memcontrol.c 145.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53
#include <net/sock.h>
M
Michal Hocko 已提交
54
#include <net/ip.h>
G
Glauber Costa 已提交
55
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
56

57 58
#include <asm/uaccess.h>

59 60
#include <trace/events/vmscan.h>

61 62
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
63
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
64

A
Andrew Morton 已提交
65
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
66
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
67
int do_swap_account __read_mostly;
68 69

/* for remember boot option*/
A
Andrew Morton 已提交
70
#ifdef CONFIG_MEMCG_SWAP_ENABLED
71 72 73 74 75
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

76
#else
77
#define do_swap_account		0
78 79 80
#endif


81 82 83 84 85 86 87 88
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
89
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
90
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
91
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
92 93 94
	MEM_CGROUP_STAT_NSTATS,
};

95 96 97 98 99 100 101
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

102 103 104
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
105 106
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
107 108
	MEM_CGROUP_EVENTS_NSTATS,
};
109 110 111 112 113 114 115 116

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

117 118 119 120 121 122 123 124 125
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
126
	MEM_CGROUP_TARGET_NUMAINFO,
127 128
	MEM_CGROUP_NTARGETS,
};
129 130 131
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
132

133
struct mem_cgroup_stat_cpu {
134
	long count[MEM_CGROUP_STAT_NSTATS];
135
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
136
	unsigned long nr_page_events;
137
	unsigned long targets[MEM_CGROUP_NTARGETS];
138 139
};

140 141 142 143 144 145 146
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

147 148 149 150
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
151
	struct lruvec		lruvec;
152
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
153

154 155
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

156 157 158 159
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
160
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
161
						/* use container_of	   */
162 163 164 165 166 167 168 169 170 171
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

192 193 194 195 196
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
197
/* For threshold */
198
struct mem_cgroup_threshold_ary {
199
	/* An array index points to threshold just below or equal to usage. */
200
	int current_threshold;
201 202 203 204 205
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
206 207 208 209 210 211 212 213 214 215 216 217

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
218 219 220 221 222
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
223

224 225
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
226

B
Balbir Singh 已提交
227 228 229 230 231 232 233
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
234 235 236
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
237 238 239 240 241 242 243
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
262 263
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
264 265 266 267
		 */
		struct work_struct work_freeing;
	};

268 269 270 271
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
272
	struct mem_cgroup_lru_info info;
273 274 275
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
276 277
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
278
#endif
279 280 281 282
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
283 284 285 286

	bool		oom_lock;
	atomic_t	under_oom;

287
	atomic_t	refcnt;
288

289
	int	swappiness;
290 291
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
292

293 294 295
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

296 297 298 299
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
300
	struct mem_cgroup_thresholds thresholds;
301

302
	/* thresholds for mem+swap usage. RCU-protected */
303
	struct mem_cgroup_thresholds memsw_thresholds;
304

K
KAMEZAWA Hiroyuki 已提交
305 306
	/* For oom notifier event fd */
	struct list_head oom_notify;
307

308 309 310 311 312
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
313 314 315 316
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
317 318
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
319
	/*
320
	 * percpu counter.
321
	 */
322
	struct mem_cgroup_stat_cpu __percpu *stat;
323 324 325 326 327 328
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
329

M
Michal Hocko 已提交
330
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
331 332
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
333 334
};

335 336 337 338 339 340
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
341
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
342
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
343 344 345
	NR_MOVE_TYPE,
};

346 347
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
348
	spinlock_t	  lock; /* for from, to */
349 350 351
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
352
	unsigned long moved_charge;
353
	unsigned long moved_swap;
354 355 356
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
357
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358 359
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
360

D
Daisuke Nishimura 已提交
361 362 363 364 365 366
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

367 368 369 370 371 372
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

373 374 375 376
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
377 378
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
379

380 381
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
383
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
384
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
385 386 387
	NR_CHARGE_TYPE,
};

388
/* for encoding cft->private value on file */
389 390 391
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
392 393
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
394
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
395 396
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
397

398 399 400 401 402 403 404 405
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

406 407
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
408

409 410 411 412 413 414
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

G
Glauber Costa 已提交
415
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
416
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
417 418 419 420

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
421
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
422
		struct mem_cgroup *memcg;
423
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
424 425 426

		BUG_ON(!sk->sk_prot->proto_cgroup);

427 428 429 430 431 432 433 434 435 436 437 438 439 440
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
441 442
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
443 444
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
445
			mem_cgroup_get(memcg);
446
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
447 448 449 450 451 452 453 454
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
455
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
456 457 458 459 460 461
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
462 463 464 465 466 467 468 469 470

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
471

472 473 474 475 476 477 478 479 480 481 482 483
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

484
static void drain_all_stock_async(struct mem_cgroup *memcg);
485

486
static struct mem_cgroup_per_zone *
487
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
488
{
489
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
490 491
}

492
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
493
{
494
	return &memcg->css;
495 496
}

497
static struct mem_cgroup_per_zone *
498
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
499
{
500 501
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
502

503
	return mem_cgroup_zoneinfo(memcg, nid, zid);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
522
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
523
				struct mem_cgroup_per_zone *mz,
524 525
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
526 527 528 529 530 531 532 533
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

534 535 536
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
553 554 555
}

static void
556
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
557 558 559 560 561 562 563 564 565
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

566
static void
567
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
568 569 570 571
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
572
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
	spin_unlock(&mctz->lock);
}


577
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
578
{
579
	unsigned long long excess;
580 581
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
582 583
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
584 585 586
	mctz = soft_limit_tree_from_page(page);

	/*
587 588
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
589
	 */
590 591 592
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
593 594 595 596
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
597
		if (excess || mz->on_tree) {
598 599 600
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
601
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
602
			/*
603 604
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
605
			 */
606
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
607 608
			spin_unlock(&mctz->lock);
		}
609 610 611
	}
}

612
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
613 614 615 616 617
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
618
	for_each_node(node) {
619
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
620
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
621
			mctz = soft_limit_tree_node_zone(node, zone);
622
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
623 624 625 626
		}
	}
}

627 628 629 630
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
631
	struct mem_cgroup_per_zone *mz;
632 633

retry:
634
	mz = NULL;
635 636 637 638 639 640 641 642 643 644
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
645 646 647
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
683
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
684
				 enum mem_cgroup_stat_index idx)
685
{
686
	long val = 0;
687 688
	int cpu;

689 690
	get_online_cpus();
	for_each_online_cpu(cpu)
691
		val += per_cpu(memcg->stat->count[idx], cpu);
692
#ifdef CONFIG_HOTPLUG_CPU
693 694 695
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
696 697
#endif
	put_online_cpus();
698 699 700
	return val;
}

701
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
702 703 704
					 bool charge)
{
	int val = (charge) ? 1 : -1;
705
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
706 707
}

708
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
709 710 711 712 713 714
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
715
		val += per_cpu(memcg->stat->events[idx], cpu);
716
#ifdef CONFIG_HOTPLUG_CPU
717 718 719
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
720 721 722 723
#endif
	return val;
}

724
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
725
					 bool anon, int nr_pages)
726
{
727 728
	preempt_disable();

729 730 731 732 733 734
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
735
				nr_pages);
736
	else
737
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
738
				nr_pages);
739

740 741
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
742
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
743
	else {
744
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
745 746
		nr_pages = -nr_pages; /* for event */
	}
747

748
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
749

750
	preempt_enable();
751 752
}

753
unsigned long
754
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
755 756 757 758 759 760 761 762
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
763
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
764
			unsigned int lru_mask)
765 766
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
767
	enum lru_list lru;
768 769
	unsigned long ret = 0;

770
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
771

H
Hugh Dickins 已提交
772 773 774
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
775 776 777 778 779
	}
	return ret;
}

static unsigned long
780
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
781 782
			int nid, unsigned int lru_mask)
{
783 784 785
	u64 total = 0;
	int zid;

786
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
787 788
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
789

790 791
	return total;
}
792

793
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
794
			unsigned int lru_mask)
795
{
796
	int nid;
797 798
	u64 total = 0;

799
	for_each_node_state(nid, N_HIGH_MEMORY)
800
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
801
	return total;
802 803
}

804 805
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
806 807 808
{
	unsigned long val, next;

809
	val = __this_cpu_read(memcg->stat->nr_page_events);
810
	next = __this_cpu_read(memcg->stat->targets[target]);
811
	/* from time_after() in jiffies.h */
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
828
	}
829
	return false;
830 831 832 833 834 835
}

/*
 * Check events in order.
 *
 */
836
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
837
{
838
	preempt_disable();
839
	/* threshold event is triggered in finer grain than soft limit */
840 841
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
842 843
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
844 845 846 847 848 849 850 851 852

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

853
		mem_cgroup_threshold(memcg);
854
		if (unlikely(do_softlimit))
855
			mem_cgroup_update_tree(memcg, page);
856
#if MAX_NUMNODES > 1
857
		if (unlikely(do_numainfo))
858
			atomic_inc(&memcg->numainfo_events);
859
#endif
860 861
	} else
		preempt_enable();
862 863
}

G
Glauber Costa 已提交
864
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
865
{
866 867
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
868 869
}

870
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
871
{
872 873 874 875 876 877 878 879
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

880
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
881 882
}

883
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
884
{
885
	struct mem_cgroup *memcg = NULL;
886 887 888

	if (!mm)
		return NULL;
889 890 891 892 893 894 895
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
896 897
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
898
			break;
899
	} while (!css_tryget(&memcg->css));
900
	rcu_read_unlock();
901
	return memcg;
902 903
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
924
{
925 926
	struct mem_cgroup *memcg = NULL;
	int id = 0;
927

