memcontrol.c 126.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75
#else
#define do_swap_account		(0)
#endif

76 77 78 79 80 81 82 83 84
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85

86 87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 97
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
	/* incremented at every  pagein/pageout */
	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 104 105 106 107 108 109 110

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

111 112 113 114
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
115 116 117
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
118 119
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
120 121

	struct zone_reclaim_stat reclaim_stat;
122 123 124 125
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
126 127
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
128 129 130 131 132 133 134 135 136 137 138 139
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

160 161 162 163 164
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
165
/* For threshold */
166 167
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
168
	int current_threshold;
169 170 171 172 173
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
174 175 176 177 178 179 180 181 182 183 184 185

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
186 187 188 189 190
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
191 192

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
193
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194

B
Balbir Singh 已提交
195 196 197 198 199 200 201
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 203 204
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
205 206 207 208 209 210 211
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
212 213 214 215
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
216 217 218 219
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
220
	struct mem_cgroup_lru_info info;
221

K
KOSAKI Motohiro 已提交
222 223 224 225 226
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

227
	/*
228
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
229
	 * reclaimed from.
230
	 */
K
KAMEZAWA Hiroyuki 已提交
231
	int last_scanned_child;
232 233 234 235
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
236
	atomic_t	oom_lock;
237
	atomic_t	refcnt;
238

K
KOSAKI Motohiro 已提交
239
	unsigned int	swappiness;
240 241
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
242

243 244 245
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

246 247 248 249
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
250
	struct mem_cgroup_thresholds thresholds;
251

252
	/* thresholds for mem+swap usage. RCU-protected */
253
	struct mem_cgroup_thresholds memsw_thresholds;
254

K
KAMEZAWA Hiroyuki 已提交
255 256 257
	/* For oom notifier event fd */
	struct list_head oom_notify;

258 259 260 261 262
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
263
	/*
264
	 * percpu counter.
265
	 */
266
	struct mem_cgroup_stat_cpu *stat;
267 268 269 270 271 272
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
273 274
};

275 276 277 278 279 280
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
281
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 284 285
	NR_MOVE_TYPE,
};

286 287
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
288
	spinlock_t	  lock; /* for from, to */
289 290 291
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
292
	unsigned long moved_charge;
293
	unsigned long moved_swap;
294
	struct task_struct *moving_task;	/* a task moving charges */
295
	struct mm_struct *mm;
296 297
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
298
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
299 300
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
301

D
Daisuke Nishimura 已提交
302 303 304 305 306 307
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

308 309 310 311 312 313
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

314 315 316 317 318 319 320
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

321 322 323
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
324
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
325
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
326
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
327
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
328 329 330
	NR_CHARGE_TYPE,
};

331 332 333 334
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
335 336
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
337

338 339 340
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
341
#define _OOM_TYPE		(2)
342 343 344
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
345 346
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
347

348 349 350 351 352 353 354
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
355 356
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
357

358 359
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
360
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
361
static void drain_all_stock_async(void);
362

363 364 365 366 367 368
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

369 370 371 372 373
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
403
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
404
				struct mem_cgroup_per_zone *mz,
405 406
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
407 408 409 410 411 412 413 414
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

415 416 417
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
434 435 436 437 438 439 440 441 442 443 444 445 446
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

447 448 449 450 451 452
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
453
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
454 455 456 457 458 459
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
460
	unsigned long long excess;
461 462
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
463 464
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
465 466 467
	mctz = soft_limit_tree_from_page(page);

	/*
468 469
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
470
	 */
471 472
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
473
		excess = res_counter_soft_limit_excess(&mem->res);
474 475 476 477
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
478
		if (excess || mz->on_tree) {
479 480 481 482 483
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
484 485
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
486
			 */
487
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
488 489
			spin_unlock(&mctz->lock);
		}
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

508 509 510 511 512 513 514 515 516
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
517
	struct mem_cgroup_per_zone *mz;
518 519

retry:
520
	mz = NULL;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
569 570 571 572 573 574
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

575 576
	get_online_cpus();
	for_each_online_cpu(cpu)
577
		val += per_cpu(mem->stat->count[idx], cpu);
578 579 580 581 582 583
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
584 585 586 587 588 589 590 591 592 593 594 595
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

596 597 598 599
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
600
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
601 602
}

603 604 605
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
606
{
607
	int val = (charge) ? 1 : -1;
608

609 610
	preempt_disable();

611
	if (PageCgroupCache(pc))
612
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
613
	else
614
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
615 616

	if (charge)
617
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
618
	else
619
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
620
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
621

622
	preempt_enable();
623 624
}

K
KAMEZAWA Hiroyuki 已提交
625
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
626
					enum lru_list idx)
627 628 629 630 631 632 633 634 635 636 637
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
638 639
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

663
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
664 665 666 667 668 669
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

670
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
671
{
672 673 674 675 676 677 678 679
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

680 681 682 683
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

684 685 686
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
687 688 689

	if (!mm)
		return NULL;
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
705 706
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
707
{
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
730 731 732 733 734 735 736 737 738
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
739 740
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
741
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
742

K
KAMEZAWA Hiroyuki 已提交
743
	css_put(&iter->css);
744 745
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
746
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
747

748 749 750
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
751 752
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
753
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
754 755 756

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
757
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
758
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
759
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
760
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
761
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
762
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
763

K
KAMEZAWA Hiroyuki 已提交
764
	return iter;
K
KAMEZAWA Hiroyuki 已提交
765
}
K
KAMEZAWA Hiroyuki 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

779 780 781
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
782

783 784 785 786 787
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
801

K
KAMEZAWA Hiroyuki 已提交
802 803 804 805
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
806

807
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
808 809 810
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
811
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
812
		return;
813
	VM_BUG_ON(!pc->mem_cgroup);
814 815 816 817
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
818
	mz = page_cgroup_zoneinfo(pc);
819
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
820 821 822
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
823 824
	list_del_init(&pc->lru);
	return;
825 826
}

K
KAMEZAWA Hiroyuki 已提交
827
void mem_cgroup_del_lru(struct page *page)
828
{
K
KAMEZAWA Hiroyuki 已提交
829 830
	mem_cgroup_del_lru_list(page, page_lru(page));
}
831

