memcontrol.c 143.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
B
Balbir Singh 已提交
53

54 55
#include <asm/uaccess.h>

56 57
#include <trace/events/vmscan.h>

58 59
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
60
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
61

62
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
63
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64
int do_swap_account __read_mostly;
65 66 67 68 69 70 71 72

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

73 74 75 76 77
#else
#define do_swap_account		(0)
#endif


78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109 110
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
111
	MEM_CGROUP_TARGET_NUMAINFO,
112 113 114 115
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
116
#define NUMAINFO_EVENTS_TARGET	(1024)
117

118
struct mem_cgroup_stat_cpu {
119
	long count[MEM_CGROUP_STAT_NSTATS];
120
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121
	unsigned long targets[MEM_CGROUP_NTARGETS];
122 123
};

124 125 126 127
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
128 129 130
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
131 132
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
133 134

	struct zone_reclaim_stat reclaim_stat;
135 136 137 138
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
139 140
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
141 142 143 144 145 146 147 148 149 150 151 152
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

173 174 175 176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
178
/* For threshold */
179 180
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
181
	int current_threshold;
182 183 184 185 186
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
187 188 189 190 191 192 193 194 195 196 197 198

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
199 200 201 202 203
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
204 205

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
206
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207

B
Balbir Singh 已提交
208 209 210 211 212 213 214
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
215 216 217
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
218 219 220 221 222 223 224
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
225 226 227 228
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
229 230 231 232
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
233
	struct mem_cgroup_lru_info info;
234
	/*
235
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
236
	 * reclaimed from.
237
	 */
K
KAMEZAWA Hiroyuki 已提交
238
	int last_scanned_child;
239 240 241
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
242 243
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
244
#endif
245 246 247 248
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
249
	atomic_t	oom_lock;
250
	atomic_t	refcnt;
251

K
KOSAKI Motohiro 已提交
252
	unsigned int	swappiness;
253 254
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
255

256 257 258
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

259 260 261 262
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
263
	struct mem_cgroup_thresholds thresholds;
264

265
	/* thresholds for mem+swap usage. RCU-protected */
266
	struct mem_cgroup_thresholds memsw_thresholds;
267

K
KAMEZAWA Hiroyuki 已提交
268 269 270
	/* For oom notifier event fd */
	struct list_head oom_notify;

271 272 273 274 275
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
276
	/*
277
	 * percpu counter.
278
	 */
279
	struct mem_cgroup_stat_cpu *stat;
280 281 282 283 284 285
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
286 287
};

288 289 290 291 292 293
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
294
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
295
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
296 297 298
	NR_MOVE_TYPE,
};

299 300
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
301
	spinlock_t	  lock; /* for from, to */
302 303 304
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
305
	unsigned long moved_charge;
306
	unsigned long moved_swap;
307 308 309
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
310
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
311 312
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
313

D
Daisuke Nishimura 已提交
314 315 316 317 318 319
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

320 321 322 323 324 325
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

326 327 328 329 330 331 332
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

333 334 335
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
336
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
337
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
338
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
339
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
340 341 342
	NR_CHARGE_TYPE,
};

343 344 345
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
346
#define _OOM_TYPE		(2)
347 348 349
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
350 351
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
352

353 354 355 356 357 358 359
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
360 361
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
362

363 364
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
365
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
366
static void drain_all_stock_async(struct mem_cgroup *mem);
367

368 369 370 371 372 373
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

374 375 376 377 378
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

379
static struct mem_cgroup_per_zone *
380
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
381
{
382 383
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
404
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
405
				struct mem_cgroup_per_zone *mz,
406 407
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
408 409 410 411 412 413 414 415
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

416 417 418
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
435 436 437 438 439 440 441 442 443 444 445 446 447
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

448 449 450 451 452 453
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
454
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
455 456 457 458 459 460
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
461
	unsigned long long excess;
462 463
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
464 465
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
466 467 468
	mctz = soft_limit_tree_from_page(page);

	/*
469 470
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
471
	 */
472 473
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
474
		excess = res_counter_soft_limit_excess(&mem->res);
475 476 477 478
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
479
		if (excess || mz->on_tree) {
480 481 482 483 484
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
485 486
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
487
			 */
488
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
489 490
			spin_unlock(&mctz->lock);
		}
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

509 510 511 512
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
513
	struct mem_cgroup_per_zone *mz;
514 515

retry:
516
	mz = NULL;
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
565 566
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
567
{
568
	long val = 0;
569 570
	int cpu;

571 572
	get_online_cpus();
	for_each_online_cpu(cpu)
573
		val += per_cpu(mem->stat->count[idx], cpu);
574 575 576 577 578 579
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
580 581 582
	return val;
}

583 584 585 586
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
587
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
588 589
}

590 591 592 593 594 595 596 597 598 599
void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
}

void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
}

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

616
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
617
					 bool file, int nr_pages)
618
{
619 620
	preempt_disable();

621 622
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
623
	else
624
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
625

626 627
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
628
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
629
	else {
630
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
631 632
		nr_pages = -nr_pages; /* for event */
	}
633

634
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
635

636
	preempt_enable();
637 638
}

639 640 641 642 643 644 645 646 647 648 649 650 651
static unsigned long
mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx)
{
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
		total += MEM_CGROUP_ZSTAT(mz, idx);
	}
	return total;
}
K
KAMEZAWA Hiroyuki 已提交
652
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
653
					enum lru_list idx)
654
{
655
	int nid;
656 657 658
	u64 total = 0;

	for_each_online_node(nid)
659
		total += mem_cgroup_get_zonestat_node(mem, nid, idx);
660
	return total;
661 662
}

663 664 665 666 667 668 669 670 671 672 673
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
674
{
675
	unsigned long val, next;
676

677
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
678

679 680 681 682 683 684 685
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
686 687 688
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
689 690 691 692 693
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
694 695 696 697 698 699 700 701 702
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
703
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
704
		mem_cgroup_threshold(mem);
705 706
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
707
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
708
			mem_cgroup_update_tree(mem, page);
709
			__mem_cgroup_target_update(mem,
710 711 712 713 714 715 716 717
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_NUMAINFO))) {
			atomic_inc(&mem->numainfo_events);
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_NUMAINFO);
718
		}
719
#endif
720 721 722
	}
}

723
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
724 725 726 727 728 729
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

730
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
731
{
732 733 734 735 736 737 738 739
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

740 741 742 743
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

744
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
745 746
{
	struct mem_cgroup *mem = NULL;
747 748 749

	if (!mm)
		return NULL;
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
765 766
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
767
{
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
790 791 792 793 794 795 796 797 798
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
799 800
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
801
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
802

K
KAMEZAWA Hiroyuki 已提交
803
	css_put(&iter->css);
804 805
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
806
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
807

808 809 810
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
811 812
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
813
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
814 815 816

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
817
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
818
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
819
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
820
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
821
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
822
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
823

K
KAMEZAWA Hiroyuki 已提交
824
	return iter;
K
KAMEZAWA Hiroyuki 已提交
825
}
K
KAMEZAWA Hiroyuki 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

839 840 841
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
842

843 844 845 846 847
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
	struct mem_cgroup *mem;

	if (!mm)
		return;

	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!mem))
		goto out;

	switch (idx) {
	case PGMAJFAULT:
		mem_cgroup_pgmajfault(mem, 1);
		break;
	case PGFAULT:
		mem_cgroup_pgfault(mem, 1);
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
888

K
KAMEZAWA Hiroyuki 已提交
889 890 891 892
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
893