928 929 930
	if (mem_cgroup_disabled())
		return NULL;

931 932
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
933

934 935
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
936

937 938
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
939

940 941 942 943 944
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
945

946
	while (!memcg) {
947
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
948
		struct cgroup_subsys_state *css;
949

950 951 952 953 954 955 956 957 958 959 960
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
961

962 963 964 965
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
966
				memcg = mem_cgroup_from_css(css);
967 968
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
969 970
		rcu_read_unlock();

971 972 973 974 975 976 977
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
978 979 980 981 982

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
983
}
K
KAMEZAWA Hiroyuki 已提交
984

985 986 987 988 989 990 991
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
992 993 994 995 996 997
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
998

999 1000 1001 1002 1003 1004
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1005
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1006
	     iter != NULL;				\
1007
	     iter = mem_cgroup_iter(root, iter, NULL))
1008

1009
#define for_each_mem_cgroup(iter)			\
1010
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1011
	     iter != NULL;				\
1012
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1013

1014
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1015
{
1016
	return (memcg == root_mem_cgroup);
1017 1018
}

1019 1020
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
1021
	struct mem_cgroup *memcg;
1022 1023 1024 1025 1026

	if (!mm)
		return;

	rcu_read_lock();
1027 1028
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1029 1030 1031 1032
		goto out;

	switch (idx) {
	case PGFAULT:
1033 1034 1035 1036
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1037 1038 1039 1040 1041 1042 1043 1044 1045
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1046 1047 1048
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1049
 * @memcg: memcg of the wanted lruvec
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1080

1081
/**
1082
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1083
 * @page: the page
1084
 * @zone: zone of the page
1085
 */
1086
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1087 1088
{
	struct mem_cgroup_per_zone *mz;
1089 1090
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1091

1092
	if (mem_cgroup_disabled())
1093 1094
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1095
	pc = lookup_page_cgroup(page);
1096
	memcg = pc->mem_cgroup;
1097 1098

	/*
1099
	 * Surreptitiously switch any uncharged offlist page to root:
1100 1101 1102 1103 1104 1105 1106
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1107
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1108 1109
		pc->mem_cgroup = memcg = root_mem_cgroup;

1110 1111
	mz = page_cgroup_zoneinfo(memcg, page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1112
}
1113

1114
/**
1115 1116 1117 1118
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1119
 *
1120 1121
 * This function must be called when a page is added to or removed from an
 * lru list.
1122
 */
1123 1124
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1125 1126
{
	struct mem_cgroup_per_zone *mz;
1127
	unsigned long *lru_size;
1128 1129 1130 1131

	if (mem_cgroup_disabled())
		return;

1132 1133 1134 1135
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1136
}
1137

1138
/*
1139
 * Checks whether given mem is same or in the root_mem_cgroup's
1140 1141
 * hierarchy subtree
 */
1142 1143
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1144
{
1145 1146
	if (root_memcg == memcg)
		return true;
1147
	if (!root_memcg->use_hierarchy || !memcg)
1148
		return false;
1149 1150 1151 1152 1153 1154 1155 1156
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1157
	rcu_read_lock();
1158
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1159 1160
	rcu_read_unlock();
	return ret;
1161 1162
}

1163
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1164 1165
{
	int ret;
1166
	struct mem_cgroup *curr = NULL;
1167
	struct task_struct *p;
1168

1169
	p = find_lock_task_mm(task);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1185 1186
	if (!curr)
		return 0;
1187
	/*
1188
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1189
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1190 1191
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1192
	 */
1193
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1194
	css_put(&curr->css);
1195 1196 1197
	return ret;
}

1198
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1199
{
1200
	unsigned long inactive_ratio;
1201
	unsigned long inactive;
1202
	unsigned long active;
1203
	unsigned long gb;
1204

1205 1206
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1207

1208 1209 1210 1211 1212 1213
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1214
	return inactive * inactive_ratio < active;
1215 1216
}

1217
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1218 1219 1220 1221
{
	unsigned long active;
	unsigned long inactive;

1222 1223
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1224 1225 1226 1227

	return (active > inactive);
}

1228 1229 1230
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1231
/**
1232
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1233
 * @memcg: the memory cgroup
1234
 *
1235
 * Returns the maximum amount of memory @mem can be charged with, in
1236
 * pages.
1237
 */
1238
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1239
{
1240 1241
	unsigned long long margin;

1242
	margin = res_counter_margin(&memcg->res);
1243
	if (do_swap_account)
1244
		margin = min(margin, res_counter_margin(&memcg->memsw));
1245
	return margin >> PAGE_SHIFT;
1246 1247
}

1248
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1249 1250 1251 1252 1253 1254 1255
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1256
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1257 1258
}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1273 1274 1275 1276

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1277
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1278
{
1279
	atomic_inc(&memcg_moving);
1280
	atomic_inc(&memcg->moving_account);
1281 1282 1283
	synchronize_rcu();
}

1284
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1285
{
1286 1287 1288 1289
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1290 1291
	if (memcg) {
		atomic_dec(&memcg_moving);
1292
		atomic_dec(&memcg->moving_account);
1293
	}
1294
}
1295

1296 1297 1298
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1299 1300
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1301 1302 1303 1304 1305 1306 1307
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1308
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1309 1310
{
	VM_BUG_ON(!rcu_read_lock_held());
1311
	return atomic_read(&memcg->moving_account) > 0;
1312
}
1313

1314
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1315
{
1316 1317
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1318
	bool ret = false;
1319 1320 1321 1322 1323 1324 1325 1326 1327
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1328

1329 1330
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1331 1332
unlock:
	spin_unlock(&mc.lock);
1333 1334 1335
	return ret;
}

1336
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1337 1338
{
	if (mc.moving_task && current != mc.moving_task) {
1339
		if (mem_cgroup_under_move(memcg)) {
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1352 1353 1354 1355
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1356
 * see mem_cgroup_stolen(), too.
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1370
/**
1371
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1390
	if (!memcg || !p)
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1436 1437 1438 1439
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1440
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1441 1442
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1443 1444
	struct mem_cgroup *iter;

1445
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1446
		num++;
1447 1448 1449
	return num;
}

D
David Rientjes 已提交
1450 1451 1452
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1453
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1454 1455 1456 1457
{
	u64 limit;
	u64 memsw;

1458 1459 1460
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1461 1462 1463 1464 1465 1466 1467 1468
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1469 1470
void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
			      int order)
1471 1472 1473 1474 1475 1476 1477
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1572 1573
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1574
 * @memcg: the target memcg
1575 1576 1577 1578 1579 1580 1581
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1582
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1583 1584
		int nid, bool noswap)
{
1585
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1586 1587 1588
		return true;
	if (noswap || !total_swap_pages)
		return false;
1589
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1590 1591 1592 1593
		return true;
	return false;

}
1594 1595 1596 1597 1598 1599 1600 1601
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1602
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1603 1604
{
	int nid;
1605 1606 1607 1608
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1609
	if (!atomic_read(&memcg->numainfo_events))
1610
		return;
1611
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1612 1613 1614
		return;

	/* make a nodemask where this memcg uses memory from */
1615
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1616 1617 1618

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1619 1620
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1621
	}
1622

1623 1624
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1639
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1640 1641 1642
{
	int node;

1643 1644
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1645

1646
	node = next_node(node, memcg->scan_nodes);
1647
	if (node == MAX_NUMNODES)
1648
		node = first_node(memcg->scan_nodes);
1649 1650 1651 1652 1653 1654 1655 1656 1657
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1658
	memcg->last_scanned_node = node;
1659 1660 1661
	return node;
}

1662 1663 1664 1665 1666 1667
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1668
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1669 1670 1671 1672 1673 1674 1675
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1676 1677
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1678
		     nid < MAX_NUMNODES;
1679
		     nid = next_node(nid, memcg->scan_nodes)) {
1680

1681
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1682 1683 1684 1685 1686 1687 1688
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1689
		if (node_isset(nid, memcg->scan_nodes))
1690
			continue;
1691
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1692 1693 1694 1695 1696
			return true;
	}
	return false;
}

1697
#else
1698
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1699 1700 1701
{
	return 0;
}
1702

1703
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1704
{
1705
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1706
}
1707 1708
#endif

1709 1710 1711 1712
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1713
{
1714
	struct mem_cgroup *victim = NULL;
1715
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1716
	int loop = 0;
1717
	unsigned long excess;
1718
	unsigned long nr_scanned;
1719 1720 1721 1722
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1723

1724
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1725

1726
	while (1) {
1727
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1728
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1729
			loop++;
1730 1731 1732 1733 1734 1735
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1736
				if (!total)
1737 1738
					break;
				/*
L
Lucas De Marchi 已提交
1739
				 * We want to do more targeted reclaim.
1740 1741 1742 1743 1744
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1745
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1746 1747
					break;
			}
1748
			continue;
1749
		}
1750
		if (!mem_cgroup_reclaimable(victim, false))
1751
			continue;
1752 1753 1754 1755
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1756
			break;
1757
	}
1758
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1759
	return total;
1760 1761
}

K
KAMEZAWA Hiroyuki 已提交
1762 1763 1764
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1765
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1766
 */
1767
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1768
{
1769
	struct mem_cgroup *iter, *failed = NULL;
1770