K
KAMEZAWA Hiroyuki 已提交
832 833 834 835
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
836

837
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
838
		return;
839

K
KAMEZAWA Hiroyuki 已提交
840
	pc = lookup_page_cgroup(page);
841 842 843 844
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
845
	smp_rmb();
846 847
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
848 849 850
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
851 852
}

K
KAMEZAWA Hiroyuki 已提交
853
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
854
{
K
KAMEZAWA Hiroyuki 已提交
855 856
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
857

858
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
859 860
		return;
	pc = lookup_page_cgroup(page);
861
	VM_BUG_ON(PageCgroupAcctLRU(pc));
862 863 864 865
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
866 867
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
868
		return;
869

K
KAMEZAWA Hiroyuki 已提交
870
	mz = page_cgroup_zoneinfo(pc);
871
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
872 873 874
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
875 876
	list_add(&pc->lru, &mz->lists[lru]);
}
877

K
KAMEZAWA Hiroyuki 已提交
878
/*
879 880 881 882 883
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
884
 */
885
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
886
{
887 888 889 890 891 892 893 894 895 896 897 898
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
899 900
}

901 902 903 904 905 906 907 908
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
909
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
910 911 912 913 914
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
915 916 917
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
918
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
919 920 921
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
922 923
}

924 925 926
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
927
	struct mem_cgroup *curr = NULL;
928
	struct task_struct *p;
929

930 931 932 933 934
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
935 936
	if (!curr)
		return 0;
937 938 939 940 941 942 943
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
944 945 946 947
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
948 949 950
	return ret;
}

951
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
952 953 954
{
	unsigned long active;
	unsigned long inactive;
955 956
	unsigned long gb;
	unsigned long inactive_ratio;
957

K
KAMEZAWA Hiroyuki 已提交
958 959
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
960

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
988 989 990 991 992
		return 1;

	return 0;
}

993 994 995 996 997 998 999 1000 1001 1002 1003
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1004 1005 1006 1007
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1008
	int nid = zone_to_nid(zone);
1009 1010 1011 1012 1013 1014
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1015 1016 1017
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1018
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1035 1036 1037 1038 1039 1040 1041 1042
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
1043 1044 1045 1046 1047 1048 1049
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

1050 1051 1052 1053 1054
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1055
					int active, int file)
1056 1057 1058 1059 1060 1061
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1062
	struct page_cgroup *pc, *tmp;
1063
	int nid = zone_to_nid(z);
1064 1065
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1066
	int lru = LRU_FILE * file + active;
1067
	int ret;
1068

1069
	BUG_ON(!mem_cont);
1070
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1071
	src = &mz->lists[lru];
1072

1073 1074
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1075
		if (scan >= nr_to_scan)
1076
			break;
K
KAMEZAWA Hiroyuki 已提交
1077 1078

		page = pc->page;
1079 1080
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1081
		if (unlikely(!PageLRU(page)))
1082 1083
			continue;

H
Hugh Dickins 已提交
1084
		scan++;
1085 1086 1087
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1088
			list_move(&page->lru, dst);
1089
			mem_cgroup_del_lru(page);
1090
			nr_taken++;
1091 1092 1093 1094 1095 1096 1097
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1098 1099 1100 1101
		}
	}

	*scanned = scan;
1102 1103 1104 1105

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1106 1107 1108
	return nr_taken;
}

1109 1110 1111
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1140 1141 1142
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1143 1144 1145 1146

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1147
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1148 1149 1150
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1161 1162 1163
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1164
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1165 1166 1167
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1186 1187 1188

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1189 1190
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1191
	bool ret = false;
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1226
/**
1227
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1246
	if (!memcg || !p)
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1293 1294 1295 1296 1297 1298 1299
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1300 1301 1302 1303
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1304 1305 1306
	return num;
}

D
David Rientjes 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
			total_swap_pages;
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1325
/*
K
KAMEZAWA Hiroyuki 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1368 1369
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1370 1371 1372
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1373 1374
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1375 1376
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1377
						struct zone *zone,
1378 1379
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1380
{
K
KAMEZAWA Hiroyuki 已提交
1381 1382 1383
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1384 1385
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1386 1387
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1388

1389 1390 1391 1392
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1393
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1394
		victim = mem_cgroup_select_victim(root_mem);
1395
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1396
			loop++;
1397 1398
			if (loop >= 1)
				drain_all_stock_async();
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1422
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1423 1424
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1425 1426
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1427
		/* we use swappiness of local cgroup */
1428 1429
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1430
				noswap, get_swappiness(victim), zone);
1431 1432 1433
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1434
		css_put(&victim->css);
1435 1436 1437 1438 1439 1440 1441
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1442
		total += ret;
1443 1444 1445 1446
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1447
			return 1 + total;
1448
	}
K
KAMEZAWA Hiroyuki 已提交
1449
	return total;
1450 1451
}

K
KAMEZAWA Hiroyuki 已提交
1452 1453 1454 1455 1456 1457
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1458 1459
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1460

K
KAMEZAWA Hiroyuki 已提交
1461 1462 1463 1464
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1465 1466 1467 1468

	if (lock_count == 1)
		return true;
	return false;
1469
}
1470

K
KAMEZAWA Hiroyuki 已提交
1471
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1472
{
K
KAMEZAWA Hiroyuki 已提交
1473 1474
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1475 1476 1477 1478 1479
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1480 1481
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1482 1483 1484
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1485 1486 1487 1488

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1525 1526
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1527
	if (mem && atomic_read(&mem->oom_lock))
1528 1529 1530
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1531 1532 1533 1534
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1535
{
K
KAMEZAWA Hiroyuki 已提交
1536
	struct oom_wait_info owait;
1537
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1538

K
KAMEZAWA Hiroyuki 已提交
1539 1540 1541 1542 1543
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1544
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1545 1546 1547 1548 1549 1550 1551 1552
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1553 1554 1555 1556
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1557
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1558 1559
	mutex_unlock(&memcg_oom_mutex);

1560 1561
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1562
		mem_cgroup_out_of_memory(mem, mask);
1563
	} else {
K
KAMEZAWA Hiroyuki 已提交
1564
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1565
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1566 1567 1568
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1569
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1570 1571 1572 1573 1574 1575 1576
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1577 1578
}