894
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
895 896 897
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
898
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
899
		return;
900
	VM_BUG_ON(!pc->mem_cgroup);
901 902 903 904
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
905
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
906 907
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
908 909 910
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
911
	list_del_init(&pc->lru);
912 913
}

K
KAMEZAWA Hiroyuki 已提交
914
void mem_cgroup_del_lru(struct page *page)
915
{
K
KAMEZAWA Hiroyuki 已提交
916 917
	mem_cgroup_del_lru_list(page, page_lru(page));
}
918

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
941
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
942 943 944
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
945 946 947 948
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
949

950
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
951
		return;
952

K
KAMEZAWA Hiroyuki 已提交
953
	pc = lookup_page_cgroup(page);
954
	/* unused or root page is not rotated. */
955 956 957 958 959
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
960
		return;
961
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
962
	list_move(&pc->lru, &mz->lists[lru]);
963 964
}

K
KAMEZAWA Hiroyuki 已提交
965
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
966
{
K
KAMEZAWA Hiroyuki 已提交
967 968
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
969

970
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
971 972
		return;
	pc = lookup_page_cgroup(page);
973
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
974
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
975
		return;
976 977
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
978
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
979 980
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
981 982 983
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
984 985
	list_add(&pc->lru, &mz->lists[lru]);
}
986

K
KAMEZAWA Hiroyuki 已提交
987
/*
988 989 990 991
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
992
 */
993
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
994
{
995 996 997 998
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1010 1011 1012 1013 1014 1015 1016 1017
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1018 1019
}

1020
static void mem_cgroup_lru_add_after_commit(struct page *page)
1021 1022 1023 1024 1025
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1026 1027 1028
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1029 1030
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1031
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1032 1033 1034 1035 1036
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1037 1038 1039
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1040
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1041 1042 1043
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1044 1045
}

1046 1047 1048
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1049
	struct mem_cgroup *curr = NULL;
1050
	struct task_struct *p;
1051

1052 1053 1054 1055 1056
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1057 1058
	if (!curr)
		return 0;
1059 1060 1061 1062 1063 1064 1065
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
1066 1067 1068 1069
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
1070 1071 1072
	return ret;
}

1073
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1074 1075 1076
{
	unsigned long active;
	unsigned long inactive;
1077 1078
	unsigned long gb;
	unsigned long inactive_ratio;
1079

K
KAMEZAWA Hiroyuki 已提交
1080 1081
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1110 1111 1112 1113 1114
		return 1;

	return 0;
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1126 1127 1128
unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg,
						struct zone *zone,
						enum lru_list lru)
1129
{
1130
	int nid = zone_to_nid(zone);
1131 1132 1133 1134 1135 1136
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	unsigned long ret;

	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_FILE) +
		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_FILE);

	return ret;
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	unsigned long ret;

	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_ANON) +
		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_ANON);
	return ret;
}

#if MAX_NUMNODES > 1
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_file_lru_pages(memcg, nid);

	return total;
}

static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_anon_lru_pages(memcg, nid);

	return total;
}

static unsigned long
mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup *memcg, int nid)
{
	return mem_cgroup_get_zonestat_node(memcg, nid, LRU_UNEVICTABLE);
}

static unsigned long
mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_unevictable_lru_pages(memcg, nid);

	return total;
}

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	enum lru_list l;
	u64 total = 0;

	for_each_lru(l)
		total += mem_cgroup_get_zonestat_node(memcg, nid, l);

	return total;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_lru_pages(memcg, nid);

	return total;
}
#endif /* CONFIG_NUMA */

K
KOSAKI Motohiro 已提交
1223 1224 1225
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1226
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1243 1244
	if (!PageCgroupUsed(pc))
		return NULL;
1245 1246
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1247
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1248 1249 1250
	return &mz->reclaim_stat;
}

1251 1252 1253 1254 1255
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1256
					int active, int file)
1257 1258 1259 1260 1261 1262
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1263
	struct page_cgroup *pc, *tmp;
1264
	int nid = zone_to_nid(z);
1265 1266
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1267
	int lru = LRU_FILE * file + active;
1268
	int ret;
1269

1270
	BUG_ON(!mem_cont);
1271
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1272
	src = &mz->lists[lru];
1273

1274 1275
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1276
		if (scan >= nr_to_scan)
1277
			break;
K
KAMEZAWA Hiroyuki 已提交
1278

1279 1280
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1281

1282
		page = lookup_cgroup_page(pc);
1283

H
Hugh Dickins 已提交
1284
		if (unlikely(!PageLRU(page)))
1285 1286
			continue;

H
Hugh Dickins 已提交
1287
		scan++;
1288 1289 1290
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1291
			list_move(&page->lru, dst);
1292
			mem_cgroup_del_lru(page);
1293
			nr_taken += hpage_nr_pages(page);
1294 1295 1296 1297 1298 1299 1300
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1301 1302 1303 1304
		}
	}

	*scanned = scan;
1305 1306 1307 1308

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1309 1310 1311
	return nr_taken;
}

1312 1313 1314
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1315
/**
1316 1317
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1318
 *
1319
 * Returns the maximum amount of memory @mem can be charged with, in
1320
 * pages.
1321
 */
1322
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1323
{
1324 1325 1326 1327 1328
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1329
	return margin >> PAGE_SHIFT;
1330 1331
}

K
KOSAKI Motohiro 已提交
1332 1333 1334 1335 1336 1337 1338 1339
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1340
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1341 1342
}

1343 1344 1345
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1346 1347 1348 1349

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1350
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1351 1352 1353
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1364 1365 1366
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1367
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1368 1369 1370
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1389 1390 1391

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1392 1393
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1394
	bool ret = false;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1429
/**
1430
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1449
	if (!memcg || !p)
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1496 1497 1498 1499 1500 1501 1502
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1503 1504 1505 1506
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1507 1508 1509
	return num;
}

D
David Rientjes 已提交
1510 1511 1512 1513 1514 1515 1516 1517
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1518 1519 1520
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1521 1522 1523 1524 1525 1526 1527 1528
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1529
/*
K
KAMEZAWA Hiroyuki 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
		int nid, bool noswap)
{
	if (mem_cgroup_node_nr_file_lru_pages(mem, nid))
		return true;
	if (noswap || !total_swap_pages)
		return false;
	if (mem_cgroup_node_nr_anon_lru_pages(mem, nid))
		return true;
	return false;

}
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;
1599 1600 1601 1602 1603 1604 1605
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
	if (!atomic_read(&mem->numainfo_events))
		return;
	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1606 1607 1608 1609 1610 1611 1612
		return;

	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1613 1614
		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
			node_clear(nid, mem->scan_nodes);
1615
	}
1616 1617 1618

	atomic_set(&mem->numainfo_events, 0);
	atomic_set(&mem->numainfo_updating, 0);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(mem->scan_nodes)) {
		for (nid = first_node(mem->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, mem->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
		if (node_isset(nid, mem->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
			return true;
	}
	return false;
}

1691 1692 1693 1694 1695
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
1696 1697 1698 1699 1700

bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
}
1701 1702
#endif

K
KAMEZAWA Hiroyuki 已提交
1703 1704 1705 1706
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1707 1708
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1709 1710 1711
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1712 1713
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1714 1715
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1716
						struct zone *zone,
1717
						gfp_t gfp_mask,
1718 1719
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1720
{
K
KAMEZAWA Hiroyuki 已提交
1721 1722 1723
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1724 1725
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1726
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1727
	unsigned long excess;
1728
	unsigned long nr_scanned;
1729 1730