1771
	for_each_mem_cgroup_tree(iter, memcg) {
1772
		if (iter->oom_lock) {
1773 1774 1775 1776 1777
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1778 1779
			mem_cgroup_iter_break(memcg, iter);
			break;
1780 1781
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1782
	}
K
KAMEZAWA Hiroyuki 已提交
1783

1784
	if (!failed)
1785
		return true;
1786 1787 1788 1789 1790

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1791
	for_each_mem_cgroup_tree(iter, memcg) {
1792
		if (iter == failed) {
1793 1794
			mem_cgroup_iter_break(memcg, iter);
			break;
1795 1796 1797
		}
		iter->oom_lock = false;
	}
1798
	return false;
1799
}
1800

1801
/*
1802
 * Has to be called with memcg_oom_lock
1803
 */
1804
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1805
{
K
KAMEZAWA Hiroyuki 已提交
1806 1807
	struct mem_cgroup *iter;

1808
	for_each_mem_cgroup_tree(iter, memcg)
1809 1810 1811 1812
		iter->oom_lock = false;
	return 0;
}

1813
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1814 1815 1816
{
	struct mem_cgroup *iter;

1817
	for_each_mem_cgroup_tree(iter, memcg)
1818 1819 1820
		atomic_inc(&iter->under_oom);
}

1821
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1822 1823 1824
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1825 1826 1827 1828 1829
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1830
	for_each_mem_cgroup_tree(iter, memcg)
1831
		atomic_add_unless(&iter->under_oom, -1, 0);
1832 1833
}

1834
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1835 1836
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1837
struct oom_wait_info {
1838
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1839 1840 1841 1842 1843 1844
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1845 1846
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1847 1848 1849
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1850
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1851 1852

	/*
1853
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1854 1855
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1856 1857
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1858 1859 1860 1861
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1862
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1863
{
1864 1865
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1866 1867
}

1868
static void memcg_oom_recover(struct mem_cgroup *memcg)
1869
{
1870 1871
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1872 1873
}

K
KAMEZAWA Hiroyuki 已提交
1874 1875 1876
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1877 1878
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1879
{
K
KAMEZAWA Hiroyuki 已提交
1880
	struct oom_wait_info owait;
1881
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1882

1883
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1884 1885 1886 1887
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1888
	need_to_kill = true;
1889
	mem_cgroup_mark_under_oom(memcg);
1890

1891
	/* At first, try to OOM lock hierarchy under memcg.*/
1892
	spin_lock(&memcg_oom_lock);
1893
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1894 1895 1896 1897 1898
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1899
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1900
	if (!locked || memcg->oom_kill_disable)
1901 1902
		need_to_kill = false;
	if (locked)
1903
		mem_cgroup_oom_notify(memcg);
1904
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1905

1906 1907
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1908
		mem_cgroup_out_of_memory(memcg, mask, order);
1909
	} else {
K
KAMEZAWA Hiroyuki 已提交
1910
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1911
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1912
	}
1913
	spin_lock(&memcg_oom_lock);
1914
	if (locked)
1915 1916
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1917
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1918

1919
	mem_cgroup_unmark_under_oom(memcg);
1920

K
KAMEZAWA Hiroyuki 已提交
1921 1922 1923
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1924
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1925
	return true;
1926 1927
}

1928 1929 1930
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1948 1949
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1950
 */
1951

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
1965
	 * need to take move_lock_mem_cgroup(). Because we already hold
1966
	 * rcu_read_lock(), any calls to move_account will be delayed until
1967
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1968
	 */
1969
	if (!mem_cgroup_stolen(memcg))
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
1987
	 * should take move_lock_mem_cgroup().
1988 1989 1990 1991
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1992 1993
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1994
{
1995
	struct mem_cgroup *memcg;
1996
	struct page_cgroup *pc = lookup_page_cgroup(page);
1997
	unsigned long uninitialized_var(flags);
1998

1999
	if (mem_cgroup_disabled())
2000
		return;
2001

2002 2003
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2004
		return;
2005 2006

	switch (idx) {
2007 2008
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2009 2010 2011
		break;
	default:
		BUG();
2012
	}
2013

2014
	this_cpu_add(memcg->stat->count[idx], val);
2015
}
2016

2017 2018 2019 2020
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2021
#define CHARGE_BATCH	32U
2022 2023
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2024
	unsigned int nr_pages;
2025
	struct work_struct work;
2026
	unsigned long flags;
2027
#define FLUSHING_CACHED_CHARGE	0
2028 2029
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2030
static DEFINE_MUTEX(percpu_charge_mutex);
2031 2032

/*
2033
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2034 2035 2036 2037
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2038
static bool consume_stock(struct mem_cgroup *memcg)
2039 2040 2041 2042 2043
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2044
	if (memcg == stock->cached && stock->nr_pages)
2045
		stock->nr_pages--;
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2059 2060 2061 2062
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2063
		if (do_swap_account)
2064 2065
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2078
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2079 2080 2081 2082
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2083
 * This will be consumed by consume_stock() function, later.
2084
 */
2085
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2086 2087 2088
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2089
	if (stock->cached != memcg) { /* reset if necessary */
2090
		drain_stock(stock);
2091
		stock->cached = memcg;
2092
	}
2093
	stock->nr_pages += nr_pages;
2094 2095 2096 2097
	put_cpu_var(memcg_stock);
}

/*
2098
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2099 2100
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2101
 */
2102
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2103
{
2104
	int cpu, curcpu;
2105

2106 2107
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2108
	curcpu = get_cpu();
2109 2110
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2111
		struct mem_cgroup *memcg;
2112

2113 2114
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2115
			continue;
2116
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2117
			continue;
2118 2119 2120 2121 2122 2123
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2124
	}
2125
	put_cpu();
2126 2127 2128 2129 2130 2131

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2132
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2133 2134 2135
			flush_work(&stock->work);
	}
out:
2136
 	put_online_cpus();
2137 2138 2139 2140 2141 2142 2143 2144
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2145
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2146
{
2147 2148 2149 2150 2151
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2152
	drain_all_stock(root_memcg, false);
2153
	mutex_unlock(&percpu_charge_mutex);
2154 2155 2156
}

/* This is a synchronous drain interface. */
2157
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2158 2159
{
	/* called when force_empty is called */
2160
	mutex_lock(&percpu_charge_mutex);
2161
	drain_all_stock(root_memcg, true);
2162
	mutex_unlock(&percpu_charge_mutex);
2163 2164
}

2165 2166 2167 2168
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2169
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2170 2171 2172
{
	int i;

2173
	spin_lock(&memcg->pcp_counter_lock);
2174
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2175
		long x = per_cpu(memcg->stat->count[i], cpu);
2176

2177 2178
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2179
	}
2180
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2181
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2182

2183 2184
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2185
	}
2186
	spin_unlock(&memcg->pcp_counter_lock);
2187 2188 2189
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2190 2191 2192 2193 2194
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2195
	struct mem_cgroup *iter;
2196

2197
	if (action == CPU_ONLINE)
2198 2199
		return NOTIFY_OK;

2200
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2201
		return NOTIFY_OK;
2202

2203
	for_each_mem_cgroup(iter)
2204 2205
		mem_cgroup_drain_pcp_counter(iter, cpu);

2206 2207 2208 2209 2210
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2221
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2222
				unsigned int nr_pages, bool oom_check)
2223
{
2224
	unsigned long csize = nr_pages * PAGE_SIZE;
2225 2226 2227 2228 2229
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2230
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2231 2232 2233 2234

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2235
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2236 2237 2238
		if (likely(!ret))
			return CHARGE_OK;

2239
		res_counter_uncharge(&memcg->res, csize);
2240 2241 2242 2243
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2244
	/*
2245 2246
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2247 2248 2249 2250
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2251
	if (nr_pages == CHARGE_BATCH)
2252 2253 2254 2255 2256
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2257
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2258
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2259
		return CHARGE_RETRY;
2260
	/*
2261 2262 2263 2264 2265 2266 2267
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2268
	 */
2269
	if (nr_pages == 1 && ret)
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2283
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2284 2285 2286 2287 2288
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2289
/*
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2309
 */
2310
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2311
				   gfp_t gfp_mask,
2312
				   unsigned int nr_pages,
2313
				   struct mem_cgroup **ptr,
2314
				   bool oom)
2315
{
2316
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2317
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2318
	struct mem_cgroup *memcg = NULL;
2319
	int ret;
2320

K
KAMEZAWA Hiroyuki 已提交
2321 2322 2323 2324 2325 2326 2327 2328
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2329

2330
	/*
2331 2332
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2333
	 * thread group leader migrates. It's possible that mm is not
2334
	 * set, if so charge the root memcg (happens for pagecache usage).
2335
	 */
2336
	if (!*ptr && !mm)
2337
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2338
again:
2339 2340 2341 2342
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2343
			goto done;
2344
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2345
			goto done;
2346
		css_get(&memcg->css);
2347
	} else {
K
KAMEZAWA Hiroyuki 已提交
2348
		struct task_struct *p;
2349

K
KAMEZAWA Hiroyuki 已提交
2350 2351 2352
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2353
		 * Because we don't have task_lock(), "p" can exit.
2354
		 * In that case, "memcg" can point to root or p can be NULL with
2355 2356 2357 2358 2359 2360
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2361
		 */
2362
		memcg = mem_cgroup_from_task(p);
2363 2364 2365
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2366 2367 2368
			rcu_read_unlock();
			goto done;
		}
2369
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2382
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2383 2384 2385 2386 2387
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2388

