
	node = next_node(node, memcg->scan_nodes);
1861
	if (node == MAX_NUMNODES)
1862
		node = first_node(memcg->scan_nodes);
1863 1864 1865 1866 1867 1868 1869 1870 1871
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1872
	memcg->last_scanned_node = node;
1873 1874 1875
	return node;
}

1876 1877 1878 1879 1880 1881
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1882
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1883 1884 1885 1886 1887 1888 1889
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1890 1891
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1892
		     nid < MAX_NUMNODES;
1893
		     nid = next_node(nid, memcg->scan_nodes)) {
1894

1895
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1896 1897 1898 1899 1900 1901
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1902
	for_each_node_state(nid, N_MEMORY) {
1903
		if (node_isset(nid, memcg->scan_nodes))
1904
			continue;
1905
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1906 1907 1908 1909 1910
			return true;
	}
	return false;
}

1911
#else
1912
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1913 1914 1915
{
	return 0;
}
1916

1917
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1918
{
1919
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1920
}
1921 1922
#endif

1923 1924 1925 1926
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1927
{
1928
	struct mem_cgroup *victim = NULL;
1929
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1930
	int loop = 0;
1931
	unsigned long excess;
1932
	unsigned long nr_scanned;
1933 1934 1935 1936
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1937

1938
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1939

1940
	while (1) {
1941
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1942
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1943
			loop++;
1944 1945 1946 1947 1948 1949
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1950
				if (!total)
1951 1952
					break;
				/*
L
Lucas De Marchi 已提交
1953
				 * We want to do more targeted reclaim.
1954 1955 1956 1957 1958
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1959
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1960 1961
					break;
			}
1962
			continue;
1963
		}
1964
		if (!mem_cgroup_reclaimable(victim, false))
1965
			continue;
1966 1967 1968 1969
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1970
			break;
1971
	}
1972
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1973
	return total;
1974 1975
}

K
KAMEZAWA Hiroyuki 已提交
1976 1977 1978
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1979
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1980
 */
1981
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1982
{
1983
	struct mem_cgroup *iter, *failed = NULL;
1984

1985
	for_each_mem_cgroup_tree(iter, memcg) {
1986
		if (iter->oom_lock) {
1987 1988 1989 1990 1991
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1992 1993
			mem_cgroup_iter_break(memcg, iter);
			break;
1994 1995
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1996
	}
K
KAMEZAWA Hiroyuki 已提交
1997

1998
	if (!failed)
1999
		return true;
2000 2001 2002 2003 2004

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2005
	for_each_mem_cgroup_tree(iter, memcg) {
2006
		if (iter == failed) {
2007 2008
			mem_cgroup_iter_break(memcg, iter);
			break;
2009 2010 2011
		}
		iter->oom_lock = false;
	}
2012
	return false;
2013
}
2014

2015
/*
2016
 * Has to be called with memcg_oom_lock
2017
 */
2018
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2019
{
K
KAMEZAWA Hiroyuki 已提交
2020 2021
	struct mem_cgroup *iter;

2022
	for_each_mem_cgroup_tree(iter, memcg)
2023 2024 2025 2026
		iter->oom_lock = false;
	return 0;
}

2027
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2028 2029 2030
{
	struct mem_cgroup *iter;

2031
	for_each_mem_cgroup_tree(iter, memcg)
2032 2033 2034
		atomic_inc(&iter->under_oom);
}

2035
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2036 2037 2038
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2039 2040 2041 2042 2043
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2044
	for_each_mem_cgroup_tree(iter, memcg)
2045
		atomic_add_unless(&iter->under_oom, -1, 0);
2046 2047
}

2048
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2049 2050
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2051
struct oom_wait_info {
2052
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2053 2054 2055 2056 2057 2058
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2059 2060
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2061 2062 2063
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2064
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2065 2066

	/*
2067
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2068 2069
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2070 2071
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2072 2073 2074 2075
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2076
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2077
{
2078 2079
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2080 2081
}

2082
static void memcg_oom_recover(struct mem_cgroup *memcg)
2083
{
2084 2085
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2086 2087
}

K
KAMEZAWA Hiroyuki 已提交
2088 2089 2090
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2091 2092
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2093
{
K
KAMEZAWA Hiroyuki 已提交
2094
	struct oom_wait_info owait;
2095
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2096

2097
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2098 2099 2100 2101
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2102
	need_to_kill = true;
2103
	mem_cgroup_mark_under_oom(memcg);
2104

2105
	/* At first, try to OOM lock hierarchy under memcg.*/
2106
	spin_lock(&memcg_oom_lock);
2107
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2108 2109 2110 2111 2112
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2113
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2114
	if (!locked || memcg->oom_kill_disable)
2115 2116
		need_to_kill = false;
	if (locked)
2117
		mem_cgroup_oom_notify(memcg);
2118
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2119

2120 2121
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2122
		mem_cgroup_out_of_memory(memcg, mask, order);
2123
	} else {
K
KAMEZAWA Hiroyuki 已提交
2124
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2125
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2126
	}
2127
	spin_lock(&memcg_oom_lock);
2128
	if (locked)
2129 2130
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2131
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2132

2133
	mem_cgroup_unmark_under_oom(memcg);
2134

K
KAMEZAWA Hiroyuki 已提交
2135 2136 2137
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2138
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2139
	return true;
2140 2141
}

2142 2143 2144
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2162 2163
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2164
 */
2165

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2179
	 * need to take move_lock_mem_cgroup(). Because we already hold
2180
	 * rcu_read_lock(), any calls to move_account will be delayed until
2181
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2182
	 */
2183
	if (!mem_cgroup_stolen(memcg))
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2201
	 * should take move_lock_mem_cgroup().
2202 2203 2204 2205
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2206 2207
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2208
{
2209
	struct mem_cgroup *memcg;
2210
	struct page_cgroup *pc = lookup_page_cgroup(page);
2211
	unsigned long uninitialized_var(flags);
2212

2213
	if (mem_cgroup_disabled())
2214
		return;
2215

2216 2217
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2218
		return;
2219 2220

	switch (idx) {
2221 2222
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2223 2224 2225
		break;
	default:
		BUG();
2226
	}
2227

2228
	this_cpu_add(memcg->stat->count[idx], val);
2229
}
2230

2231 2232 2233 2234
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2235
#define CHARGE_BATCH	32U
2236 2237
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2238
	unsigned int nr_pages;
2239
	struct work_struct work;
2240
	unsigned long flags;
2241
#define FLUSHING_CACHED_CHARGE	0
2242 2243
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2244
static DEFINE_MUTEX(percpu_charge_mutex);
2245

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2256
 */
2257
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2258 2259 2260 2261
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2262 2263 2264
	if (nr_pages > CHARGE_BATCH)
		return false;

2265
	stock = &get_cpu_var(memcg_stock);
2266 2267
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2281 2282 2283 2284
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2285
		if (do_swap_account)
2286 2287
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2300
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2301 2302 2303 2304
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2305
 * This will be consumed by consume_stock() function, later.
2306
 */
2307
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2308 2309 2310
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2311
	if (stock->cached != memcg) { /* reset if necessary */
2312
		drain_stock(stock);
2313
		stock->cached = memcg;
2314
	}
2315
	stock->nr_pages += nr_pages;
2316 2317 2318 2319
	put_cpu_var(memcg_stock);
}

/*
2320
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2321 2322
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2323
 */
2324
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2325
{
2326
	int cpu, curcpu;
2327

2328 2329
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2330
	curcpu = get_cpu();
2331 2332
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2333
		struct mem_cgroup *memcg;
2334

2335 2336
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2337
			continue;
2338
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2339
			continue;
2340 2341 2342 2343 2344 2345
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2346
	}
2347
	put_cpu();
2348 2349 2350 2351 2352 2353

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2354
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2355 2356 2357
			flush_work(&stock->work);
	}
out:
2358
 	put_online_cpus();
2359 2360 2361 2362 2363 2364 2365 2366
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2367
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2368
{
2369 2370 2371 2372 2373
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2374
	drain_all_stock(root_memcg, false);
2375
	mutex_unlock(&percpu_charge_mutex);
2376 2377 2378
}