1579 1580 1581
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1601
 */
1602 1603

static void mem_cgroup_update_file_stat(struct page *page, int idx, int val)
1604 1605
{
	struct mem_cgroup *mem;
1606 1607
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1608 1609 1610 1611

	if (unlikely(!pc))
		return;

1612
	rcu_read_lock();
1613
	mem = pc->mem_cgroup;
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
	if (unlikely(mem_cgroup_stealed(mem))) {
		/* take a lock against to access pc->mem_cgroup */
		lock_page_cgroup(pc);
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1625 1626 1627 1628 1629 1630 1631 1632

	this_cpu_add(mem->stat->count[idx], val);

	switch (idx) {
	case MEM_CGROUP_STAT_FILE_MAPPED:
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1633
			ClearPageCgroupFileMapped(pc);
1634 1635 1636
		break;
	default:
		BUG();
1637
	}
1638

1639 1640 1641 1642 1643
out:
	if (unlikely(need_unlock))
		unlock_page_cgroup(pc);
	rcu_read_unlock();
	return;
1644
}
1645

1646 1647 1648 1649 1650
void mem_cgroup_update_file_mapped(struct page *page, int val)
{
	mem_cgroup_update_file_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, val);
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1712
 * This will be consumed by consume_stock() function, later.
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
		s64 x = per_cpu(mem->stat->count[i], cpu);

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1790 1791 1792 1793
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1794 1795 1796 1797 1798
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1799
	struct mem_cgroup *iter;
1800

1801 1802 1803 1804 1805 1806
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1807
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1808
		return NOTIFY_OK;
1809 1810 1811 1812

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1813 1814 1815 1816 1817
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);

	if (csize > PAGE_SIZE) /* change csize and retry */
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
					gfp_mask, flags);
	/*
	 * try_to_free_mem_cgroup_pages() might not give us a full
	 * picture of reclaim. Some pages are reclaimed and might be
	 * moved to swap cache or just unmapped from the cgroup.
	 * Check the limit again to see if the reclaim reduced the
	 * current usage of the cgroup before giving up
	 */
	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1885 1886 1887
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1888
 */
1889
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1890
		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1891
{
1892 1893 1894
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
1895
	int csize = CHARGE_SIZE;
1896

K
KAMEZAWA Hiroyuki 已提交
1897 1898 1899 1900 1901 1902 1903 1904
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1905

1906
	/*
1907 1908
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1909 1910 1911
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1912 1913 1914 1915
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1916
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1917 1918 1919 1920 1921
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
		if (consume_stock(mem))
			goto done;
1922 1923
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1924
		struct task_struct *p;
1925

K
KAMEZAWA Hiroyuki 已提交
1926 1927 1928
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
1929 1930 1931 1932 1933 1934 1935 1936
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
1937 1938
		 */
		mem = mem_cgroup_from_task(p);
1939
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
			rcu_read_unlock();
			goto done;
		}
		if (consume_stock(mem)) {
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1962

1963 1964
	do {
		bool oom_check;
1965

1966
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1967 1968
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1969
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1970
		}
1971

1972 1973 1974 1975
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1976
		}
1977

1978
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1979

1980 1981 1982 1983 1984
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
			csize = PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
1985 1986 1987
			css_put(&mem->css);
			mem = NULL;
			goto again;
1988
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
1989
			css_put(&mem->css);
1990 1991
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
1992 1993
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1994
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
1995
			}
1996 1997 1998 1999
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2000
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2001
			goto bypass;
2002
		}
2003 2004
	} while (ret != CHARGE_OK);

2005 2006
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
2007
	css_put(&mem->css);
2008
done:
K
KAMEZAWA Hiroyuki 已提交
2009
	*memcg = mem;
2010 2011
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2012
	*memcg = NULL;
2013
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2014 2015 2016
bypass:
	*memcg = NULL;
	return 0;
2017
}
2018

2019 2020 2021 2022 2023
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2024 2025
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
2026 2027
{
	if (!mem_cgroup_is_root(mem)) {
2028
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2029
		if (do_swap_account)
2030
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2031
	}
2032 2033 2034 2035 2036
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
2037 2038
}

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2058
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2059
{
2060
	struct mem_cgroup *mem = NULL;
2061
	struct page_cgroup *pc;
2062
	unsigned short id;
2063 2064
	swp_entry_t ent;

2065 2066 2067
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2068
	lock_page_cgroup(pc);
2069
	if (PageCgroupUsed(pc)) {
2070
		mem = pc->mem_cgroup;
2071 2072
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2073
	} else if (PageSwapCache(page)) {
2074
		ent.val = page_private(page);
2075 2076 2077 2078 2079 2080
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2081
	}
2082
	unlock_page_cgroup(pc);
2083 2084 2085
	return mem;
}

2086
/*
2087
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
2098 2099 2100 2101

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2102
		mem_cgroup_cancel_charge(mem);
2103
		return;
2104
	}
2105

2106
	pc->mem_cgroup = mem;
2107 2108 2109 2110 2111 2112 2113
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2114
	smp_wmb();
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2128

K
KAMEZAWA Hiroyuki 已提交
2129
	mem_cgroup_charge_statistics(mem, pc, true);
2130 2131

	unlock_page_cgroup(pc);
2132 2133 2134 2135 2136
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2137
	memcg_check_events(mem, pc->page);
2138
}
2139

2140
/**
2141
 * __mem_cgroup_move_account - move account of the page
2142 2143 2144
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2145
 * @uncharge: whether we should call uncharge and css_put against @from.
2146 2147
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2148
 * - page is not on LRU (isolate_page() is useful.)
2149
 * - the pc is locked, used, and ->mem_cgroup points to @from.
2150
 *
2151 2152 2153 2154
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2155 2156
 */

2157
static void __mem_cgroup_move_account(struct page_cgroup *pc,
2158
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2159 2160
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
2161
	VM_BUG_ON(PageLRU(pc->page));
2162
	VM_BUG_ON(!page_is_cgroup_locked(pc));
2163 2164
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
2165

2166
	if (PageCgroupFileMapped(pc)) {
2167 2168 2169 2170 2171
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2172
	}
2173 2174 2175 2176
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
2177