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1731

1732
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1733
	if (!check_soft && root_mem->memsw_is_minimum)
1734 1735
		noswap = true;

1736
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1737
		victim = mem_cgroup_select_victim(root_mem);
1738
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1739
			loop++;
1740 1741 1742 1743 1744 1745 1746
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1747
				drain_all_stock_async(root_mem);
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1759
				 * We want to do more targeted reclaim.
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1771
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1772 1773
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1774 1775
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1776
		/* we use swappiness of local cgroup */
1777
		if (check_soft) {
1778
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1779 1780 1781 1782
				noswap, get_swappiness(victim), zone,
				&nr_scanned);
			*total_scanned += nr_scanned;
		} else
1783 1784
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1785
		css_put(&victim->css);
1786 1787 1788 1789 1790 1791 1792
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1793
		total += ret;
1794
		if (check_soft) {
1795
			if (!res_counter_soft_limit_excess(&root_mem->res))
1796
				return total;
1797
		} else if (mem_cgroup_margin(root_mem))
1798
			return total;
1799
	}
K
KAMEZAWA Hiroyuki 已提交
1800
	return total;
1801 1802
}

K
KAMEZAWA Hiroyuki 已提交
1803 1804 1805 1806 1807 1808
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1809 1810
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1811

K
KAMEZAWA Hiroyuki 已提交
1812 1813 1814 1815
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1816 1817 1818 1819

	if (lock_count == 1)
		return true;
	return false;
1820
}
1821

K
KAMEZAWA Hiroyuki 已提交
1822
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1823
{
K
KAMEZAWA Hiroyuki 已提交
1824 1825
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1826 1827 1828 1829 1830
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1831 1832
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1833 1834 1835
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1836 1837 1838 1839

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1876 1877
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1878
	if (mem && atomic_read(&mem->oom_lock))
1879 1880 1881
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1882 1883 1884 1885
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1886
{
K
KAMEZAWA Hiroyuki 已提交
1887
	struct oom_wait_info owait;
1888
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1889

K
KAMEZAWA Hiroyuki 已提交
1890 1891 1892 1893 1894
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1895
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1896 1897 1898 1899 1900 1901 1902 1903
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1904 1905 1906 1907
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1908
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1909 1910
	mutex_unlock(&memcg_oom_mutex);

1911 1912
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1913
		mem_cgroup_out_of_memory(mem, mask);
1914
	} else {
K
KAMEZAWA Hiroyuki 已提交
1915
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1916
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1917 1918 1919
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1920
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1921 1922 1923 1924 1925 1926 1927
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1928 1929
}

1930 1931 1932
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1952
 */
1953

1954 1955
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1956 1957
{
	struct mem_cgroup *mem;
1958 1959
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1960
	unsigned long uninitialized_var(flags);
1961 1962 1963 1964

	if (unlikely(!pc))
		return;

1965
	rcu_read_lock();
1966
	mem = pc->mem_cgroup;
1967 1968 1969
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1970
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1971
		/* take a lock against to access pc->mem_cgroup */
1972
		move_lock_page_cgroup(pc, &flags);
1973 1974 1975 1976 1977
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1978 1979

	switch (idx) {
1980
	case MEMCG_NR_FILE_MAPPED:
1981 1982 1983
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1984
			ClearPageCgroupFileMapped(pc);
1985
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1986 1987 1988
		break;
	default:
		BUG();
1989
	}
1990

1991 1992
	this_cpu_add(mem->stat->count[idx], val);

1993 1994
out:
	if (unlikely(need_unlock))
1995
		move_unlock_page_cgroup(pc, &flags);
1996 1997
	rcu_read_unlock();
	return;
1998
}
1999
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2000

2001 2002 2003 2004
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2005
#define CHARGE_BATCH	32U
2006 2007
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2008
	unsigned int nr_pages;
2009
	struct work_struct work;
2010 2011
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2012 2013
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2014
static DEFINE_MUTEX(percpu_charge_mutex);
2015 2016

/*
2017
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2028 2029
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2043 2044 2045 2046
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2047
		if (do_swap_account)
2048 2049
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2062
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2063 2064 2065 2066
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2067
 * This will be consumed by consume_stock() function, later.
2068
 */
2069
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2070 2071 2072 2073 2074 2075 2076
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
2077
	stock->nr_pages += nr_pages;
2078 2079 2080 2081 2082 2083 2084 2085 2086
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2087
static void drain_all_stock_async(struct mem_cgroup *root_mem)
2088
{
2089 2090 2091
	int cpu, curcpu;
	/*
	 * If someone calls draining, avoid adding more kworker runs.
2092
	 */
2093
	if (!mutex_trylock(&percpu_charge_mutex))
2094 2095 2096
		return;
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2097 2098 2099 2100 2101 2102 2103
	/*
	 * Get a hint for avoiding draining charges on the current cpu,
	 * which must be exhausted by our charging.  It is not required that
	 * this be a precise check, so we use raw_smp_processor_id() instead of
	 * getcpu()/putcpu().
	 */
	curcpu = raw_smp_processor_id();
2104 2105
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
		struct mem_cgroup *mem;

		if (cpu == curcpu)
			continue;

		mem = stock->cached;
		if (!mem)
			continue;
		if (mem != root_mem) {
			if (!root_mem->use_hierarchy)
				continue;
			/* check whether "mem" is under tree of "root_mem" */
			if (!css_is_ancestor(&mem->css, &root_mem->css))
				continue;
		}
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
			schedule_work_on(cpu, &stock->work);
2123 2124
	}
 	put_online_cpus();
2125
	mutex_unlock(&percpu_charge_mutex);
2126 2127 2128 2129 2130 2131 2132
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
2133
	mutex_lock(&percpu_charge_mutex);
2134
	schedule_on_each_cpu(drain_local_stock);
2135
	mutex_unlock(&percpu_charge_mutex);
2136 2137
}

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2148
		long x = per_cpu(mem->stat->count[i], cpu);
2149 2150 2151 2152

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
2153 2154 2155 2156 2157 2158
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2170 2171 2172 2173
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2174 2175 2176 2177 2178
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2179
	struct mem_cgroup *iter;
2180

2181 2182 2183 2184 2185 2186
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2187
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2188
		return NOTIFY_OK;
2189 2190 2191 2192

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2193 2194 2195 2196 2197
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2208 2209
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
2210
{
2211
	unsigned long csize = nr_pages * PAGE_SIZE;
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2226
		res_counter_uncharge(&mem->res, csize);
2227 2228 2229 2230
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2231
	/*
2232 2233
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2234 2235 2236 2237
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2238
	if (nr_pages == CHARGE_BATCH)
2239 2240 2241 2242 2243 2244
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2245
					      gfp_mask, flags, NULL);
2246
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2247
		return CHARGE_RETRY;
2248
	/*
2249 2250 2251 2252 2253 2254 2255
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2256
	 */
2257
	if (nr_pages == 1 && ret)
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2277 2278 2279
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2280
 */
2281
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2282
				   gfp_t gfp_mask,
2283 2284 2285
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2286
{
2287
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2288 2289 2290
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2291

K
KAMEZAWA Hiroyuki 已提交
2292 2293 2294 2295 2296 2297 2298 2299
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2300

2301
	/*
2302 2303
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2304 2305 2306
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2307 2308 2309 2310
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2311
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2312 2313 2314
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2315
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2316
			goto done;
2317 2318
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2319
		struct task_struct *p;
2320

K
KAMEZAWA Hiroyuki 已提交
2321 2322 2323
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2324 2325 2326 2327 2328 2329 2330 2331
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2332 2333
		 */
		mem = mem_cgroup_from_task(p);
2334
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2335 2336 2337
			rcu_read_unlock();
			goto done;
		}
2338
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2357

