memcontrol.c 146.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
B
Balbir Singh 已提交
53

54 55
#include <asm/uaccess.h>

56 57
#include <trace/events/vmscan.h>

58 59
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
60
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
61

62
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
63
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64
int do_swap_account __read_mostly;
65 66 67 68 69 70 71 72

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

73 74 75 76 77
#else
#define do_swap_account		(0)
#endif


78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109 110
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
111
	MEM_CGROUP_TARGET_NUMAINFO,
112 113 114 115
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
116
#define NUMAINFO_EVENTS_TARGET	(1024)
117

118
struct mem_cgroup_stat_cpu {
119
	long count[MEM_CGROUP_STAT_NSTATS];
120
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121
	unsigned long targets[MEM_CGROUP_NTARGETS];
122 123
};

124 125 126 127
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
128 129 130
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
131 132
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
133 134

	struct zone_reclaim_stat reclaim_stat;
135 136 137 138
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
139 140
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
141 142 143 144 145 146 147 148 149 150 151 152
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

173 174 175 176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
178
/* For threshold */
179 180
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
181
	int current_threshold;
182 183 184 185 186
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
187 188 189 190 191 192 193 194 195 196 197 198

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
199 200 201 202 203
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
204 205

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
206
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
enum {
	SCAN_BY_LIMIT,
	SCAN_BY_SYSTEM,
	NR_SCAN_CONTEXT,
	SCAN_BY_SHRINK,	/* not recorded now */
};

enum {
	SCAN,
	SCAN_ANON,
	SCAN_FILE,
	ROTATE,
	ROTATE_ANON,
	ROTATE_FILE,
	FREED,
	FREED_ANON,
	FREED_FILE,
	ELAPSED,
	NR_SCANSTATS,
};

struct scanstat {
	spinlock_t	lock;
	unsigned long	stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
	unsigned long	rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
};

const char *scanstat_string[NR_SCANSTATS] = {
	"scanned_pages",
	"scanned_anon_pages",
	"scanned_file_pages",
	"rotated_pages",
	"rotated_anon_pages",
	"rotated_file_pages",
	"freed_pages",
	"freed_anon_pages",
	"freed_file_pages",
	"elapsed_ns",
};
#define SCANSTAT_WORD_LIMIT	"_by_limit"
#define SCANSTAT_WORD_SYSTEM	"_by_system"
#define SCANSTAT_WORD_HIERARCHY	"_under_hierarchy"


B
Balbir Singh 已提交
252 253 254 255 256 257 258
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
259 260 261
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
262 263 264 265 266 267 268
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
269 270 271 272
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
273 274 275 276
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
277
	struct mem_cgroup_lru_info info;
278
	/*
279
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
280
	 * reclaimed from.
281
	 */
K
KAMEZAWA Hiroyuki 已提交
282
	int last_scanned_child;
283 284 285
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
286 287
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
288
#endif
289 290 291 292
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
293 294 295 296

	bool		oom_lock;
	atomic_t	under_oom;

297
	atomic_t	refcnt;
298

299
	int	swappiness;
300 301
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
302

303 304 305
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

306 307 308 309
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
310
	struct mem_cgroup_thresholds thresholds;
311

312
	/* thresholds for mem+swap usage. RCU-protected */
313
	struct mem_cgroup_thresholds memsw_thresholds;
314

K
KAMEZAWA Hiroyuki 已提交
315 316
	/* For oom notifier event fd */
	struct list_head oom_notify;
317 318
	/* For recording LRU-scan statistics */
	struct scanstat scanstat;
319 320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
324
	/*
325
	 * percpu counter.
326
	 */
327
	struct mem_cgroup_stat_cpu *stat;
328 329 330 331 332 333
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
334 335
};

336 337 338 339 340 341
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
342
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
343
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
344 345 346
	NR_MOVE_TYPE,
};

347 348
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
349
	spinlock_t	  lock; /* for from, to */
350 351 352
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
353
	unsigned long moved_charge;
354
	unsigned long moved_swap;
355 356 357
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
358
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
359 360
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
361

D
Daisuke Nishimura 已提交
362 363 364 365 366 367
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

368 369 370 371 372 373
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

374 375 376 377 378 379 380
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

381 382 383
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
384
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
385
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
386
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
387
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
388 389 390
	NR_CHARGE_TYPE,
};

391 392 393
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
394
#define _OOM_TYPE		(2)
395 396 397
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
398 399
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
400

401 402 403 404 405 406 407
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
408 409
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
410

411 412
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
413
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
414
static void drain_all_stock_async(struct mem_cgroup *mem);
415

416 417 418 419 420 421
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

422 423 424 425 426
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

427
static struct mem_cgroup_per_zone *
428
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
429
{
430 431
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
452
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
453
				struct mem_cgroup_per_zone *mz,
454 455
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
456 457 458 459 460 461 462 463
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

464 465 466
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
483 484 485 486 487 488 489 490 491 492 493 494 495
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

496 497 498 499 500 501
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
502
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
503 504 505 506 507 508
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
509
	unsigned long long excess;
510 511
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
512 513
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
514 515 516
	mctz = soft_limit_tree_from_page(page);

	/*
517 518
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
519
	 */
520 521
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
522
		excess = res_counter_soft_limit_excess(&mem->res);
523 524 525 526
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
527
		if (excess || mz->on_tree) {
528 529 530 531 532
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
533 534
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
535
			 */
536
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
537 538
			spin_unlock(&mctz->lock);
		}
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

557 558 559 560
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
561
	struct mem_cgroup_per_zone *mz;
562 563

retry:
564
	mz = NULL;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
613 614
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
615
{
616
	long val = 0;
617 618
	int cpu;

619 620
	get_online_cpus();
	for_each_online_cpu(cpu)
621
		val += per_cpu(mem->stat->count[idx], cpu);
622 623 624 625 626 627
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
628 629 630
	return val;
}

631 632 633 634
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
635
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
636 637
}

638 639 640 641 642 643 644 645 646 647
void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
}

void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

664
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
665
					 bool file, int nr_pages)
666
{
667 668
	preempt_disable();

669 670
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
671
	else
672
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
673

674 675
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
676
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
677
	else {
678
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
679 680
		nr_pages = -nr_pages; /* for event */
	}
681

682
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
683

684
	preempt_enable();
685 686
}

687 688 689
unsigned long
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
			unsigned int lru_mask)
690 691
{
	struct mem_cgroup_per_zone *mz;
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	enum lru_list l;
	unsigned long ret = 0;

	mz = mem_cgroup_zoneinfo(mem, nid, zid);

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
			int nid, unsigned int lru_mask)
{
708 709 710
	u64 total = 0;
	int zid;

711 712 713
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);

714 715
	return total;
}
716 717 718

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
			unsigned int lru_mask)
719
{
720
	int nid;
721 722
	u64 total = 0;

723 724
	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
725
	return total;
726 727
}

728 729 730 731 732 733 734 735 736 737 738
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
739
{
740
	unsigned long val, next;
741

742
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
743

744 745 746 747 748 749 750
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
751 752 753
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
754 755 756 757 758
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
759 760 761 762 763 764 765 766 767
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
768
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
769
		mem_cgroup_threshold(mem);
770 771
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
772
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
773
			mem_cgroup_update_tree(mem, page);
774
			__mem_cgroup_target_update(mem,
775 776 777 778 779 780 781 782
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_NUMAINFO))) {
			atomic_inc(&mem->numainfo_events);
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_NUMAINFO);
783
		}
784
#endif
785 786 787
	}
}

788
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
789 790 791 792 793 794
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

795
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
796
{
797 798 799 800 801 802 803 804
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

805 806 807 808
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

809
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
810 811
{
	struct mem_cgroup *mem = NULL;
812 813 814

	if (!mm)
		return NULL;
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
830 831
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
832
{
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
855 856 857 858 859 860 861 862 863
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
864 865
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
866
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
867

K
KAMEZAWA Hiroyuki 已提交
868
	css_put(&iter->css);
869 870
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
871
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
872

873 874 875
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
876 877
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
878
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
879 880 881

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
882
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
883
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
884
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
885
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
886
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
887
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
888