2178
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2179 2180
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
2181 2182 2183
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2184 2185 2186
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2187
	 */
2188 2189 2190 2191 2192 2193 2194
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
2195
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2196 2197 2198 2199
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2200
		__mem_cgroup_move_account(pc, from, to, uncharge);
2201 2202 2203
		ret = 0;
	}
	unlock_page_cgroup(pc);
2204 2205 2206 2207 2208
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
2220
	struct page *page = pc->page;
2221 2222 2223 2224 2225 2226 2227 2228 2229
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2230 2231 2232 2233 2234
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
2235

2236
	parent = mem_cgroup_from_cont(pcg);
2237
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2238
	if (ret || !parent)
2239
		goto put_back;
2240

2241 2242 2243
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
2244
put_back:
K
KAMEZAWA Hiroyuki 已提交
2245
	putback_lru_page(page);
2246
put:
2247
	put_page(page);
2248
out:
2249 2250 2251
	return ret;
}

2252 2253 2254 2255 2256 2257 2258
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2259
				gfp_t gfp_mask, enum charge_type ctype)
2260
{
2261
	struct mem_cgroup *mem = NULL;
2262 2263 2264 2265 2266 2267 2268 2269 2270
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

2271
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2272
	if (ret || !mem)
2273 2274 2275
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
2276 2277 2278
	return 0;
}

2279 2280
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2281
{
2282
	if (mem_cgroup_disabled())
2283
		return 0;
2284 2285
	if (PageCompound(page))
		return 0;
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2297
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2298
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2299 2300
}

D
Daisuke Nishimura 已提交
2301 2302 2303 2304
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2305 2306
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2307
{
2308 2309
	int ret;

2310
	if (mem_cgroup_disabled())
2311
		return 0;
2312 2313
	if (PageCompound(page))
		return 0;
2314 2315 2316 2317 2318 2319 2320 2321
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2322 2323
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2324 2325 2326 2327
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2328 2329 2330 2331 2332 2333
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2334 2335
			return 0;
		}
2336
		unlock_page_cgroup(pc);
2337 2338
	}

2339
	if (unlikely(!mm))
2340
		mm = &init_mm;
2341

2342 2343
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2344
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2345

D
Daisuke Nishimura 已提交
2346 2347
	/* shmem */
	if (PageSwapCache(page)) {
2348 2349
		struct mem_cgroup *mem = NULL;

D
Daisuke Nishimura 已提交
2350 2351 2352 2353 2354 2355
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2356
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2357 2358

	return ret;
2359 2360
}

2361 2362 2363
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2364
 * struct page_cgroup is acquired. This refcnt will be consumed by
2365 2366
 * "commit()" or removed by "cancel()"
 */
2367 2368 2369 2370 2371
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2372
	int ret;
2373

2374
	if (mem_cgroup_disabled())
2375 2376 2377 2378 2379 2380
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2381 2382 2383
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2384 2385
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2386
		goto charge_cur_mm;
2387
	mem = try_get_mem_cgroup_from_page(page);
2388 2389
	if (!mem)
		goto charge_cur_mm;
2390
	*ptr = mem;
2391
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2392 2393
	css_put(&mem->css);
	return ret;
2394 2395 2396
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2397
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2398 2399
}

D
Daisuke Nishimura 已提交
2400 2401 2402
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2403 2404 2405
{
	struct page_cgroup *pc;

2406
	if (mem_cgroup_disabled())
2407 2408 2409
		return;
	if (!ptr)
		return;
2410
	cgroup_exclude_rmdir(&ptr->css);
2411
	pc = lookup_page_cgroup(page);
2412
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2413
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2414
	mem_cgroup_lru_add_after_commit_swapcache(page);
2415 2416 2417
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2418 2419 2420
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2421
	 */
2422
	if (do_swap_account && PageSwapCache(page)) {
2423
		swp_entry_t ent = {.val = page_private(page)};
2424
		unsigned short id;
2425
		struct mem_cgroup *memcg;
2426 2427 2428 2429

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2430
		if (memcg) {
2431 2432 2433 2434
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2435
			if (!mem_cgroup_is_root(memcg))
2436
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2437
			mem_cgroup_swap_statistics(memcg, false);
2438 2439
			mem_cgroup_put(memcg);
		}
2440
		rcu_read_unlock();
2441
	}
2442 2443 2444 2445 2446 2447
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2448 2449
}

D
Daisuke Nishimura 已提交
2450 2451 2452 2453 2454 2455
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2456 2457
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2458
	if (mem_cgroup_disabled())
2459 2460 2461
		return;
	if (!mem)
		return;
2462
	mem_cgroup_cancel_charge(mem);
2463 2464
}

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2509 2510
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2511 2512
	return;
}
2513

2514
/*
2515
 * uncharge if !page_mapped(page)
2516
 */
2517
static struct mem_cgroup *
2518
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2519
{
H
Hugh Dickins 已提交
2520
	struct page_cgroup *pc;
2521
	struct mem_cgroup *mem = NULL;
2522

2523
	if (mem_cgroup_disabled())
2524
		return NULL;
2525

K
KAMEZAWA Hiroyuki 已提交
2526
	if (PageSwapCache(page))
2527
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2528

2529
	/*
2530
	 * Check if our page_cgroup is valid
2531
	 */
2532 2533
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2534
		return NULL;
2535

2536
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2537

2538 2539
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2540 2541 2542 2543 2544
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2545
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2546 2547
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2559
	}
K
KAMEZAWA Hiroyuki 已提交
2560

K
KAMEZAWA Hiroyuki 已提交
2561
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2562

2563
	ClearPageCgroupUsed(pc);
2564 2565 2566 2567 2568 2569
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2570

2571
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2572 2573 2574 2575
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2576
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2577 2578 2579 2580 2581 2582
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2583

2584
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2585 2586 2587

unlock_out:
	unlock_page_cgroup(pc);
2588
	return NULL;
2589 2590
}

2591 2592
void mem_cgroup_uncharge_page(struct page *page)
{
2593 2594 2595 2596 2597
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2598 2599 2600 2601 2602 2603
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2604
	VM_BUG_ON(page->mapping);
2605 2606 2607
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2648
	memcg_oom_recover(batch->memcg);
2649 2650 2651 2652
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2653
#ifdef CONFIG_SWAP
2654
/*
2655
 * called after __delete_from_swap_cache() and drop "page" account.
2656 2657
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2658 2659
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2660 2661
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2662 2663 2664 2665 2666 2667
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2668