2358 2359
	do {
		bool oom_check;
2360

2361
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2362 2363
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2364
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2365
		}
2366

2367 2368 2369 2370
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2371
		}
2372

2373
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2374 2375 2376 2377
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2378
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2379 2380 2381
			css_put(&mem->css);
			mem = NULL;
			goto again;
2382
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2383
			css_put(&mem->css);
2384 2385
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2386 2387
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2388
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2389
			}
2390 2391 2392 2393
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2394
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2395
			goto bypass;
2396
		}
2397 2398
	} while (ret != CHARGE_OK);

2399 2400
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2401
	css_put(&mem->css);
2402
done:
K
KAMEZAWA Hiroyuki 已提交
2403
	*memcg = mem;
2404 2405
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2406
	*memcg = NULL;
2407
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2408 2409 2410
bypass:
	*memcg = NULL;
	return 0;
2411
}
2412

2413 2414 2415 2416 2417
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2418
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2419
				       unsigned int nr_pages)
2420 2421
{
	if (!mem_cgroup_is_root(mem)) {
2422 2423 2424
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2425
		if (do_swap_account)
2426
			res_counter_uncharge(&mem->memsw, bytes);
2427
	}
2428 2429
}

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2449
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2450
{
2451
	struct mem_cgroup *mem = NULL;
2452
	struct page_cgroup *pc;
2453
	unsigned short id;
2454 2455
	swp_entry_t ent;

2456 2457 2458
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2459
	lock_page_cgroup(pc);
2460
	if (PageCgroupUsed(pc)) {
2461
		mem = pc->mem_cgroup;
2462 2463
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2464
	} else if (PageSwapCache(page)) {
2465
		ent.val = page_private(page);
2466 2467 2468 2469 2470 2471
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2472
	}
2473
	unlock_page_cgroup(pc);
2474 2475 2476
	return mem;
}

2477
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2478
				       struct page *page,
2479
				       unsigned int nr_pages,
2480
				       struct page_cgroup *pc,
2481
				       enum charge_type ctype)
2482
{
2483 2484 2485
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2486
		__mem_cgroup_cancel_charge(mem, nr_pages);
2487 2488 2489 2490 2491 2492
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2493
	pc->mem_cgroup = mem;
2494 2495 2496 2497 2498 2499 2500
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2501
	smp_wmb();
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2515

2516
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2517
	unlock_page_cgroup(pc);
2518 2519 2520 2521 2522
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2523
	memcg_check_events(mem, page);
2524
}
2525

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2540 2541
	if (mem_cgroup_disabled())
		return;
2542
	/*
2543
	 * We have no races with charge/uncharge but will have races with
2544 2545 2546 2547 2548 2549
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2560
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2561 2562
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2563 2564 2565 2566 2567
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2568
/**
2569
 * mem_cgroup_move_account - move account of the page
2570
 * @page: the page
2571
 * @nr_pages: number of regular pages (>1 for huge pages)
2572 2573 2574
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2575
 * @uncharge: whether we should call uncharge and css_put against @from.
2576 2577
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2578
 * - page is not on LRU (isolate_page() is useful.)
2579
 * - compound_lock is held when nr_pages > 1
2580
 *
2581
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2582
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2583 2584
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2585
 */
2586 2587 2588 2589 2590 2591
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2592
{
2593 2594
	unsigned long flags;
	int ret;
2595

2596
	VM_BUG_ON(from == to);
2597
	VM_BUG_ON(PageLRU(page));
2598 2599 2600 2601 2602 2603 2604
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2605
	if (nr_pages > 1 && !PageTransHuge(page))
2606 2607 2608 2609 2610 2611 2612 2613 2614
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2615

2616
	if (PageCgroupFileMapped(pc)) {
2617 2618 2619 2620 2621
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2622
	}
2623
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2624 2625
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2626
		__mem_cgroup_cancel_charge(from, nr_pages);
2627

2628
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2629
	pc->mem_cgroup = to;
2630
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2631 2632 2633
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2634
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2635
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2636
	 * status here.
2637
	 */
2638 2639 2640
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2641
	unlock_page_cgroup(pc);
2642 2643 2644
	/*
	 * check events
	 */
2645 2646
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2647
out:
2648 2649 2650 2651 2652 2653 2654
	return ret;
}

/*
 * move charges to its parent.
 */

2655 2656
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2657 2658 2659 2660 2661 2662
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2663
	unsigned int nr_pages;
2664
	unsigned long uninitialized_var(flags);
2665 2666 2667 2668 2669 2670
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2671 2672 2673 2674 2675
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2676

2677
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2678

2679
	parent = mem_cgroup_from_cont(pcg);
2680
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2681
	if (ret || !parent)
2682
		goto put_back;
2683

2684
	if (nr_pages > 1)
2685 2686
		flags = compound_lock_irqsave(page);

2687
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2688
	if (ret)
2689
		__mem_cgroup_cancel_charge(parent, nr_pages);
2690

2691
	if (nr_pages > 1)
2692
		compound_unlock_irqrestore(page, flags);
2693
put_back:
K
KAMEZAWA Hiroyuki 已提交
2694
	putback_lru_page(page);
2695
put:
2696
	put_page(page);
2697
out:
2698 2699 2700
	return ret;
}

2701 2702 2703 2704 2705 2706 2707
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2708
				gfp_t gfp_mask, enum charge_type ctype)
2709
{
2710
	struct mem_cgroup *mem = NULL;
2711
	unsigned int nr_pages = 1;
2712
	struct page_cgroup *pc;
2713
	bool oom = true;
2714
	int ret;
A
Andrea Arcangeli 已提交
2715

A
Andrea Arcangeli 已提交
2716
	if (PageTransHuge(page)) {
2717
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2718
		VM_BUG_ON(!PageTransHuge(page));
2719 2720 2721 2722 2723
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2724
	}
2725 2726

	pc = lookup_page_cgroup(page);
2727
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2728

2729
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2730
	if (ret || !mem)
2731 2732
		return ret;

2733
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2734 2735 2736
	return 0;
}

2737 2738
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2739
{
2740
	if (mem_cgroup_disabled())
2741
		return 0;
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2753
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2754
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2755 2756
}

D
Daisuke Nishimura 已提交
2757 2758 2759 2760
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2777 2778
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2779
{
2780
	struct mem_cgroup *mem = NULL;
2781 2782
	int ret;

2783
	if (mem_cgroup_disabled())
2784
		return 0;
2785 2786
	if (PageCompound(page))
		return 0;
2787 2788 2789 2790 2791 2792 2793 2794
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2795 2796
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2797 2798 2799 2800
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2801 2802 2803 2804 2805 2806
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2807 2808
			return 0;
		}
2809
		unlock_page_cgroup(pc);
2810 2811
	}

2812
	if (unlikely(!mm))
2813
		mm = &init_mm;
2814

2815 2816 2817 2818
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2819

2820 2821 2822 2823 2824 2825 2826 2827 2828
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2829 2830 2831 2832 2833 2834 2835 2836
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2837
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2838 2839

	return ret;
2840 2841
}

2842 2843 2844
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2845
 * struct page_cgroup is acquired. This refcnt will be consumed by
2846 2847
 * "commit()" or removed by "cancel()"
 */
2848 2849 2850 2851 2852
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2853
	int ret;
2854

2855 2856
	*ptr = NULL;