2389 2390
	do {
		bool oom_check;
2391

2392
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2393
		if (fatal_signal_pending(current)) {
2394
			css_put(&memcg->css);
2395
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2396
		}
2397

2398 2399 2400 2401
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2402
		}
2403

2404
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2405 2406 2407 2408
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2409
			batch = nr_pages;
2410 2411
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2412
			goto again;
2413
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2414
			css_put(&memcg->css);
2415 2416
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2417
			if (!oom) {
2418
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2419
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2420
			}
2421 2422 2423 2424
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2425
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2426
			goto bypass;
2427
		}
2428 2429
	} while (ret != CHARGE_OK);

2430
	if (batch > nr_pages)
2431 2432
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2433
done:
2434
	*ptr = memcg;
2435 2436
	return 0;
nomem:
2437
	*ptr = NULL;
2438
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2439
bypass:
2440 2441
	*ptr = root_mem_cgroup;
	return -EINTR;
2442
}
2443

2444 2445 2446 2447 2448
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2449
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2450
				       unsigned int nr_pages)
2451
{
2452
	if (!mem_cgroup_is_root(memcg)) {
2453 2454
		unsigned long bytes = nr_pages * PAGE_SIZE;

2455
		res_counter_uncharge(&memcg->res, bytes);
2456
		if (do_swap_account)
2457
			res_counter_uncharge(&memcg->memsw, bytes);
2458
	}
2459 2460
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2495
	return mem_cgroup_from_css(css);
2496 2497
}

2498
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2499
{
2500
	struct mem_cgroup *memcg = NULL;
2501
	struct page_cgroup *pc;
2502
	unsigned short id;
2503 2504
	swp_entry_t ent;

2505 2506 2507
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2508
	lock_page_cgroup(pc);
2509
	if (PageCgroupUsed(pc)) {
2510 2511 2512
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2513
	} else if (PageSwapCache(page)) {
2514
		ent.val = page_private(page);
2515
		id = lookup_swap_cgroup_id(ent);
2516
		rcu_read_lock();
2517 2518 2519
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2520
		rcu_read_unlock();
2521
	}
2522
	unlock_page_cgroup(pc);
2523
	return memcg;
2524 2525
}

2526
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2527
				       struct page *page,
2528
				       unsigned int nr_pages,
2529 2530
				       enum charge_type ctype,
				       bool lrucare)
2531
{
2532
	struct page_cgroup *pc = lookup_page_cgroup(page);
2533
	struct zone *uninitialized_var(zone);
2534
	struct lruvec *lruvec;
2535
	bool was_on_lru = false;
2536
	bool anon;
2537

2538
	lock_page_cgroup(pc);
2539
	VM_BUG_ON(PageCgroupUsed(pc));
2540 2541 2542 2543
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2544 2545 2546 2547 2548 2549 2550 2551 2552

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2553
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2554
			ClearPageLRU(page);
2555
			del_page_from_lru_list(page, lruvec, page_lru(page));
2556 2557 2558 2559
			was_on_lru = true;
		}
	}

2560
	pc->mem_cgroup = memcg;
2561 2562 2563 2564 2565 2566 2567
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2568
	smp_wmb();
2569
	SetPageCgroupUsed(pc);
2570

2571 2572
	if (lrucare) {
		if (was_on_lru) {
2573
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2574 2575
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2576
			add_page_to_lru_list(page, lruvec, page_lru(page));
2577 2578 2579 2580
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2581
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2582 2583 2584 2585 2586
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2587
	unlock_page_cgroup(pc);
2588

2589 2590 2591 2592 2593
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2594
	memcg_check_events(memcg, page);
2595
}
2596

2597 2598
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2599
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2600 2601
/*
 * Because tail pages are not marked as "used", set it. We're under
2602 2603 2604
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2605
 */
2606
void mem_cgroup_split_huge_fixup(struct page *head)
2607 2608
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2609 2610
	struct page_cgroup *pc;
	int i;
2611

2612 2613
	if (mem_cgroup_disabled())
		return;
2614 2615 2616 2617 2618 2619
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2620
}
2621
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2622

2623
/**
2624
 * mem_cgroup_move_account - move account of the page
2625
 * @page: the page
2626
 * @nr_pages: number of regular pages (>1 for huge pages)
2627 2628 2629 2630 2631
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2632
 * - page is not on LRU (isolate_page() is useful.)
2633
 * - compound_lock is held when nr_pages > 1
2634
 *
2635 2636
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2637
 */
2638 2639 2640 2641
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2642
				   struct mem_cgroup *to)
2643
{
2644 2645
	unsigned long flags;
	int ret;
2646
	bool anon = PageAnon(page);
2647

2648
	VM_BUG_ON(from == to);
2649
	VM_BUG_ON(PageLRU(page));
2650 2651 2652 2653 2654 2655 2656
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2657
	if (nr_pages > 1 && !PageTransHuge(page))
2658 2659 2660 2661 2662 2663 2664 2665
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2666
	move_lock_mem_cgroup(from, &flags);
2667

2668
	if (!anon && page_mapped(page)) {
2669 2670 2671 2672 2673
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2674
	}
2675
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2676

2677
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2678
	pc->mem_cgroup = to;
2679
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2680 2681 2682
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2683
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2684
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2685
	 * status here.
2686
	 */
2687
	move_unlock_mem_cgroup(from, &flags);
2688 2689
	ret = 0;
unlock:
2690
	unlock_page_cgroup(pc);
2691 2692 2693
	/*
	 * check events
	 */
2694 2695
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2696
out:
2697 2698 2699 2700 2701 2702 2703
	return ret;
}

/*
 * move charges to its parent.
 */

2704 2705
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2706
				  struct mem_cgroup *child)
2707 2708
{
	struct mem_cgroup *parent;
2709
	unsigned int nr_pages;
2710
	unsigned long uninitialized_var(flags);
2711 2712 2713
	int ret;

	/* Is ROOT ? */
2714
	if (mem_cgroup_is_root(child))
2715 2716
		return -EINVAL;

2717 2718 2719 2720 2721
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2722

2723
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2724

2725 2726 2727 2728 2729 2730
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2731

2732
	if (nr_pages > 1)
2733 2734
		flags = compound_lock_irqsave(page);

2735
	ret = mem_cgroup_move_account(page, nr_pages,
2736
				pc, child, parent);
2737 2738
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2739

2740
	if (nr_pages > 1)
2741
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2742
	putback_lru_page(page);
2743
put:
2744
	put_page(page);
2745
out:
2746 2747 2748
	return ret;
}

2749 2750 2751 2752 2753 2754 2755
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2756
				gfp_t gfp_mask, enum charge_type ctype)
2757
{
2758
	struct mem_cgroup *memcg = NULL;
2759
	unsigned int nr_pages = 1;
2760
	bool oom = true;
2761
	int ret;
A
Andrea Arcangeli 已提交
2762

A
Andrea Arcangeli 已提交
2763
	if (PageTransHuge(page)) {
2764
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2765
		VM_BUG_ON(!PageTransHuge(page));
2766 2767 2768 2769 2770
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2771
	}
2772

2773
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2774
	if (ret == -ENOMEM)
2775
		return ret;
2776
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2777 2778 2779
	return 0;
}

2780 2781
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2782
{
2783
	if (mem_cgroup_disabled())
2784
		return 0;
2785 2786 2787
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2788
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2789
					MEM_CGROUP_CHARGE_TYPE_ANON);
2790 2791
}

2792 2793 2794
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2795
 * struct page_cgroup is acquired. This refcnt will be consumed by
2796 2797
 * "commit()" or removed by "cancel()"
 */
2798 2799 2800 2801
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
2802
{
2803
	struct mem_cgroup *memcg;
2804
	struct page_cgroup *pc;
2805
	int ret;
2806

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
2817 2818
	if (!do_swap_account)
		goto charge_cur_mm;
2819 2820
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2821
		goto charge_cur_mm;
2822 2823
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2824
	css_put(&memcg->css);
2825 2826
	if (ret == -EINTR)
		ret = 0;
2827
	return ret;
2828
charge_cur_mm:
2829 2830 2831 2832
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2833 2834
}

2835 2836 2837 2838 2839 2840
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
2855 2856 2857
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

2858 2859 2860 2861 2862 2863 2864 2865 2866
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
2867
static void
2868
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2869
					enum charge_type ctype)
2870
{
2871
	if (mem_cgroup_disabled())
2872
		return;
2873
	if (!memcg)
2874
		return;
2875
	cgroup_exclude_rmdir(&memcg->css);
2876

2877
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2878 2879 2880
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2881 2882 2883
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2884
	 */
2885
	if (do_swap_account && PageSwapCache(page)) {
2886
		swp_entry_t ent = {.val = page_private(page)};
2887
		mem_cgroup_uncharge_swap(ent);
2888
	}
2889 2890 2891 2892 2893
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2894
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2895 2896
}

2897 2898
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2899
{
2900
	__mem_cgroup_commit_charge_swapin(page, memcg,
2901
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
2902 2903
}

2904 2905
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2906
{
2907 2908 2909 2910
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

2911
	if (mem_cgroup_disabled())
2912 2913 2914 2915 2916 2917 2918
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
2919 2920
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
2921 2922 2923 2924
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
2925 2926
}

2927
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2928 2929
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2930 2931 2932
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2933