/* This is a synchronous drain interface. */
2379
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2380 2381
{
	/* called when force_empty is called */
2382
	mutex_lock(&percpu_charge_mutex);
2383
	drain_all_stock(root_memcg, true);
2384
	mutex_unlock(&percpu_charge_mutex);
2385 2386
}

2387 2388 2389 2390
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2391
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2392 2393 2394
{
	int i;

2395
	spin_lock(&memcg->pcp_counter_lock);
2396
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2397
		long x = per_cpu(memcg->stat->count[i], cpu);
2398

2399 2400
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2401
	}
2402
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2403
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2404

2405 2406
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2407
	}
2408
	spin_unlock(&memcg->pcp_counter_lock);
2409 2410 2411
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2412 2413 2414 2415 2416
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2417
	struct mem_cgroup *iter;
2418

2419
	if (action == CPU_ONLINE)
2420 2421
		return NOTIFY_OK;

2422
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2423
		return NOTIFY_OK;
2424

2425
	for_each_mem_cgroup(iter)
2426 2427
		mem_cgroup_drain_pcp_counter(iter, cpu);

2428 2429 2430 2431 2432
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2443
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2444 2445
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2446
{
2447
	unsigned long csize = nr_pages * PAGE_SIZE;
2448 2449 2450 2451 2452
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2453
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2454 2455 2456 2457

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2458
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2459 2460 2461
		if (likely(!ret))
			return CHARGE_OK;

2462
		res_counter_uncharge(&memcg->res, csize);
2463 2464 2465 2466
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2467 2468 2469 2470
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2471
	if (nr_pages > min_pages)
2472 2473 2474 2475 2476
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2477 2478 2479
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2480
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2481
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2482
		return CHARGE_RETRY;
2483
	/*
2484 2485 2486 2487 2488 2489 2490
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2491
	 */
2492
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2506
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2507 2508 2509 2510 2511
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2512
/*
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2532
 */
2533
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2534
				   gfp_t gfp_mask,
2535
				   unsigned int nr_pages,
2536
				   struct mem_cgroup **ptr,
2537
				   bool oom)
2538
{
2539
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2540
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2541
	struct mem_cgroup *memcg = NULL;
2542
	int ret;
2543

K
KAMEZAWA Hiroyuki 已提交
2544 2545 2546 2547 2548 2549 2550 2551
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2552

2553
	/*
2554 2555
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2556
	 * thread group leader migrates. It's possible that mm is not
2557
	 * set, if so charge the root memcg (happens for pagecache usage).
2558
	 */
2559
	if (!*ptr && !mm)
2560
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2561
again:
2562 2563 2564
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2565
			goto done;
2566
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2567
			goto done;
2568
		css_get(&memcg->css);
2569
	} else {
K
KAMEZAWA Hiroyuki 已提交
2570
		struct task_struct *p;
2571

K
KAMEZAWA Hiroyuki 已提交
2572 2573 2574
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2575
		 * Because we don't have task_lock(), "p" can exit.
2576
		 * In that case, "memcg" can point to root or p can be NULL with
2577 2578 2579 2580 2581 2582
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2583
		 */
2584
		memcg = mem_cgroup_from_task(p);
2585 2586 2587
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2588 2589 2590
			rcu_read_unlock();
			goto done;
		}
2591
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2604
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2605 2606 2607 2608 2609
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2610

2611 2612
	do {
		bool oom_check;
2613

2614
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2615
		if (fatal_signal_pending(current)) {
2616
			css_put(&memcg->css);
2617
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2618
		}
2619

2620 2621 2622 2623
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2624
		}
2625

2626 2627
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2628 2629 2630 2631
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2632
			batch = nr_pages;
2633 2634
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2635
			goto again;
2636
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2637
			css_put(&memcg->css);
2638 2639
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2640
			if (!oom) {
2641
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2642
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2643
			}
2644 2645 2646 2647
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2648
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2649
			goto bypass;
2650
		}
2651 2652
	} while (ret != CHARGE_OK);

2653
	if (batch > nr_pages)
2654 2655
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2656
done:
2657
	*ptr = memcg;
2658 2659
	return 0;
nomem:
2660
	*ptr = NULL;
2661
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2662
bypass:
2663 2664
	*ptr = root_mem_cgroup;
	return -EINTR;
2665
}
2666

2667 2668 2669 2670 2671
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2672
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2673
				       unsigned int nr_pages)
2674
{
2675
	if (!mem_cgroup_is_root(memcg)) {
2676 2677
		unsigned long bytes = nr_pages * PAGE_SIZE;

2678
		res_counter_uncharge(&memcg->res, bytes);
2679
		if (do_swap_account)
2680
			res_counter_uncharge(&memcg->memsw, bytes);
2681
	}
2682 2683
}

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2702 2703
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2704 2705 2706
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2718
	return mem_cgroup_from_css(css);
2719 2720
}

2721
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2722
{
2723
	struct mem_cgroup *memcg = NULL;
2724
	struct page_cgroup *pc;
2725
	unsigned short id;
2726 2727
	swp_entry_t ent;

2728 2729 2730
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2731
	lock_page_cgroup(pc);
2732
	if (PageCgroupUsed(pc)) {
2733 2734 2735
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2736
	} else if (PageSwapCache(page)) {
2737
		ent.val = page_private(page);
2738
		id = lookup_swap_cgroup_id(ent);
2739
		rcu_read_lock();
2740 2741 2742
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2743
		rcu_read_unlock();
2744
	}
2745
	unlock_page_cgroup(pc);
2746
	return memcg;
2747 2748
}

2749
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2750
				       struct page *page,
2751
				       unsigned int nr_pages,
2752 2753
				       enum charge_type ctype,
				       bool lrucare)
2754
{
2755
	struct page_cgroup *pc = lookup_page_cgroup(page);
2756
	struct zone *uninitialized_var(zone);
2757
	struct lruvec *lruvec;
2758
	bool was_on_lru = false;
2759
	bool anon;
2760

2761
	lock_page_cgroup(pc);
2762
	VM_BUG_ON(PageCgroupUsed(pc));
2763 2764 2765 2766
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2767 2768 2769 2770 2771 2772 2773 2774 2775

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2776
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2777
			ClearPageLRU(page);
2778
			del_page_from_lru_list(page, lruvec, page_lru(page));
2779 2780 2781 2782
			was_on_lru = true;
		}
	}

2783
	pc->mem_cgroup = memcg;
2784 2785 2786 2787 2788 2789 2790
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2791
	smp_wmb();
2792
	SetPageCgroupUsed(pc);
2793

2794 2795
	if (lrucare) {
		if (was_on_lru) {
2796
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2797 2798
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2799
			add_page_to_lru_list(page, lruvec, page_lru(page));
2800 2801 2802 2803
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2804
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2805 2806 2807 2808 2809
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2810
	unlock_page_cgroup(pc);
2811

2812 2813 2814 2815 2816
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2817
	memcg_check_events(memcg, page);
2818
}
2819

2820 2821
static DEFINE_MUTEX(set_limit_mutex);

2822 2823 2824 2825 2826 2827 2828
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2916 2917 2918 2919 2920 2921 2922

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2923 2924
}

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3059 3060
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3061 3062 3063 3064 3065 3066
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3067 3068 3069
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3070 3071 3072 3073
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3074
	if (memcg) {
3075
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3076
		s->memcg_params->root_cache = root_cache;
3077 3078 3079
	} else
		s->memcg_params->is_root_cache = true;

3080 3081 3082 3083 3084
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;
	mem_cgroup_put(memcg);

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

out:
3111 3112 3113
	kfree(s->memcg_params);
}

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3145 3146 3147 3148 3149 3150 3151 3152 3153
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3175 3176 3177 3178 3179 3180 3181 3182
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3203 3204 3205 3206 3207 3208 3209
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	char *name;
	struct dentry *dentry;

	rcu_read_lock();
	dentry = rcu_dereference(memcg->css.cgroup->dentry);
	rcu_read_unlock();