2857
	if (mem_cgroup_disabled())
2858 2859 2860 2861 2862 2863
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2864 2865 2866
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2867 2868
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2869
		goto charge_cur_mm;
2870
	mem = try_get_mem_cgroup_from_page(page);
2871 2872
	if (!mem)
		goto charge_cur_mm;
2873
	*ptr = mem;
2874
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2875 2876
	css_put(&mem->css);
	return ret;
2877 2878 2879
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2880
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2881 2882
}

D
Daisuke Nishimura 已提交
2883 2884 2885
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2886
{
2887
	if (mem_cgroup_disabled())
2888 2889 2890
		return;
	if (!ptr)
		return;
2891
	cgroup_exclude_rmdir(&ptr->css);
2892 2893

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2894 2895 2896
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2897 2898 2899
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2900
	 */
2901
	if (do_swap_account && PageSwapCache(page)) {
2902
		swp_entry_t ent = {.val = page_private(page)};
2903
		unsigned short id;
2904
		struct mem_cgroup *memcg;
2905 2906 2907 2908

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2909
		if (memcg) {
2910 2911 2912 2913
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2914
			if (!mem_cgroup_is_root(memcg))
2915
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2916
			mem_cgroup_swap_statistics(memcg, false);
2917 2918
			mem_cgroup_put(memcg);
		}
2919
		rcu_read_unlock();
2920
	}
2921 2922 2923 2924 2925 2926
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2927 2928
}

D
Daisuke Nishimura 已提交
2929 2930 2931 2932 2933 2934
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2935 2936
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2937
	if (mem_cgroup_disabled())
2938 2939 2940
		return;
	if (!mem)
		return;
2941
	__mem_cgroup_cancel_charge(mem, 1);
2942 2943
}

2944 2945 2946
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2947 2948 2949
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2950

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2963 2964
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2965
	 * In those cases, all pages freed continuously can be expected to be in
2966 2967 2968 2969 2970 2971 2972 2973
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2974
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2975 2976
		goto direct_uncharge;

2977 2978 2979 2980 2981 2982 2983 2984
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2985
	batch->nr_pages++;
2986
	if (uncharge_memsw)
2987
		batch->memsw_nr_pages++;
2988 2989
	return;
direct_uncharge:
2990
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2991
	if (uncharge_memsw)
2992
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2993 2994
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2995 2996
	return;
}
2997

2998
/*
2999
 * uncharge if !page_mapped(page)
3000
 */
3001
static struct mem_cgroup *
3002
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3003
{
3004
	struct mem_cgroup *mem = NULL;
3005 3006
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3007

3008
	if (mem_cgroup_disabled())
3009
		return NULL;
3010

K
KAMEZAWA Hiroyuki 已提交
3011
	if (PageSwapCache(page))
3012
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
3013

A
Andrea Arcangeli 已提交
3014
	if (PageTransHuge(page)) {
3015
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3016 3017
		VM_BUG_ON(!PageTransHuge(page));
	}
3018
	/*
3019
	 * Check if our page_cgroup is valid
3020
	 */
3021 3022
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3023
		return NULL;
3024

3025
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3026

3027 3028
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
3029 3030 3031 3032 3033
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3034
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3035 3036
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3048
	}
K
KAMEZAWA Hiroyuki 已提交
3049

3050
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3051

3052
	ClearPageCgroupUsed(pc);
3053 3054 3055 3056 3057 3058
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3059

3060
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3061 3062 3063 3064
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
3065
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
3066 3067 3068 3069 3070
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
3071
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3072

3073
	return mem;
K
KAMEZAWA Hiroyuki 已提交
3074 3075 3076

unlock_out:
	unlock_page_cgroup(pc);
3077
	return NULL;
3078 3079
}

3080 3081
void mem_cgroup_uncharge_page(struct page *page)
{
3082 3083 3084 3085 3086
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3087 3088 3089 3090 3091 3092
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3093
	VM_BUG_ON(page->mapping);
3094 3095 3096
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3111 3112
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3133 3134 3135 3136 3137 3138
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3139
	memcg_oom_recover(batch->memcg);
3140 3141 3142 3143
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3144
#ifdef CONFIG_SWAP
3145
/*
3146
 * called after __delete_from_swap_cache() and drop "page" account.
3147 3148
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3149 3150
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3151 3152
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3153 3154 3155 3156 3157 3158
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3159

K
KAMEZAWA Hiroyuki 已提交
3160 3161 3162 3163 3164
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3165
		swap_cgroup_record(ent, css_id(&memcg->css));
3166
}
3167
#endif
3168 3169 3170 3171 3172 3173 3174

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3175
{
3176
	struct mem_cgroup *memcg;
3177
	unsigned short id;
3178 3179 3180 3181

	if (!do_swap_account)
		return;

3182 3183 3184
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3185
	if (memcg) {
3186 3187 3188 3189
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3190
		if (!mem_cgroup_is_root(memcg))
3191
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3192
		mem_cgroup_swap_statistics(memcg, false);
3193 3194
		mem_cgroup_put(memcg);
	}
3195
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3196
}
3197 3198 3199 3200 3201 3202

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3203
 * @need_fixup: whether we should fixup res_counters and refcounts.
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3214
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3215 3216 3217 3218 3219 3220 3221 3222
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3223
		mem_cgroup_swap_statistics(to, true);
3224
		/*
3225 3226 3227 3228 3229 3230
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3231 3232
		 */
		mem_cgroup_get(to);
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3244 3245 3246 3247 3248 3249
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3250
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3251 3252 3253
{
	return -EINVAL;
}
3254
#endif
K
KAMEZAWA Hiroyuki 已提交
3255

3256
/*
3257 3258
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3259
 */
3260
int mem_cgroup_prepare_migration(struct page *page,
3261
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3262
{
3263
	struct mem_cgroup *mem = NULL;
3264
	struct page_cgroup *pc;
3265
	enum charge_type ctype;
3266
	int ret = 0;
3267

3268 3269
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3270
	VM_BUG_ON(PageTransHuge(page));
3271
	if (mem_cgroup_disabled())
3272 3273
		return 0;

3274 3275 3276
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3277 3278
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3310
	}
3311
	unlock_page_cgroup(pc);
3312 3313 3314 3315 3316 3317
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3318

A
Andrea Arcangeli 已提交
3319
	*ptr = mem;
3320
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3333
	}
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3347
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3348
	return ret;
3349
}
3350

3351
/* remove redundant charge if migration failed*/
3352
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3353
	struct page *oldpage, struct page *newpage, bool migration_ok)
3354
{
3355
	struct page *used, *unused;
3356 3357 3358 3359
	struct page_cgroup *pc;

	if (!mem)
		return;
3360
	/* blocks rmdir() */
3361
	cgroup_exclude_rmdir(&mem->css);
3362
	if (!migration_ok) {
3363 3364
		used = oldpage;
		unused = newpage;
3365
	} else {
3366
		used = newpage;
3367 3368
		unused = oldpage;
	}
3369
	/*
3370 3371 3372
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3373
	 */
3374 3375 3376 3377
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3378

3379 3380
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3381
	/*
3382 3383 3384 3385 3386 3387
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3388
	 */
3389 3390
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3391
	/*
3392 3393
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3394 3395 3396 3397
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3398
}
3399

3400
/*
3401 3402 3403 3404 3405 3406
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3407
 */
3408
int mem_cgroup_shmem_charge_fallback(struct page *page,
3409 3410
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3411
{
3412
	struct mem_cgroup *mem;
3413
	int ret;
3414

3415
	if (mem_cgroup_disabled())
3416
		return 0;
3417

3418 3419 3420
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3421

3422
	return ret;
3423 3424
}

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3471 3472
static DEFINE_MUTEX(set_limit_mutex);