K
KAMEZAWA Hiroyuki 已提交
2669 2670 2671 2672 2673
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2674
		swap_cgroup_record(ent, css_id(&memcg->css));
2675
}
2676
#endif
2677 2678 2679 2680 2681 2682 2683

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2684
{
2685
	struct mem_cgroup *memcg;
2686
	unsigned short id;
2687 2688 2689 2690

	if (!do_swap_account)
		return;

2691 2692 2693
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2694
	if (memcg) {
2695 2696 2697 2698
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2699
		if (!mem_cgroup_is_root(memcg))
2700
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2701
		mem_cgroup_swap_statistics(memcg, false);
2702 2703
		mem_cgroup_put(memcg);
	}
2704
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2705
}
2706 2707 2708 2709 2710 2711

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2712
 * @need_fixup: whether we should fixup res_counters and refcounts.
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2723
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2724 2725 2726 2727 2728 2729 2730 2731
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2732
		mem_cgroup_swap_statistics(to, true);
2733
		/*
2734 2735 2736 2737 2738 2739
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2740 2741
		 */
		mem_cgroup_get(to);
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2753 2754 2755 2756 2757 2758
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2759
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2760 2761 2762
{
	return -EINVAL;
}
2763
#endif
K
KAMEZAWA Hiroyuki 已提交
2764

2765
/*
2766 2767
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2768
 */
2769 2770
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2771 2772
{
	struct page_cgroup *pc;
2773
	struct mem_cgroup *mem = NULL;
2774
	enum charge_type ctype;
2775
	int ret = 0;
2776

2777
	if (mem_cgroup_disabled())
2778 2779
		return 0;

2780 2781 2782
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2783 2784
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2816
	}
2817
	unlock_page_cgroup(pc);
2818 2819 2820 2821 2822 2823
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2824

A
Andrea Arcangeli 已提交
2825
	*ptr = mem;
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2839
	}
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
	__mem_cgroup_commit_charge(mem, pc, ctype);
2854
	return ret;
2855
}
2856

2857
/* remove redundant charge if migration failed*/
2858
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2859
	struct page *oldpage, struct page *newpage)
2860
{
2861
	struct page *used, *unused;
2862 2863 2864 2865
	struct page_cgroup *pc;

	if (!mem)
		return;
2866
	/* blocks rmdir() */
2867
	cgroup_exclude_rmdir(&mem->css);
2868 2869
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
2870 2871
		used = oldpage;
		unused = newpage;
2872
	} else {
2873
		used = newpage;
2874 2875
		unused = oldpage;
	}
2876
	/*
2877 2878 2879
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2880
	 */
2881 2882 2883 2884
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2885

2886 2887
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

2888
	/*
2889 2890 2891 2892 2893 2894
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2895
	 */
2896 2897
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2898
	/*
2899 2900
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2901 2902 2903 2904
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2905
}
2906

2907
/*
2908 2909 2910 2911 2912 2913
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2914
 */
2915
int mem_cgroup_shmem_charge_fallback(struct page *page,
2916 2917
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2918
{
2919
	struct mem_cgroup *mem = NULL;
2920
	int ret;
2921

2922
	if (mem_cgroup_disabled())
2923
		return 0;
2924

2925 2926 2927
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2928

2929
	return ret;
2930 2931
}

2932 2933
static DEFINE_MUTEX(set_limit_mutex);

2934
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2935
				unsigned long long val)
2936
{
2937
	int retry_count;
2938
	u64 memswlimit, memlimit;
2939
	int ret = 0;
2940 2941
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
2942
	int enlarge;
2943 2944 2945 2946 2947 2948 2949 2950 2951

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2952

2953
	enlarge = 0;
2954
	while (retry_count) {
2955 2956 2957 2958
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2969 2970
			break;
		}
2971 2972 2973 2974 2975

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

2976
		ret = res_counter_set_limit(&memcg->res, val);
2977 2978 2979 2980 2981 2982
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2983 2984 2985 2986 2987
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2988
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2989
						MEM_CGROUP_RECLAIM_SHRINK);
2990 2991 2992 2993 2994 2995
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2996
	}
2997 2998
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2999

3000 3001 3002
	return ret;
}

L
Li Zefan 已提交
3003 3004
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3005
{
3006
	int retry_count;
3007
	u64 memlimit, memswlimit, oldusage, curusage;
3008 3009
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3010
	int enlarge = 0;
3011

3012 3013 3014
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3032 3033 3034
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3035
		ret = res_counter_set_limit(&memcg->memsw, val);
3036 3037 3038 3039 3040 3041
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3042 3043 3044 3045 3046
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3047
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3048 3049
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
3050
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3051
		/* Usage is reduced ? */
3052
		if (curusage >= oldusage)
3053
			retry_count--;
3054 3055
		else
			oldusage = curusage;
3056
	}
3057 3058
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3059 3060 3061
	return ret;
}

3062
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3063
					    gfp_t gfp_mask)
3064 3065 3066 3067 3068 3069
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3070
	unsigned long long excess;
3071 3072 3073 3074

	if (order > 0)
		return 0;

3075
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3123
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3124 3125 3126 3127 3128 3129 3130 3131
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3132 3133
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3152 3153 3154 3155
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3156
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3157
				int node, int zid, enum lru_list lru)
3158
{
K
KAMEZAWA Hiroyuki 已提交
3159 3160
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3161
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3162
	unsigned long flags, loop;
3163
	struct list_head *list;
3164
	int ret = 0;
3165

K
KAMEZAWA Hiroyuki 已提交
3166 3167
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3168
	list = &mz->lists[lru];
3169

3170 3171 3172 3173 3174 3175
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3176
		spin_lock_irqsave(&zone->lru_lock, flags);
3177
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3178
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3179
			break;
3180 3181 3182 3183
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3184
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3185
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3186 3187
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3188
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3189

K
KAMEZAWA Hiroyuki 已提交
3190
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3191
		if (ret == -ENOMEM)
3192
			break;
3193 3194 3195 3196 3197 3198 3199

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3200
	}
K
KAMEZAWA Hiroyuki 已提交
3201