	BUG_ON(dentry == NULL);

	name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), dentry->d_name.name);

	return name;
}

static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	char *name;
	struct kmem_cache *new;

	name = memcg_cache_name(memcg, s);
	if (!name)
		return NULL;

	new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
G
Glauber Costa 已提交
3238
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3239

3240 3241 3242
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
	kfree(name);
	return new;
}

/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
G
Glauber Costa 已提交
3278
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3330
		cancel_work_sync(&c->memcg_params->destroy);
3331 3332 3333 3334 3335
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3336 3337 3338 3339 3340 3341
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		INIT_WORK(&cachep->memcg_params->destroy,
G
Glauber Costa 已提交
3355
				  kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3356 3357 3358 3359 3360
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 * Called with rcu_read_lock.
 */
3376 3377
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
	if (cw == NULL)
		return;

	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css)) {
		kfree(cw);
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3438 3439 3440
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
	rcu_read_unlock();

	if (!memcg_can_account_kmem(memcg))
		return cachep;

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
	if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
		/*
		 * If we are in a safe context (can wait, and not in interrupt
		 * context), we could be be predictable and return right away.
		 * This would guarantee that the allocation being performed
		 * already belongs in the new cache.
		 *
		 * However, there are some clashes that can arrive from locking.
		 * For instance, because we acquire the slab_mutex while doing
		 * kmem_cache_dup, this means no further allocation could happen
		 * with the slab_mutex held.
		 *
		 * Also, because cache creation issue get_online_cpus(), this
		 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
		 * that ends up reversed during cpu hotplug. (cpuset allocates
		 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
		 * better to defer everything.
		 */
		memcg_create_cache_enqueue(memcg, cachep);
		return cachep;
	}

	return cachep->memcg_params->memcg_caches[idx];
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3576 3577 3578 3579
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3580 3581
#endif /* CONFIG_MEMCG_KMEM */

3582 3583
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3584
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3585 3586
/*
 * Because tail pages are not marked as "used", set it. We're under
3587 3588 3589
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3590
 */
3591
void mem_cgroup_split_huge_fixup(struct page *head)
3592 3593
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3594 3595
	struct page_cgroup *pc;
	int i;
3596

3597 3598
	if (mem_cgroup_disabled())
		return;
3599 3600 3601 3602 3603 3604
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3605
}
3606
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3607

3608
/**
3609
 * mem_cgroup_move_account - move account of the page
3610
 * @page: the page
3611
 * @nr_pages: number of regular pages (>1 for huge pages)
3612 3613 3614 3615 3616
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3617
 * - page is not on LRU (isolate_page() is useful.)
3618
 * - compound_lock is held when nr_pages > 1
3619
 *
3620 3621
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3622
 */
3623 3624 3625 3626
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3627
				   struct mem_cgroup *to)
3628
{
3629 3630
	unsigned long flags;
	int ret;
3631
	bool anon = PageAnon(page);
3632

3633
	VM_BUG_ON(from == to);
3634
	VM_BUG_ON(PageLRU(page));
3635 3636 3637 3638 3639 3640 3641
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3642
	if (nr_pages > 1 && !PageTransHuge(page))
3643 3644 3645 3646 3647 3648 3649 3650
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3651
	move_lock_mem_cgroup(from, &flags);
3652

3653
	if (!anon && page_mapped(page)) {
3654 3655 3656 3657 3658
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3659
	}
3660
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3661

3662
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3663
	pc->mem_cgroup = to;
3664
	mem_cgroup_charge_statistics(to, anon, nr_pages);
3665
	move_unlock_mem_cgroup(from, &flags);
3666 3667
	ret = 0;
unlock:
3668
	unlock_page_cgroup(pc);
3669 3670 3671
	/*
	 * check events
	 */
3672 3673
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3674
out:
3675 3676 3677
	return ret;
}

3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3698
 */
3699 3700
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3701
				  struct mem_cgroup *child)
3702 3703
{
	struct mem_cgroup *parent;
3704
	unsigned int nr_pages;
3705
	unsigned long uninitialized_var(flags);
3706 3707
	int ret;

3708
	VM_BUG_ON(mem_cgroup_is_root(child));
3709

3710 3711 3712 3713 3714
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3715

3716
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3717

3718 3719 3720 3721 3722 3723
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3724

3725 3726
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3727
		flags = compound_lock_irqsave(page);
3728
	}
3729

3730
	ret = mem_cgroup_move_account(page, nr_pages,
3731
				pc, child, parent);
3732 3733
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3734

3735
	if (nr_pages > 1)
3736
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3737
	putback_lru_page(page);
3738
put:
3739
	put_page(page);
3740
out:
3741 3742 3743
	return ret;
}

3744 3745 3746 3747 3748 3749 3750
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3751
				gfp_t gfp_mask, enum charge_type ctype)
3752
{
3753
	struct mem_cgroup *memcg = NULL;
3754
	unsigned int nr_pages = 1;
3755
	bool oom = true;
3756
	int ret;
A
Andrea Arcangeli 已提交
3757

A
Andrea Arcangeli 已提交
3758
	if (PageTransHuge(page)) {
3759
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3760
		VM_BUG_ON(!PageTransHuge(page));
3761 3762 3763 3764 3765
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3766
	}
3767

3768
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3769
	if (ret == -ENOMEM)
3770
		return ret;
3771
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3772 3773 3774
	return 0;
}

3775 3776
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3777
{
3778
	if (mem_cgroup_disabled())
3779
		return 0;
3780 3781 3782
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3783
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3784
					MEM_CGROUP_CHARGE_TYPE_ANON);
3785 3786
}

3787 3788 3789
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3790
 * struct page_cgroup is acquired. This refcnt will be consumed by
3791 3792
 * "commit()" or removed by "cancel()"
 */
3793 3794 3795 3796
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3797
{
3798
	struct mem_cgroup *memcg;
3799
	struct page_cgroup *pc;
3800
	int ret;
3801

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3812 3813
	if (!do_swap_account)
		goto charge_cur_mm;
3814 3815
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3816
		goto charge_cur_mm;
3817 3818
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3819
	css_put(&memcg->css);
3820 3821
	if (ret == -EINTR)
		ret = 0;
3822
	return ret;
3823
charge_cur_mm:
3824 3825 3826 3827
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3828 3829
}

3830 3831 3832 3833 3834 3835
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3850 3851 3852
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3853 3854 3855 3856 3857 3858 3859 3860 3861
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3862
static void
3863
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3864
					enum charge_type ctype)
3865
{
3866
	if (mem_cgroup_disabled())
3867
		return;
3868
	if (!memcg)
3869
		return;
3870

3871
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3872 3873 3874
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3875 3876 3877
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3878
	 */
3879
	if (do_swap_account && PageSwapCache(page)) {
3880
		swp_entry_t ent = {.val = page_private(page)};
3881
		mem_cgroup_uncharge_swap(ent);
3882
	}
3883 3884
}

3885 3886
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3887
{
3888
	__mem_cgroup_commit_charge_swapin(page, memcg,
3889
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3890 3891
}

3892 3893
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3894
{
3895 3896 3897 3898
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3899
	if (mem_cgroup_disabled())
3900 3901 3902 3903 3904 3905 3906
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3907 3908
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3909 3910 3911 3912
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3913 3914
}

3915
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3916 3917
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3918 3919 3920
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3921

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3933
		batch->memcg = memcg;
3934 3935
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3936
	 * In those cases, all pages freed continuously can be expected to be in
3937 3938 3939 3940 3941 3942 3943 3944
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3945
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3946 3947
		goto direct_uncharge;

3948 3949 3950 3951 3952
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3953
	if (batch->memcg != memcg)
3954 3955
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3956
	batch->nr_pages++;
3957
	if (uncharge_memsw)
3958
		batch->memsw_nr_pages++;
3959 3960
	return;
direct_uncharge:
3961
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3962
	if (uncharge_memsw)
3963 3964 3965
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3966
}
3967