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2945
		batch->memcg = memcg;
2946 2947
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2948
	 * In those cases, all pages freed continuously can be expected to be in
2949 2950 2951 2952 2953 2954 2955 2956
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2957
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2958 2959
		goto direct_uncharge;

2960 2961 2962 2963 2964
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2965
	if (batch->memcg != memcg)
2966 2967
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2968
	batch->nr_pages++;
2969
	if (uncharge_memsw)
2970
		batch->memsw_nr_pages++;
2971 2972
	return;
direct_uncharge:
2973
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2974
	if (uncharge_memsw)
2975 2976 2977
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2978
}
2979

2980
/*
2981
 * uncharge if !page_mapped(page)
2982
 */
2983
static struct mem_cgroup *
2984 2985
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
2986
{
2987
	struct mem_cgroup *memcg = NULL;
2988 2989
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2990
	bool anon;
2991

2992
	if (mem_cgroup_disabled())
2993
		return NULL;
2994

2995
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
2996

A
Andrea Arcangeli 已提交
2997
	if (PageTransHuge(page)) {
2998
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2999 3000
		VM_BUG_ON(!PageTransHuge(page));
	}
3001
	/*
3002
	 * Check if our page_cgroup is valid
3003
	 */
3004
	pc = lookup_page_cgroup(page);
3005
	if (unlikely(!PageCgroupUsed(pc)))
3006
		return NULL;
3007

3008
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3009

3010
	memcg = pc->mem_cgroup;
3011

K
KAMEZAWA Hiroyuki 已提交
3012 3013 3014
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3015 3016
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3017
	switch (ctype) {
3018
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3019 3020 3021 3022 3023
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3024 3025
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3026
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3027
		/* See mem_cgroup_prepare_migration() */
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3049
	}
K
KAMEZAWA Hiroyuki 已提交
3050

3051
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3052

3053
	ClearPageCgroupUsed(pc);
3054 3055 3056 3057 3058 3059
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3060

3061
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3062
	/*
3063
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3064 3065
	 * will never be freed.
	 */
3066
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3067
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3068 3069
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3070
	}
3071 3072 3073 3074 3075 3076
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3077
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3078

3079
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3080 3081 3082

unlock_out:
	unlock_page_cgroup(pc);
3083
	return NULL;
3084 3085
}

3086 3087
void mem_cgroup_uncharge_page(struct page *page)
{
3088 3089 3090
	/* early check. */
	if (page_mapped(page))
		return;
3091
	VM_BUG_ON(page->mapping && !PageAnon(page));
3092 3093
	if (PageSwapCache(page))
		return;
3094
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3095 3096 3097 3098 3099
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3100
	VM_BUG_ON(page->mapping);
3101
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3102 3103
}

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3118 3119
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3140 3141 3142 3143 3144 3145
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3146
	memcg_oom_recover(batch->memcg);
3147 3148 3149 3150
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3151
#ifdef CONFIG_SWAP
3152
/*
3153
 * called after __delete_from_swap_cache() and drop "page" account.
3154 3155
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3156 3157
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3158 3159
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3160 3161 3162 3163 3164
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3165
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3166

K
KAMEZAWA Hiroyuki 已提交
3167 3168 3169 3170 3171
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3172
		swap_cgroup_record(ent, css_id(&memcg->css));
3173
}
3174
#endif
3175

A
Andrew Morton 已提交
3176
#ifdef CONFIG_MEMCG_SWAP
3177 3178 3179 3180 3181
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3182
{
3183
	struct mem_cgroup *memcg;
3184
	unsigned short id;
3185 3186 3187 3188

	if (!do_swap_account)
		return;

3189 3190 3191
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3192
	if (memcg) {
3193 3194 3195 3196
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3197
		if (!mem_cgroup_is_root(memcg))
3198
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3199
		mem_cgroup_swap_statistics(memcg, false);
3200 3201
		mem_cgroup_put(memcg);
	}
3202
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3203
}
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3220
				struct mem_cgroup *from, struct mem_cgroup *to)
3221 3222 3223 3224 3225 3226 3227 3228
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3229
		mem_cgroup_swap_statistics(to, true);
3230
		/*
3231 3232 3233 3234 3235 3236
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3237 3238 3239 3240 3241 3242 3243 3244
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3245
				struct mem_cgroup *from, struct mem_cgroup *to)
3246 3247 3248
{
	return -EINVAL;
}
3249
#endif
K
KAMEZAWA Hiroyuki 已提交
3250

3251
/*
3252 3253
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3254
 */
3255 3256
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3257
{
3258
	struct mem_cgroup *memcg = NULL;
3259
	struct page_cgroup *pc;
3260
	enum charge_type ctype;
3261

3262
	*memcgp = NULL;
3263

A
Andrea Arcangeli 已提交
3264
	VM_BUG_ON(PageTransHuge(page));
3265
	if (mem_cgroup_disabled())
3266
		return;
3267

3268 3269 3270
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3271 3272
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3304
	}
3305
	unlock_page_cgroup(pc);
3306 3307 3308 3309
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3310
	if (!memcg)
3311
		return;
3312

3313
	*memcgp = memcg;
3314 3315 3316 3317 3318 3319 3320
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3321
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3322
	else
3323
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3324 3325 3326 3327 3328
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3329
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3330
}
3331

3332
/* remove redundant charge if migration failed*/
3333
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3334
	struct page *oldpage, struct page *newpage, bool migration_ok)
3335
{
3336
	struct page *used, *unused;
3337
	struct page_cgroup *pc;
3338
	bool anon;
3339

3340
	if (!memcg)
3341
		return;
3342
	/* blocks rmdir() */
3343
	cgroup_exclude_rmdir(&memcg->css);
3344
	if (!migration_ok) {
3345 3346
		used = oldpage;
		unused = newpage;
3347
	} else {
3348
		used = newpage;
3349 3350
		unused = oldpage;
	}
3351
	anon = PageAnon(used);
3352 3353 3354 3355
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3356
	css_put(&memcg->css);
3357
	/*
3358 3359 3360
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3361
	 */
3362 3363 3364 3365 3366
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3367
	/*
3368 3369 3370 3371 3372 3373
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3374
	 */
3375
	if (anon)
3376
		mem_cgroup_uncharge_page(used);
3377
	/*
3378 3379
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3380 3381 3382
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3383
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3384
}
3385

3386 3387 3388 3389 3390 3391 3392 3393
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3394
	struct mem_cgroup *memcg = NULL;
3395 3396 3397 3398 3399 3400 3401 3402 3403
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3404 3405 3406 3407 3408
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3409 3410
	unlock_page_cgroup(pc);

3411 3412 3413 3414 3415 3416
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
3417 3418 3419 3420 3421
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3422
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3423 3424
}

3425 3426 3427 3428 3429 3430
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3431 3432 3433 3434 3435
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3455
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3456 3457 3458 3459 3460
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3461 3462
static DEFINE_MUTEX(set_limit_mutex);

3463
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3464
				unsigned long long val)
3465
{
3466
	int retry_count;
3467
	u64 memswlimit, memlimit;
3468
	int ret = 0;
3469 3470
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3471
	int enlarge;
3472 3473 3474 3475 3476 3477 3478 3479 3480

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3481

3482
	enlarge = 0;
3483
	while (retry_count) {
3484 3485 3486 3487
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3488 3489 3490
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3491
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3492 3493 3494 3495 3496 3497
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3498 3499
			break;
		}
3500 3501 3502 3503 3504

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3505
		ret = res_counter_set_limit(&memcg->res, val);
3506 3507 3508 3509 3510 3511
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3512 3513 3514 3515 3516
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3517 3518
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3519 3520 3521 3522 3523 3524
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3525
	}
3526 3527
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3528

3529 3530 3531
	return ret;
}

L
Li Zefan 已提交
3532 3533
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3534
{
3535
	int retry_count;
3536
	u64 memlimit, memswlimit, oldusage, curusage;
3537 3538
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3539
	int enlarge = 0;
3540

3541 3542 3543
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3544 3545 3546 3547 3548 3549 3550 3551
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3552
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3553 3554 3555 3556 3557 3558 3559 3560
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3561 3562 3563
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3564
		ret = res_counter_set_limit(&memcg->memsw, val);
3565 3566 3567 3568 3569 3570
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3571 3572 3573 3574 3575
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3576 3577 3578
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3579
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3580
		/* Usage is reduced ? */
3581
		if (curusage >= oldusage)
3582
			retry_count--;
3583 3584
		else
			oldusage = curusage;
3585
	}
3586 3587
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3588 3589 3590
	return ret;
}

3591
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3592 3593
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3594 3595 3596 3597 3598 3599
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3600
	unsigned long long excess;
3601
	unsigned long nr_scanned;
3602 3603 3604 3605

	if (order > 0)
		return 0;

3606
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3620
		nr_scanned = 0;
3621
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3622
						    gfp_mask, &nr_scanned);
3623
		nr_reclaimed += reclaimed;
3624
		*total_scanned += nr_scanned;
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3647
				if (next_mz == mz)
3648
					css_put(&next_mz->memcg->css);
3649
				else /* next_mz == NULL or other memcg */
3650 3651 3652
					break;
			} while (1);
		}
3653 3654
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3655 3656 3657 3658 3659 3660 3661 3662
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3663
		/* If excess == 0, no tree ops */
3664
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3665
		spin_unlock(&mctz->lock);
3666
		css_put(&mz->memcg->css);
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3679
		css_put(&next_mz->memcg->css);
3680 3681 3682
	return nr_reclaimed;
}