3473
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3474
				unsigned long long val)
3475
{
3476
	int retry_count;
3477
	u64 memswlimit, memlimit;
3478
	int ret = 0;
3479 3480
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3481
	int enlarge;
3482 3483 3484 3485 3486 3487 3488 3489 3490

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3491

3492
	enlarge = 0;
3493
	while (retry_count) {
3494 3495 3496 3497
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3508 3509
			break;
		}
3510 3511 3512 3513 3514

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3515
		ret = res_counter_set_limit(&memcg->res, val);
3516 3517 3518 3519 3520 3521
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3522 3523 3524 3525 3526
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3527
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3528 3529
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3530 3531 3532 3533 3534 3535
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3536
	}
3537 3538
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3539

3540 3541 3542
	return ret;
}

L
Li Zefan 已提交
3543 3544
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3545
{
3546
	int retry_count;
3547
	u64 memlimit, memswlimit, oldusage, curusage;
3548 3549
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3550
	int enlarge = 0;
3551

3552 3553 3554
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3572 3573 3574
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3575
		ret = res_counter_set_limit(&memcg->memsw, val);
3576 3577 3578 3579 3580 3581
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3582 3583 3584 3585 3586
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3587
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3588
						MEM_CGROUP_RECLAIM_NOSWAP |
3589 3590
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3591
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3592
		/* Usage is reduced ? */
3593
		if (curusage >= oldusage)
3594
			retry_count--;
3595 3596
		else
			oldusage = curusage;
3597
	}
3598 3599
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3600 3601 3602
	return ret;
}

3603
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3604 3605
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3606 3607 3608 3609 3610 3611
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3612
	unsigned long long excess;
3613
	unsigned long nr_scanned;
3614 3615 3616 3617

	if (order > 0)
		return 0;

3618
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3632
		nr_scanned = 0;
3633 3634
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3635 3636
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3637
		nr_reclaimed += reclaimed;
3638
		*total_scanned += nr_scanned;
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3661
				if (next_mz == mz)
3662
					css_put(&next_mz->mem->css);
3663
				else /* next_mz == NULL or other memcg */
3664 3665 3666 3667
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3668
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3669 3670 3671 3672 3673 3674 3675 3676
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3677 3678
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3697 3698 3699 3700
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3701
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3702
				int node, int zid, enum lru_list lru)
3703
{
K
KAMEZAWA Hiroyuki 已提交
3704 3705
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3706
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3707
	unsigned long flags, loop;
3708
	struct list_head *list;
3709
	int ret = 0;
3710

K
KAMEZAWA Hiroyuki 已提交
3711 3712
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3713
	list = &mz->lists[lru];
3714

3715 3716 3717 3718 3719
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3720 3721
		struct page *page;

3722
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3723
		spin_lock_irqsave(&zone->lru_lock, flags);
3724
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3725
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3726
			break;
3727 3728 3729 3730
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3731
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3732
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3733 3734
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3735
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3736

3737
		page = lookup_cgroup_page(pc);
3738 3739

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3740
		if (ret == -ENOMEM)
3741
			break;
3742 3743 3744 3745 3746 3747 3748

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3749
	}
K
KAMEZAWA Hiroyuki 已提交
3750

3751 3752 3753
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3754 3755 3756 3757 3758 3759
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3760
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3761
{
3762 3763 3764
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3765
	struct cgroup *cgrp = mem->css.cgroup;
3766

3767
	css_get(&mem->css);
3768 3769

	shrink = 0;
3770 3771 3772
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3773
move_account:
3774
	do {
3775
		ret = -EBUSY;
3776 3777 3778 3779
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3780
			goto out;
3781 3782
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3783
		drain_all_stock_sync();
3784
		ret = 0;
3785
		mem_cgroup_start_move(mem);
3786
		for_each_node_state(node, N_HIGH_MEMORY) {
3787
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3788
				enum lru_list l;
3789 3790
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3791
							node, zid, l);
3792 3793 3794
					if (ret)
						break;
				}
3795
			}
3796 3797 3798
			if (ret)
				break;
		}
3799
		mem_cgroup_end_move(mem);
3800
		memcg_oom_recover(mem);
3801 3802 3803
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3804
		cond_resched();
3805 3806
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3807 3808 3809
out:
	css_put(&mem->css);
	return ret;
3810 3811

try_to_free:
3812 3813
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3814 3815 3816
		ret = -EBUSY;
		goto out;
	}
3817 3818
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3819 3820 3821 3822
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3823 3824 3825 3826 3827

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3828 3829
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3830
		if (!progress) {
3831
			nr_retries--;
3832
			/* maybe some writeback is necessary */
3833
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3834
		}
3835 3836

	}
K
KAMEZAWA Hiroyuki 已提交
3837
	lru_add_drain();
3838
	/* try move_account...there may be some *locked* pages. */
3839
	goto move_account;
3840 3841
}

3842 3843 3844 3845 3846 3847
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3866
	 * If parent's use_hierarchy is set, we can't make any modifications
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3886

3887 3888
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3889
{
K
KAMEZAWA Hiroyuki 已提交
3890
	struct mem_cgroup *iter;
3891
	long val = 0;
3892

3893
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3894 3895 3896 3897 3898 3899
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3900 3901
}

3902 3903
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3904
	u64 val;
3905 3906 3907 3908 3909 3910 3911 3912

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

3913 3914
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3915

K
KAMEZAWA Hiroyuki 已提交
3916
	if (swap)
3917
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3918 3919 3920 3921

	return val << PAGE_SHIFT;
}

3922
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3923
{
3924
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3925
	u64 val;
3926 3927 3928 3929 3930 3931
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3932 3933 3934
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3935
			val = res_counter_read_u64(&mem->res, name);
3936 3937
		break;
	case _MEMSWAP:
3938 3939 3940
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3941
			val = res_counter_read_u64(&mem->memsw, name);
3942 3943 3944 3945 3946 3947
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3948
}
3949 3950 3951 3952
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3953 3954
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3955
{
3956
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3957
	int type, name;
3958 3959 3960
	unsigned long long val;
	int ret;

3961 3962 3963
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3964
	case RES_LIMIT:
3965 3966 3967 3968
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3969 3970
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3971 3972 3973
		if (ret)
			break;
		if (type == _MEM)
3974
			ret = mem_cgroup_resize_limit(memcg, val);
3975 3976
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3977
		break;
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3992 3993 3994 3995 3996
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3997 3998
}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4027
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4028 4029
{
	struct mem_cgroup *mem;
4030
	int type, name;
4031 4032

	mem = mem_cgroup_from_cont(cont);
4033 4034 4035
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4036
	case RES_MAX_USAGE:
4037 4038 4039 4040
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
4041 4042
		break;
	case RES_FAILCNT:
4043 4044 4045 4046
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
4047 4048
		break;
	}
4049

4050
	return 0;
4051 4052
}

4053 4054 4055 4056 4057 4058
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4059
#ifdef CONFIG_MMU
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
4078 4079 4080 4081 4082 4083 4084
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4085

K
KAMEZAWA Hiroyuki 已提交
4086 4087 4088 4089 4090

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4091
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4092 4093
	MCS_PGPGIN,
	MCS_PGPGOUT,
4094
	MCS_SWAP,
4095 4096
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4107 4108
};

K
KAMEZAWA Hiroyuki 已提交
4109 4110 4111 4112 4113 4114
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4115
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4116 4117
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4118
	{"swap", "total_swap"},
4119 4120
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4121 4122 4123 4124 4125 4126 4127 4128
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4129 4130
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4131 4132 4133 4134
{
	s64 val;