3968
/*
3969
 * uncharge if !page_mapped(page)
3970
 */
3971
static struct mem_cgroup *
3972 3973
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3974
{
3975
	struct mem_cgroup *memcg = NULL;
3976 3977
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3978
	bool anon;
3979

3980
	if (mem_cgroup_disabled())
3981
		return NULL;
3982

3983
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3984

A
Andrea Arcangeli 已提交
3985
	if (PageTransHuge(page)) {
3986
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3987 3988
		VM_BUG_ON(!PageTransHuge(page));
	}
3989
	/*
3990
	 * Check if our page_cgroup is valid
3991
	 */
3992
	pc = lookup_page_cgroup(page);
3993
	if (unlikely(!PageCgroupUsed(pc)))
3994
		return NULL;
3995

3996
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3997

3998
	memcg = pc->mem_cgroup;
3999

K
KAMEZAWA Hiroyuki 已提交
4000 4001 4002
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4003 4004
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4005
	switch (ctype) {
4006
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4007 4008 4009 4010 4011
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4012 4013
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4014
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4015
		/* See mem_cgroup_prepare_migration() */
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4037
	}
K
KAMEZAWA Hiroyuki 已提交
4038

4039
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4040

4041
	ClearPageCgroupUsed(pc);
4042 4043 4044 4045 4046 4047
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4048

4049
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4050
	/*
4051
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4052 4053
	 * will never be freed.
	 */
4054
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4055
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4056 4057
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4058
	}
4059 4060 4061 4062 4063 4064
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4065
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4066

4067
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4068 4069 4070

unlock_out:
	unlock_page_cgroup(pc);
4071
	return NULL;
4072 4073
}

4074 4075
void mem_cgroup_uncharge_page(struct page *page)
{
4076 4077 4078
	/* early check. */
	if (page_mapped(page))
		return;
4079
	VM_BUG_ON(page->mapping && !PageAnon(page));
4080 4081
	if (PageSwapCache(page))
		return;
4082
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4083 4084 4085 4086 4087
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4088
	VM_BUG_ON(page->mapping);
4089
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4090 4091
}

4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4106 4107
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4128 4129 4130 4131 4132 4133
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4134
	memcg_oom_recover(batch->memcg);
4135 4136 4137 4138
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4139
#ifdef CONFIG_SWAP
4140
/*
4141
 * called after __delete_from_swap_cache() and drop "page" account.
4142 4143
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4144 4145
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4146 4147
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4148 4149 4150 4151 4152
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4153
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4154

K
KAMEZAWA Hiroyuki 已提交
4155 4156 4157 4158 4159
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4160
		swap_cgroup_record(ent, css_id(&memcg->css));
4161
}
4162
#endif
4163

A
Andrew Morton 已提交
4164
#ifdef CONFIG_MEMCG_SWAP
4165 4166 4167 4168 4169
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4170
{
4171
	struct mem_cgroup *memcg;
4172
	unsigned short id;
4173 4174 4175 4176

	if (!do_swap_account)
		return;

4177 4178 4179
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4180
	if (memcg) {
4181 4182 4183 4184
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4185
		if (!mem_cgroup_is_root(memcg))
4186
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4187
		mem_cgroup_swap_statistics(memcg, false);
4188 4189
		mem_cgroup_put(memcg);
	}
4190
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4191
}
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4208
				struct mem_cgroup *from, struct mem_cgroup *to)
4209 4210 4211 4212 4213 4214 4215 4216
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4217
		mem_cgroup_swap_statistics(to, true);
4218
		/*
4219 4220 4221 4222 4223 4224
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4225 4226 4227 4228 4229 4230 4231 4232
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4233
				struct mem_cgroup *from, struct mem_cgroup *to)
4234 4235 4236
{
	return -EINVAL;
}
4237
#endif
K
KAMEZAWA Hiroyuki 已提交
4238

4239
/*
4240 4241
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4242
 */
4243 4244
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4245
{
4246
	struct mem_cgroup *memcg = NULL;
4247
	unsigned int nr_pages = 1;
4248
	struct page_cgroup *pc;
4249
	enum charge_type ctype;
4250

4251
	*memcgp = NULL;
4252

4253
	if (mem_cgroup_disabled())
4254
		return;
4255

4256 4257 4258
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4259 4260 4261
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4262 4263
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4295
	}
4296
	unlock_page_cgroup(pc);
4297 4298 4299 4300
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4301
	if (!memcg)
4302
		return;
4303

4304
	*memcgp = memcg;
4305 4306 4307 4308 4309 4310 4311
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4312
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4313
	else
4314
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4315 4316 4317 4318 4319
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4320
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4321
}
4322

4323
/* remove redundant charge if migration failed*/
4324
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4325
	struct page *oldpage, struct page *newpage, bool migration_ok)
4326
{
4327
	struct page *used, *unused;
4328
	struct page_cgroup *pc;
4329
	bool anon;
4330

4331
	if (!memcg)
4332
		return;
4333

4334
	if (!migration_ok) {
4335 4336
		used = oldpage;
		unused = newpage;
4337
	} else {
4338
		used = newpage;
4339 4340
		unused = oldpage;
	}
4341
	anon = PageAnon(used);
4342 4343 4344 4345
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4346
	css_put(&memcg->css);
4347
	/*
4348 4349 4350
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4351
	 */
4352 4353 4354 4355 4356
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4357
	/*
4358 4359 4360 4361 4362 4363
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4364
	 */
4365
	if (anon)
4366
		mem_cgroup_uncharge_page(used);
4367
}
4368

4369 4370 4371 4372 4373 4374 4375 4376
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4377
	struct mem_cgroup *memcg = NULL;
4378 4379 4380 4381 4382 4383 4384 4385 4386
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4387 4388 4389 4390 4391
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
4392 4393
	unlock_page_cgroup(pc);

4394 4395 4396 4397 4398 4399
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4400 4401 4402 4403 4404
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4405
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4406 4407
}

4408 4409 4410 4411 4412 4413
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4414 4415 4416 4417 4418
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4438 4439
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4440 4441 4442 4443
	}
}
#endif

4444
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4445
				unsigned long long val)
4446
{
4447
	int retry_count;
4448
	u64 memswlimit, memlimit;
4449
	int ret = 0;
4450 4451
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4452
	int enlarge;
4453 4454 4455 4456 4457 4458 4459 4460 4461

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4462

4463
	enlarge = 0;
4464
	while (retry_count) {
4465 4466 4467 4468
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4469 4470 4471
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4472
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4473 4474 4475 4476 4477 4478
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4479 4480
			break;
		}
4481 4482 4483 4484 4485

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4486
		ret = res_counter_set_limit(&memcg->res, val);
4487 4488 4489 4490 4491 4492
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4493 4494 4495 4496 4497
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4498 4499
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4500 4501 4502 4503 4504 4505
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4506
	}
4507 4508
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4509

4510 4511 4512
	return ret;
}

L
Li Zefan 已提交
4513 4514
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4515
{
4516
	int retry_count;
4517
	u64 memlimit, memswlimit, oldusage, curusage;
4518 4519
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4520
	int enlarge = 0;
4521

4522 4523 4524
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4525 4526 4527 4528 4529 4530 4531 4532
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4533
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4534 4535 4536 4537 4538 4539 4540 4541
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4542 4543 4544
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4545
		ret = res_counter_set_limit(&memcg->memsw, val);
4546 4547 4548 4549 4550 4551
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4552 4553 4554 4555 4556
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4557 4558 4559
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4560
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4561
		/* Usage is reduced ? */
4562
		if (curusage >= oldusage)
4563
			retry_count--;
4564 4565
		else
			oldusage = curusage;
4566
	}
4567 4568
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4569 4570 4571
	return ret;
}

4572
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4573 4574
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4575 4576 4577 4578 4579 4580
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4581
	unsigned long long excess;
4582
	unsigned long nr_scanned;
4583 4584 4585 4586

	if (order > 0)
		return 0;