3683
/*
3684 3685 3686 3687
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
 * reclaim the pages page themselves - it just removes the page_cgroups.
 * Returns true if some page_cgroups were not freed, indicating that the caller
 * must retry this operation.
3688
 */
3689
static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3690
				int node, int zid, enum lru_list lru)
3691
{
K
KAMEZAWA Hiroyuki 已提交
3692 3693
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3694
	struct list_head *list;
3695 3696
	struct page *busy;
	struct zone *zone;
3697

K
KAMEZAWA Hiroyuki 已提交
3698
	zone = &NODE_DATA(node)->node_zones[zid];
3699
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3700
	list = &mz->lruvec.lists[lru];
3701

3702
	loop = mz->lru_size[lru];
3703 3704 3705 3706
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3707
		struct page_cgroup *pc;
3708 3709
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3710
		spin_lock_irqsave(&zone->lru_lock, flags);
3711
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3712
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3713
			break;
3714
		}
3715 3716 3717
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3718
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3719
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3720 3721
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3722
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3723

3724
		pc = lookup_page_cgroup(page);
3725

3726
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3727
			/* found lock contention or "pc" is obsolete. */
3728
			busy = page;
3729 3730 3731
			cond_resched();
		} else
			busy = NULL;
3732
	}
3733
	return !list_empty(list);
3734 3735 3736 3737 3738 3739
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3740
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3741
{
3742 3743 3744
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3745
	struct cgroup *cgrp = memcg->css.cgroup;
3746

3747
	css_get(&memcg->css);
3748 3749

	shrink = 0;
3750 3751 3752
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3753
move_account:
3754
	do {
3755
		ret = -EBUSY;
3756 3757
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
3758 3759
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3760
		drain_all_stock_sync(memcg);
3761
		ret = 0;
3762
		mem_cgroup_start_move(memcg);
3763
		for_each_node_state(node, N_HIGH_MEMORY) {
3764
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3765 3766
				enum lru_list lru;
				for_each_lru(lru) {
3767
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3768
							node, zid, lru);
3769 3770 3771
					if (ret)
						break;
				}
3772
			}
3773 3774 3775
			if (ret)
				break;
		}
3776 3777
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3778
		cond_resched();
3779
	/* "ret" should also be checked to ensure all lists are empty. */
3780
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3781
out:
3782
	css_put(&memcg->css);
3783
	return ret;
3784 3785

try_to_free:
3786 3787
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3788 3789 3790
		ret = -EBUSY;
		goto out;
	}
3791 3792
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3793 3794
	/* try to free all pages in this cgroup */
	shrink = 1;
3795
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3796
		int progress;
3797 3798 3799 3800 3801

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3802
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3803
						false);
3804
		if (!progress) {
3805
			nr_retries--;
3806
			/* maybe some writeback is necessary */
3807
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3808
		}
3809 3810

	}
K
KAMEZAWA Hiroyuki 已提交
3811
	lru_add_drain();
3812
	/* try move_account...there may be some *locked* pages. */
3813
	goto move_account;
3814 3815
}

3816
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3817 3818 3819 3820 3821
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3822 3823 3824 3825 3826 3827 3828 3829 3830
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3831
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3832
	struct cgroup *parent = cont->parent;
3833
	struct mem_cgroup *parent_memcg = NULL;
3834 3835

	if (parent)
3836
		parent_memcg = mem_cgroup_from_cont(parent);
3837 3838

	cgroup_lock();
3839 3840 3841 3842

	if (memcg->use_hierarchy == val)
		goto out;

3843
	/*
3844
	 * If parent's use_hierarchy is set, we can't make any modifications
3845 3846 3847 3848 3849 3850
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3851
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3852 3853
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3854
			memcg->use_hierarchy = val;
3855 3856 3857 3858
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3859 3860

out:
3861 3862 3863 3864 3865
	cgroup_unlock();

	return retval;
}

3866

3867
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3868
					       enum mem_cgroup_stat_index idx)
3869
{
K
KAMEZAWA Hiroyuki 已提交
3870
	struct mem_cgroup *iter;
3871
	long val = 0;
3872

3873
	/* Per-cpu values can be negative, use a signed accumulator */
3874
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3875 3876 3877 3878 3879
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3880 3881
}

3882
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3883
{
K
KAMEZAWA Hiroyuki 已提交
3884
	u64 val;
3885

3886
	if (!mem_cgroup_is_root(memcg)) {
3887
		if (!swap)
3888
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3889
		else
3890
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3891 3892
	}

3893 3894
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3895

K
KAMEZAWA Hiroyuki 已提交
3896
	if (swap)
3897
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3898 3899 3900 3901

	return val << PAGE_SHIFT;
}

3902 3903 3904
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3905
{
3906
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3907
	char str[64];
3908
	u64 val;
3909
	int type, name, len;
3910 3911 3912

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3913 3914 3915 3916

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3917 3918
	switch (type) {
	case _MEM:
3919
		if (name == RES_USAGE)
3920
			val = mem_cgroup_usage(memcg, false);
3921
		else
3922
			val = res_counter_read_u64(&memcg->res, name);
3923 3924
		break;
	case _MEMSWAP:
3925
		if (name == RES_USAGE)
3926
			val = mem_cgroup_usage(memcg, true);
3927
		else
3928
			val = res_counter_read_u64(&memcg->memsw, name);
3929 3930 3931 3932
		break;
	default:
		BUG();
	}
3933 3934 3935

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3936
}
3937 3938 3939 3940
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3941 3942
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3943
{
3944
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3945
	int type, name;
3946 3947 3948
	unsigned long long val;
	int ret;

3949 3950
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3951 3952 3953 3954

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3955
	switch (name) {
3956
	case RES_LIMIT:
3957 3958 3959 3960
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3961 3962
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3963 3964 3965
		if (ret)
			break;
		if (type == _MEM)
3966
			ret = mem_cgroup_resize_limit(memcg, val);
3967 3968
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3969
		break;
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3984 3985 3986 3987 3988
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3989 3990
}

3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4018
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4019
{
4020
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4021
	int type, name;
4022

4023 4024
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4025 4026 4027 4028

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4029
	switch (name) {
4030
	case RES_MAX_USAGE:
4031
		if (type == _MEM)
4032
			res_counter_reset_max(&memcg->res);
4033
		else
4034
			res_counter_reset_max(&memcg->memsw);
4035 4036
		break;
	case RES_FAILCNT:
4037
		if (type == _MEM)
4038
			res_counter_reset_failcnt(&memcg->res);
4039
		else
4040
			res_counter_reset_failcnt(&memcg->memsw);
4041 4042
		break;
	}
4043

4044
	return 0;
4045 4046
}

4047 4048 4049 4050 4051 4052
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4053
#ifdef CONFIG_MMU
4054 4055 4056
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4057
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4058 4059 4060 4061 4062 4063 4064 4065 4066

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4067
	memcg->move_charge_at_immigrate = val;
4068 4069 4070 4071
	cgroup_unlock();

	return 0;
}
4072 4073 4074 4075 4076 4077 4078
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4079

4080
#ifdef CONFIG_NUMA
4081
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4082
				      struct seq_file *m)
4083 4084 4085 4086
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4087
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4088

4089
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4090 4091
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4092
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4093 4094 4095 4096
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4097
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4098 4099
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4100
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4101
				LRU_ALL_FILE);
4102 4103 4104 4105
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4106
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4107 4108
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4109
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4110
				LRU_ALL_ANON);
4111 4112 4113 4114
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4115
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4116 4117
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4118
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4119
				BIT(LRU_UNEVICTABLE));
4120 4121 4122 4123 4124 4125 4126
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4140
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4141
				 struct seq_file *m)
4142
{
4143
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4144 4145
	struct mem_cgroup *mi;
	unsigned int i;
4146

4147
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4148
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4149
			continue;
4150 4151
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4152
	}
L
Lee Schermerhorn 已提交
4153

4154 4155 4156 4157 4158 4159 4160 4161
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4162
	/* Hierarchical information */
4163 4164
	{
		unsigned long long limit, memsw_limit;
4165
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4166
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4167
		if (do_swap_account)
4168 4169
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4170
	}
K
KOSAKI Motohiro 已提交
4171

4172 4173 4174
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4175
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4176
			continue;
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4197
	}
K
KAMEZAWA Hiroyuki 已提交
4198

K
KOSAKI Motohiro 已提交
4199 4200 4201 4202
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4203
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4204 4205 4206 4207 4208
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4209
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4210
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4211

4212 4213 4214 4215
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4216
			}
4217 4218 4219 4220
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4221 4222 4223
	}
#endif

4224 4225 4226
	return 0;
}

K
KOSAKI Motohiro 已提交
4227 4228 4229 4230
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4231
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4232 4233 4234 4235 4236 4237 4238
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4239

K
KOSAKI Motohiro 已提交
4240 4241 4242 4243 4244 4245 4246
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4247 4248 4249

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4250 4251
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4252 4253
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4254
		return -EINVAL;
4255
	}
K
KOSAKI Motohiro 已提交
4256 4257 4258

	memcg->swappiness = val;

4259 4260
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4261 4262 4263
	return 0;
}

4264 4265 4266 4267 4268 4269 4270 4271
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4272
		t = rcu_dereference(memcg->thresholds.primary);
4273
	else
4274
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4275 4276 4277 4278 4279 4280 4281

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4282
	 * current_threshold points to threshold just below or equal to usage.
4283 4284 4285
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4286
	i = t->current_threshold;
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4310
	t->current_threshold = i - 1;
4311 4312 4313 4314 4315 4316
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4317 4318 4319 4320 4321 4322 4323
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4334
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4335 4336 4337
{
	struct mem_cgroup_eventfd_list *ev;

4338
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4339 4340 4341 4342
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4343
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4344
{
K
KAMEZAWA Hiroyuki 已提交
4345 4346
	struct mem_cgroup *iter;

4347
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4348
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4349 4350 4351 4352
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4353 4354
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4355 4356
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4357 4358
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4359
	int i, size, ret;
4360 4361 4362 4363 4364 4365

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4366

4367
	if (type == _MEM)
4368
		thresholds = &memcg->thresholds;
4369
	else if (type == _MEMSWAP)
4370
		thresholds = &memcg->memsw_thresholds;
4371 4372 4373 4374 4375 4376
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4377
	if (thresholds->primary)
4378 4379
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4380
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4381 4382

	/* Allocate memory for new array of thresholds */
4383
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4384
			GFP_KERNEL);
4385
	if (!new) {
4386 4387 4388
		ret = -ENOMEM;
		goto unlock;
	}
4389
	new->size = size;
4390 4391

	/* Copy thresholds (if any) to new array */
4392 4393
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4394
				sizeof(struct mem_cgroup_threshold));
4395 4396
	}

4397
	/* Add new threshold */
4398 4399
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4400 4401

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4402
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4403 4404 4405
			compare_thresholds, NULL);

	/* Find current threshold */
4406
	new->current_threshold = -1;
4407
	for (i = 0; i < size; i++) {
4408
		if (new->entries[i].threshold <= usage) {
4409
			/*
4410 4411
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4412 4413
			 * it here.
			 */
4414
			++new->current_threshold;
4415 4416
		} else
			break;
4417 4418
	}

4419 4420 4421 4422 4423
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4424

4425
	/* To be sure that nobody uses thresholds */
4426 4427 4428 4429 4430 4431 4432 4433
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4434
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4435
	struct cftype *cft, struct eventfd_ctx *eventfd)
4436 4437
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4438 4439
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4440 4441
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4442
	int i, j, size;
4443 4444 4445

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4446
		thresholds = &memcg->thresholds;
4447
	else if (type == _MEMSWAP)
4448
		thresholds = &memcg->memsw_thresholds;
4449 4450 4451
	else
		BUG();

4452 4453 4454
	if (!thresholds->primary)
		goto unlock;

4455 4456 4457 4458 4459 4460
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4461 4462 4463
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4464 4465 4466
			size++;
	}

4467
	new = thresholds->spare;
4468

4469 4470
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4471 4472
		kfree(new);
		new = NULL;
4473
		goto swap_buffers;
4474 4475
	}

4476
	new->size = size;
4477 4478

	/* Copy thresholds and find current threshold */
4479 4480 4481
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4482 4483
			continue;

4484
		new->entries[j] = thresholds->primary->entries[i];
4485
		if (new->entries[j].threshold <= usage) {
4486
			/*
4487
			 * new->current_threshold will not be used
4488 4489 4490
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4491
			++new->current_threshold;
4492 4493 4494 4495
		}
		j++;
	}

4496
swap_buffers:
4497 4498
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4499 4500 4501 4502 4503 4504
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4505
	rcu_assign_pointer(thresholds->primary, new);
4506

4507
	/* To be sure that nobody uses thresholds */
4508
	synchronize_rcu();
4509
unlock:
4510 4511
	mutex_unlock(&memcg->thresholds_lock);
}
4512

K
KAMEZAWA Hiroyuki 已提交
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4525
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4526 4527 4528 4529 4530

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4531
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4532
		eventfd_signal(eventfd, 1);
4533
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4534 4535 4536 4537

	return 0;
}

4538
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4539 4540
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4541
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4542 4543 4544 4545 4546
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4547
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4548

4549
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4550 4551 4552 4553 4554 4555
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4556
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4557 4558
}

4559 4560 4561
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4562
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4563

4564
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4565

4566
	if (atomic_read(&memcg->under_oom))
4567 4568 4569 4570 4571 4572 4573 4574 4575
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4576
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4588
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4589 4590 4591
		cgroup_unlock();
		return -EINVAL;
	}
4592
	memcg->oom_kill_disable = val;
4593
	if (!val)
4594
		memcg_oom_recover(memcg);
4595 4596 4597 4598
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
4599
#ifdef CONFIG_MEMCG_KMEM
4600
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4601
{
4602
	return mem_cgroup_sockets_init(memcg, ss);
4603 4604
};

4605
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4606
{
4607
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4608
}
4609
#else
4610
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4611 4612 4613
{
	return 0;
}
G
Glauber Costa 已提交
4614

4615
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4616 4617
{
}
4618 4619
#endif

B
Balbir Singh 已提交
4620 4621
static struct cftype mem_cgroup_files[] = {
	{
4622
		.name = "usage_in_bytes",
4623
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4624
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4625 4626
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4627
	},
4628 4629
	{
		.name = "max_usage_in_bytes",
4630
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4631
		.trigger = mem_cgroup_reset,
4632
		.read = mem_cgroup_read,
4633
	},
B
Balbir Singh 已提交
4634
	{
4635
		.name = "limit_in_bytes",
4636
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4637
		.write_string = mem_cgroup_write,
4638
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4639
	},
4640 4641 4642 4643
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4644
		.read = mem_cgroup_read,
4645
	},
B
Balbir Singh 已提交
4646 4647
	{
		.name = "failcnt",
4648
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4649
		.trigger = mem_cgroup_reset,
4650
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4651
	},
4652 4653
	{
		.name = "stat",
4654
		.read_seq_string = memcg_stat_show,
4655
	},
4656 4657 4658 4659
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4660 4661 4662 4663 4664
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4665 4666 4667 4668 4669
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4670 4671 4672 4673 4674
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4675 4676
	{
		.name = "oom_control",
4677 4678
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4679 4680 4681 4682
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4683 4684 4685
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4686
		.read_seq_string = memcg_numa_stat_show,
4687 4688
	},
#endif
A
Andrew Morton 已提交
4689
#ifdef CONFIG_MEMCG_SWAP
4690 4691 4692
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4693
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4694 4695
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4696 4697 4698 4699 4700
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4701
		.read = mem_cgroup_read,
4702 4703 4704 4705 4706
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4707
		.read = mem_cgroup_read,
4708 4709 4710 4711 4712
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4713
		.read = mem_cgroup_read,
4714 4715
	},
#endif
4716
	{ },	/* terminate */
4717
};
4718

4719
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4720 4721
{
	struct mem_cgroup_per_node *pn;
4722
	struct mem_cgroup_per_zone *mz;
4723
	int zone, tmp = node;
4724 4725 4726 4727 4728 4729 4730 4731
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4732 4733
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4734
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4735 4736
	if (!pn)
		return 1;
4737 4738 4739

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4740
		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4741
		mz->usage_in_excess = 0;
4742
		mz->on_tree = false;
4743
		mz->memcg = memcg;
4744
	}
4745
	memcg->info.nodeinfo[node] = pn;
4746 4747 4748
	return 0;
}

4749
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4750
{
4751
	kfree(memcg->info.nodeinfo[node]);
4752 4753
}

4754 4755
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4756
	struct mem_cgroup *memcg;
4757
	int size = sizeof(struct mem_cgroup);
4758

4759
	/* Can be very big if MAX_NUMNODES is very big */
4760
	if (size < PAGE_SIZE)
4761
		memcg = kzalloc(size, GFP_KERNEL);
4762
	else
4763
		memcg = vzalloc(size);
4764

4765
	if (!memcg)
4766 4767
		return NULL;

4768 4769
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4770
		goto out_free;
4771 4772
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4773 4774 4775

out_free:
	if (size < PAGE_SIZE)
4776
		kfree(memcg);
4777
	else
4778
		vfree(memcg);
4779
	return NULL;
4780 4781
}

4782
/*
4783
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4784 4785 4786
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
4787
static void free_work(struct work_struct *work)
4788 4789
{
	struct mem_cgroup *memcg;
4790
	int size = sizeof(struct mem_cgroup);
4791 4792

	memcg = container_of(work, struct mem_cgroup, work_freeing);
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
4805 4806 4807 4808
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
4809
}
4810 4811

static void free_rcu(struct rcu_head *rcu_head)
4812 4813 4814 4815
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4816
	INIT_WORK(&memcg->work_freeing, free_work);
4817 4818 4819
	schedule_work(&memcg->work_freeing);
}

4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4831
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4832
{
K
KAMEZAWA Hiroyuki 已提交
4833 4834
	int node;

4835 4836
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4837

B
Bob Liu 已提交
4838
	for_each_node(node)
4839
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4840

4841
	free_percpu(memcg->stat);
4842
	call_rcu(&memcg->rcu_freeing, free_rcu);
4843 4844
}

4845
static void mem_cgroup_get(struct mem_cgroup *memcg)
4846
{
4847
	atomic_inc(&memcg->refcnt);
4848 4849
}

4850
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4851
{
4852 4853 4854
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4855 4856 4857
		if (parent)
			mem_cgroup_put(parent);
	}
4858 4859
}

4860
static void mem_cgroup_put(struct mem_cgroup *memcg)
4861
{
4862
	__mem_cgroup_put(memcg, 1);
4863 4864
}

4865 4866 4867
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4868
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4869
{
4870
	if (!memcg->res.parent)
4871
		return NULL;
4872
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4873
}
G
Glauber Costa 已提交
4874
EXPORT_SYMBOL(parent_mem_cgroup);
4875

A
Andrew Morton 已提交
4876
#ifdef CONFIG_MEMCG_SWAP
4877 4878
static void __init enable_swap_cgroup(void)
{
4879
	if (!mem_cgroup_disabled() && really_do_swap_account)
4880 4881 4882 4883 4884 4885 4886 4887
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4888 4889 4890 4891 4892 4893
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4894
	for_each_node(node) {
4895 4896 4897 4898 4899
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4900
			goto err_cleanup;
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4911 4912

err_cleanup:
B
Bob Liu 已提交
4913
	for_each_node(node) {
4914 4915 4916 4917 4918 4919 4920
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4921 4922
}

L
Li Zefan 已提交
4923
static struct cgroup_subsys_state * __ref
4924
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4925
{
4926
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4927
	long error = -ENOMEM;
4928
	int node;
B
Balbir Singh 已提交
4929

4930 4931
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4932
		return ERR_PTR(error);
4933

B
Bob Liu 已提交
4934
	for_each_node(node)
4935
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4936
			goto free_out;
4937

4938
	/* root ? */
4939
	if (cont->parent == NULL) {
4940
		int cpu;
4941
		enable_swap_cgroup();
4942
		parent = NULL;
4943 4944
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4945
		root_mem_cgroup = memcg;
4946 4947 4948 4949 4950
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4951
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4952
	} else {
4953
		parent = mem_cgroup_from_cont(cont->parent);
4954 4955
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4956
	}
4957

4958
	if (parent && parent->use_hierarchy) {
4959 4960
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4961 4962 4963 4964 4965 4966 4967
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4968
	} else {
4969 4970
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4971 4972 4973 4974 4975 4976 4977
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
4978
	}
4979 4980
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4981

K
KOSAKI Motohiro 已提交
4982
	if (parent)
4983 4984 4985 4986
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
4987
	spin_lock_init(&memcg->move_lock);
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
4999
	return &memcg->css;
5000
free_out:
5001
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5002
	return ERR_PTR(error);
B
Balbir Singh 已提交
5003 5004
}

5005
static int mem_cgroup_pre_destroy(struct cgroup *cont)
5006
{
5007
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5008

5009
	return mem_cgroup_force_empty(memcg, false);
5010 5011
}

5012
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
5013
{
5014
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5015

5016
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5017

5018
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5019 5020
}

5021
#ifdef CONFIG_MMU
5022
/* Handlers for move charge at task migration. */
5023 5024
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5025
{
5026 5027
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5028
	struct mem_cgroup *memcg = mc.to;
5029

5030
	if (mem_cgroup_is_root(memcg)) {
5031 5032 5033 5034 5035 5036 5037 5038
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5039
		 * "memcg" cannot be under rmdir() because we've already checked
5040 5041 5042 5043
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5044
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5045
			goto one_by_one;
5046
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5047
						PAGE_SIZE * count, &dummy)) {
5048
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5065 5066
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5067
		if (ret)
5068
			/* mem_cgroup_clear_mc() will do uncharge later */
5069
			return ret;
5070 5071
		mc.precharge++;
	}
5072 5073 5074 5075
	return ret;
}

/**
5076
 * get_mctgt_type - get target type of moving charge
5077 5078 5079
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5080
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5081 5082 5083 5084 5085 5086
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5087 5088 5089
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5090 5091 5092 5093 5094
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5095
	swp_entry_t	ent;
5096 5097 5098
};

enum mc_target_type {
5099
	MC_TARGET_NONE = 0,
5100
	MC_TARGET_PAGE,
5101
	MC_TARGET_SWAP,
5102 5103
};

D
Daisuke Nishimura 已提交
5104 5105
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5106
{
D
Daisuke Nishimura 已提交
5107
	struct page *page = vm_normal_page(vma, addr, ptent);
5108

D
Daisuke Nishimura 已提交
5109 5110 5111 5112
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5113
		if (!move_anon())
D
Daisuke Nishimura 已提交
5114
			return NULL;
5115 5116
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5117 5118 5119 5120 5121 5122 5123
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5124
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5125 5126 5127 5128 5129 5130 5131 5132
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5133 5134 5135 5136 5137
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5138 5139 5140 5141 5142
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5143 5144 5145 5146 5147 5148 5149
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5150

5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5170 5171 5172 5173 5174 5175
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5176
		if (do_swap_account)
5177 5178
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5179
	}
5180
#endif
5181 5182 5183
	return page;
}

5184
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5185 5186 5187 5188
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5189
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5190 5191 5192 5193 5194 5195
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5196 5197
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5198 5199

	if (!page && !ent.val)
5200
		return ret;
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5216 5217
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5218
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5219 5220 5221
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5222 5223 5224 5225
	}
	return ret;
}

5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5261 5262 5263 5264 5265 5266 5267 5268
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5269 5270 5271 5272
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5273
		return 0;
5274
	}
5275

5276 5277
	if (pmd_trans_unstable(pmd))
		return 0;
5278 5279
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5280
		if (get_mctgt_type(vma, addr, *pte, NULL))
5281 5282 5283 5284
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5285 5286 5287
	return 0;
}

5288 5289 5290 5291 5292
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5293
	down_read(&mm->mmap_sem);
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5305
	up_read(&mm->mmap_sem);
5306 5307 5308 5309 5310 5311 5312 5313 5314

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5315 5316 5317 5318 5319
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5320 5321
}

5322 5323
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5324
{
5325 5326 5327
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5328
	/* we must uncharge all the leftover precharges from mc.to */
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5340
	}
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5375
	spin_lock(&mc.lock);
5376 5377
	mc.from = NULL;
	mc.to = NULL;
5378
	spin_unlock(&mc.lock);
5379
	mem_cgroup_end_move(from);
5380 5381
}

5382 5383
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5384
{
5385
	struct task_struct *p = cgroup_taskset_first(tset);
5386
	int ret = 0;
5387
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5388

5389
	if (memcg->move_charge_at_immigrate) {
5390 5391 5392
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5393
		VM_BUG_ON(from == memcg);
5394 5395 5396 5397 5398

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5399 5400 5401 5402
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5403
			VM_BUG_ON(mc.moved_charge);
5404
			VM_BUG_ON(mc.moved_swap);
5405
			mem_cgroup_start_move(from);
5406
			spin_lock(&mc.lock);
5407
			mc.from = from;
5408
			mc.to = memcg;
5409
			spin_unlock(&mc.lock);
5410
			/* We set mc.moving_task later */
5411 5412 5413 5414

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5415 5416
		}
		mmput(mm);
5417 5418 5419 5420
	}
	return ret;
}

5421 5422
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5423
{
5424
	mem_cgroup_clear_mc();
5425 5426
}

5427 5428 5429
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5430
{
5431 5432 5433 5434
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5435 5436 5437 5438
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5439

5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5451
		if (mc.precharge < HPAGE_PMD_NR) {
5452 5453 5454 5455 5456 5457 5458 5459 5460
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5461
							pc, mc.from, mc.to)) {
5462 5463 5464 5465 5466 5467 5468 5469
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5470
		return 0;
5471 5472
	}

5473 5474
	if (pmd_trans_unstable(pmd))
		return 0;
5475 5476 5477 5478
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5479
		swp_entry_t ent;
5480 5481 5482 5483

		if (!mc.precharge)
			break;

5484
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5485 5486 5487 5488 5489
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5490
			if (!mem_cgroup_move_account(page, 1, pc,
5491
						     mc.from, mc.to)) {
5492
				mc.precharge--;
5493 5494
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5495 5496
			}
			putback_lru_page(page);
5497
put:			/* get_mctgt_type() gets the page */
5498 5499
			put_page(page);
			break;
5500 5501
		case MC_TARGET_SWAP:
			ent = target.ent;
5502
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5503
				mc.precharge--;
5504 5505 5506
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5507
			break;
5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5522
		ret = mem_cgroup_do_precharge(1);
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5566
	up_read(&mm->mmap_sem);
5567 5568
}

5569 5570
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5571
{
5572
	struct task_struct *p = cgroup_taskset_first(tset);
5573
	struct mm_struct *mm = get_task_mm(p);
5574 5575

	if (mm) {
5576 5577
		if (mc.to)
			mem_cgroup_move_charge(mm);
5578 5579
		mmput(mm);
	}
5580 5581
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5582
}
5583
#else	/* !CONFIG_MMU */
5584 5585
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5586 5587 5588
{
	return 0;
}
5589 5590
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5591 5592
{
}
5593 5594
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5595 5596 5597
{
}
#endif
B
Balbir Singh 已提交
5598

B
Balbir Singh 已提交
5599 5600 5601 5602
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5603
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5604
	.destroy = mem_cgroup_destroy,
5605 5606
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5607
	.attach = mem_cgroup_move_task,
5608
	.base_cftypes = mem_cgroup_files,
5609
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5610
	.use_id = 1,
5611
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5612
};
5613

A
Andrew Morton 已提交
5614
#ifdef CONFIG_MEMCG_SWAP
5615 5616 5617
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5618
	if (!strcmp(s, "1"))
5619
		really_do_swap_account = 1;
5620
	else if (!strcmp(s, "0"))
5621 5622 5623
		really_do_swap_account = 0;
	return 1;
}
5624
__setup("swapaccount=", enable_swap_account);
5625 5626

#endif