3202 3203 3204
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3205 3206 3207 3208 3209 3210
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3211
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3212
{
3213 3214 3215
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3216
	struct cgroup *cgrp = mem->css.cgroup;
3217

3218
	css_get(&mem->css);
3219 3220

	shrink = 0;
3221 3222 3223
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3224
move_account:
3225
	do {
3226
		ret = -EBUSY;
3227 3228 3229 3230
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3231
			goto out;
3232 3233
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3234
		drain_all_stock_sync();
3235
		ret = 0;
3236
		mem_cgroup_start_move(mem);
3237
		for_each_node_state(node, N_HIGH_MEMORY) {
3238
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3239
				enum lru_list l;
3240 3241
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3242
							node, zid, l);
3243 3244 3245
					if (ret)
						break;
				}
3246
			}
3247 3248 3249
			if (ret)
				break;
		}
3250
		mem_cgroup_end_move(mem);
3251
		memcg_oom_recover(mem);
3252 3253 3254
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3255
		cond_resched();
3256 3257
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3258 3259 3260
out:
	css_put(&mem->css);
	return ret;
3261 3262

try_to_free:
3263 3264
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3265 3266 3267
		ret = -EBUSY;
		goto out;
	}
3268 3269
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3270 3271 3272 3273
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3274 3275 3276 3277 3278

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3279 3280
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3281
		if (!progress) {
3282
			nr_retries--;
3283
			/* maybe some writeback is necessary */
3284
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3285
		}
3286 3287

	}
K
KAMEZAWA Hiroyuki 已提交
3288
	lru_add_drain();
3289
	/* try move_account...there may be some *locked* pages. */
3290
	goto move_account;
3291 3292
}

3293 3294 3295 3296 3297 3298
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3317
	 * If parent's use_hierarchy is set, we can't make any modifications
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3337

K
KAMEZAWA Hiroyuki 已提交
3338 3339
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx)
3340
{
K
KAMEZAWA Hiroyuki 已提交
3341 3342
	struct mem_cgroup *iter;
	s64 val = 0;
3343

K
KAMEZAWA Hiroyuki 已提交
3344 3345 3346 3347 3348 3349 3350
	/* each per cpu's value can be minus.Then, use s64 */
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3351 3352
}

3353 3354
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3355
	u64 val;
3356 3357 3358 3359 3360 3361 3362 3363

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

K
KAMEZAWA Hiroyuki 已提交
3364 3365
	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3366

K
KAMEZAWA Hiroyuki 已提交
3367 3368 3369
	if (swap)
		val += mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT);
3370 3371 3372 3373

	return val << PAGE_SHIFT;
}

3374
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3375
{
3376
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3377
	u64 val;
3378 3379 3380 3381 3382 3383
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3384 3385 3386
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3387
			val = res_counter_read_u64(&mem->res, name);
3388 3389
		break;
	case _MEMSWAP:
3390 3391 3392
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3393
			val = res_counter_read_u64(&mem->memsw, name);
3394 3395 3396 3397 3398 3399
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3400
}
3401 3402 3403 3404
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3405 3406
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3407
{
3408
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3409
	int type, name;
3410 3411 3412
	unsigned long long val;
	int ret;

3413 3414 3415
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3416
	case RES_LIMIT:
3417 3418 3419 3420
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3421 3422
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3423 3424 3425
		if (ret)
			break;
		if (type == _MEM)
3426
			ret = mem_cgroup_resize_limit(memcg, val);
3427 3428
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3429
		break;
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3444 3445 3446 3447 3448
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3449 3450
}

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3479
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3480 3481
{
	struct mem_cgroup *mem;
3482
	int type, name;
3483 3484

	mem = mem_cgroup_from_cont(cont);
3485 3486 3487
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3488
	case RES_MAX_USAGE:
3489 3490 3491 3492
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3493 3494
		break;
	case RES_FAILCNT:
3495 3496 3497 3498
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3499 3500
		break;
	}
3501

3502
	return 0;
3503 3504
}

3505 3506 3507 3508 3509 3510
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3511
#ifdef CONFIG_MMU
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3530 3531 3532 3533 3534 3535 3536
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3537

K
KAMEZAWA Hiroyuki 已提交
3538 3539 3540 3541 3542

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3543
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3544 3545
	MCS_PGPGIN,
	MCS_PGPGOUT,
3546
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3557 3558
};

K
KAMEZAWA Hiroyuki 已提交
3559 3560 3561 3562 3563 3564
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3565
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3566 3567
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3568
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3569 3570 3571 3572 3573 3574 3575 3576
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3577 3578
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3579 3580 3581 3582
{
	s64 val;

	/* per cpu stat */
3583
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3584
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3585
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3586
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3587
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3588
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3589
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3590
	s->stat[MCS_PGPGIN] += val;
3591
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3592
	s->stat[MCS_PGPGOUT] += val;
3593
	if (do_swap_account) {
3594
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3595 3596
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3614 3615 3616 3617
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3618 3619
}

3620 3621
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3622 3623
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3624
	struct mcs_total_stat mystat;
3625 3626
	int i;

K
KAMEZAWA Hiroyuki 已提交
3627 3628
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3629

3630 3631 3632
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3633
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3634
	}
L
Lee Schermerhorn 已提交
3635

K
KAMEZAWA Hiroyuki 已提交
3636
	/* Hierarchical information */
3637 3638 3639 3640 3641 3642 3643
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3644

K
KAMEZAWA Hiroyuki 已提交
3645 3646
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3647 3648 3649
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3650
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3651
	}
K
KAMEZAWA Hiroyuki 已提交
3652

K
KOSAKI Motohiro 已提交
3653
#ifdef CONFIG_DEBUG_VM
3654
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3682 3683 3684
	return 0;
}

K
KOSAKI Motohiro 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3697

K
KOSAKI Motohiro 已提交
3698 3699 3700 3701 3702 3703 3704
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3705 3706 3707

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3708 3709
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3710 3711
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3712
		return -EINVAL;
3713
	}
K
KOSAKI Motohiro 已提交
3714 3715 3716 3717 3718

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3719 3720
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3721 3722 3723
	return 0;
}