K
KAMEZAWA Hiroyuki 已提交
889
	return iter;
K
KAMEZAWA Hiroyuki 已提交
890
}
K
KAMEZAWA Hiroyuki 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

904 905 906
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
907

908 909 910 911 912
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
	struct mem_cgroup *mem;

	if (!mm)
		return;

	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!mem))
		goto out;

	switch (idx) {
	case PGMAJFAULT:
		mem_cgroup_pgmajfault(mem, 1);
		break;
	case PGFAULT:
		mem_cgroup_pgfault(mem, 1);
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
953

K
KAMEZAWA Hiroyuki 已提交
954 955 956 957
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
958

959
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
960 961 962
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
963
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
964
		return;
965
	VM_BUG_ON(!pc->mem_cgroup);
966 967 968 969
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
970
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
971 972
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
973 974 975
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
976
	list_del_init(&pc->lru);
977 978
}

K
KAMEZAWA Hiroyuki 已提交
979
void mem_cgroup_del_lru(struct page *page)
980
{
K
KAMEZAWA Hiroyuki 已提交
981 982
	mem_cgroup_del_lru_list(page, page_lru(page));
}
983

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
1006
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1007 1008 1009
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
1010 1011 1012 1013
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
1014

1015
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1016
		return;
1017

K
KAMEZAWA Hiroyuki 已提交
1018
	pc = lookup_page_cgroup(page);
1019
	/* unused or root page is not rotated. */
1020 1021 1022 1023 1024
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
1025
		return;
1026
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
1027
	list_move(&pc->lru, &mz->lists[lru]);
1028 1029
}

K
KAMEZAWA Hiroyuki 已提交
1030
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1031
{
K
KAMEZAWA Hiroyuki 已提交
1032 1033
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
1034

1035
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1036 1037
		return;
	pc = lookup_page_cgroup(page);
1038
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
1039
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
1040
		return;
1041 1042
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1043
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1044 1045
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1046 1047 1048
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1049 1050
	list_add(&pc->lru, &mz->lists[lru]);
}
1051

K
KAMEZAWA Hiroyuki 已提交
1052
/*
1053 1054 1055 1056
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1057
 */
1058
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1059
{
1060 1061 1062 1063
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1075 1076 1077 1078 1079 1080 1081 1082
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1083 1084
}

1085
static void mem_cgroup_lru_add_after_commit(struct page *page)
1086 1087 1088 1089 1090
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1091 1092 1093
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1094 1095
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1096
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1097 1098 1099 1100 1101
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1102 1103 1104
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1105
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1106 1107 1108
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1109 1110
}

1111 1112 1113
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1114
	struct mem_cgroup *curr = NULL;
1115
	struct task_struct *p;
1116

1117 1118 1119 1120 1121
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1122 1123
	if (!curr)
		return 0;
1124 1125 1126 1127 1128 1129 1130
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
1131 1132 1133 1134
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
1135 1136 1137
	return ret;
}

1138
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1139 1140 1141
{
	unsigned long active;
	unsigned long inactive;
1142 1143
	unsigned long gb;
	unsigned long inactive_ratio;
1144

1145 1146
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1175 1176 1177 1178 1179
		return 1;

	return 0;
}

1180 1181 1182 1183 1184
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

1185 1186
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1187 1188 1189 1190

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1191 1192 1193
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1194
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1211 1212
	if (!PageCgroupUsed(pc))
		return NULL;
1213 1214
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1215
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1216 1217 1218
	return &mz->reclaim_stat;
}

1219 1220 1221 1222 1223
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1224
					int active, int file)
1225 1226 1227 1228 1229 1230
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1231
	struct page_cgroup *pc, *tmp;
1232
	int nid = zone_to_nid(z);
1233 1234
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1235
	int lru = LRU_FILE * file + active;
1236
	int ret;
1237

1238
	BUG_ON(!mem_cont);
1239
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1240
	src = &mz->lists[lru];
1241

1242 1243
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1244
		if (scan >= nr_to_scan)
1245
			break;
K
KAMEZAWA Hiroyuki 已提交
1246

1247 1248
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1249

1250
		page = lookup_cgroup_page(pc);
1251

H
Hugh Dickins 已提交
1252
		if (unlikely(!PageLRU(page)))
1253 1254
			continue;

H
Hugh Dickins 已提交
1255
		scan++;
1256 1257 1258
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1259
			list_move(&page->lru, dst);
1260
			mem_cgroup_del_lru(page);
1261
			nr_taken += hpage_nr_pages(page);
1262 1263 1264 1265 1266 1267 1268
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1269 1270 1271 1272
		}
	}

	*scanned = scan;
1273 1274 1275 1276

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1277 1278 1279
	return nr_taken;
}

1280 1281 1282
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1283
/**
1284 1285
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1286
 *
1287
 * Returns the maximum amount of memory @mem can be charged with, in
1288
 * pages.
1289
 */
1290
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1291
{
1292 1293 1294 1295 1296
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1297
	return margin >> PAGE_SHIFT;
1298 1299
}

1300
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1301 1302 1303 1304 1305 1306 1307
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1308
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1309 1310
}

1311 1312 1313
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1314 1315 1316 1317

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1318
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1319 1320 1321
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1332 1333 1334
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1335
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1336 1337 1338
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1357 1358 1359

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1360 1361
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1362
	bool ret = false;
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1397
/**
1398
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1417
	if (!memcg || !p)
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1464 1465 1466 1467 1468 1469 1470
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1471 1472 1473 1474
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1475 1476 1477
	return num;
}

D
David Rientjes 已提交
1478 1479 1480 1481 1482 1483 1484 1485
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1486 1487 1488
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1489 1490 1491 1492 1493 1494 1495 1496
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1497
/*
K
KAMEZAWA Hiroyuki 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
		int nid, bool noswap)
{
1547
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1548 1549 1550
		return true;
	if (noswap || !total_swap_pages)
		return false;
1551
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1552 1553 1554 1555
		return true;
	return false;

}
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;
1567 1568 1569 1570 1571 1572 1573
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
	if (!atomic_read(&mem->numainfo_events))
		return;
	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1574 1575 1576 1577 1578 1579 1580
		return;

	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1581 1582
		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
			node_clear(nid, mem->scan_nodes);
1583
	}
1584 1585 1586

	atomic_set(&mem->numainfo_events, 0);
	atomic_set(&mem->numainfo_updating, 0);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(mem->scan_nodes)) {
		for (nid = first_node(mem->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, mem->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
		if (node_isset(nid, mem->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
			return true;
	}
	return false;
}

1659 1660 1661 1662 1663
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
1664 1665 1666 1667 1668

bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
}
1669 1670
#endif

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
static void __mem_cgroup_record_scanstat(unsigned long *stats,
			   struct memcg_scanrecord *rec)
{

	stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
	stats[SCAN_ANON] += rec->nr_scanned[0];
	stats[SCAN_FILE] += rec->nr_scanned[1];

	stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
	stats[ROTATE_ANON] += rec->nr_rotated[0];
	stats[ROTATE_FILE] += rec->nr_rotated[1];

	stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
	stats[FREED_ANON] += rec->nr_freed[0];
	stats[FREED_FILE] += rec->nr_freed[1];

	stats[ELAPSED] += rec->elapsed;
}

static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
{
	struct mem_cgroup *mem;
	int context = rec->context;

	if (context >= NR_SCAN_CONTEXT)
		return;

	mem = rec->mem;
	spin_lock(&mem->scanstat.lock);
	__mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
	spin_unlock(&mem->scanstat.lock);

	mem = rec->root;
	spin_lock(&mem->scanstat.lock);
	__mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
	spin_unlock(&mem->scanstat.lock);
}

K
KAMEZAWA Hiroyuki 已提交
1709 1710 1711 1712
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1713 1714
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1715 1716 1717
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1718 1719
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1720 1721
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1722
						struct zone *zone,
1723
						gfp_t gfp_mask,
1724 1725
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1726
{
K
KAMEZAWA Hiroyuki 已提交
1727 1728 1729
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1730 1731
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1732
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1733
	struct memcg_scanrecord rec;
1734
	unsigned long excess;
1735
	unsigned long scanned;
1736 1737

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1738

1739
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1740
	if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1741 1742
		noswap = true;

1743 1744 1745 1746 1747 1748 1749 1750 1751
	if (shrink)
		rec.context = SCAN_BY_SHRINK;
	else if (check_soft)
		rec.context = SCAN_BY_SYSTEM;
	else
		rec.context = SCAN_BY_LIMIT;

	rec.root = root_mem;

1752
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1753
		victim = mem_cgroup_select_victim(root_mem);
1754
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1755
			loop++;
1756 1757 1758 1759 1760 1761 1762
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1763
				drain_all_stock_async(root_mem);
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1775
				 * We want to do more targeted reclaim.
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1787
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1788 1789
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1790 1791
			continue;
		}
1792 1793 1794 1795 1796 1797 1798 1799
		rec.mem = victim;
		rec.nr_scanned[0] = 0;
		rec.nr_scanned[1] = 0;
		rec.nr_rotated[0] = 0;
		rec.nr_rotated[1] = 0;
		rec.nr_freed[0] = 0;
		rec.nr_freed[1] = 0;
		rec.elapsed = 0;
K
KAMEZAWA Hiroyuki 已提交
1800
		/* we use swappiness of local cgroup */
1801
		if (check_soft) {
1802
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1803 1804
				noswap, zone, &rec, &scanned);
			*total_scanned += scanned;
1805
		} else
1806
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1807 1808
						noswap, &rec);
		mem_cgroup_record_scanstat(&rec);
K
KAMEZAWA Hiroyuki 已提交
1809
		css_put(&victim->css);
1810 1811 1812 1813 1814 1815 1816
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1817
		total += ret;
1818
		if (check_soft) {
1819
			if (!res_counter_soft_limit_excess(&root_mem->res))
1820
				return total;
1821
		} else if (mem_cgroup_margin(root_mem))
1822
			return total;
1823
	}
K
KAMEZAWA Hiroyuki 已提交
1824
	return total;
1825 1826
}

K
KAMEZAWA Hiroyuki 已提交
1827 1828 1829
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1830
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1831 1832 1833
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
1834 1835 1836
	int lock_count = -1;
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
		bool locked = iter->oom_lock;

		iter->oom_lock = true;
		if (lock_count == -1)
			lock_count = iter->oom_lock;
		else if (lock_count != locked) {
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			lock_count = 0;
			failed = iter;
			cond = false;
		}
K
KAMEZAWA Hiroyuki 已提交
1853
	}
K
KAMEZAWA Hiroyuki 已提交
1854

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	if (!failed)
		goto done;

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
done:
	return lock_count;
1872
}
1873

1874
/*
1875
 * Has to be called with memcg_oom_lock
1876
 */
K
KAMEZAWA Hiroyuki 已提交
1877
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1878
{
K
KAMEZAWA Hiroyuki 已提交
1879 1880
	struct mem_cgroup *iter;

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	for_each_mem_cgroup_tree(iter, mem)
		iter->oom_lock = false;
	return 0;
}

static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		atomic_inc(&iter->under_oom);
}

static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1898 1899 1900 1901 1902
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1903
	for_each_mem_cgroup_tree(iter, mem)
1904
		atomic_add_unless(&iter->under_oom, -1, 0);
1905 1906
}

1907
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1908 1909
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1946 1947
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1948
	if (mem && atomic_read(&mem->under_oom))
1949 1950 1951
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1952 1953 1954 1955
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1956
{
K
KAMEZAWA Hiroyuki 已提交
1957
	struct oom_wait_info owait;
1958
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1959

K
KAMEZAWA Hiroyuki 已提交
1960 1961 1962 1963 1964
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1965
	need_to_kill = true;
1966 1967
	mem_cgroup_mark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1968
	/* At first, try to OOM lock hierarchy under mem.*/
1969
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1970 1971 1972 1973 1974 1975
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1976 1977 1978 1979
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1980
		mem_cgroup_oom_notify(mem);
1981
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1982

1983 1984
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1985
		mem_cgroup_out_of_memory(mem, mask);
1986
	} else {
K
KAMEZAWA Hiroyuki 已提交
1987
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1988
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1989
	}
1990
	spin_lock(&memcg_oom_lock);
1991 1992
	if (locked)
		mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1993
	memcg_wakeup_oom(mem);
1994
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1995

1996 1997
	mem_cgroup_unmark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1998 1999 2000 2001 2002
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
2003 2004
}

2005 2006 2007
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
2027
 */
2028

2029 2030
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2031 2032
{
	struct mem_cgroup *mem;
2033 2034
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
2035
	unsigned long uninitialized_var(flags);
2036 2037 2038 2039

	if (unlikely(!pc))
		return;

2040
	rcu_read_lock();
2041
	mem = pc->mem_cgroup;
2042 2043 2044
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
2045
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
2046
		/* take a lock against to access pc->mem_cgroup */
2047
		move_lock_page_cgroup(pc, &flags);
2048 2049 2050 2051 2052
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
2053 2054

	switch (idx) {
2055
	case MEMCG_NR_FILE_MAPPED:
2056 2057 2058
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
2059
			ClearPageCgroupFileMapped(pc);
2060
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2061 2062 2063
		break;
	default:
		BUG();
2064
	}
2065

2066 2067
	this_cpu_add(mem->stat->count[idx], val);

2068 2069
out:
	if (unlikely(need_unlock))
2070
		move_unlock_page_cgroup(pc, &flags);
2071 2072
	rcu_read_unlock();
	return;
2073
}
2074
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2075

2076 2077 2078 2079
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2080
#define CHARGE_BATCH	32U
2081 2082
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2083
	unsigned int nr_pages;
2084
	struct work_struct work;
2085 2086
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2087 2088
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2089
static DEFINE_MUTEX(percpu_charge_mutex);
2090 2091

/*
2092
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2103 2104
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2118 2119 2120 2121
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2122
		if (do_swap_account)
2123 2124
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2137
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2138 2139 2140 2141
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2142
 * This will be consumed by consume_stock() function, later.
2143
 */
2144
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2145 2146 2147 2148 2149 2150 2151
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
2152
	stock->nr_pages += nr_pages;
2153 2154 2155 2156 2157 2158 2159 2160 2161
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2162
static void drain_all_stock_async(struct mem_cgroup *root_mem)
2163
{
2164 2165 2166
	int cpu, curcpu;
	/*
	 * If someone calls draining, avoid adding more kworker runs.
2167
	 */
2168
	if (!mutex_trylock(&percpu_charge_mutex))
2169 2170 2171
		return;
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2172 2173 2174 2175 2176 2177 2178
	/*
	 * Get a hint for avoiding draining charges on the current cpu,
	 * which must be exhausted by our charging.  It is not required that
	 * this be a precise check, so we use raw_smp_processor_id() instead of
	 * getcpu()/putcpu().
	 */
	curcpu = raw_smp_processor_id();
2179 2180
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2181 2182 2183
		struct mem_cgroup *mem;

		mem = stock->cached;
2184
		if (!mem || !stock->nr_pages)
2185 2186 2187 2188 2189 2190 2191 2192
			continue;
		if (mem != root_mem) {
			if (!root_mem->use_hierarchy)
				continue;
			/* check whether "mem" is under tree of "root_mem" */
			if (!css_is_ancestor(&mem->css, &root_mem->css))
				continue;
		}
2193 2194 2195 2196 2197 2198
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2199 2200
	}
 	put_online_cpus();
2201
	mutex_unlock(&percpu_charge_mutex);
2202 2203 2204 2205 2206 2207 2208
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
2209
	mutex_lock(&percpu_charge_mutex);
2210
	schedule_on_each_cpu(drain_local_stock);
2211
	mutex_unlock(&percpu_charge_mutex);
2212 2213
}

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2224
		long x = per_cpu(mem->stat->count[i], cpu);
2225 2226 2227 2228

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
2229 2230 2231 2232 2233 2234
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2246 2247 2248 2249
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2250 2251 2252 2253 2254
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2255
	struct mem_cgroup *iter;
2256

2257 2258 2259 2260 2261 2262
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2263
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2264
		return NOTIFY_OK;
2265 2266 2267 2268

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2269 2270 2271 2272 2273
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2284 2285
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
2286
{
2287
	unsigned long csize = nr_pages * PAGE_SIZE;
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2302
		res_counter_uncharge(&mem->res, csize);
2303 2304 2305 2306
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2307
	/*
2308 2309
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2310 2311 2312 2313
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2314
	if (nr_pages == CHARGE_BATCH)
2315 2316 2317 2318 2319 2320
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2321
					      gfp_mask, flags, NULL);
2322
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2323
		return CHARGE_RETRY;
2324
	/*
2325 2326 2327 2328 2329 2330 2331
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2332
	 */
2333
	if (nr_pages == 1 && ret)
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2353 2354 2355
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2356
 */
2357
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2358
				   gfp_t gfp_mask,
2359 2360 2361
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2362
{
2363
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2364 2365 2366
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2367

K
KAMEZAWA Hiroyuki 已提交
2368 2369 2370 2371 2372 2373 2374 2375
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2376

2377
	/*
2378 2379
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2380 2381 2382
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2383 2384 2385 2386
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2387
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2388 2389 2390
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2391
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2392
			goto done;
2393 2394
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2395
		struct task_struct *p;
2396

K
KAMEZAWA Hiroyuki 已提交
2397 2398 2399
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2400 2401 2402 2403 2404 2405 2406 2407
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2408 2409
		 */
		mem = mem_cgroup_from_task(p);
2410
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2411 2412 2413
			rcu_read_unlock();
			goto done;
		}
2414
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2433

2434 2435
	do {
		bool oom_check;
2436

2437
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2438 2439
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2440
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2441
		}
2442

2443 2444 2445 2446
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2447
		}
2448

2449
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2450 2451 2452 2453
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2454
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2455 2456 2457
			css_put(&mem->css);
			mem = NULL;
			goto again;
2458
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2459
			css_put(&mem->css);
2460 2461
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2462 2463
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2464
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2465
			}
2466 2467 2468 2469
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2470
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2471
			goto bypass;
2472
		}
2473 2474
	} while (ret != CHARGE_OK);

2475 2476
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2477
	css_put(&mem->css);
2478
done:
K
KAMEZAWA Hiroyuki 已提交
2479
	*memcg = mem;
2480 2481
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2482
	*memcg = NULL;
2483
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2484 2485 2486
bypass:
	*memcg = NULL;
	return 0;
2487
}
2488

2489 2490 2491 2492 2493
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2494
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2495
				       unsigned int nr_pages)
2496 2497
{
	if (!mem_cgroup_is_root(mem)) {
2498 2499 2500
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2501
		if (do_swap_account)
2502
			res_counter_uncharge(&mem->memsw, bytes);
2503
	}
2504 2505
}

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2525
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2526
{
2527
	struct mem_cgroup *mem = NULL;
2528
	struct page_cgroup *pc;
2529
	unsigned short id;
2530 2531
	swp_entry_t ent;

2532 2533 2534
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2535
	lock_page_cgroup(pc);
2536
	if (PageCgroupUsed(pc)) {
2537
		mem = pc->mem_cgroup;
2538 2539
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2540
	} else if (PageSwapCache(page)) {
2541
		ent.val = page_private(page);
2542 2543 2544 2545 2546 2547
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2548
	}
2549
	unlock_page_cgroup(pc);
2550 2551 2552
	return mem;
}

2553
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2554
				       struct page *page,
2555
				       unsigned int nr_pages,
2556
				       struct page_cgroup *pc,
2557
				       enum charge_type ctype)
2558
{
2559 2560 2561
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2562
		__mem_cgroup_cancel_charge(mem, nr_pages);
2563 2564 2565 2566 2567 2568
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2569
	pc->mem_cgroup = mem;
2570 2571 2572 2573 2574 2575 2576
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2577
	smp_wmb();
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2591

2592
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2593
	unlock_page_cgroup(pc);
2594 2595 2596 2597 2598
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2599
	memcg_check_events(mem, page);
2600
}
2601

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2616 2617
	if (mem_cgroup_disabled())
		return;
2618
	/*
2619
	 * We have no races with charge/uncharge but will have races with
2620 2621 2622 2623 2624 2625
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2636
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2637 2638
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2639 2640 2641 2642 2643
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2644
/**
2645
 * mem_cgroup_move_account - move account of the page
2646
 * @page: the page
2647
 * @nr_pages: number of regular pages (>1 for huge pages)
2648 2649 2650
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2651
 * @uncharge: whether we should call uncharge and css_put against @from.
2652 2653
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2654
 * - page is not on LRU (isolate_page() is useful.)
2655
 * - compound_lock is held when nr_pages > 1
2656
 *
2657
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2658
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2659 2660
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2661
 */
2662 2663 2664 2665 2666 2667
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2668
{
2669 2670
	unsigned long flags;
	int ret;
2671

2672
	VM_BUG_ON(from == to);
2673
	VM_BUG_ON(PageLRU(page));
2674 2675 2676 2677 2678 2679 2680
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2681
	if (nr_pages > 1 && !PageTransHuge(page))
2682 2683 2684 2685 2686 2687 2688 2689 2690
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2691

2692
	if (PageCgroupFileMapped(pc)) {
2693 2694 2695 2696 2697
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2698
	}
2699
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2700 2701
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2702
		__mem_cgroup_cancel_charge(from, nr_pages);
2703

2704
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2705
	pc->mem_cgroup = to;
2706
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2707 2708 2709
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2710
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2711
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2712
	 * status here.
2713
	 */
2714 2715 2716
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2717
	unlock_page_cgroup(pc);
2718 2719 2720
	/*
	 * check events
	 */
2721 2722
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2723
out:
2724 2725 2726 2727 2728 2729 2730
	return ret;
}

/*
 * move charges to its parent.
 */

2731 2732
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2733 2734 2735 2736 2737 2738
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2739
	unsigned int nr_pages;
2740
	unsigned long uninitialized_var(flags);
2741 2742 2743 2744 2745 2746
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2747 2748 2749 2750 2751
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2752

2753
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2754

2755
	parent = mem_cgroup_from_cont(pcg);
2756
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2757
	if (ret || !parent)
2758
		goto put_back;
2759

2760
	if (nr_pages > 1)
2761 2762
		flags = compound_lock_irqsave(page);

2763
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2764
	if (ret)
2765
		__mem_cgroup_cancel_charge(parent, nr_pages);
2766

2767
	if (nr_pages > 1)
2768
		compound_unlock_irqrestore(page, flags);
2769
put_back:
K
KAMEZAWA Hiroyuki 已提交
2770
	putback_lru_page(page);
2771
put:
2772
	put_page(page);
2773
out:
2774 2775 2776
	return ret;
}

2777 2778 2779 2780 2781 2782 2783
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2784
				gfp_t gfp_mask, enum charge_type ctype)
2785
{
2786
	struct mem_cgroup *mem = NULL;
2787
	unsigned int nr_pages = 1;
2788
	struct page_cgroup *pc;
2789
	bool oom = true;
2790
	int ret;
A
Andrea Arcangeli 已提交
2791

A
Andrea Arcangeli 已提交
2792
	if (PageTransHuge(page)) {
2793
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2794
		VM_BUG_ON(!PageTransHuge(page));
2795 2796 2797 2798 2799
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2800
	}
2801 2802

	pc = lookup_page_cgroup(page);
2803
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2804

2805
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2806
	if (ret || !mem)
2807 2808
		return ret;

2809
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2810 2811 2812
	return 0;
}

2813 2814
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2815
{
2816
	if (mem_cgroup_disabled())
2817
		return 0;
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2829
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2830
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2831 2832
}

D
Daisuke Nishimura 已提交
2833 2834 2835 2836
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2853 2854
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2855
{
2856
	struct mem_cgroup *mem = NULL;
2857 2858
	int ret;

2859
	if (mem_cgroup_disabled())
2860
		return 0;
2861 2862
	if (PageCompound(page))
		return 0;
2863 2864 2865 2866 2867 2868 2869 2870
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2871 2872
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2873 2874 2875 2876
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2877 2878 2879 2880 2881 2882
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2883 2884
			return 0;
		}
2885
		unlock_page_cgroup(pc);
2886 2887
	}

2888
	if (unlikely(!mm))
2889
		mm = &init_mm;
2890

2891 2892 2893 2894
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2895

2896 2897 2898 2899 2900 2901 2902 2903 2904
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2905 2906 2907 2908 2909 2910 2911 2912
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2913
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2914 2915

	return ret;
2916 2917
}

2918 2919 2920
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2921
 * struct page_cgroup is acquired. This refcnt will be consumed by
2922 2923
 * "commit()" or removed by "cancel()"
 */
2924 2925 2926 2927 2928
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2929
	int ret;
2930

2931 2932
	*ptr = NULL;

2933
	if (mem_cgroup_disabled())
2934 2935 2936 2937 2938 2939
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2940 2941 2942
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2943 2944
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2945
		goto charge_cur_mm;
2946
	mem = try_get_mem_cgroup_from_page(page);
2947 2948
	if (!mem)
		goto charge_cur_mm;
2949
	*ptr = mem;
2950
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2951 2952
	css_put(&mem->css);
	return ret;
2953 2954 2955
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2956
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2957 2958
}

D
Daisuke Nishimura 已提交
2959 2960 2961
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2962
{
2963
	if (mem_cgroup_disabled())
2964 2965 2966
		return;
	if (!ptr)
		return;
2967
	cgroup_exclude_rmdir(&ptr->css);
2968 2969

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2970 2971 2972
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2973 2974 2975
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2976
	 */
2977
	if (do_swap_account && PageSwapCache(page)) {
2978
		swp_entry_t ent = {.val = page_private(page)};
2979
		unsigned short id;
2980
		struct mem_cgroup *memcg;
2981 2982 2983 2984

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2985
		if (memcg) {
2986 2987 2988 2989
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2990
			if (!mem_cgroup_is_root(memcg))
2991
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2992
			mem_cgroup_swap_statistics(memcg, false);
2993 2994
			mem_cgroup_put(memcg);
		}
2995
		rcu_read_unlock();
2996
	}
2997 2998 2999 3000 3001 3002
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
3003 3004
}

D
Daisuke Nishimura 已提交
3005 3006 3007 3008 3009 3010
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

3011 3012
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
3013
	if (mem_cgroup_disabled())
3014 3015 3016
		return;
	if (!mem)
		return;
3017
	__mem_cgroup_cancel_charge(mem, 1);
3018 3019
}

3020 3021 3022
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3023 3024 3025
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3026

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
3039 3040
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3041
	 * In those cases, all pages freed continuously can be expected to be in
3042 3043 3044 3045 3046 3047 3048 3049
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3050
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3051 3052
		goto direct_uncharge;

3053 3054 3055 3056 3057 3058 3059 3060
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3061
	batch->nr_pages++;
3062
	if (uncharge_memsw)
3063
		batch->memsw_nr_pages++;
3064 3065
	return;
direct_uncharge:
3066
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
3067
	if (uncharge_memsw)
3068
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3069 3070
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
3071 3072
	return;
}
3073

3074
/*
3075
 * uncharge if !page_mapped(page)
3076
 */
3077
static struct mem_cgroup *
3078
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3079
{
3080
	struct mem_cgroup *mem = NULL;
3081 3082
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3083

3084
	if (mem_cgroup_disabled())
3085
		return NULL;
3086

K
KAMEZAWA Hiroyuki 已提交
3087
	if (PageSwapCache(page))
3088
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
3089

A
Andrea Arcangeli 已提交
3090
	if (PageTransHuge(page)) {
3091
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3092 3093
		VM_BUG_ON(!PageTransHuge(page));
	}
3094
	/*
3095
	 * Check if our page_cgroup is valid
3096
	 */
3097 3098
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3099
		return NULL;
3100

3101
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3102

3103 3104
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
3105 3106 3107 3108 3109
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3110
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3111 3112
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3124
	}
K
KAMEZAWA Hiroyuki 已提交
3125

3126
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3127

3128
	ClearPageCgroupUsed(pc);
3129 3130 3131 3132 3133 3134
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3135

3136
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3137 3138 3139 3140
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
3141
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
3142 3143 3144 3145 3146
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
3147
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3148

3149
	return mem;
K
KAMEZAWA Hiroyuki 已提交
3150 3151 3152

unlock_out:
	unlock_page_cgroup(pc);
3153
	return NULL;
3154 3155
}

3156 3157
void mem_cgroup_uncharge_page(struct page *page)
{
3158 3159 3160 3161 3162
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3163 3164 3165 3166 3167 3168
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3169
	VM_BUG_ON(page->mapping);
3170 3171 3172
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3187 3188
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3209 3210 3211 3212 3213 3214
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3215
	memcg_oom_recover(batch->memcg);
3216 3217 3218 3219
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3220
#ifdef CONFIG_SWAP
3221
/*
3222
 * called after __delete_from_swap_cache() and drop "page" account.
3223 3224
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3225 3226
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3227 3228
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3229 3230 3231 3232 3233 3234
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3235

K
KAMEZAWA Hiroyuki 已提交
3236 3237 3238 3239 3240
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3241
		swap_cgroup_record(ent, css_id(&memcg->css));
3242
}
3243
#endif
3244 3245 3246 3247 3248 3249 3250

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3251
{
3252
	struct mem_cgroup *memcg;
3253
	unsigned short id;
3254 3255 3256 3257

	if (!do_swap_account)
		return;

3258 3259 3260
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3261
	if (memcg) {
3262 3263 3264 3265
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3266
		if (!mem_cgroup_is_root(memcg))
3267
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3268
		mem_cgroup_swap_statistics(memcg, false);
3269 3270
		mem_cgroup_put(memcg);
	}
3271
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3272
}
3273 3274 3275 3276 3277 3278

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3279
 * @need_fixup: whether we should fixup res_counters and refcounts.
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3290
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3291 3292 3293 3294 3295 3296 3297 3298
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3299
		mem_cgroup_swap_statistics(to, true);
3300
		/*
3301 3302 3303 3304 3305 3306
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3307 3308
		 */
		mem_cgroup_get(to);
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3320 3321 3322 3323 3324 3325
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3326
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3327 3328 3329
{
	return -EINVAL;
}
3330
#endif
K
KAMEZAWA Hiroyuki 已提交
3331

3332
/*
3333 3334
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3335
 */
3336
int mem_cgroup_prepare_migration(struct page *page,
3337
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3338
{
3339
	struct mem_cgroup *mem = NULL;
3340
	struct page_cgroup *pc;
3341
	enum charge_type ctype;
3342
	int ret = 0;
3343

3344 3345
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3346
	VM_BUG_ON(PageTransHuge(page));
3347
	if (mem_cgroup_disabled())
3348 3349
		return 0;

3350 3351 3352
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3353 3354
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3386
	}
3387
	unlock_page_cgroup(pc);
3388 3389 3390 3391 3392 3393
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3394

A
Andrea Arcangeli 已提交
3395
	*ptr = mem;
3396
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3409
	}
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3423
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3424
	return ret;
3425
}
3426

3427
/* remove redundant charge if migration failed*/
3428
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3429
	struct page *oldpage, struct page *newpage, bool migration_ok)
3430
{
3431
	struct page *used, *unused;
3432 3433 3434 3435
	struct page_cgroup *pc;

	if (!mem)
		return;
3436
	/* blocks rmdir() */
3437
	cgroup_exclude_rmdir(&mem->css);
3438
	if (!migration_ok) {
3439 3440
		used = oldpage;
		unused = newpage;
3441
	} else {
3442
		used = newpage;
3443 3444
		unused = oldpage;
	}
3445
	/*
3446 3447 3448
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3449
	 */
3450 3451 3452 3453
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3454

3455 3456
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3457
	/*
3458 3459 3460 3461 3462 3463
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3464
	 */
3465 3466
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3467
	/*
3468 3469
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3470 3471 3472 3473
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3474
}
3475

3476
/*
3477 3478 3479 3480 3481 3482
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3483
 */
3484
int mem_cgroup_shmem_charge_fallback(struct page *page,
3485 3486
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3487
{
3488
	struct mem_cgroup *mem;
3489
	int ret;
3490

3491
	if (mem_cgroup_disabled())
3492
		return 0;
3493

3494 3495 3496
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3497

3498
	return ret;
3499 3500
}

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3547 3548
static DEFINE_MUTEX(set_limit_mutex);

3549
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3550
				unsigned long long val)
3551
{
3552
	int retry_count;
3553
	u64 memswlimit, memlimit;
3554
	int ret = 0;
3555 3556
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3557
	int enlarge;
3558 3559 3560 3561 3562 3563 3564 3565 3566

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3567

3568
	enlarge = 0;
3569
	while (retry_count) {
3570 3571 3572 3573
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3584 3585
			break;
		}
3586 3587 3588 3589 3590

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3591
		ret = res_counter_set_limit(&memcg->res, val);
3592 3593 3594 3595 3596 3597
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3598 3599 3600 3601 3602
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3603
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3604 3605
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3606 3607 3608 3609 3610 3611
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3612
	}
3613 3614
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3615

3616 3617 3618
	return ret;
}

L
Li Zefan 已提交
3619 3620
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3621
{
3622
	int retry_count;
3623
	u64 memlimit, memswlimit, oldusage, curusage;
3624 3625
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3626
	int enlarge = 0;
3627

3628 3629 3630
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3648 3649 3650
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3651
		ret = res_counter_set_limit(&memcg->memsw, val);
3652 3653 3654 3655 3656 3657
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3658 3659 3660 3661 3662
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3663
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3664
						MEM_CGROUP_RECLAIM_NOSWAP |
3665 3666
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3667
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3668
		/* Usage is reduced ? */
3669
		if (curusage >= oldusage)
3670
			retry_count--;
3671 3672
		else
			oldusage = curusage;
3673
	}
3674 3675
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3676 3677 3678
	return ret;
}

3679
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3680 3681
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3682 3683 3684 3685 3686 3687
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3688
	unsigned long long excess;
3689
	unsigned long nr_scanned;
3690 3691 3692 3693

	if (order > 0)
		return 0;

3694
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3708
		nr_scanned = 0;
3709 3710
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3711 3712
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3713
		nr_reclaimed += reclaimed;
3714
		*total_scanned += nr_scanned;
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3737
				if (next_mz == mz)
3738
					css_put(&next_mz->mem->css);
3739
				else /* next_mz == NULL or other memcg */
3740 3741 3742 3743
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3744
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3745 3746 3747 3748 3749 3750 3751 3752
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3753 3754
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3773 3774 3775 3776
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3777
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3778
				int node, int zid, enum lru_list lru)
3779
{
K
KAMEZAWA Hiroyuki 已提交
3780 3781
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3782
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3783
	unsigned long flags, loop;
3784
	struct list_head *list;
3785
	int ret = 0;
3786

K
KAMEZAWA Hiroyuki 已提交
3787 3788
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3789
	list = &mz->lists[lru];
3790

3791 3792 3793 3794 3795
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3796 3797
		struct page *page;

3798
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3799
		spin_lock_irqsave(&zone->lru_lock, flags);
3800
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3801
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3802
			break;
3803 3804 3805 3806
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3807
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3808
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3809 3810
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3811
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3812

3813
		page = lookup_cgroup_page(pc);
3814 3815

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3816
		if (ret == -ENOMEM)
3817
			break;
3818 3819 3820 3821 3822 3823 3824

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3825
	}
K
KAMEZAWA Hiroyuki 已提交
3826

3827 3828 3829
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3830 3831 3832 3833 3834 3835
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3836
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3837
{
3838 3839 3840
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3841
	struct cgroup *cgrp = mem->css.cgroup;
3842

3843
	css_get(&mem->css);
3844 3845

	shrink = 0;
3846 3847 3848
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3849
move_account:
3850
	do {
3851
		ret = -EBUSY;
3852 3853 3854 3855
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3856
			goto out;
3857 3858
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3859
		drain_all_stock_sync();
3860
		ret = 0;
3861
		mem_cgroup_start_move(mem);
3862
		for_each_node_state(node, N_HIGH_MEMORY) {
3863
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3864
				enum lru_list l;
3865 3866
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3867
							node, zid, l);
3868 3869 3870
					if (ret)
						break;
				}
3871
			}
3872 3873 3874
			if (ret)
				break;
		}
3875
		mem_cgroup_end_move(mem);
3876
		memcg_oom_recover(mem);
3877 3878 3879
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3880
		cond_resched();
3881 3882
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3883 3884 3885
out:
	css_put(&mem->css);
	return ret;
3886 3887

try_to_free:
3888 3889
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3890 3891 3892
		ret = -EBUSY;
		goto out;
	}
3893 3894
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3895 3896 3897
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
3898
		struct memcg_scanrecord rec;
3899
		int progress;
3900 3901 3902 3903 3904

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3905 3906 3907
		rec.context = SCAN_BY_SHRINK;
		rec.mem = mem;
		rec.root = mem;
K
KOSAKI Motohiro 已提交
3908
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3909
						false, &rec);
3910
		if (!progress) {
3911
			nr_retries--;
3912
			/* maybe some writeback is necessary */
3913
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3914
		}
3915 3916

	}
K
KAMEZAWA Hiroyuki 已提交
3917
	lru_add_drain();
3918
	/* try move_account...there may be some *locked* pages. */
3919
	goto move_account;
3920 3921
}

3922 3923 3924 3925 3926 3927
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3946
	 * If parent's use_hierarchy is set, we can't make any modifications
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3966

3967 3968
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3969
{
K
KAMEZAWA Hiroyuki 已提交
3970
	struct mem_cgroup *iter;
3971
	long val = 0;
3972

3973
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3974 3975 3976 3977 3978 3979
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3980 3981
}

3982 3983
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3984
	u64 val;
3985 3986 3987 3988 3989 3990 3991 3992

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

3993 3994
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3995

K
KAMEZAWA Hiroyuki 已提交
3996
	if (swap)
3997
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3998 3999 4000 4001

	return val << PAGE_SHIFT;
}

4002
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
4003
{
4004
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4005
	u64 val;
4006 4007 4008 4009 4010 4011
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
4012 4013 4014
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
4015
			val = res_counter_read_u64(&mem->res, name);
4016 4017
		break;
	case _MEMSWAP:
4018 4019 4020
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
4021
			val = res_counter_read_u64(&mem->memsw, name);
4022 4023 4024 4025 4026 4027
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
4028
}
4029 4030 4031 4032
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4033 4034
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
4035
{
4036
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4037
	int type, name;
4038 4039 4040
	unsigned long long val;
	int ret;

4041 4042 4043
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
4044
	case RES_LIMIT:
4045 4046 4047 4048
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4049 4050
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4051 4052 4053
		if (ret)
			break;
		if (type == _MEM)
4054
			ret = mem_cgroup_resize_limit(memcg, val);
4055 4056
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4057
		break;
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4072 4073 4074 4075 4076
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4077 4078
}

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4107
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4108 4109
{
	struct mem_cgroup *mem;
4110
	int type, name;
4111 4112

	mem = mem_cgroup_from_cont(cont);
4113 4114 4115
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4116
	case RES_MAX_USAGE:
4117 4118 4119 4120
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
4121 4122
		break;
	case RES_FAILCNT:
4123 4124 4125 4126
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
4127 4128
		break;
	}
4129

4130
	return 0;
4131 4132
}

4133 4134 4135 4136 4137 4138
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4139
#ifdef CONFIG_MMU
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
4158 4159 4160 4161 4162 4163 4164
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4165

K
KAMEZAWA Hiroyuki 已提交
4166 4167 4168 4169 4170

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4171
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4172 4173
	MCS_PGPGIN,
	MCS_PGPGOUT,
4174
	MCS_SWAP,
4175 4176
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4187 4188
};

K
KAMEZAWA Hiroyuki 已提交
4189 4190 4191 4192 4193 4194
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4195
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4196 4197
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4198
	{"swap", "total_swap"},
4199 4200
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4201 4202 4203 4204 4205 4206 4207 4208
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4209 4210
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4211 4212 4213 4214
{
	s64 val;

	/* per cpu stat */
4215
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4216
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4217
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4218
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4219
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4220
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4221
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4222
	s->stat[MCS_PGPGIN] += val;
4223
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4224
	s->stat[MCS_PGPGOUT] += val;
4225
	if (do_swap_account) {
4226
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4227 4228
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4229 4230 4231 4232
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
	s->stat[MCS_PGFAULT] += val;
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4233 4234

	/* per zone stat */
4235
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4236
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4237
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4238
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4239
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4240
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4241
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4242
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4243
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4244 4245 4246 4247 4248 4249
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
4250 4251 4252 4253
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4254 4255
}

4256 4257 4258 4259 4260 4261 4262 4263 4264
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4265
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4266 4267
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4268
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4269 4270 4271 4272
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4273
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4274 4275
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4276 4277
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4278 4279 4280 4281
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4282
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4283 4284
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4285 4286
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4287 4288 4289 4290
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4291
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4292 4293
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4294 4295
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4296 4297 4298 4299 4300 4301 4302
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4303 4304
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4305 4306
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4307
	struct mcs_total_stat mystat;
4308 4309
	int i;

K
KAMEZAWA Hiroyuki 已提交
4310 4311
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4312

4313

4314 4315 4316
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4317
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4318
	}
L
Lee Schermerhorn 已提交
4319

K
KAMEZAWA Hiroyuki 已提交
4320
	/* Hierarchical information */
4321 4322 4323 4324 4325 4326 4327
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4328

K
KAMEZAWA Hiroyuki 已提交
4329 4330
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4331 4332 4333
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4334
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4335
	}
K
KAMEZAWA Hiroyuki 已提交
4336

K
KOSAKI Motohiro 已提交
4337
#ifdef CONFIG_DEBUG_VM
4338
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4366 4367 4368
	return 0;
}

K
KOSAKI Motohiro 已提交
4369 4370 4371 4372
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4373
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4374 4375 4376 4377 4378 4379 4380
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4381

K
KOSAKI Motohiro 已提交
4382 4383 4384 4385 4386 4387 4388
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4389 4390 4391

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4392 4393
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4394 4395
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4396
		return -EINVAL;
4397
	}
K
KOSAKI Motohiro 已提交
4398 4399 4400

	memcg->swappiness = val;

4401 4402
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4403 4404 4405
	return 0;
}

4406 4407 4408 4409 4410 4411 4412 4413
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4414
		t = rcu_dereference(memcg->thresholds.primary);
4415
	else
4416
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4428
	i = t->current_threshold;
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4452
	t->current_threshold = i - 1;
4453 4454 4455 4456 4457 4458
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4459 4460 4461 4462 4463 4464 4465
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4476
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4487 4488 4489 4490
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4491 4492 4493 4494
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4495 4496
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4497 4498
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4499 4500
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4501
	int i, size, ret;
4502 4503 4504 4505 4506 4507

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4508

4509
	if (type == _MEM)
4510
		thresholds = &memcg->thresholds;
4511
	else if (type == _MEMSWAP)
4512
		thresholds = &memcg->memsw_thresholds;
4513 4514 4515 4516 4517 4518
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4519
	if (thresholds->primary)
4520 4521
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4522
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4523 4524

	/* Allocate memory for new array of thresholds */
4525
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4526
			GFP_KERNEL);
4527
	if (!new) {
4528 4529 4530
		ret = -ENOMEM;
		goto unlock;
	}
4531
	new->size = size;
4532 4533

	/* Copy thresholds (if any) to new array */
4534 4535
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4536
				sizeof(struct mem_cgroup_threshold));
4537 4538
	}

4539
	/* Add new threshold */
4540 4541
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4542 4543

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4544
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4545 4546 4547
			compare_thresholds, NULL);

	/* Find current threshold */
4548
	new->current_threshold = -1;
4549
	for (i = 0; i < size; i++) {
4550
		if (new->entries[i].threshold < usage) {
4551
			/*
4552 4553
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4554 4555
			 * it here.
			 */
4556
			++new->current_threshold;
4557 4558 4559
		}
	}

4560 4561 4562 4563 4564
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4565

4566
	/* To be sure that nobody uses thresholds */
4567 4568 4569 4570 4571 4572 4573 4574
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4575
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4576
	struct cftype *cft, struct eventfd_ctx *eventfd)
4577 4578
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4579 4580
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4581 4582
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4583
	int i, j, size;
4584 4585 4586

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4587
		thresholds = &memcg->thresholds;
4588
	else if (type == _MEMSWAP)
4589
		thresholds = &memcg->memsw_thresholds;
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4605 4606 4607
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4608 4609 4610
			size++;
	}

4611
	new = thresholds->spare;
4612

4613 4614
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4615 4616
		kfree(new);
		new = NULL;
4617
		goto swap_buffers;
4618 4619
	}

4620
	new->size = size;
4621 4622

	/* Copy thresholds and find current threshold */
4623 4624 4625
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4626 4627
			continue;

4628 4629
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4630
			/*
4631
			 * new->current_threshold will not be used
4632 4633 4634
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4635
			++new->current_threshold;
4636 4637 4638 4639
		}
		j++;
	}

4640
swap_buffers:
4641 4642 4643
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4644

4645
	/* To be sure that nobody uses thresholds */
4646 4647 4648 4649
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4650

K
KAMEZAWA Hiroyuki 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4663
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4664 4665 4666 4667 4668

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4669
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4670
		eventfd_signal(eventfd, 1);
4671
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4672 4673 4674 4675

	return 0;
}

4676
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4677 4678 4679 4680 4681 4682 4683 4684
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4685
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4686 4687 4688 4689 4690 4691 4692 4693

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4694
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4695 4696
}

4697 4698 4699 4700 4701 4702 4703
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

4704
	if (atomic_read(&mem->under_oom))
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4731 4732
	if (!val)
		memcg_oom_recover(mem);
4733 4734 4735 4736
	cgroup_unlock();
	return 0;
}

4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
				struct cftype *cft,
				struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	char string[64];
	int i;

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_LIMIT);
		cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_LIMIT][i]);
	}

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_SYSTEM);
		cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
	}

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_LIMIT);
		strcat(string, SCANSTAT_WORD_HIERARCHY);
		cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
	}
	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_SYSTEM);
		strcat(string, SCANSTAT_WORD_HIERARCHY);
		cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
	}
	return 0;
}

static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
				unsigned int event)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	spin_lock(&mem->scanstat.lock);
	memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
	memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
	spin_unlock(&mem->scanstat.lock);
	return 0;
}


B
Balbir Singh 已提交
4801 4802
static struct cftype mem_cgroup_files[] = {
	{
4803
		.name = "usage_in_bytes",
4804
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4805
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4806 4807
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4808
	},
4809 4810
	{
		.name = "max_usage_in_bytes",
4811
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4812
		.trigger = mem_cgroup_reset,
4813 4814
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4815
	{
4816
		.name = "limit_in_bytes",
4817
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4818
		.write_string = mem_cgroup_write,
4819
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4820
	},
4821 4822 4823 4824 4825 4826
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4827 4828
	{
		.name = "failcnt",
4829
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4830
		.trigger = mem_cgroup_reset,
4831
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4832
	},
4833 4834
	{
		.name = "stat",
4835
		.read_map = mem_control_stat_show,
4836
	},
4837 4838 4839 4840
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4841 4842 4843 4844 4845
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4846 4847 4848 4849 4850
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4851 4852 4853 4854 4855
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4856 4857
	{
		.name = "oom_control",
4858 4859
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4860 4861 4862 4863
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4864 4865 4866 4867
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4868
		.mode = S_IRUGO,
4869 4870
	},
#endif
4871 4872 4873 4874 4875
	{
		.name = "vmscan_stat",
		.read_map = mem_cgroup_vmscan_stat_read,
		.trigger = mem_cgroup_reset_vmscan_stat,
	},
B
Balbir Singh 已提交
4876 4877
};

4878 4879 4880 4881 4882 4883
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4884 4885
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4921 4922 4923
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4924
	struct mem_cgroup_per_zone *mz;
4925
	enum lru_list l;
4926
	int zone, tmp = node;
4927 4928 4929 4930 4931 4932 4933 4934
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4935 4936
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4937
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4938 4939
	if (!pn)
		return 1;
4940

4941
	mem->info.nodeinfo[node] = pn;
4942 4943
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4944 4945
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4946
		mz->usage_in_excess = 0;
4947 4948
		mz->on_tree = false;
		mz->mem = mem;
4949
	}
4950 4951 4952
	return 0;
}

4953 4954 4955 4956 4957
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4958 4959 4960
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4961
	int size = sizeof(struct mem_cgroup);
4962

4963
	/* Can be very big if MAX_NUMNODES is very big */
4964
	if (size < PAGE_SIZE)
4965
		mem = kzalloc(size, GFP_KERNEL);
4966
	else
4967
		mem = vzalloc(size);
4968

4969 4970 4971
	if (!mem)
		return NULL;

4972
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4973 4974
	if (!mem->stat)
		goto out_free;
4975
	spin_lock_init(&mem->pcp_counter_lock);
4976
	return mem;
4977 4978 4979 4980 4981 4982 4983

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4984 4985
}

4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4997
static void __mem_cgroup_free(struct mem_cgroup *mem)
4998
{
K
KAMEZAWA Hiroyuki 已提交
4999 5000
	int node;

5001
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
5002 5003
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
5004 5005 5006
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

5007 5008
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
5009 5010 5011 5012 5013
		kfree(mem);
	else
		vfree(mem);
}

5014 5015 5016 5017 5018
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

5019
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
5020
{
5021
	if (atomic_sub_and_test(count, &mem->refcnt)) {
5022
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
5023
		__mem_cgroup_free(mem);
5024 5025 5026
		if (parent)
			mem_cgroup_put(parent);
	}
5027 5028
}

5029 5030 5031 5032 5033
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

5034 5035 5036 5037 5038 5039 5040 5041 5042
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
5043

5044 5045 5046
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
5047
	if (!mem_cgroup_disabled() && really_do_swap_account)
5048 5049 5050 5051 5052 5053 5054 5055
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
5081
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
5082 5083
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
5084
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
5085
	long error = -ENOMEM;
5086
	int node;
B
Balbir Singh 已提交
5087

5088 5089
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
5090
		return ERR_PTR(error);
5091

5092 5093 5094
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
5095

5096
	/* root ? */
5097
	if (cont->parent == NULL) {
5098
		int cpu;
5099
		enable_swap_cgroup();
5100
		parent = NULL;
5101
		root_mem_cgroup = mem;
5102 5103
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5104 5105 5106 5107 5108
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5109
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5110
	} else {
5111
		parent = mem_cgroup_from_cont(cont->parent);
5112
		mem->use_hierarchy = parent->use_hierarchy;
5113
		mem->oom_kill_disable = parent->oom_kill_disable;
5114
	}
5115

5116 5117 5118
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
5119 5120 5121 5122 5123 5124 5125
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5126 5127 5128 5129
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
5130
	mem->last_scanned_child = 0;
5131
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
5132
	INIT_LIST_HEAD(&mem->oom_notify);
5133

K
KOSAKI Motohiro 已提交
5134
	if (parent)
5135
		mem->swappiness = mem_cgroup_swappiness(parent);
5136
	atomic_set(&mem->refcnt, 1);
5137
	mem->move_charge_at_immigrate = 0;
5138
	mutex_init(&mem->thresholds_lock);
5139
	spin_lock_init(&mem->scanstat.lock);
B
Balbir Singh 已提交
5140
	return &mem->css;
5141
free_out:
5142
	__mem_cgroup_free(mem);
5143
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
5144
	return ERR_PTR(error);
B
Balbir Singh 已提交
5145 5146
}

5147
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5148 5149 5150
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5151 5152

	return mem_cgroup_force_empty(mem, false);
5153 5154
}

B
Balbir Singh 已提交
5155 5156 5157
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5158 5159 5160
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
5161 5162 5163 5164 5165
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5166 5167 5168 5169 5170 5171 5172 5173
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
5174 5175
}

5176
#ifdef CONFIG_MMU
5177
/* Handlers for move charge at task migration. */
5178 5179
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5180
{
5181 5182
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5183 5184
	struct mem_cgroup *mem = mc.to;

5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5220
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5221 5222 5223 5224 5225
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5226 5227 5228 5229 5230 5231 5232 5233
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5234
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5235 5236 5237 5238 5239 5240
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5241 5242 5243
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5244 5245 5246 5247 5248
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5249
	swp_entry_t	ent;
5250 5251 5252 5253 5254
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5255
	MC_TARGET_SWAP,
5256 5257
};

D
Daisuke Nishimura 已提交
5258 5259
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5260
{
D
Daisuke Nishimura 已提交
5261
	struct page *page = vm_normal_page(vma, addr, ptent);
5262

D
Daisuke Nishimura 已提交
5263 5264 5265 5266 5267 5268
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5269 5270
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5289 5290
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5291
		return NULL;
5292
	}
D
Daisuke Nishimura 已提交
5293 5294 5295 5296 5297 5298
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5344 5345
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5346 5347 5348

	if (!page && !ent.val)
		return 0;
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5364 5365
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5366 5367 5368 5369
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5382 5383
	split_huge_page_pmd(walk->mm, pmd);

5384 5385 5386 5387 5388 5389 5390
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5391 5392 5393
	return 0;
}

5394 5395 5396 5397 5398
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5399
	down_read(&mm->mmap_sem);
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5411
	up_read(&mm->mmap_sem);
5412 5413 5414 5415 5416 5417 5418 5419 5420

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5421 5422 5423 5424 5425
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5426 5427
}

5428 5429
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5430
{
5431 5432 5433
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5434
	/* we must uncharge all the leftover precharges from mc.to */
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5446
	}
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5481
	spin_lock(&mc.lock);
5482 5483
	mc.from = NULL;
	mc.to = NULL;
5484
	spin_unlock(&mc.lock);
5485
	mem_cgroup_end_move(from);
5486 5487
}

5488 5489
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5490
				struct task_struct *p)
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5505 5506 5507 5508
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5509
			VM_BUG_ON(mc.moved_charge);
5510
			VM_BUG_ON(mc.moved_swap);
5511
			mem_cgroup_start_move(from);
5512
			spin_lock(&mc.lock);
5513 5514
			mc.from = from;
			mc.to = mem;
5515
			spin_unlock(&mc.lock);
5516
			/* We set mc.moving_task later */
5517 5518 5519 5520

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5521 5522
		}
		mmput(mm);
5523 5524 5525 5526 5527 5528
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5529
				struct task_struct *p)
5530
{
5531
	mem_cgroup_clear_mc();
5532 5533
}

5534 5535 5536
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5537
{
5538 5539 5540 5541 5542
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5543
	split_huge_page_pmd(walk->mm, pmd);
5544 5545 5546 5547 5548 5549 5550 5551
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5552
		swp_entry_t ent;
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5564 5565
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5566
				mc.precharge--;
5567 5568
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5569 5570 5571 5572 5573
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5574 5575
		case MC_TARGET_SWAP:
			ent = target.ent;
5576 5577
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5578
				mc.precharge--;
5579 5580 5581
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5582
			break;
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5597
		ret = mem_cgroup_do_precharge(1);
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5641
	up_read(&mm->mmap_sem);
5642 5643
}

B
Balbir Singh 已提交
5644 5645 5646
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5647
				struct task_struct *p)
B
Balbir Singh 已提交
5648
{
5649
	struct mm_struct *mm = get_task_mm(p);
5650 5651

	if (mm) {
5652 5653 5654
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5655 5656
		mmput(mm);
	}
5657 5658
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5659
}
5660 5661 5662
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5663
				struct task_struct *p)
5664 5665 5666 5667 5668
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5669
				struct task_struct *p)
5670 5671 5672 5673 5674
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5675
				struct task_struct *p)
5676 5677 5678
{
}
#endif
B
Balbir Singh 已提交
5679

B
Balbir Singh 已提交
5680 5681 5682 5683
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5684
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5685 5686
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5687 5688
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5689
	.attach = mem_cgroup_move_task,
5690
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5691
	.use_id = 1,
B
Balbir Singh 已提交
5692
};
5693 5694

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5695 5696 5697
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5698
	if (!strcmp(s, "1"))
5699
		really_do_swap_account = 1;
5700
	else if (!strcmp(s, "0"))
5701 5702 5703
		really_do_swap_account = 0;
	return 1;
}
5704
__setup("swapaccount=", enable_swap_account);
5705 5706

#endif