4587
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4601
		nr_scanned = 0;
4602
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4603
						    gfp_mask, &nr_scanned);
4604
		nr_reclaimed += reclaimed;
4605
		*total_scanned += nr_scanned;
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4628
				if (next_mz == mz)
4629
					css_put(&next_mz->memcg->css);
4630
				else /* next_mz == NULL or other memcg */
4631 4632 4633
					break;
			} while (1);
		}
4634 4635
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4636 4637 4638 4639 4640 4641 4642 4643
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4644
		/* If excess == 0, no tree ops */
4645
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4646
		spin_unlock(&mctz->lock);
4647
		css_put(&mz->memcg->css);
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4660
		css_put(&next_mz->memcg->css);
4661 4662 4663
	return nr_reclaimed;
}

4664 4665 4666 4667 4668 4669 4670
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4671
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4672 4673
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4674
 */
4675
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4676
				int node, int zid, enum lru_list lru)
4677
{
4678
	struct lruvec *lruvec;
4679
	unsigned long flags;
4680
	struct list_head *list;
4681 4682
	struct page *busy;
	struct zone *zone;
4683

K
KAMEZAWA Hiroyuki 已提交
4684
	zone = &NODE_DATA(node)->node_zones[zid];
4685 4686
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4687

4688
	busy = NULL;
4689
	do {
4690
		struct page_cgroup *pc;
4691 4692
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4693
		spin_lock_irqsave(&zone->lru_lock, flags);
4694
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4695
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4696
			break;
4697
		}
4698 4699 4700
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4701
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4702
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4703 4704
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4705
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4706

4707
		pc = lookup_page_cgroup(page);
4708

4709
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4710
			/* found lock contention or "pc" is obsolete. */
4711
			busy = page;
4712 4713 4714
			cond_resched();
		} else
			busy = NULL;
4715
	} while (!list_empty(list));
4716 4717 4718
}

/*
4719 4720
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4721
 * This enables deleting this mem_cgroup.
4722 4723
 *
 * Caller is responsible for holding css reference on the memcg.
4724
 */
4725
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4726
{
4727
	int node, zid;
4728
	u64 usage;
4729

4730
	do {
4731 4732
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4733 4734
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4735
		for_each_node_state(node, N_MEMORY) {
4736
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4737 4738
				enum lru_list lru;
				for_each_lru(lru) {
4739
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4740
							node, zid, lru);
4741
				}
4742
			}
4743
		}
4744 4745
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4746
		cond_resched();
4747

4748
		/*
4749 4750 4751 4752 4753
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4754 4755 4756 4757 4758 4759
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4760 4761 4762
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4775

4776
	/* returns EBUSY if there is a task or if we come here twice. */
4777 4778 4779
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4780 4781
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4782
	/* try to free all pages in this cgroup */
4783
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4784
		int progress;
4785

4786 4787 4788
		if (signal_pending(current))
			return -EINTR;

4789
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4790
						false);
4791
		if (!progress) {
4792
			nr_retries--;
4793
			/* maybe some writeback is necessary */
4794
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4795
		}
4796 4797

	}
K
KAMEZAWA Hiroyuki 已提交
4798
	lru_add_drain();
4799 4800 4801
	mem_cgroup_reparent_charges(memcg);

	return 0;
4802 4803
}

4804
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4805
{
4806 4807 4808
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4809 4810
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4811 4812 4813 4814 4815
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4816 4817 4818
}


4819 4820 4821 4822 4823 4824 4825 4826 4827
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4828
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4829
	struct cgroup *parent = cont->parent;
4830
	struct mem_cgroup *parent_memcg = NULL;
4831 4832

	if (parent)
4833
		parent_memcg = mem_cgroup_from_cont(parent);
4834 4835

	cgroup_lock();
4836 4837 4838 4839

	if (memcg->use_hierarchy == val)
		goto out;

4840
	/*
4841
	 * If parent's use_hierarchy is set, we can't make any modifications
4842 4843 4844 4845 4846 4847
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4848
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4849 4850
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
4851
			memcg->use_hierarchy = val;
4852 4853 4854 4855
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4856 4857

out:
4858 4859 4860 4861 4862
	cgroup_unlock();

	return retval;
}

4863

4864
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4865
					       enum mem_cgroup_stat_index idx)
4866
{
K
KAMEZAWA Hiroyuki 已提交
4867
	struct mem_cgroup *iter;
4868
	long val = 0;
4869

4870
	/* Per-cpu values can be negative, use a signed accumulator */
4871
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4872 4873 4874 4875 4876
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4877 4878
}

4879
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4880
{
K
KAMEZAWA Hiroyuki 已提交
4881
	u64 val;
4882

4883
	if (!mem_cgroup_is_root(memcg)) {
4884
		if (!swap)
4885
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4886
		else
4887
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4888 4889
	}

4890 4891
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4892

K
KAMEZAWA Hiroyuki 已提交
4893
	if (swap)
4894
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4895 4896 4897 4898

	return val << PAGE_SHIFT;
}

4899 4900 4901
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4902
{
4903
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4904
	char str[64];
4905
	u64 val;
G
Glauber Costa 已提交
4906 4907
	int name, len;
	enum res_type type;
4908 4909 4910

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4911 4912 4913 4914

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4915 4916
	switch (type) {
	case _MEM:
4917
		if (name == RES_USAGE)
4918
			val = mem_cgroup_usage(memcg, false);
4919
		else
4920
			val = res_counter_read_u64(&memcg->res, name);
4921 4922
		break;
	case _MEMSWAP:
4923
		if (name == RES_USAGE)
4924
			val = mem_cgroup_usage(memcg, true);
4925
		else
4926
			val = res_counter_read_u64(&memcg->memsw, name);
4927
		break;
4928 4929 4930
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4931 4932 4933
	default:
		BUG();
	}
4934 4935 4936

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4937
}
4938 4939 4940 4941 4942

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4943 4944
	bool must_inc_static_branch = false;

4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 *
	 * Taking the cgroup_lock is really offensive, but it is so far the only
	 * way to guarantee that no children will appear. There are plenty of
	 * other offenders, and they should all go away. Fine grained locking
	 * is probably the way to go here. When we are fully hierarchical, we
	 * can also get rid of the use_hierarchy check.
	 */
	cgroup_lock();
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
						!list_empty(&cont->children))) {
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4975 4976 4977 4978 4979
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
4980
		must_inc_static_branch = true;
4981 4982 4983 4984 4985 4986 4987
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
4988 4989 4990 4991 4992
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
	cgroup_unlock();
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013

	/*
	 * We are by now familiar with the fact that we can't inc the static
	 * branch inside cgroup_lock. See disarm functions for details. A
	 * worker here is overkill, but also wrong: After the limit is set, we
	 * must start accounting right away. Since this operation can't fail,
	 * we can safely defer it to here - no rollback will be needed.
	 *
	 * The boolean used to control this is also safe, because
	 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
	 * able to set it to true;
	 */
	if (must_inc_static_branch) {
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
	}

5014 5015 5016 5017
#endif
	return ret;
}

5018
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5019
{
5020
	int ret = 0;
5021 5022
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5023 5024
		goto out;

5025
	memcg->kmem_account_flags = parent->kmem_account_flags;
5026
#ifdef CONFIG_MEMCG_KMEM
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
5052
#endif
5053 5054
out:
	return ret;
5055 5056
}

5057 5058 5059 5060
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5061 5062
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5063
{
5064
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5065 5066
	enum res_type type;
	int name;
5067 5068 5069
	unsigned long long val;
	int ret;

5070 5071
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5072 5073 5074 5075

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5076
	switch (name) {
5077
	case RES_LIMIT:
5078 5079 5080 5081
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5082 5083
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5084 5085 5086
		if (ret)
			break;
		if (type == _MEM)
5087
			ret = mem_cgroup_resize_limit(memcg, val);
5088
		else if (type == _MEMSWAP)
5089
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5090 5091 5092 5093
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5094
		break;
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5109 5110 5111 5112 5113
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5114 5115
}

5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5143
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5144
{
5145
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5146 5147
	int name;
	enum res_type type;
5148

5149 5150
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5151 5152 5153 5154

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5155
	switch (name) {
5156
	case RES_MAX_USAGE:
5157
		if (type == _MEM)
5158
			res_counter_reset_max(&memcg->res);
5159
		else if (type == _MEMSWAP)
5160
			res_counter_reset_max(&memcg->memsw);
5161 5162 5163 5164
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5165 5166
		break;
	case RES_FAILCNT:
5167
		if (type == _MEM)
5168
			res_counter_reset_failcnt(&memcg->res);
5169
		else if (type == _MEMSWAP)
5170
			res_counter_reset_failcnt(&memcg->memsw);
5171 5172 5173 5174
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5175 5176
		break;
	}
5177

5178
	return 0;
5179 5180
}

5181 5182 5183 5184 5185 5186
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5187
#ifdef CONFIG_MMU
5188 5189 5190
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5191
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5192 5193 5194

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5195

5196
	/*
5197 5198 5199 5200
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5201
	 */
5202
	memcg->move_charge_at_immigrate = val;
5203 5204
	return 0;
}
5205 5206 5207 5208 5209 5210 5211
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5212

5213
#ifdef CONFIG_NUMA
5214
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5215
				      struct seq_file *m)
5216 5217 5218 5219
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5220
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5221

5222
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5223
	seq_printf(m, "total=%lu", total_nr);
5224
	for_each_node_state(nid, N_MEMORY) {
5225
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5226 5227 5228 5229
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5230
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5231
	seq_printf(m, "file=%lu", file_nr);
5232
	for_each_node_state(nid, N_MEMORY) {
5233
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5234
				LRU_ALL_FILE);
5235 5236 5237 5238
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5239
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5240
	seq_printf(m, "anon=%lu", anon_nr);
5241
	for_each_node_state(nid, N_MEMORY) {
5242
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5243
				LRU_ALL_ANON);
5244 5245 5246 5247
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5248
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5249
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5250
	for_each_node_state(nid, N_MEMORY) {
5251
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5252
				BIT(LRU_UNEVICTABLE));
5253 5254 5255 5256 5257 5258 5259
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5260 5261 5262 5263 5264
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5265
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5266
				 struct seq_file *m)
5267
{
5268
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5269 5270
	struct mem_cgroup *mi;
	unsigned int i;
5271

5272
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5273
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5274
			continue;
5275 5276
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5277
	}
L
Lee Schermerhorn 已提交
5278

5279 5280 5281 5282 5283 5284 5285 5286
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5287
	/* Hierarchical information */
5288 5289
	{
		unsigned long long limit, memsw_limit;
5290
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5291
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5292
		if (do_swap_account)
5293 5294
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5295
	}
K
KOSAKI Motohiro 已提交
5296

5297 5298 5299
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5300
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5301
			continue;
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5322
	}
K
KAMEZAWA Hiroyuki 已提交
5323

K
KOSAKI Motohiro 已提交
5324 5325 5326 5327
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5328
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5329 5330 5331 5332 5333
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5334
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5335
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5336

5337 5338 5339 5340
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5341
			}
5342 5343 5344 5345
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5346 5347 5348
	}
#endif

5349 5350 5351
	return 0;
}

K
KOSAKI Motohiro 已提交
5352 5353 5354 5355
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5356
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5357 5358 5359 5360 5361 5362 5363
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5364

K
KOSAKI Motohiro 已提交
5365 5366 5367 5368 5369 5370 5371
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5372 5373 5374

	cgroup_lock();

K
KOSAKI Motohiro 已提交
5375 5376
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
5377 5378
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
5379
		return -EINVAL;
5380
	}
K
KOSAKI Motohiro 已提交
5381 5382 5383

	memcg->swappiness = val;

5384 5385
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
5386 5387 5388
	return 0;
}

5389 5390 5391 5392 5393 5394 5395 5396
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5397
		t = rcu_dereference(memcg->thresholds.primary);
5398
	else
5399
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5400 5401 5402 5403 5404 5405 5406

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5407
	 * current_threshold points to threshold just below or equal to usage.
5408 5409 5410
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5411
	i = t->current_threshold;
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5435
	t->current_threshold = i - 1;
5436 5437 5438 5439 5440 5441
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5442 5443 5444 5445 5446 5447 5448
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5459
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5460 5461 5462
{
	struct mem_cgroup_eventfd_list *ev;

5463
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5464 5465 5466 5467
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5468
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5469
{
K
KAMEZAWA Hiroyuki 已提交
5470 5471
	struct mem_cgroup *iter;

5472
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5473
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5474 5475 5476 5477
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5478 5479
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5480 5481
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5482
	enum res_type type = MEMFILE_TYPE(cft->private);
5483
	u64 threshold, usage;
5484
	int i, size, ret;
5485 5486 5487 5488 5489 5490

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5491

5492
	if (type == _MEM)
5493
		thresholds = &memcg->thresholds;
5494
	else if (type == _MEMSWAP)
5495
		thresholds = &memcg->memsw_thresholds;
5496 5497 5498 5499 5500 5501
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5502
	if (thresholds->primary)
5503 5504
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5505
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5506 5507

	/* Allocate memory for new array of thresholds */
5508
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5509
			GFP_KERNEL);
5510
	if (!new) {
5511 5512 5513
		ret = -ENOMEM;
		goto unlock;
	}
5514
	new->size = size;
5515 5516

	/* Copy thresholds (if any) to new array */
5517 5518
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5519
				sizeof(struct mem_cgroup_threshold));
5520 5521
	}

5522
	/* Add new threshold */
5523 5524
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5525 5526

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5527
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5528 5529 5530
			compare_thresholds, NULL);

	/* Find current threshold */
5531
	new->current_threshold = -1;
5532
	for (i = 0; i < size; i++) {
5533
		if (new->entries[i].threshold <= usage) {
5534
			/*
5535 5536
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5537 5538
			 * it here.
			 */
5539
			++new->current_threshold;
5540 5541
		} else
			break;
5542 5543
	}

5544 5545 5546 5547 5548
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5549

5550
	/* To be sure that nobody uses thresholds */
5551 5552 5553 5554 5555 5556 5557 5558
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5559
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5560
	struct cftype *cft, struct eventfd_ctx *eventfd)
5561 5562
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5563 5564
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5565
	enum res_type type = MEMFILE_TYPE(cft->private);
5566
	u64 usage;
5567
	int i, j, size;
5568 5569 5570

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5571
		thresholds = &memcg->thresholds;
5572
	else if (type == _MEMSWAP)
5573
		thresholds = &memcg->memsw_thresholds;
5574 5575 5576
	else
		BUG();

5577 5578 5579
	if (!thresholds->primary)
		goto unlock;

5580 5581 5582 5583 5584 5585
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5586 5587 5588
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5589 5590 5591
			size++;
	}

5592
	new = thresholds->spare;
5593

5594 5595
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5596 5597
		kfree(new);
		new = NULL;
5598
		goto swap_buffers;
5599 5600
	}

5601
	new->size = size;
5602 5603

	/* Copy thresholds and find current threshold */
5604 5605 5606
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5607 5608
			continue;

5609
		new->entries[j] = thresholds->primary->entries[i];
5610
		if (new->entries[j].threshold <= usage) {
5611
			/*
5612
			 * new->current_threshold will not be used
5613 5614 5615
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5616
			++new->current_threshold;
5617 5618 5619 5620
		}
		j++;
	}

5621
swap_buffers:
5622 5623
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5624 5625 5626 5627 5628 5629
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5630
	rcu_assign_pointer(thresholds->primary, new);
5631

5632
	/* To be sure that nobody uses thresholds */
5633
	synchronize_rcu();
5634
unlock:
5635 5636
	mutex_unlock(&memcg->thresholds_lock);
}
5637

K
KAMEZAWA Hiroyuki 已提交
5638 5639 5640 5641 5642
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5643
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5644 5645 5646 5647 5648 5649

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5650
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5651 5652 5653 5654 5655

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5656
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5657
		eventfd_signal(eventfd, 1);
5658
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5659 5660 5661 5662

	return 0;
}

5663
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5664 5665
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5666
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5667
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5668
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5669 5670 5671

	BUG_ON(type != _OOM_TYPE);

5672
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5673

5674
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5675 5676 5677 5678 5679 5680
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5681
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5682 5683
}

5684 5685 5686
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5687
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5688

5689
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5690

5691
	if (atomic_read(&memcg->under_oom))
5692 5693 5694 5695 5696 5697 5698 5699 5700
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5701
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
5713
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5714 5715 5716
		cgroup_unlock();
		return -EINVAL;
	}
5717
	memcg->oom_kill_disable = val;
5718
	if (!val)
5719
		memcg_oom_recover(memcg);
5720 5721 5722 5723
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
5724
#ifdef CONFIG_MEMCG_KMEM
5725
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5726
{
5727 5728
	int ret;

5729
	memcg->kmemcg_id = -1;
5730 5731 5732
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5733

5734
	return mem_cgroup_sockets_init(memcg, ss);
5735 5736
};

5737
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5738
{
5739
	mem_cgroup_sockets_destroy(memcg);
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5754
}
5755
#else
5756
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5757 5758 5759
{
	return 0;
}
G
Glauber Costa 已提交
5760

5761
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5762 5763
{
}
5764 5765
#endif

B
Balbir Singh 已提交
5766 5767
static struct cftype mem_cgroup_files[] = {
	{
5768
		.name = "usage_in_bytes",
5769
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5770
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5771 5772
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5773
	},
5774 5775
	{
		.name = "max_usage_in_bytes",
5776
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5777
		.trigger = mem_cgroup_reset,
5778
		.read = mem_cgroup_read,
5779
	},
B
Balbir Singh 已提交
5780
	{
5781
		.name = "limit_in_bytes",
5782
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5783
		.write_string = mem_cgroup_write,
5784
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5785
	},
5786 5787 5788 5789
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5790
		.read = mem_cgroup_read,
5791
	},
B
Balbir Singh 已提交
5792 5793
	{
		.name = "failcnt",
5794
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5795
		.trigger = mem_cgroup_reset,
5796
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5797
	},
5798 5799
	{
		.name = "stat",
5800
		.read_seq_string = memcg_stat_show,
5801
	},
5802 5803 5804 5805
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5806 5807 5808 5809 5810
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5811 5812 5813 5814 5815
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5816 5817 5818 5819 5820
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5821 5822
	{
		.name = "oom_control",
5823 5824
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5825 5826 5827 5828
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5829 5830 5831
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5832
		.read_seq_string = memcg_numa_stat_show,
5833 5834
	},
#endif
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5859 5860 5861 5862 5863 5864
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5865
#endif
5866
	{ },	/* terminate */
5867
};
5868

5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5899
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5900 5901
{
	struct mem_cgroup_per_node *pn;
5902
	struct mem_cgroup_per_zone *mz;
5903
	int zone, tmp = node;
5904 5905 5906 5907 5908 5909 5910 5911
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5912 5913
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5914
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5915 5916
	if (!pn)
		return 1;
5917 5918 5919

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5920
		lruvec_init(&mz->lruvec);
5921
		mz->usage_in_excess = 0;
5922
		mz->on_tree = false;
5923
		mz->memcg = memcg;
5924
	}
5925
	memcg->info.nodeinfo[node] = pn;
5926 5927 5928
	return 0;
}

5929
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5930
{
5931
	kfree(memcg->info.nodeinfo[node]);
5932 5933
}

5934 5935
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5936
	struct mem_cgroup *memcg;
5937
	size_t size = memcg_size();
5938

5939
	/* Can be very big if nr_node_ids is very big */
5940
	if (size < PAGE_SIZE)
5941
		memcg = kzalloc(size, GFP_KERNEL);
5942
	else
5943
		memcg = vzalloc(size);
5944

5945
	if (!memcg)
5946 5947
		return NULL;

5948 5949
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5950
		goto out_free;
5951 5952
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5953 5954 5955

out_free:
	if (size < PAGE_SIZE)
5956
		kfree(memcg);
5957
	else
5958
		vfree(memcg);
5959
	return NULL;
5960 5961
}

5962
/*
5963 5964 5965 5966 5967 5968 5969 5970
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5971
 */
5972 5973

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5974
{
5975
	int node;
5976
	size_t size = memcg_size();
5977

5978 5979 5980 5981 5982 5983 5984 5985
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5997
	disarm_static_keys(memcg);
5998 5999 6000 6001
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6002
}
6003

6004

6005
/*
6006 6007 6008
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
6009
 */
6010
static void free_work(struct work_struct *work)
6011
{
6012
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6013

6014 6015 6016
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
6017

6018 6019 6020
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6021

6022 6023 6024
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
6025 6026
}

6027
static void mem_cgroup_get(struct mem_cgroup *memcg)
6028
{
6029
	atomic_inc(&memcg->refcnt);
6030 6031
}

6032
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6033
{
6034 6035
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6036
		call_rcu(&memcg->rcu_freeing, free_rcu);
6037 6038 6039
		if (parent)
			mem_cgroup_put(parent);
	}
6040 6041
}

6042
static void mem_cgroup_put(struct mem_cgroup *memcg)
6043
{
6044
	__mem_cgroup_put(memcg, 1);
6045 6046
}

6047 6048 6049
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6050
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6051
{
6052
	if (!memcg->res.parent)
6053
		return NULL;
6054
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6055
}
G
Glauber Costa 已提交
6056
EXPORT_SYMBOL(parent_mem_cgroup);
6057

6058 6059 6060 6061 6062 6063
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6064
	for_each_node(node) {
6065 6066 6067 6068 6069
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
6070
			goto err_cleanup;
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
6081 6082

err_cleanup:
B
Bob Liu 已提交
6083
	for_each_node(node) {
6084 6085 6086 6087 6088 6089 6090
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

6091 6092
}

L
Li Zefan 已提交
6093
static struct cgroup_subsys_state * __ref
6094
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6095
{
6096
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6097
	long error = -ENOMEM;
6098
	int node;
B
Balbir Singh 已提交
6099

6100 6101
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6102
		return ERR_PTR(error);
6103

B
Bob Liu 已提交
6104
	for_each_node(node)
6105
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6106
			goto free_out;
6107

6108
	/* root ? */
6109
	if (cont->parent == NULL) {
6110
		int cpu;
6111

6112 6113
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
6114
		root_mem_cgroup = memcg;
6115 6116 6117 6118 6119
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
6120 6121 6122 6123

		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6124
	}
6125

6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
mem_cgroup_css_online(struct cgroup *cont)
{
	struct mem_cgroup *memcg, *parent;
	int error = 0;

	if (!cont->parent)
		return 0;

	memcg = mem_cgroup_from_cont(cont);
	parent = mem_cgroup_from_cont(cont->parent);

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6157 6158
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6159
		res_counter_init(&memcg->kmem, &parent->kmem);
6160

6161 6162 6163 6164 6165 6166 6167
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6168
	} else {
6169 6170
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6171
		res_counter_init(&memcg->kmem, NULL);
6172 6173 6174 6175 6176
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6177
		if (parent != root_mem_cgroup)
6178
			mem_cgroup_subsys.broken_hierarchy = true;
6179
	}
6180 6181 6182 6183 6184 6185 6186 6187 6188 6189

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
	}
6190
	return error;
B
Balbir Singh 已提交
6191 6192
}

6193
static void mem_cgroup_css_offline(struct cgroup *cont)
6194
{
6195
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6196

6197
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6198
	mem_cgroup_destroy_all_caches(memcg);
6199 6200
}

6201
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6202
{
6203
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6204

6205
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6206

6207
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6208 6209
}

6210
#ifdef CONFIG_MMU
6211
/* Handlers for move charge at task migration. */
6212 6213
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6214
{
6215 6216
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6217
	struct mem_cgroup *memcg = mc.to;
6218

6219
	if (mem_cgroup_is_root(memcg)) {
6220 6221 6222 6223 6224 6225 6226 6227
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6228
		 * "memcg" cannot be under rmdir() because we've already checked
6229 6230 6231 6232
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6233
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6234
			goto one_by_one;
6235
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6236
						PAGE_SIZE * count, &dummy)) {
6237
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6254 6255
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6256
		if (ret)
6257
			/* mem_cgroup_clear_mc() will do uncharge later */
6258
			return ret;
6259 6260
		mc.precharge++;
	}
6261 6262 6263 6264
	return ret;
}

/**
6265
 * get_mctgt_type - get target type of moving charge
6266 6267 6268
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6269
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6270 6271 6272 6273 6274 6275
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6276 6277 6278
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6279 6280 6281 6282 6283
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6284
	swp_entry_t	ent;
6285 6286 6287
};

enum mc_target_type {
6288
	MC_TARGET_NONE = 0,
6289
	MC_TARGET_PAGE,
6290
	MC_TARGET_SWAP,
6291 6292
};

D
Daisuke Nishimura 已提交
6293 6294
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6295
{
D
Daisuke Nishimura 已提交
6296
	struct page *page = vm_normal_page(vma, addr, ptent);
6297

D
Daisuke Nishimura 已提交
6298 6299 6300 6301
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6302
		if (!move_anon())
D
Daisuke Nishimura 已提交
6303
			return NULL;
6304 6305
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6306 6307 6308 6309 6310 6311 6312
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6313
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6314 6315 6316 6317 6318 6319 6320 6321
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6322 6323 6324 6325
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6326
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6327 6328 6329 6330 6331
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6332 6333 6334 6335 6336 6337 6338
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6339

6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6359 6360 6361 6362 6363 6364
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6365
		if (do_swap_account)
6366
			*entry = swap;
6367
		page = find_get_page(swap_address_space(swap), swap.val);
6368
	}
6369
#endif
6370 6371 6372
	return page;
}

6373
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6374 6375 6376 6377
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6378
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6379 6380 6381 6382 6383 6384
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6385 6386
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6387 6388

	if (!page && !ent.val)
6389
		return ret;
6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6405 6406
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6407
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6408 6409 6410
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6411 6412 6413 6414
	}
	return ret;
}

6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6450 6451 6452 6453 6454 6455 6456 6457
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6458 6459 6460 6461
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6462
		return 0;
6463
	}
6464

6465 6466
	if (pmd_trans_unstable(pmd))
		return 0;
6467 6468
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6469
		if (get_mctgt_type(vma, addr, *pte, NULL))
6470 6471 6472 6473
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6474 6475 6476
	return 0;
}

6477 6478 6479 6480 6481
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6482
	down_read(&mm->mmap_sem);
6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6494
	up_read(&mm->mmap_sem);
6495 6496 6497 6498 6499 6500 6501 6502 6503

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6504 6505 6506 6507 6508
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6509 6510
}

6511 6512
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6513
{
6514 6515 6516
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6517
	/* we must uncharge all the leftover precharges from mc.to */
6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6529
	}
6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6564
	spin_lock(&mc.lock);
6565 6566
	mc.from = NULL;
	mc.to = NULL;
6567
	spin_unlock(&mc.lock);
6568
	mem_cgroup_end_move(from);
6569 6570
}

6571 6572
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6573
{
6574
	struct task_struct *p = cgroup_taskset_first(tset);
6575
	int ret = 0;
6576
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6577
	unsigned long move_charge_at_immigrate;
6578

6579 6580 6581 6582 6583 6584 6585
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6586 6587 6588
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6589
		VM_BUG_ON(from == memcg);
6590 6591 6592 6593 6594

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6595 6596 6597 6598
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6599
			VM_BUG_ON(mc.moved_charge);
6600
			VM_BUG_ON(mc.moved_swap);
6601
			mem_cgroup_start_move(from);
6602
			spin_lock(&mc.lock);
6603
			mc.from = from;
6604
			mc.to = memcg;
6605
			mc.immigrate_flags = move_charge_at_immigrate;
6606
			spin_unlock(&mc.lock);
6607
			/* We set mc.moving_task later */
6608 6609 6610 6611

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6612 6613
		}
		mmput(mm);
6614 6615 6616 6617
	}
	return ret;
}

6618 6619
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6620
{
6621
	mem_cgroup_clear_mc();
6622 6623
}

6624 6625 6626
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6627
{
6628 6629 6630 6631
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6632 6633 6634 6635
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6636

6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6648
		if (mc.precharge < HPAGE_PMD_NR) {
6649 6650 6651 6652 6653 6654 6655 6656 6657
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6658
							pc, mc.from, mc.to)) {
6659 6660 6661 6662 6663 6664 6665 6666
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6667
		return 0;
6668 6669
	}

6670 6671
	if (pmd_trans_unstable(pmd))
		return 0;
6672 6673 6674 6675
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6676
		swp_entry_t ent;
6677 6678 6679 6680

		if (!mc.precharge)
			break;

6681
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6682 6683 6684 6685 6686
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6687
			if (!mem_cgroup_move_account(page, 1, pc,
6688
						     mc.from, mc.to)) {
6689
				mc.precharge--;
6690 6691
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6692 6693
			}
			putback_lru_page(page);
6694
put:			/* get_mctgt_type() gets the page */
6695 6696
			put_page(page);
			break;
6697 6698
		case MC_TARGET_SWAP:
			ent = target.ent;
6699
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6700
				mc.precharge--;
6701 6702 6703
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6704
			break;
6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6719
		ret = mem_cgroup_do_precharge(1);
6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6763
	up_read(&mm->mmap_sem);
6764 6765
}

6766 6767
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6768
{
6769
	struct task_struct *p = cgroup_taskset_first(tset);
6770
	struct mm_struct *mm = get_task_mm(p);
6771 6772

	if (mm) {
6773 6774
		if (mc.to)
			mem_cgroup_move_charge(mm);
6775 6776
		mmput(mm);
	}
6777 6778
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6779
}
6780
#else	/* !CONFIG_MMU */
6781 6782
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6783 6784 6785
{
	return 0;
}
6786 6787
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6788 6789
{
}
6790 6791
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6792 6793 6794
{
}
#endif
B
Balbir Singh 已提交
6795

B
Balbir Singh 已提交
6796 6797 6798
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6799
	.css_alloc = mem_cgroup_css_alloc,
6800
	.css_online = mem_cgroup_css_online,
6801 6802
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6803 6804
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6805
	.attach = mem_cgroup_move_task,
6806
	.base_cftypes = mem_cgroup_files,
6807
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6808
	.use_id = 1,
B
Balbir Singh 已提交
6809
};
6810

A
Andrew Morton 已提交
6811
#ifdef CONFIG_MEMCG_SWAP
6812 6813 6814
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6815
	if (!strcmp(s, "1"))
6816
		really_do_swap_account = 1;
6817
	else if (!strcmp(s, "0"))
6818 6819 6820
		really_do_swap_account = 0;
	return 1;
}
6821
__setup("swapaccount=", enable_swap_account);
6822

6823 6824
static void __init memsw_file_init(void)
{
6825 6826 6827 6828 6829 6830 6831 6832 6833
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6834
}
6835

6836
#else
6837
static void __init enable_swap_cgroup(void)
6838 6839
{
}
6840
#endif
6841 6842 6843 6844 6845 6846 6847 6848 6849 6850

/*
 * The rest of init is performed during ->css_alloc() for root css which
 * happens before initcalls.  hotcpu_notifier() can't be done together as
 * it would introduce circular locking by adding cgroup_lock -> cpu hotplug
 * dependency.  Do it from a subsys_initcall().
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6851
	enable_swap_cgroup();
6852 6853 6854
	return 0;
}
subsys_initcall(mem_cgroup_init);