3724 3725 3726 3727 3728 3729 3730 3731
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3732
		t = rcu_dereference(memcg->thresholds.primary);
3733
	else
3734
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3746
	i = t->current_threshold;
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3770
	t->current_threshold = i - 1;
3771 3772 3773 3774 3775 3776
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3777 3778 3779 3780 3781 3782 3783
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3794
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
3805 3806 3807 3808
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3809 3810 3811 3812
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3813 3814
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3815 3816
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3817 3818
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3819
	int i, size, ret;
3820 3821 3822 3823 3824 3825

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3826

3827
	if (type == _MEM)
3828
		thresholds = &memcg->thresholds;
3829
	else if (type == _MEMSWAP)
3830
		thresholds = &memcg->memsw_thresholds;
3831 3832 3833 3834 3835 3836
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3837
	if (thresholds->primary)
3838 3839
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3840
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3841 3842

	/* Allocate memory for new array of thresholds */
3843
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3844
			GFP_KERNEL);
3845
	if (!new) {
3846 3847 3848
		ret = -ENOMEM;
		goto unlock;
	}
3849
	new->size = size;
3850 3851

	/* Copy thresholds (if any) to new array */
3852 3853
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3854
				sizeof(struct mem_cgroup_threshold));
3855 3856
	}

3857
	/* Add new threshold */
3858 3859
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3860 3861

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3862
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3863 3864 3865
			compare_thresholds, NULL);

	/* Find current threshold */
3866
	new->current_threshold = -1;
3867
	for (i = 0; i < size; i++) {
3868
		if (new->entries[i].threshold < usage) {
3869
			/*
3870 3871
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3872 3873
			 * it here.
			 */
3874
			++new->current_threshold;
3875 3876 3877
		}
	}

3878 3879 3880 3881 3882
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3883

3884
	/* To be sure that nobody uses thresholds */
3885 3886 3887 3888 3889 3890 3891 3892
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3893
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3894
	struct cftype *cft, struct eventfd_ctx *eventfd)
3895 3896
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3897 3898
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3899 3900
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3901
	int i, j, size;
3902 3903 3904

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3905
		thresholds = &memcg->thresholds;
3906
	else if (type == _MEMSWAP)
3907
		thresholds = &memcg->memsw_thresholds;
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3923 3924 3925
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3926 3927 3928
			size++;
	}

3929
	new = thresholds->spare;
3930

3931 3932
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3933 3934
		kfree(new);
		new = NULL;
3935
		goto swap_buffers;
3936 3937
	}

3938
	new->size = size;
3939 3940

	/* Copy thresholds and find current threshold */
3941 3942 3943
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3944 3945
			continue;

3946 3947
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
3948
			/*
3949
			 * new->current_threshold will not be used
3950 3951 3952
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3953
			++new->current_threshold;
3954 3955 3956 3957
		}
		j++;
	}

3958
swap_buffers:
3959 3960 3961
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
3962

3963
	/* To be sure that nobody uses thresholds */
3964 3965 3966 3967
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
3968

K
KAMEZAWA Hiroyuki 已提交
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

3994
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4049 4050
	if (!val)
		memcg_oom_recover(mem);
4051 4052 4053 4054
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4055 4056
static struct cftype mem_cgroup_files[] = {
	{
4057
		.name = "usage_in_bytes",
4058
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4059
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4060 4061
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4062
	},
4063 4064
	{
		.name = "max_usage_in_bytes",
4065
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4066
		.trigger = mem_cgroup_reset,
4067 4068
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4069
	{
4070
		.name = "limit_in_bytes",
4071
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4072
		.write_string = mem_cgroup_write,
4073
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4074
	},
4075 4076 4077 4078 4079 4080
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4081 4082
	{
		.name = "failcnt",
4083
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4084
		.trigger = mem_cgroup_reset,
4085
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4086
	},
4087 4088
	{
		.name = "stat",
4089
		.read_map = mem_control_stat_show,
4090
	},
4091 4092 4093 4094
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4095 4096 4097 4098 4099
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4100 4101 4102 4103 4104
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4105 4106 4107 4108 4109
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4110 4111
	{
		.name = "oom_control",
4112 4113
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4114 4115 4116 4117
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4118 4119
};

4120 4121 4122 4123 4124 4125
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4126 4127
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4163 4164 4165
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4166
	struct mem_cgroup_per_zone *mz;
4167
	enum lru_list l;
4168
	int zone, tmp = node;
4169 4170 4171 4172 4173 4174 4175 4176
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4177 4178 4179
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4180 4181
	if (!pn)
		return 1;
4182

4183 4184
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
4185 4186 4187

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4188 4189
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4190
		mz->usage_in_excess = 0;
4191 4192
		mz->on_tree = false;
		mz->mem = mem;
4193
	}
4194 4195 4196
	return 0;
}

4197 4198 4199 4200 4201
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4202 4203 4204
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4205
	int size = sizeof(struct mem_cgroup);
4206

4207
	/* Can be very big if MAX_NUMNODES is very big */
4208 4209
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
4210
	else
4211
		mem = vmalloc(size);
4212

4213 4214 4215 4216
	if (!mem)
		return NULL;

	memset(mem, 0, size);
4217
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4218 4219
	if (!mem->stat)
		goto out_free;
4220
	spin_lock_init(&mem->pcp_counter_lock);
4221
	return mem;
4222 4223 4224 4225 4226 4227 4228

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4229 4230
}

4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4242
static void __mem_cgroup_free(struct mem_cgroup *mem)
4243
{
K
KAMEZAWA Hiroyuki 已提交
4244 4245
	int node;

4246
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4247 4248
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4249 4250 4251
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4252 4253
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4254 4255 4256 4257 4258
		kfree(mem);
	else
		vfree(mem);
}

4259 4260 4261 4262 4263
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4264
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4265
{
4266
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4267
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4268
		__mem_cgroup_free(mem);
4269 4270 4271
		if (parent)
			mem_cgroup_put(parent);
	}
4272 4273
}

4274 4275 4276 4277 4278
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4279 4280 4281 4282 4283 4284 4285 4286 4287
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4288

4289 4290 4291
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4292
	if (!mem_cgroup_disabled() && really_do_swap_account)
4293 4294 4295 4296 4297 4298 4299 4300
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4326
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4327 4328
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4329
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4330
	long error = -ENOMEM;
4331
	int node;
B
Balbir Singh 已提交
4332