	/* per cpu stat */
4135
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4136
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4137
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4138
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4139
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4140
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4141
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4142
	s->stat[MCS_PGPGIN] += val;
4143
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4144
	s->stat[MCS_PGPGOUT] += val;
4145
	if (do_swap_account) {
4146
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4147 4148
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4149 4150 4151 4152
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
	s->stat[MCS_PGFAULT] += val;
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
4170 4171 4172 4173
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4174 4175
}

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

	total_nr = mem_cgroup_nr_lru_pages(mem_cont);
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	file_nr = mem_cgroup_nr_file_lru_pages(mem_cont);
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_file_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	anon_nr = mem_cgroup_nr_anon_lru_pages(mem_cont);
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_anon_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	unevictable_nr = mem_cgroup_nr_unevictable_lru_pages(mem_cont);
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_unevictable_lru_pages(mem_cont,
									nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4221 4222
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4223 4224
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4225
	struct mcs_total_stat mystat;
4226 4227
	int i;

K
KAMEZAWA Hiroyuki 已提交
4228 4229
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4230

4231

4232 4233 4234
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4235
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4236
	}
L
Lee Schermerhorn 已提交
4237

K
KAMEZAWA Hiroyuki 已提交
4238
	/* Hierarchical information */
4239 4240 4241 4242 4243 4244 4245
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4246

K
KAMEZAWA Hiroyuki 已提交
4247 4248
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4249 4250 4251
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4252
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4253
	}
K
KAMEZAWA Hiroyuki 已提交
4254

K
KOSAKI Motohiro 已提交
4255
#ifdef CONFIG_DEBUG_VM
4256
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4284 4285 4286
	return 0;
}

K
KOSAKI Motohiro 已提交
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4299

K
KOSAKI Motohiro 已提交
4300 4301 4302 4303 4304 4305 4306
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4307 4308 4309

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4310 4311
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4312 4313
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4314
		return -EINVAL;
4315
	}
K
KOSAKI Motohiro 已提交
4316 4317 4318

	memcg->swappiness = val;

4319 4320
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4321 4322 4323
	return 0;
}

4324 4325 4326 4327 4328 4329 4330 4331
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4332
		t = rcu_dereference(memcg->thresholds.primary);
4333
	else
4334
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4346
	i = t->current_threshold;
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4370
	t->current_threshold = i - 1;
4371 4372 4373 4374 4375 4376
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4377 4378 4379 4380 4381 4382 4383
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4394
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4405 4406 4407 4408
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4409 4410 4411 4412
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4413 4414
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4415 4416
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4417 4418
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4419
	int i, size, ret;
4420 4421 4422 4423 4424 4425

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4426

4427
	if (type == _MEM)
4428
		thresholds = &memcg->thresholds;
4429
	else if (type == _MEMSWAP)
4430
		thresholds = &memcg->memsw_thresholds;
4431 4432 4433 4434 4435 4436
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4437
	if (thresholds->primary)
4438 4439
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4440
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4441 4442

	/* Allocate memory for new array of thresholds */
4443
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4444
			GFP_KERNEL);
4445
	if (!new) {
4446 4447 4448
		ret = -ENOMEM;
		goto unlock;
	}
4449
	new->size = size;
4450 4451

	/* Copy thresholds (if any) to new array */
4452 4453
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4454
				sizeof(struct mem_cgroup_threshold));
4455 4456
	}

4457
	/* Add new threshold */
4458 4459
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4460 4461

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4462
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4463 4464 4465
			compare_thresholds, NULL);

	/* Find current threshold */
4466
	new->current_threshold = -1;
4467
	for (i = 0; i < size; i++) {
4468
		if (new->entries[i].threshold < usage) {
4469
			/*
4470 4471
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4472 4473
			 * it here.
			 */
4474
			++new->current_threshold;
4475 4476 4477
		}
	}

4478 4479 4480 4481 4482
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4483

4484
	/* To be sure that nobody uses thresholds */
4485 4486 4487 4488 4489 4490 4491 4492
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4493
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4494
	struct cftype *cft, struct eventfd_ctx *eventfd)
4495 4496
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4497 4498
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4499 4500
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4501
	int i, j, size;
4502 4503 4504

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4505
		thresholds = &memcg->thresholds;
4506
	else if (type == _MEMSWAP)
4507
		thresholds = &memcg->memsw_thresholds;
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4523 4524 4525
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4526 4527 4528
			size++;
	}

4529
	new = thresholds->spare;
4530

4531 4532
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4533 4534
		kfree(new);
		new = NULL;
4535
		goto swap_buffers;
4536 4537
	}

4538
	new->size = size;
4539 4540

	/* Copy thresholds and find current threshold */
4541 4542 4543
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4544 4545
			continue;

4546 4547
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4548
			/*
4549
			 * new->current_threshold will not be used
4550 4551 4552
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4553
			++new->current_threshold;
4554 4555 4556 4557
		}
		j++;
	}

4558
swap_buffers:
4559 4560 4561
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4562

4563
	/* To be sure that nobody uses thresholds */
4564 4565 4566 4567
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4568

K
KAMEZAWA Hiroyuki 已提交
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4594
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4649 4650
	if (!val)
		memcg_oom_recover(mem);
4651 4652 4653 4654
	cgroup_unlock();
	return 0;
}

4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

B
Balbir Singh 已提交
4671 4672
static struct cftype mem_cgroup_files[] = {
	{
4673
		.name = "usage_in_bytes",
4674
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4675
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4676 4677
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4678
	},
4679 4680
	{
		.name = "max_usage_in_bytes",
4681
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4682
		.trigger = mem_cgroup_reset,
4683 4684
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4685
	{
4686
		.name = "limit_in_bytes",
4687
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4688
		.write_string = mem_cgroup_write,
4689
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4690
	},
4691 4692 4693 4694 4695 4696
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4697 4698
	{
		.name = "failcnt",
4699
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4700
		.trigger = mem_cgroup_reset,
4701
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4702
	},
4703 4704
	{
		.name = "stat",
4705
		.read_map = mem_control_stat_show,
4706
	},
4707 4708 4709 4710
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4711 4712 4713 4714 4715
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4716 4717 4718 4719 4720
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4721 4722 4723 4724 4725
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4726 4727
	{
		.name = "oom_control",
4728 4729
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4730 4731 4732 4733
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4734 4735 4736 4737
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4738
		.mode = S_IRUGO,
4739 4740
	},
#endif
B
Balbir Singh 已提交
4741 4742
};

4743 4744 4745 4746 4747 4748
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4749 4750
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4786 4787 4788
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4789
	struct mem_cgroup_per_zone *mz;
4790
	enum lru_list l;
4791
	int zone, tmp = node;
4792 4793 4794 4795 4796 4797 4798 4799
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4800 4801
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4802
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4803 4804
	if (!pn)
		return 1;
4805

4806
	mem->info.nodeinfo[node] = pn;
4807 4808
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4809 4810
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4811
		mz->usage_in_excess = 0;
4812 4813
		mz->on_tree = false;
		mz->mem = mem;
4814
	}
4815 4816 4817
	return 0;
}

4818 4819 4820 4821 4822
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4823 4824 4825
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4826
	int size = sizeof(struct mem_cgroup);
4827

4828
	/* Can be very big if MAX_NUMNODES is very big */
4829
	if (size < PAGE_SIZE)
4830
		mem = kzalloc(size, GFP_KERNEL);
4831
	else
4832
		mem = vzalloc(size);
4833

4834 4835 4836
	if (!mem)
		return NULL;

4837
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4838 4839
	if (!mem->stat)
		goto out_free;
4840
	spin_lock_init(&mem->pcp_counter_lock);
4841
	return mem;
4842 4843 4844 4845 4846 4847 4848

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4849 4850
}

4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4862
static void __mem_cgroup_free(struct mem_cgroup *mem)
4863
{
K
KAMEZAWA Hiroyuki 已提交
4864 4865
	int node;

4866
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4867 4868
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4869 4870 4871
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4872 4873
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4874 4875 4876 4877 4878
		kfree(mem);
	else
		vfree(mem);
}

4879 4880 4881 4882 4883
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4884
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4885
{
4886
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4887
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4888
		__mem_cgroup_free(mem);
4889 4890 4891
		if (parent)
			mem_cgroup_put(parent);
	}
4892 4893
}

4894 4895 4896 4897 4898
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4899 4900 4901 4902 4903 4904 4905 4906 4907
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4908

4909 4910 4911
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4912
	if (!mem_cgroup_disabled() && really_do_swap_account)
4913 4914 4915 4916 4917 4918 4919 4920
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4946
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4947 4948
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4949
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4950
	long error = -ENOMEM;
4951
	int node;
B
Balbir Singh 已提交
4952

4953 4954
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4955
		return ERR_PTR(error);
4956

4957 4958 4959
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4960

4961
	/* root ? */
4962
	if (cont->parent == NULL) {
4963
		int cpu;
4964
		enable_swap_cgroup();
4965
		parent = NULL;
4966
		root_mem_cgroup = mem;
4967 4968
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4969 4970 4971 4972 4973
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4974
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4975
	} else {
4976
		parent = mem_cgroup_from_cont(cont->parent);
4977
		mem->use_hierarchy = parent->use_hierarchy;
4978
		mem->oom_kill_disable = parent->oom_kill_disable;
4979
	}
4980

4981 4982 4983
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4984 4985 4986 4987 4988 4989 4990
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4991 4992 4993 4994
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4995
	mem->last_scanned_child = 0;
4996
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
4997
	INIT_LIST_HEAD(&mem->oom_notify);
4998

K
KOSAKI Motohiro 已提交
4999 5000
	if (parent)
		mem->swappiness = get_swappiness(parent);
5001
	atomic_set(&mem->refcnt, 1);
5002
	mem->move_charge_at_immigrate = 0;
5003
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
5004
	return &mem->css;
5005
free_out:
5006
	__mem_cgroup_free(mem);
5007
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
5008
	return ERR_PTR(error);
B
Balbir Singh 已提交
5009 5010
}

5011
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5012 5013 5014
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5015 5016

	return mem_cgroup_force_empty(mem, false);
5017 5018
}

B
Balbir Singh 已提交
5019 5020 5021
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5022 5023 5024
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
5025 5026 5027 5028 5029
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5030 5031 5032 5033 5034 5035 5036 5037
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
5038 5039
}

5040
#ifdef CONFIG_MMU
5041
/* Handlers for move charge at task migration. */
5042 5043
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5044
{
5045 5046
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5047 5048
	struct mem_cgroup *mem = mc.to;

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5084
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5085 5086 5087 5088 5089
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5090 5091 5092 5093 5094 5095 5096 5097
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5098
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5099 5100 5101 5102 5103 5104
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5105 5106 5107
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5108 5109 5110 5111 5112
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5113
	swp_entry_t	ent;
5114 5115 5116 5117 5118
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5119
	MC_TARGET_SWAP,
5120 5121
};

D
Daisuke Nishimura 已提交
5122 5123
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5124
{
D
Daisuke Nishimura 已提交
5125
	struct page *page = vm_normal_page(vma, addr, ptent);
5126

D
Daisuke Nishimura 已提交
5127 5128 5129 5130 5131 5132
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5133 5134
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5153 5154
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5155
		return NULL;
5156
	}
D
Daisuke Nishimura 已提交
5157 5158 5159 5160 5161 5162
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5208 5209
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5210 5211 5212

	if (!page && !ent.val)
		return 0;
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5228 5229
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5230 5231 5232 5233
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5246 5247
	split_huge_page_pmd(walk->mm, pmd);

5248 5249 5250 5251 5252 5253 5254
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5255 5256 5257
	return 0;
}

5258 5259 5260 5261 5262
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5263
	down_read(&mm->mmap_sem);
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5275
	up_read(&mm->mmap_sem);
5276 5277 5278 5279 5280 5281 5282 5283 5284

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5285 5286 5287 5288 5289
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5290 5291
}

5292 5293
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5294
{
5295 5296 5297
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5298
	/* we must uncharge all the leftover precharges from mc.to */
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5310
	}
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5345
	spin_lock(&mc.lock);
5346 5347
	mc.from = NULL;
	mc.to = NULL;
5348
	spin_unlock(&mc.lock);
5349
	mem_cgroup_end_move(from);
5350 5351
}

5352 5353
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5354
				struct task_struct *p)
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5369 5370 5371 5372
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5373
			VM_BUG_ON(mc.moved_charge);
5374
			VM_BUG_ON(mc.moved_swap);
5375
			mem_cgroup_start_move(from);
5376
			spin_lock(&mc.lock);
5377 5378
			mc.from = from;
			mc.to = mem;
5379
			spin_unlock(&mc.lock);
5380
			/* We set mc.moving_task later */
5381 5382 5383 5384

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5385 5386
		}
		mmput(mm);
5387 5388 5389 5390 5391 5392
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5393
				struct task_struct *p)
5394
{
5395
	mem_cgroup_clear_mc();
5396 5397
}

5398 5399 5400
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5401
{
5402 5403 5404 5405 5406
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5407
	split_huge_page_pmd(walk->mm, pmd);
5408 5409 5410 5411 5412 5413 5414 5415
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5416
		swp_entry_t ent;
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5428 5429
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5430
				mc.precharge--;
5431 5432
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5433 5434 5435 5436 5437
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5438 5439
		case MC_TARGET_SWAP:
			ent = target.ent;
5440 5441
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5442
				mc.precharge--;
5443 5444 5445
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5446
			break;
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5461
		ret = mem_cgroup_do_precharge(1);
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5505
	up_read(&mm->mmap_sem);
5506 5507
}

B
Balbir Singh 已提交
5508 5509 5510
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5511
				struct task_struct *p)
B
Balbir Singh 已提交
5512
{
5513
	struct mm_struct *mm = get_task_mm(p);
5514 5515

	if (mm) {
5516 5517 5518
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5519 5520
		mmput(mm);
	}
5521 5522
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5523
}
5524 5525 5526
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5527
				struct task_struct *p)
5528 5529 5530 5531 5532
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5533
				struct task_struct *p)
5534 5535 5536 5537 5538
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5539
				struct task_struct *p)
5540 5541 5542
{
}
#endif
B
Balbir Singh 已提交
5543

B
Balbir Singh 已提交
5544 5545 5546 5547
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5548
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5549 5550
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5551 5552
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5553
	.attach = mem_cgroup_move_task,
5554
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5555
	.use_id = 1,
B
Balbir Singh 已提交
5556
};
5557 5558

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5559 5560 5561
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5562
	if (!strcmp(s, "1"))
5563
		really_do_swap_account = 1;
5564
	else if (!strcmp(s, "0"))
5565 5566 5567
		really_do_swap_account = 0;
	return 1;
}
5568
__setup("swapaccount=", enable_swap_account);
5569 5570

#endif