4333 4334
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4335
		return ERR_PTR(error);
4336

4337 4338 4339
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4340

4341
	/* root ? */
4342
	if (cont->parent == NULL) {
4343
		int cpu;
4344
		enable_swap_cgroup();
4345
		parent = NULL;
4346
		root_mem_cgroup = mem;
4347 4348
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4349 4350 4351 4352 4353
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4354
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4355
	} else {
4356
		parent = mem_cgroup_from_cont(cont->parent);
4357
		mem->use_hierarchy = parent->use_hierarchy;
4358
		mem->oom_kill_disable = parent->oom_kill_disable;
4359
	}
4360

4361 4362 4363
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4364 4365 4366 4367 4368 4369 4370
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4371 4372 4373 4374
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4375
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4376
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4377
	INIT_LIST_HEAD(&mem->oom_notify);
4378

K
KOSAKI Motohiro 已提交
4379 4380
	if (parent)
		mem->swappiness = get_swappiness(parent);
4381
	atomic_set(&mem->refcnt, 1);
4382
	mem->move_charge_at_immigrate = 0;
4383
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4384
	return &mem->css;
4385
free_out:
4386
	__mem_cgroup_free(mem);
4387
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4388
	return ERR_PTR(error);
B
Balbir Singh 已提交
4389 4390
}

4391
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4392 4393 4394
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4395 4396

	return mem_cgroup_force_empty(mem, false);
4397 4398
}

B
Balbir Singh 已提交
4399 4400 4401
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4402 4403 4404
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4405 4406 4407 4408 4409
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4410 4411 4412 4413 4414 4415 4416 4417
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4418 4419
}

4420
#ifdef CONFIG_MMU
4421
/* Handlers for move charge at task migration. */
4422 4423
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4424
{
4425 4426
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4427 4428
	struct mem_cgroup *mem = mc.to;

4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4464
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4465 4466 4467 4468 4469
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4470 4471 4472 4473 4474 4475 4476 4477
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4478
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4479 4480 4481 4482 4483 4484
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4485 4486 4487
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4488 4489 4490 4491 4492
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4493
	swp_entry_t	ent;
4494 4495 4496 4497 4498
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4499
	MC_TARGET_SWAP,
4500 4501
};

D
Daisuke Nishimura 已提交
4502 4503
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4504
{
D
Daisuke Nishimura 已提交
4505
	struct page *page = vm_normal_page(vma, addr, ptent);
4506

D
Daisuke Nishimura 已提交
4507 4508 4509 4510 4511 4512
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4513 4514
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4533 4534
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4535
		return NULL;
4536
	}
D
Daisuke Nishimura 已提交
4537 4538 4539 4540 4541 4542
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4588 4589
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4590 4591 4592

	if (!page && !ent.val)
		return 0;
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4608 4609
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4610 4611 4612 4613
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4633 4634 4635
	return 0;
}

4636 4637 4638 4639 4640
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4641
	/* We've already held the mmap_sem */
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4662
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4663 4664 4665 4666
}

static void mem_cgroup_clear_mc(void)
{
4667 4668 4669
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4670
	/* we must uncharge all the leftover precharges from mc.to */
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4682
	}
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4703 4704 4705 4706
	if (mc.mm) {
		up_read(&mc.mm->mmap_sem);
		mmput(mc.mm);
	}
4707
	spin_lock(&mc.lock);
4708 4709
	mc.from = NULL;
	mc.to = NULL;
4710
	spin_unlock(&mc.lock);
4711 4712
	mc.moving_task = NULL;
	mc.mm = NULL;
4713
	mem_cgroup_end_move(from);
4714 4715
	memcg_oom_recover(from);
	memcg_oom_recover(to);
4716
	wake_up_all(&mc.waitq);
4717 4718
}

4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4737
		if (mm->owner == p) {
4738 4739 4740 4741 4742 4743 4744
			/*
			 * We do all the move charge works under one mmap_sem to
			 * avoid deadlock with down_write(&mmap_sem)
			 * -> try_charge() -> if (mc.moving_task) -> sleep.
			 */
			down_read(&mm->mmap_sem);

4745 4746 4747
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4748
			VM_BUG_ON(mc.moved_charge);
4749
			VM_BUG_ON(mc.moved_swap);
4750
			VM_BUG_ON(mc.moving_task);
4751 4752
			VM_BUG_ON(mc.mm);

4753
			mem_cgroup_start_move(from);
4754
			spin_lock(&mc.lock);
4755 4756 4757
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4758
			mc.moved_charge = 0;
4759
			mc.moved_swap = 0;
4760
			spin_unlock(&mc.lock);
4761 4762
			mc.moving_task = current;
			mc.mm = mm;
4763 4764 4765 4766

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4767 4768 4769
			/* We call up_read() and mmput() in clear_mc(). */
		} else
			mmput(mm);
4770 4771 4772 4773 4774 4775 4776 4777 4778
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4779
	mem_cgroup_clear_mc();
4780 4781
}

4782 4783 4784
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4785
{
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4799
		swp_entry_t ent;
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4811 4812
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4813
				mc.precharge--;
4814 4815
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4816 4817 4818 4819 4820
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4821 4822
		case MC_TARGET_SWAP:
			ent = target.ent;
4823 4824
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4825
				mc.precharge--;
4826 4827 4828
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4829
			break;
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4844
		ret = mem_cgroup_do_precharge(1);
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
4857
	/* We've already held the mmap_sem */
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
4876 4877
}

B
Balbir Singh 已提交
4878 4879 4880
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4881 4882
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4883
{
4884
	if (!mc.mm)
4885 4886 4887
		/* no need to move charge */
		return;

4888
	mem_cgroup_move_charge(mc.mm);
4889
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4890
}
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4913

B
Balbir Singh 已提交
4914 4915 4916 4917
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4918
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4919 4920
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4921 4922
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4923
	.attach = mem_cgroup_move_task,
4924
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4925
	.use_id = 1,
B
Balbir Singh 已提交
4926
};
4927 4928

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
	if (!s || !strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount", enable_swap_account);
4939 4940 4941

static int __init disable_swap_account(char *s)
{
4942
	enable_swap_account("0");
4943 4944 4945 4946
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif