memcontrol.c 181.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/slab.h>
43
#include <linux/swap.h>
44
#include <linux/swapops.h>
45
#include <linux/spinlock.h>
46 47
#include <linux/eventfd.h>
#include <linux/sort.h>
48
#include <linux/fs.h>
49
#include <linux/seq_file.h>
50
#include <linux/vmalloc.h>
51
#include <linux/vmpressure.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
90
	"rss_huge",
91 92 93 94
	"mapped_file",
	"swap",
};

95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

110 111 112 113 114 115 116 117
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

118 119 120 121 122 123 124 125
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
126
	MEM_CGROUP_TARGET_SOFTLIMIT,
127
	MEM_CGROUP_TARGET_NUMAINFO,
128 129
	MEM_CGROUP_NTARGETS,
};
130 131 132
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
133

134
struct mem_cgroup_stat_cpu {
135
	long count[MEM_CGROUP_STAT_NSTATS];
136
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
137
	unsigned long nr_page_events;
138
	unsigned long targets[MEM_CGROUP_NTARGETS];
139 140
};

141
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
142 143 144 145
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
146
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
147 148
	unsigned long last_dead_count;

149 150 151 152
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

153 154 155 156
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
157
	struct lruvec		lruvec;
158
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
159

160 161
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

162
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
163
						/* use container_of	   */
164 165 166 167 168 169
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

170 171 172 173 174
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
175
/* For threshold */
176
struct mem_cgroup_threshold_ary {
177
	/* An array index points to threshold just below or equal to usage. */
178
	int current_threshold;
179 180 181 182 183
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
184 185 186 187 188 189 190 191 192 193 194 195

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
196 197 198 199 200
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
201

202 203
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
204

B
Balbir Singh 已提交
205 206 207 208 209 210 211
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
212 213 214
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
215 216 217 218 219 220 221
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
222

223 224 225
	/* vmpressure notifications */
	struct vmpressure vmpressure;

226 227 228 229
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
230

231 232 233 234
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
235 236 237 238
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
239
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
240 241 242

	bool		oom_lock;
	atomic_t	under_oom;
243
	atomic_t	oom_wakeups;
244

245
	int	swappiness;
246 247
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
248

249 250 251
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

252 253 254 255
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
256
	struct mem_cgroup_thresholds thresholds;
257

258
	/* thresholds for mem+swap usage. RCU-protected */
259
	struct mem_cgroup_thresholds memsw_thresholds;
260

K
KAMEZAWA Hiroyuki 已提交
261 262
	/* For oom notifier event fd */
	struct list_head oom_notify;
263

264 265 266 267
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
268
	unsigned long move_charge_at_immigrate;
269 270 271 272
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
273 274
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
275
	/*
276
	 * percpu counter.
277
	 */
278
	struct mem_cgroup_stat_cpu __percpu *stat;
279 280 281 282 283 284
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
285

M
Michal Hocko 已提交
286
	atomic_t	dead_count;
M
Michal Hocko 已提交
287
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
288 289
	struct tcp_memcontrol tcp_mem;
#endif
290 291 292 293 294 295 296 297
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
298 299 300 301 302 303 304

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
305 306 307 308 309 310 311 312
	/*
	 * Protects soft_contributed transitions.
	 * See mem_cgroup_update_soft_limit
	 */
	spinlock_t soft_lock;

	/*
	 * If true then this group has increased parents' children_in_excess
A
Andrew Morton 已提交
313
	 * when it got over the soft limit.
314 315 316 317 318 319 320
	 * When a group falls bellow the soft limit, parents' children_in_excess
	 * is decreased and soft_contributed changed to false.
	 */
	bool soft_contributed;

	/* Number of children that are in soft limit excess */
	atomic_t children_in_excess;
321

322 323
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
324 325
};

326 327 328 329 330 331
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

332 333 334
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
335
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
336
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
337 338
};

339 340 341
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
342 343 344 345 346 347

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
348 349 350 351 352 353

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

354 355 356 357 358
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

359 360 361 362 363
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

364 365
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
366 367 368 369 370
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
371 372 373 374 375 376 377 378 379
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
380 381
#endif

382 383
/* Stuffs for move charges at task migration. */
/*
384 385
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
386 387
 */
enum move_type {
388
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
389
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
390 391 392
	NR_MOVE_TYPE,
};

393 394
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
395
	spinlock_t	  lock; /* for from, to */
396 397
	struct mem_cgroup *from;
	struct mem_cgroup *to;
398
	unsigned long immigrate_flags;
399
	unsigned long precharge;
400
	unsigned long moved_charge;
401
	unsigned long moved_swap;
402 403 404
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
405
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
406 407
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
408

D
Daisuke Nishimura 已提交
409 410
static bool move_anon(void)
{
411
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
412 413
}

414 415
static bool move_file(void)
{
416
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
417 418
}

419 420 421 422
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
423
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
424

425 426
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
427
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
428
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
429
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
430 431 432
	NR_CHARGE_TYPE,
};

433
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
434 435 436 437
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
438
	_KMEM,
G
Glauber Costa 已提交
439 440
};

441 442
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
443
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
444 445
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
446

447 448 449 450 451 452 453 454
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

455 456 457 458 459 460 461
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

462 463
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
464
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
465 466
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

485 486 487 488 489
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
490
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
491
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
492 493 494

void sock_update_memcg(struct sock *sk)
{
495
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
496
		struct mem_cgroup *memcg;
497
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
498 499 500

		BUG_ON(!sk->sk_prot->proto_cgroup);

501 502 503 504 505 506 507 508 509 510
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
511
			css_get(&sk->sk_cgrp->memcg->css);
512 513 514
			return;
		}

G
Glauber Costa 已提交
515 516
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
517
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
518 519
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
520
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
521 522 523 524 525 526 527 528
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
529
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
530 531 532
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
533
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
534 535
	}
}
G
Glauber Costa 已提交
536 537 538 539 540 541 542 543 544

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
545

546 547 548 549 550 551 552 553 554 555 556 557
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

558
#ifdef CONFIG_MEMCG_KMEM
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
577 578
int memcg_limited_groups_array_size;

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

594 595 596 597 598 599
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
600
struct static_key memcg_kmem_enabled_key;
601
EXPORT_SYMBOL(memcg_kmem_enabled_key);
602 603 604

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
605
	if (memcg_kmem_is_active(memcg)) {
606
		static_key_slow_dec(&memcg_kmem_enabled_key);
607 608
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
609 610 611 612 613
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
614 615 616 617 618 619 620 621 622 623 624 625 626
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

627
static void drain_all_stock_async(struct mem_cgroup *memcg);
628

629
static struct mem_cgroup_per_zone *
630
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
631
{
632
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
633
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
634 635
}

636
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
637
{
638
	return &memcg->css;
639 640
}

641
static struct mem_cgroup_per_zone *
642
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
643
{
644 645
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
646

647
	return mem_cgroup_zoneinfo(memcg, nid, zid);
648 649
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
669
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
670
				 enum mem_cgroup_stat_index idx)
671
{
672
	long val = 0;
673 674
	int cpu;

675 676
	get_online_cpus();
	for_each_online_cpu(cpu)
677
		val += per_cpu(memcg->stat->count[idx], cpu);
678
#ifdef CONFIG_HOTPLUG_CPU
679 680 681
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
682 683
#endif
	put_online_cpus();
684 685 686
	return val;
}

687
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
688 689 690
					 bool charge)
{
	int val = (charge) ? 1 : -1;
691
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
692 693
}

694
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
695 696 697 698 699 700
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
701
		val += per_cpu(memcg->stat->events[idx], cpu);
702
#ifdef CONFIG_HOTPLUG_CPU
703 704 705
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
706 707 708 709
#endif
	return val;
}

710
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
711
					 struct page *page,
712
					 bool anon, int nr_pages)
713
{
714 715
	preempt_disable();

716 717 718 719 720 721
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
722
				nr_pages);
723
	else
724
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
725
				nr_pages);
726

727 728 729 730
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

731 732
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
733
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
734
	else {
735
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
736 737
		nr_pages = -nr_pages; /* for event */
	}
738

739
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
740

741
	preempt_enable();
742 743
}

744
unsigned long
745
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
746 747 748 749 750 751 752 753
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
754
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
755
			unsigned int lru_mask)
756 757
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
758
	enum lru_list lru;
759 760
	unsigned long ret = 0;

761
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
762

H
Hugh Dickins 已提交
763 764 765
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
766 767 768 769 770
	}
	return ret;
}

static unsigned long
771
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
772 773
			int nid, unsigned int lru_mask)
{
774 775 776
	u64 total = 0;
	int zid;

777
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
778 779
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
780

781 782
	return total;
}
783

784
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
785
			unsigned int lru_mask)
786
{
787
	int nid;
788 789
	u64 total = 0;

790
	for_each_node_state(nid, N_MEMORY)
791
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
792
	return total;
793 794
}

795 796
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
797 798 799
{
	unsigned long val, next;

800
	val = __this_cpu_read(memcg->stat->nr_page_events);
801
	next = __this_cpu_read(memcg->stat->targets[target]);
802
	/* from time_after() in jiffies.h */
803 804 805 806 807
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
808 809 810
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
811 812 813 814 815 816 817 818
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
819
	}
820
	return false;
821 822
}

823
/*
A
Andrew Morton 已提交
824
 * Called from rate-limited memcg_check_events when enough
825
 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
A
Andrew Morton 已提交
826
 * that all the parents up the hierarchy will be notified that this group
827 828
 * is in excess or that it is not in excess anymore. mmecg->soft_contributed
 * makes the transition a single action whenever the state flips from one to
A
Andrew Morton 已提交
829
 * the other.
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
 */
static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
{
	unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
	struct mem_cgroup *parent = memcg;
	int delta = 0;

	spin_lock(&memcg->soft_lock);
	if (excess) {
		if (!memcg->soft_contributed) {
			delta = 1;
			memcg->soft_contributed = true;
		}
	} else {
		if (memcg->soft_contributed) {
			delta = -1;
			memcg->soft_contributed = false;
		}
	}

	/*
	 * Necessary to update all ancestors when hierarchy is used
	 * because their event counter is not touched.
853 854 855 856
	 * We track children even outside the hierarchy for the root
	 * cgroup because tree walk starting at root should visit
	 * all cgroups and we want to prevent from pointless tree
	 * walk if no children is below the limit.
857 858 859
	 */
	while (delta && (parent = parent_mem_cgroup(parent)))
		atomic_add(delta, &parent->children_in_excess);
860 861
	if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
		atomic_add(delta, &root_mem_cgroup->children_in_excess);
862 863 864
	spin_unlock(&memcg->soft_lock);
}

865 866 867 868
/*
 * Check events in order.
 *
 */
869
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
870
{
871
	preempt_disable();
872
	/* threshold event is triggered in finer grain than soft limit */
873 874
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
875
		bool do_softlimit;
876
		bool do_numainfo __maybe_unused;
877

878 879
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
880 881 882 883 884 885
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

886
		mem_cgroup_threshold(memcg);
887 888
		if (unlikely(do_softlimit))
			mem_cgroup_update_soft_limit(memcg);
889
#if MAX_NUMNODES > 1
890
		if (unlikely(do_numainfo))
891
			atomic_inc(&memcg->numainfo_events);
892
#endif
893 894
	} else
		preempt_enable();
895 896
}

897
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
898
{
899 900 901 902 903 904 905 906
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

907
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
908 909
}

910
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
911
{
912
	struct mem_cgroup *memcg = NULL;
913 914 915

	if (!mm)
		return NULL;
916 917 918 919 920 921 922
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
923 924
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
925
			break;
926
	} while (!css_tryget(&memcg->css));
927
	rcu_read_unlock();
928
	return memcg;
929 930
}

931 932 933 934 935 936 937 938 939
static enum mem_cgroup_filter_t
mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
		mem_cgroup_iter_filter cond)
{
	if (!cond)
		return VISIT;
	return cond(memcg, root);
}

940 941 942 943 944 945 946
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
947
		struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
948
{
949
	struct cgroup_subsys_state *prev_css, *next_css;
950

951
	prev_css = last_visited ? &last_visited->css : NULL;
952
skip_node:
953
	next_css = css_next_descendant_pre(prev_css, &root->css);
954 955 956 957 958 959 960 961

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
962 963 964
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

965 966
		switch (mem_cgroup_filter(mem, root, cond)) {
		case SKIP:
967
			prev_css = next_css;
968
			goto skip_node;
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
		case SKIP_TREE:
			if (mem == root)
				return NULL;
			/*
			 * css_rightmost_descendant is not an optimal way to
			 * skip through a subtree (especially for imbalanced
			 * trees leaning to right) but that's what we have right
			 * now. More effective solution would be traversing
			 * right-up for first non-NULL without calling
			 * css_next_descendant_pre afterwards.
			 */
			prev_css = css_rightmost_descendant(next_css);
			goto skip_node;
		case VISIT:
			if (css_tryget(&mem->css))
				return mem;
			else {
				prev_css = next_css;
				goto skip_node;
			}
			break;
990 991 992 993 994 995
		}
	}

	return NULL;
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1048 1049 1050 1051 1052
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1053
 * @cond: filter for visited nodes, NULL for no filter
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1066
struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1067
				   struct mem_cgroup *prev,
1068 1069
				   struct mem_cgroup_reclaim_cookie *reclaim,
				   mem_cgroup_iter_filter cond)
K
KAMEZAWA Hiroyuki 已提交
1070
{
1071
	struct mem_cgroup *memcg = NULL;
1072
	struct mem_cgroup *last_visited = NULL;
1073

1074 1075 1076 1077
	if (mem_cgroup_disabled()) {
		/* first call must return non-NULL, second return NULL */
		return (struct mem_cgroup *)(unsigned long)!prev;
	}
1078

1079 1080
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1081

1082
	if (prev && !reclaim)
1083
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1084

1085 1086
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1087
			goto out_css_put;
1088 1089 1090
		if (mem_cgroup_filter(root, root, cond) == VISIT)
			return root;
		return NULL;
1091
	}
K
KAMEZAWA Hiroyuki 已提交
1092

1093
	rcu_read_lock();
1094
	while (!memcg) {
1095
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1096
		int uninitialized_var(seq);
1097

1098 1099 1100 1101 1102 1103 1104
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1105
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1106
				iter->last_visited = NULL;
1107 1108
				goto out_unlock;
			}
M
Michal Hocko 已提交
1109

1110
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1111
		}
K
KAMEZAWA Hiroyuki 已提交
1112

1113
		memcg = __mem_cgroup_iter_next(root, last_visited, cond);
K
KAMEZAWA Hiroyuki 已提交
1114

1115
		if (reclaim) {
1116
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1117

M
Michal Hocko 已提交
1118
			if (!memcg)
1119 1120 1121 1122
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1123

1124 1125 1126 1127 1128
		/*
		 * We have finished the whole tree walk or no group has been
		 * visited because filter told us to skip the root node.
		 */
		if (!memcg && (prev || (cond && !last_visited)))
1129
			goto out_unlock;
1130
	}
1131 1132
out_unlock:
	rcu_read_unlock();
1133 1134 1135 1136
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1137
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1138
}
K
KAMEZAWA Hiroyuki 已提交
1139

1140 1141 1142 1143 1144 1145 1146
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1147 1148 1149 1150 1151 1152
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1153

1154 1155 1156 1157 1158 1159
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1160
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1161
	     iter != NULL;				\
1162
	     iter = mem_cgroup_iter(root, iter, NULL))
1163

1164
#define for_each_mem_cgroup(iter)			\
1165
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1166
	     iter != NULL;				\
1167
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1168

1169
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1170
{
1171
	struct mem_cgroup *memcg;
1172 1173

	rcu_read_lock();
1174 1175
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1176 1177 1178 1179
		goto out;

	switch (idx) {
	case PGFAULT:
1180 1181 1182 1183
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1184 1185 1186 1187 1188 1189 1190
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1191
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1192

1193 1194 1195
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1196
 * @memcg: memcg of the wanted lruvec
1197 1198 1199 1200 1201 1202 1203 1204 1205
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1206
	struct lruvec *lruvec;
1207

1208 1209 1210 1211
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1212 1213

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1224 1225
}

K
KAMEZAWA Hiroyuki 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1239

1240
/**
1241
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1242
 * @page: the page
1243
 * @zone: zone of the page
1244
 */
1245
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1246 1247
{
	struct mem_cgroup_per_zone *mz;
1248 1249
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1250
	struct lruvec *lruvec;
1251

1252 1253 1254 1255
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1256

K
KAMEZAWA Hiroyuki 已提交
1257
	pc = lookup_page_cgroup(page);
1258
	memcg = pc->mem_cgroup;
1259 1260

	/*
1261
	 * Surreptitiously switch any uncharged offlist page to root:
1262 1263 1264 1265 1266 1267 1268
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1269
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1270 1271
		pc->mem_cgroup = memcg = root_mem_cgroup;

1272
	mz = page_cgroup_zoneinfo(memcg, page);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1283
}
1284

1285
/**
1286 1287 1288 1289
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1290
 *
1291 1292
 * This function must be called when a page is added to or removed from an
 * lru list.
1293
 */
1294 1295
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1296 1297
{
	struct mem_cgroup_per_zone *mz;
1298
	unsigned long *lru_size;
1299 1300 1301 1302

	if (mem_cgroup_disabled())
		return;

1303 1304 1305 1306
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1307
}
1308

1309
/*
1310
 * Checks whether given mem is same or in the root_mem_cgroup's
1311 1312
 * hierarchy subtree
 */
1313 1314
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1315
{
1316 1317
	if (root_memcg == memcg)
		return true;
1318
	if (!root_memcg->use_hierarchy || !memcg)
1319
		return false;
1320 1321 1322 1323 1324 1325 1326 1327
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1328
	rcu_read_lock();
1329
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1330 1331
	rcu_read_unlock();
	return ret;
1332 1333
}

1334 1335
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1336
{
1337
	struct mem_cgroup *curr = NULL;
1338
	struct task_struct *p;
1339
	bool ret;
1340

1341
	p = find_lock_task_mm(task);
1342 1343 1344 1345 1346 1347 1348 1349 1350
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1351
		rcu_read_lock();
1352 1353 1354
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1355
		rcu_read_unlock();
1356
	}
1357
	if (!curr)
1358
		return false;
1359
	/*
1360
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1361
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1362 1363
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1364
	 */
1365
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1366
	css_put(&curr->css);
1367 1368 1369
	return ret;
}

1370
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1371
{
1372
	unsigned long inactive_ratio;
1373
	unsigned long inactive;
1374
	unsigned long active;
1375
	unsigned long gb;
1376

1377 1378
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1379

1380 1381 1382 1383 1384 1385
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1386
	return inactive * inactive_ratio < active;
1387 1388
}

1389 1390 1391
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1392
/**
1393
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1394
 * @memcg: the memory cgroup
1395
 *
1396
 * Returns the maximum amount of memory @mem can be charged with, in
1397
 * pages.
1398
 */
1399
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1400
{
1401 1402
	unsigned long long margin;

1403
	margin = res_counter_margin(&memcg->res);
1404
	if (do_swap_account)
1405
		margin = min(margin, res_counter_margin(&memcg->memsw));
1406
	return margin >> PAGE_SHIFT;
1407 1408
}

1409
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1410 1411
{
	/* root ? */
T
Tejun Heo 已提交
1412
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1413 1414
		return vm_swappiness;

1415
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1416 1417
}

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1432 1433 1434 1435

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1436
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1437
{
1438
	atomic_inc(&memcg_moving);
1439
	atomic_inc(&memcg->moving_account);
1440 1441 1442
	synchronize_rcu();
}

1443
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1444
{
1445 1446 1447 1448
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1449 1450
	if (memcg) {
		atomic_dec(&memcg_moving);
1451
		atomic_dec(&memcg->moving_account);
1452
	}
1453
}
1454

1455 1456 1457
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1458 1459
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1460 1461 1462 1463 1464 1465 1466
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1467
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1468 1469
{
	VM_BUG_ON(!rcu_read_lock_held());
1470
	return atomic_read(&memcg->moving_account) > 0;
1471
}
1472

1473
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1474
{
1475 1476
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1477
	bool ret = false;
1478 1479 1480 1481 1482 1483 1484 1485 1486
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1487

1488 1489
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1490 1491
unlock:
	spin_unlock(&mc.lock);
1492 1493 1494
	return ret;
}

1495
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1496 1497
{
	if (mc.moving_task && current != mc.moving_task) {
1498
		if (mem_cgroup_under_move(memcg)) {
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1511 1512 1513 1514
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1515
 * see mem_cgroup_stolen(), too.
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1529
#define K(x) ((x) << (PAGE_SHIFT-10))
1530
/**
1531
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1549 1550
	struct mem_cgroup *iter;
	unsigned int i;
1551

1552
	if (!p)
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1571
	pr_info("Task in %s killed", memcg_name);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1584
	pr_cont(" as a result of limit of %s\n", memcg_name);
1585 1586
done:

1587
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1588 1589 1590
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1591
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1592 1593 1594
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1595
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1596 1597 1598
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1623 1624
}

1625 1626 1627 1628
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1629
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1630 1631
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1632 1633
	struct mem_cgroup *iter;

1634
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1635
		num++;
1636 1637 1638
	return num;
}

D
David Rientjes 已提交
1639 1640 1641
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1642
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1643 1644 1645
{
	u64 limit;

1646 1647
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1648
	/*
1649
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1650
	 */
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1665 1666
}

1667 1668
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1669 1670 1671 1672 1673 1674 1675
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1676
	/*
1677 1678 1679
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1680
	 */
1681
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1682 1683 1684 1685 1686
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1687 1688
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1689
		struct css_task_iter it;
1690 1691
		struct task_struct *task;

1692 1693
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1706
				css_task_iter_end(&it);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1723
		css_task_iter_end(&it);
1724 1725 1726 1727 1728 1729 1730 1731 1732
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1769
#if MAX_NUMNODES > 1
1770 1771
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1772
 * @memcg: the target memcg
1773 1774 1775 1776 1777 1778 1779
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1780
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1781 1782
		int nid, bool noswap)
{
1783
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1784 1785 1786
		return true;
	if (noswap || !total_swap_pages)
		return false;
1787
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1788 1789 1790 1791
		return true;
	return false;

}
1792 1793 1794 1795 1796 1797 1798

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1799
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1800 1801
{
	int nid;
1802 1803 1804 1805
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1806
	if (!atomic_read(&memcg->numainfo_events))
1807
		return;
1808
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1809 1810 1811
		return;

	/* make a nodemask where this memcg uses memory from */
1812
	memcg->scan_nodes = node_states[N_MEMORY];
1813

1814
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1815

1816 1817
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1818
	}
1819

1820 1821
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1836
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1837 1838 1839
{
	int node;

1840 1841
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1842

1843
	node = next_node(node, memcg->scan_nodes);
1844
	if (node == MAX_NUMNODES)
1845
		node = first_node(memcg->scan_nodes);
1846 1847 1848 1849 1850 1851 1852 1853 1854
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1855
	memcg->last_scanned_node = node;
1856 1857 1858 1859
	return node;
}

#else
1860
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1861 1862 1863
{
	return 0;
}
1864

1865 1866
#endif

1867
/*
1868 1869
 * A group is eligible for the soft limit reclaim under the given root
 * hierarchy if
A
Andrew Morton 已提交
1870 1871
 *	a) it is over its soft limit
 *	b) any parent up the hierarchy is over its soft limit
1872 1873 1874
 *
 * If the given group doesn't have any children over the limit then it
 * doesn't make any sense to iterate its subtree.
1875
 */
1876 1877
enum mem_cgroup_filter_t
mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1878
		struct mem_cgroup *root)
1879
{
1880 1881 1882 1883 1884
	struct mem_cgroup *parent;

	if (!memcg)
		memcg = root_mem_cgroup;
	parent = memcg;
1885 1886

	if (res_counter_soft_limit_excess(&memcg->res))
1887
		return VISIT;
1888 1889

	/*
1890 1891
	 * If any parent up to the root in the hierarchy is over its soft limit
	 * then we have to obey and reclaim from this group as well.
1892
	 */
A
Andrew Morton 已提交
1893
	while ((parent = parent_mem_cgroup(parent))) {
1894
		if (res_counter_soft_limit_excess(&parent->res))
1895
			return VISIT;
1896 1897
		if (parent == root)
			break;
1898
	}
1899

1900 1901
	if (!atomic_read(&memcg->children_in_excess))
		return SKIP_TREE;
1902
	return SKIP;
1903 1904
}

1905 1906
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1907 1908 1909 1910
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1911
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1912
{
1913
	struct mem_cgroup *iter, *failed = NULL;
1914

1915 1916
	spin_lock(&memcg_oom_lock);

1917
	for_each_mem_cgroup_tree(iter, memcg) {
1918
		if (iter->oom_lock) {
1919 1920 1921 1922 1923
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1924 1925
			mem_cgroup_iter_break(memcg, iter);
			break;
1926 1927
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1928
	}
K
KAMEZAWA Hiroyuki 已提交
1929

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1941 1942
		}
	}
1943 1944 1945 1946

	spin_unlock(&memcg_oom_lock);

	return !failed;
1947
}
1948

1949
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1950
{
K
KAMEZAWA Hiroyuki 已提交
1951 1952
	struct mem_cgroup *iter;

1953
	spin_lock(&memcg_oom_lock);
1954
	for_each_mem_cgroup_tree(iter, memcg)
1955
		iter->oom_lock = false;
1956
	spin_unlock(&memcg_oom_lock);
1957 1958
}

1959
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1960 1961 1962
{
	struct mem_cgroup *iter;

1963
	for_each_mem_cgroup_tree(iter, memcg)
1964 1965 1966
		atomic_inc(&iter->under_oom);
}

1967
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1968 1969 1970
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1971 1972 1973 1974 1975
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1976
	for_each_mem_cgroup_tree(iter, memcg)
1977
		atomic_add_unless(&iter->under_oom, -1, 0);
1978 1979
}

K
KAMEZAWA Hiroyuki 已提交
1980 1981
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1982
struct oom_wait_info {
1983
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1984 1985 1986 1987 1988 1989
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1990 1991
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1992 1993 1994
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1995
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1996 1997

	/*
1998
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1999 2000
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2001 2002
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2003 2004 2005 2006
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2007
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2008
{
2009
	atomic_inc(&memcg->oom_wakeups);
2010 2011
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2012 2013
}

2014
static void memcg_oom_recover(struct mem_cgroup *memcg)
2015
{
2016 2017
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2018 2019
}

K
KAMEZAWA Hiroyuki 已提交
2020
/*
2021
 * try to call OOM killer
K
KAMEZAWA Hiroyuki 已提交
2022
 */
2023
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2024
{
2025
	bool locked;
2026
	int wakeups;
K
KAMEZAWA Hiroyuki 已提交
2027

2028 2029 2030 2031
	if (!current->memcg_oom.may_oom)
		return;

	current->memcg_oom.in_memcg_oom = 1;
2032

K
KAMEZAWA Hiroyuki 已提交
2033
	/*
2034 2035 2036 2037 2038
	 * As with any blocking lock, a contender needs to start
	 * listening for wakeups before attempting the trylock,
	 * otherwise it can miss the wakeup from the unlock and sleep
	 * indefinitely.  This is just open-coded because our locking
	 * is so particular to memcg hierarchies.
K
KAMEZAWA Hiroyuki 已提交
2039
	 */
2040
	wakeups = atomic_read(&memcg->oom_wakeups);
2041 2042 2043 2044
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

2045
	if (locked)
2046
		mem_cgroup_oom_notify(memcg);
K
KAMEZAWA Hiroyuki 已提交
2047

2048 2049
	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
2050
		mem_cgroup_out_of_memory(memcg, mask, order);
2051 2052 2053 2054 2055 2056 2057
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
2058
	} else {
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
		/*
		 * A system call can just return -ENOMEM, but if this
		 * is a page fault and somebody else is handling the
		 * OOM already, we need to sleep on the OOM waitqueue
		 * for this memcg until the situation is resolved.
		 * Which can take some time because it might be
		 * handled by a userspace task.
		 *
		 * However, this is the charge context, which means
		 * that we may sit on a large call stack and hold
		 * various filesystem locks, the mmap_sem etc. and we
		 * don't want the OOM handler to deadlock on them
		 * while we sit here and wait.  Store the current OOM
		 * context in the task_struct, then return -ENOMEM.
		 * At the end of the page fault handler, with the
		 * stack unwound, pagefault_out_of_memory() will check
		 * back with us by calling
		 * mem_cgroup_oom_synchronize(), possibly putting the
		 * task to sleep.
		 */
		current->memcg_oom.oom_locked = locked;
		current->memcg_oom.wakeups = wakeups;
		css_get(&memcg->css);
		current->memcg_oom.wait_on_memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2083
	}
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
 *
 * This has to be called at the end of a page fault if the the memcg
 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
 *
 * Memcg supports userspace OOM handling, so failed allocations must
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
 * the end of the page fault to put the task to sleep and clean up the
 * OOM state.
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
 * finalized, %false otherwise.
 */
bool mem_cgroup_oom_synchronize(void)
{
	struct oom_wait_info owait;
	struct mem_cgroup *memcg;

	/* OOM is global, do not handle */
	if (!current->memcg_oom.in_memcg_oom)
		return false;

	/*
	 * We invoked the OOM killer but there is a chance that a kill
	 * did not free up any charges.  Everybody else might already
	 * be sleeping, so restart the fault and keep the rampage
	 * going until some charges are released.
	 */
	memcg = current->memcg_oom.wait_on_memcg;
	if (!memcg)
		goto out;

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		goto out_memcg;

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2130

2131 2132 2133 2134 2135 2136 2137 2138
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	/* Only sleep if we didn't miss any wakeups since OOM */
	if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
		schedule();
	finish_wait(&memcg_oom_waitq, &owait.wait);
out_memcg:
	mem_cgroup_unmark_under_oom(memcg);
	if (current->memcg_oom.oom_locked) {
2139 2140 2141 2142 2143 2144 2145 2146
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2147 2148 2149 2150
	css_put(&memcg->css);
	current->memcg_oom.wait_on_memcg = NULL;
out:
	current->memcg_oom.in_memcg_oom = 0;
K
KAMEZAWA Hiroyuki 已提交
2151
	return true;
2152 2153
}

2154 2155 2156
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2174 2175
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2176
 */
2177

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2191
	 * need to take move_lock_mem_cgroup(). Because we already hold
2192
	 * rcu_read_lock(), any calls to move_account will be delayed until
2193
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2194
	 */
2195
	if (!mem_cgroup_stolen(memcg))
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2213
	 * should take move_lock_mem_cgroup().
2214 2215 2216 2217
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2218
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2219
				 enum mem_cgroup_stat_index idx, int val)
2220
{
2221
	struct mem_cgroup *memcg;
2222
	struct page_cgroup *pc = lookup_page_cgroup(page);
2223
	unsigned long uninitialized_var(flags);
2224

2225
	if (mem_cgroup_disabled())
2226
		return;
2227

2228 2229
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2230
		return;
2231

2232
	this_cpu_add(memcg->stat->count[idx], val);
2233
}
2234

2235 2236 2237 2238
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2239
#define CHARGE_BATCH	32U
2240 2241
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2242
	unsigned int nr_pages;
2243
	struct work_struct work;
2244
	unsigned long flags;
2245
#define FLUSHING_CACHED_CHARGE	0
2246 2247
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2248
static DEFINE_MUTEX(percpu_charge_mutex);
2249

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2260
 */
2261
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2262 2263 2264 2265
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2266 2267 2268
	if (nr_pages > CHARGE_BATCH)
		return false;

2269
	stock = &get_cpu_var(memcg_stock);
2270 2271
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2285 2286 2287 2288
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2289
		if (do_swap_account)
2290 2291
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2304
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2305 2306
}

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2318 2319
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2320
 * This will be consumed by consume_stock() function, later.
2321
 */
2322
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2323 2324 2325
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2326
	if (stock->cached != memcg) { /* reset if necessary */
2327
		drain_stock(stock);
2328
		stock->cached = memcg;
2329
	}
2330
	stock->nr_pages += nr_pages;
2331 2332 2333 2334
	put_cpu_var(memcg_stock);
}

/*
2335
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2336 2337
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2338
 */
2339
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2340
{
2341
	int cpu, curcpu;
2342

2343 2344
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2345
	curcpu = get_cpu();
2346 2347
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2348
		struct mem_cgroup *memcg;
2349

2350 2351
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2352
			continue;
2353
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2354
			continue;
2355 2356 2357 2358 2359 2360
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2361
	}
2362
	put_cpu();
2363 2364 2365 2366 2367 2368

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2369
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2370 2371 2372
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2373
	put_online_cpus();
2374 2375 2376 2377 2378 2379 2380 2381
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2382
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2383
{
2384 2385 2386 2387 2388
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2389
	drain_all_stock(root_memcg, false);
2390
	mutex_unlock(&percpu_charge_mutex);
2391 2392 2393
}

/* This is a synchronous drain interface. */
2394
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2395 2396
{
	/* called when force_empty is called */
2397
	mutex_lock(&percpu_charge_mutex);
2398
	drain_all_stock(root_memcg, true);
2399
	mutex_unlock(&percpu_charge_mutex);
2400 2401
}

2402 2403 2404 2405
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2406
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2407 2408 2409
{
	int i;

2410
	spin_lock(&memcg->pcp_counter_lock);
2411
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2412
		long x = per_cpu(memcg->stat->count[i], cpu);
2413

2414 2415
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2416
	}
2417
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2418
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2419

2420 2421
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2422
	}
2423
	spin_unlock(&memcg->pcp_counter_lock);
2424 2425
}

2426
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2427 2428 2429 2430 2431
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2432
	struct mem_cgroup *iter;
2433

2434
	if (action == CPU_ONLINE)
2435 2436
		return NOTIFY_OK;

2437
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2438
		return NOTIFY_OK;
2439

2440
	for_each_mem_cgroup(iter)
2441 2442
		mem_cgroup_drain_pcp_counter(iter, cpu);

2443 2444 2445 2446 2447
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2448 2449 2450 2451 2452 2453 2454 2455 2456

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2457
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2458
				unsigned int nr_pages, unsigned int min_pages,
2459
				bool invoke_oom)
2460
{
2461
	unsigned long csize = nr_pages * PAGE_SIZE;
2462 2463 2464 2465 2466
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2467
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2468 2469 2470 2471

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2472
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2473 2474 2475
		if (likely(!ret))
			return CHARGE_OK;

2476
		res_counter_uncharge(&memcg->res, csize);
2477 2478 2479 2480
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2481 2482 2483 2484
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2485
	if (nr_pages > min_pages)
2486 2487 2488 2489 2490
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2491 2492 2493
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2494
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2495
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2496
		return CHARGE_RETRY;
2497
	/*
2498 2499 2500 2501 2502 2503 2504
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2505
	 */
2506
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2507 2508 2509 2510 2511 2512 2513 2514 2515
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2516 2517
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2518

2519
	return CHARGE_NOMEM;
2520 2521
}

2522
/*
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2542
 */
2543
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2544
				   gfp_t gfp_mask,
2545
				   unsigned int nr_pages,
2546
				   struct mem_cgroup **ptr,
2547
				   bool oom)
2548
{
2549
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2550
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2551
	struct mem_cgroup *memcg = NULL;
2552
	int ret;
2553

K
KAMEZAWA Hiroyuki 已提交
2554 2555 2556 2557 2558 2559 2560 2561
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2562

2563
	/*
2564 2565
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2566
	 * thread group leader migrates. It's possible that mm is not
2567
	 * set, if so charge the root memcg (happens for pagecache usage).
2568
	 */
2569
	if (!*ptr && !mm)
2570
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2571
again:
2572 2573 2574
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2575
			goto done;
2576
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2577
			goto done;
2578
		css_get(&memcg->css);
2579
	} else {
K
KAMEZAWA Hiroyuki 已提交
2580
		struct task_struct *p;
2581

K
KAMEZAWA Hiroyuki 已提交
2582 2583 2584
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2585
		 * Because we don't have task_lock(), "p" can exit.
2586
		 * In that case, "memcg" can point to root or p can be NULL with
2587 2588 2589 2590 2591 2592
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2593
		 */
2594
		memcg = mem_cgroup_from_task(p);
2595 2596 2597
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2598 2599 2600
			rcu_read_unlock();
			goto done;
		}
2601
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2614
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2615 2616 2617 2618 2619
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2620

2621
	do {
2622
		bool invoke_oom = oom && !nr_oom_retries;
2623

2624
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2625
		if (fatal_signal_pending(current)) {
2626
			css_put(&memcg->css);
2627
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2628
		}
2629

2630 2631
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2632 2633 2634 2635
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2636
			batch = nr_pages;
2637 2638
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2639
			goto again;
2640
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2641
			css_put(&memcg->css);
2642 2643
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2644
			if (!oom || invoke_oom) {
2645
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2646
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2647
			}
2648 2649
			nr_oom_retries--;
			break;
2650
		}
2651 2652
	} while (ret != CHARGE_OK);

2653
	if (batch > nr_pages)
2654 2655
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2656
done:
2657
	*ptr = memcg;
2658 2659
	return 0;
nomem:
2660
	*ptr = NULL;
2661
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2662
bypass:
2663 2664
	*ptr = root_mem_cgroup;
	return -EINTR;
2665
}
2666

2667 2668 2669 2670 2671
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2672
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2673
				       unsigned int nr_pages)
2674
{
2675
	if (!mem_cgroup_is_root(memcg)) {
2676 2677
		unsigned long bytes = nr_pages * PAGE_SIZE;

2678
		res_counter_uncharge(&memcg->res, bytes);
2679
		if (do_swap_account)
2680
			res_counter_uncharge(&memcg->memsw, bytes);
2681
	}
2682 2683
}

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2702 2703
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2704 2705 2706
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2718
	return mem_cgroup_from_css(css);
2719 2720
}

2721
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2722
{
2723
	struct mem_cgroup *memcg = NULL;
2724
	struct page_cgroup *pc;
2725
	unsigned short id;
2726 2727
	swp_entry_t ent;

2728 2729 2730
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2731
	lock_page_cgroup(pc);
2732
	if (PageCgroupUsed(pc)) {
2733 2734 2735
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2736
	} else if (PageSwapCache(page)) {
2737
		ent.val = page_private(page);
2738
		id = lookup_swap_cgroup_id(ent);
2739
		rcu_read_lock();
2740 2741 2742
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2743
		rcu_read_unlock();
2744
	}
2745
	unlock_page_cgroup(pc);
2746
	return memcg;
2747 2748
}

2749
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2750
				       struct page *page,
2751
				       unsigned int nr_pages,
2752 2753
				       enum charge_type ctype,
				       bool lrucare)
2754
{
2755
	struct page_cgroup *pc = lookup_page_cgroup(page);
2756
	struct zone *uninitialized_var(zone);
2757
	struct lruvec *lruvec;
2758
	bool was_on_lru = false;
2759
	bool anon;
2760

2761
	lock_page_cgroup(pc);
2762
	VM_BUG_ON(PageCgroupUsed(pc));
2763 2764 2765 2766
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2767 2768 2769 2770 2771 2772 2773 2774 2775

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2776
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2777
			ClearPageLRU(page);
2778
			del_page_from_lru_list(page, lruvec, page_lru(page));
2779 2780 2781 2782
			was_on_lru = true;
		}
	}

2783
	pc->mem_cgroup = memcg;
2784 2785 2786 2787 2788 2789
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2790
	 */
K
KAMEZAWA Hiroyuki 已提交
2791
	smp_wmb();
2792
	SetPageCgroupUsed(pc);
2793

2794 2795
	if (lrucare) {
		if (was_on_lru) {
2796
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2797 2798
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2799
			add_page_to_lru_list(page, lruvec, page_lru(page));
2800 2801 2802 2803
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2804
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2805 2806 2807 2808
		anon = true;
	else
		anon = false;

2809
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2810
	unlock_page_cgroup(pc);
2811

2812
	/*
2813
	 * "charge_statistics" updated event counter.
2814
	 */
2815
	memcg_check_events(memcg, page);
2816
}
2817

2818 2819
static DEFINE_MUTEX(set_limit_mutex);

2820 2821 2822 2823 2824 2825 2826
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2840
#ifdef CONFIG_SLABINFO
2841 2842
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2843
{
2844
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2914 2915 2916 2917 2918

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2919 2920 2921 2922 2923 2924 2925 2926
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2927
	if (memcg_kmem_test_and_clear_dead(memcg))
2928
		css_put(&memcg->css);
2929 2930
}

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3014 3015
static void kmem_cache_destroy_work_func(struct work_struct *w);

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3027
		size += offsetof(struct memcg_cache_params, memcg_caches);
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3067 3068
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3069
{
3070
	size_t size;
3071 3072 3073 3074

	if (!memcg_kmem_enabled())
		return 0;

3075 3076
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3077
		size += memcg_limited_groups_array_size * sizeof(void *);
3078 3079
	} else
		size = sizeof(struct memcg_cache_params);
3080

3081 3082 3083 3084
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3085
	if (memcg) {
3086
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3087
		s->memcg_params->root_cache = root_cache;
3088 3089
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3090 3091 3092
	} else
		s->memcg_params->is_root_cache = true;

3093 3094 3095 3096 3097
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3122
	css_put(&memcg->css);
3123
out:
3124 3125 3126
	kfree(s->memcg_params);
}

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3158 3159 3160 3161 3162 3163 3164 3165 3166
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3188 3189 3190 3191 3192 3193 3194 3195
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3216 3217 3218 3219 3220 3221 3222
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3223 3224 3225 3226 3227 3228 3229 3230 3231
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3232

3233 3234 3235
/*
 * Called with memcg_cache_mutex held
 */
3236 3237 3238 3239
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3240
	static char *tmp_name = NULL;
3241

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3260

3261
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3262
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3263

3264 3265 3266
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3282 3283
	if (new_cachep) {
		css_put(&memcg->css);
3284
		goto out;
3285
	}
3286 3287 3288 3289

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3290
		css_put(&memcg->css);
3291 3292 3293
		goto out;
	}

G
Glauber Costa 已提交
3294
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3346
		cancel_work_sync(&c->memcg_params->destroy);
3347 3348 3349 3350 3351
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3352 3353 3354 3355 3356 3357
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3387 3388
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3389 3390 3391 3392
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3393 3394
	if (cw == NULL) {
		css_put(&memcg->css);
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3445 3446 3447
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3448 3449 3450 3451
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3452
		goto out;
3453 3454 3455 3456 3457 3458 3459 3460

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3461 3462 3463
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3464 3465
	}

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3493 3494 3495
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3532 3533 3534
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3619 3620 3621 3622
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3623 3624
#endif /* CONFIG_MEMCG_KMEM */

3625 3626
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3627
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3628 3629
/*
 * Because tail pages are not marked as "used", set it. We're under
3630 3631 3632
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3633
 */
3634
void mem_cgroup_split_huge_fixup(struct page *head)
3635 3636
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3637
	struct page_cgroup *pc;
3638
	struct mem_cgroup *memcg;
3639
	int i;
3640

3641 3642
	if (mem_cgroup_disabled())
		return;
3643 3644

	memcg = head_pc->mem_cgroup;
3645 3646
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3647
		pc->mem_cgroup = memcg;
3648 3649 3650
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3651 3652
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3653
}
3654
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3655

3656
/**
3657
 * mem_cgroup_move_account - move account of the page
3658
 * @page: the page
3659
 * @nr_pages: number of regular pages (>1 for huge pages)
3660 3661 3662 3663 3664
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3665
 * - page is not on LRU (isolate_page() is useful.)
3666
 * - compound_lock is held when nr_pages > 1
3667
 *
3668 3669
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3670
 */
3671 3672 3673 3674
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3675
				   struct mem_cgroup *to)
3676
{
3677 3678
	unsigned long flags;
	int ret;
3679
	bool anon = PageAnon(page);
3680

3681
	VM_BUG_ON(from == to);
3682
	VM_BUG_ON(PageLRU(page));
3683 3684 3685 3686 3687 3688 3689
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3690
	if (nr_pages > 1 && !PageTransHuge(page))
3691 3692 3693 3694 3695 3696 3697 3698
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3699
	move_lock_mem_cgroup(from, &flags);
3700

3701
	if (!anon && page_mapped(page)) {
3702 3703 3704 3705 3706
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3707
	}
3708
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3709

3710
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3711
	pc->mem_cgroup = to;
3712
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3713
	move_unlock_mem_cgroup(from, &flags);
3714 3715
	ret = 0;
unlock:
3716
	unlock_page_cgroup(pc);
3717 3718 3719
	/*
	 * check events
	 */
3720 3721
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3722
out:
3723 3724 3725
	return ret;
}

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3746
 */
3747 3748
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3749
				  struct mem_cgroup *child)
3750 3751
{
	struct mem_cgroup *parent;
3752
	unsigned int nr_pages;
3753
	unsigned long uninitialized_var(flags);
3754 3755
	int ret;

3756
	VM_BUG_ON(mem_cgroup_is_root(child));
3757

3758 3759 3760 3761 3762
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3763

3764
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3765

3766 3767 3768 3769 3770 3771
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3772

3773 3774
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3775
		flags = compound_lock_irqsave(page);
3776
	}
3777

3778
	ret = mem_cgroup_move_account(page, nr_pages,
3779
				pc, child, parent);
3780 3781
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3782

3783
	if (nr_pages > 1)
3784
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3785
	putback_lru_page(page);
3786
put:
3787
	put_page(page);
3788
out:
3789 3790 3791
	return ret;
}

3792 3793 3794 3795 3796 3797 3798
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3799
				gfp_t gfp_mask, enum charge_type ctype)
3800
{
3801
	struct mem_cgroup *memcg = NULL;
3802
	unsigned int nr_pages = 1;
3803
	bool oom = true;
3804
	int ret;
A
Andrea Arcangeli 已提交
3805

A
Andrea Arcangeli 已提交
3806
	if (PageTransHuge(page)) {
3807
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3808
		VM_BUG_ON(!PageTransHuge(page));
3809 3810 3811 3812 3813
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3814
	}
3815

3816
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3817
	if (ret == -ENOMEM)
3818
		return ret;
3819
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3820 3821 3822
	return 0;
}

3823 3824
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3825
{
3826
	if (mem_cgroup_disabled())
3827
		return 0;
3828 3829 3830
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3831
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3832
					MEM_CGROUP_CHARGE_TYPE_ANON);
3833 3834
}

3835 3836 3837
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3838
 * struct page_cgroup is acquired. This refcnt will be consumed by
3839 3840
 * "commit()" or removed by "cancel()"
 */
3841 3842 3843 3844
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3845
{
3846
	struct mem_cgroup *memcg;
3847
	struct page_cgroup *pc;
3848
	int ret;
3849

3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3860 3861
	if (!do_swap_account)
		goto charge_cur_mm;
3862 3863
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3864
		goto charge_cur_mm;
3865 3866
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3867
	css_put(&memcg->css);
3868 3869
	if (ret == -EINTR)
		ret = 0;
3870
	return ret;
3871
charge_cur_mm:
3872 3873 3874 3875
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3876 3877
}

3878 3879 3880 3881 3882 3883
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3898 3899 3900
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3901 3902 3903 3904 3905 3906 3907 3908 3909
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3910
static void
3911
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3912
					enum charge_type ctype)
3913
{
3914
	if (mem_cgroup_disabled())
3915
		return;
3916
	if (!memcg)
3917
		return;
3918

3919
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3920 3921 3922
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3923 3924 3925
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3926
	 */
3927
	if (do_swap_account && PageSwapCache(page)) {
3928
		swp_entry_t ent = {.val = page_private(page)};
3929
		mem_cgroup_uncharge_swap(ent);
3930
	}
3931 3932
}

3933 3934
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3935
{
3936
	__mem_cgroup_commit_charge_swapin(page, memcg,
3937
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3938 3939
}

3940 3941
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3942
{
3943 3944 3945 3946
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3947
	if (mem_cgroup_disabled())
3948 3949 3950 3951 3952 3953 3954
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3955 3956
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3957 3958 3959 3960
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3961 3962
}

3963
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3964 3965
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3966 3967 3968
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3969

3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3981
		batch->memcg = memcg;
3982 3983
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3984
	 * In those cases, all pages freed continuously can be expected to be in
3985 3986 3987 3988 3989 3990 3991 3992
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3993
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3994 3995
		goto direct_uncharge;

3996 3997 3998 3999 4000
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4001
	if (batch->memcg != memcg)
4002 4003
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4004
	batch->nr_pages++;
4005
	if (uncharge_memsw)
4006
		batch->memsw_nr_pages++;
4007 4008
	return;
direct_uncharge:
4009
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4010
	if (uncharge_memsw)
4011 4012 4013
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4014
}
4015

4016
/*
4017
 * uncharge if !page_mapped(page)
4018
 */
4019
static struct mem_cgroup *
4020 4021
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4022
{
4023
	struct mem_cgroup *memcg = NULL;
4024 4025
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4026
	bool anon;
4027

4028
	if (mem_cgroup_disabled())
4029
		return NULL;
4030

A
Andrea Arcangeli 已提交
4031
	if (PageTransHuge(page)) {
4032
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4033 4034
		VM_BUG_ON(!PageTransHuge(page));
	}
4035
	/*
4036
	 * Check if our page_cgroup is valid
4037
	 */
4038
	pc = lookup_page_cgroup(page);
4039
	if (unlikely(!PageCgroupUsed(pc)))
4040
		return NULL;
4041

4042
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4043

4044
	memcg = pc->mem_cgroup;
4045

K
KAMEZAWA Hiroyuki 已提交
4046 4047 4048
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4049 4050
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4051
	switch (ctype) {
4052
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4053 4054 4055 4056 4057
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4058 4059
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4060
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4061
		/* See mem_cgroup_prepare_migration() */
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4083
	}
K
KAMEZAWA Hiroyuki 已提交
4084

4085
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4086

4087
	ClearPageCgroupUsed(pc);
4088 4089 4090 4091 4092 4093
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4094

4095
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4096
	/*
4097
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4098
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4099
	 */
4100
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4101
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4102
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4103
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4104
	}
4105 4106 4107 4108 4109 4110
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4111
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4112

4113
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4114 4115 4116

unlock_out:
	unlock_page_cgroup(pc);
4117
	return NULL;
4118 4119
}

4120 4121
void mem_cgroup_uncharge_page(struct page *page)
{
4122 4123 4124
	/* early check. */
	if (page_mapped(page))
		return;
4125
	VM_BUG_ON(page->mapping && !PageAnon(page));
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4138 4139
	if (PageSwapCache(page))
		return;
4140
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4141 4142 4143 4144 4145
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4146
	VM_BUG_ON(page->mapping);
4147
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4148 4149
}

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4164 4165
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4186 4187 4188 4189 4190 4191
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4192
	memcg_oom_recover(batch->memcg);
4193 4194 4195 4196
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4197
#ifdef CONFIG_SWAP
4198
/*
4199
 * called after __delete_from_swap_cache() and drop "page" account.
4200 4201
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4202 4203
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4204 4205
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4206 4207 4208 4209 4210
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4211
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4212

K
KAMEZAWA Hiroyuki 已提交
4213 4214
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4215
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4216 4217
	 */
	if (do_swap_account && swapout && memcg)
4218
		swap_cgroup_record(ent, css_id(&memcg->css));
4219
}
4220
#endif
4221

A
Andrew Morton 已提交
4222
#ifdef CONFIG_MEMCG_SWAP
4223 4224 4225 4226 4227
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4228
{
4229
	struct mem_cgroup *memcg;
4230
	unsigned short id;
4231 4232 4233 4234

	if (!do_swap_account)
		return;

4235 4236 4237
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4238
	if (memcg) {
4239 4240 4241 4242
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4243
		if (!mem_cgroup_is_root(memcg))
4244
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4245
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4246
		css_put(&memcg->css);
4247
	}
4248
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4249
}
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4266
				struct mem_cgroup *from, struct mem_cgroup *to)
4267 4268 4269 4270 4271 4272 4273 4274
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4275
		mem_cgroup_swap_statistics(to, true);
4276
		/*
4277 4278 4279
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4280 4281 4282 4283 4284 4285
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4286
		 */
L
Li Zefan 已提交
4287
		css_get(&to->css);
4288 4289 4290 4291 4292 4293
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4294
				struct mem_cgroup *from, struct mem_cgroup *to)
4295 4296 4297
{
	return -EINVAL;
}
4298
#endif
K
KAMEZAWA Hiroyuki 已提交
4299

4300
/*
4301 4302
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4303
 */
4304 4305
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4306
{
4307
	struct mem_cgroup *memcg = NULL;
4308
	unsigned int nr_pages = 1;
4309
	struct page_cgroup *pc;
4310
	enum charge_type ctype;
4311

4312
	*memcgp = NULL;
4313

4314
	if (mem_cgroup_disabled())
4315
		return;
4316

4317 4318 4319
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4320 4321 4322
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4323 4324
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4356
	}
4357
	unlock_page_cgroup(pc);
4358 4359 4360 4361
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4362
	if (!memcg)
4363
		return;
4364

4365
	*memcgp = memcg;
4366 4367 4368 4369 4370 4371 4372
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4373
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4374
	else
4375
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4376 4377 4378 4379 4380
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4381
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4382
}
4383

4384
/* remove redundant charge if migration failed*/
4385
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4386
	struct page *oldpage, struct page *newpage, bool migration_ok)
4387
{
4388
	struct page *used, *unused;
4389
	struct page_cgroup *pc;
4390
	bool anon;
4391

4392
	if (!memcg)
4393
		return;
4394

4395
	if (!migration_ok) {
4396 4397
		used = oldpage;
		unused = newpage;
4398
	} else {
4399
		used = newpage;
4400 4401
		unused = oldpage;
	}
4402
	anon = PageAnon(used);
4403 4404 4405 4406
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4407
	css_put(&memcg->css);
4408
	/*
4409 4410 4411
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4412
	 */
4413 4414 4415 4416 4417
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4418
	/*
4419 4420 4421 4422 4423 4424
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4425
	 */
4426
	if (anon)
4427
		mem_cgroup_uncharge_page(used);
4428
}
4429

4430 4431 4432 4433 4434 4435 4436 4437
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4438
	struct mem_cgroup *memcg = NULL;
4439 4440 4441 4442 4443 4444 4445 4446 4447
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4448 4449
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4450
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4451 4452
		ClearPageCgroupUsed(pc);
	}
4453 4454
	unlock_page_cgroup(pc);

4455 4456 4457 4458 4459 4460
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4461 4462 4463 4464 4465
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4466
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4467 4468
}

4469 4470 4471 4472 4473 4474
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4475 4476 4477 4478 4479
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4499 4500
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4501 4502 4503 4504
	}
}
#endif

4505
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4506
				unsigned long long val)
4507
{
4508
	int retry_count;
4509
	u64 memswlimit, memlimit;
4510
	int ret = 0;
4511 4512
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4513
	int enlarge;
4514 4515 4516 4517 4518 4519 4520 4521 4522

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4523

4524
	enlarge = 0;
4525
	while (retry_count) {
4526 4527 4528 4529
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4530 4531 4532
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4533
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4534 4535 4536 4537 4538 4539
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4540 4541
			break;
		}
4542 4543 4544 4545 4546

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4547
		ret = res_counter_set_limit(&memcg->res, val);
4548 4549 4550 4551 4552 4553
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4554 4555 4556 4557 4558
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4559 4560
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4561 4562
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4563
		if (curusage >= oldusage)
4564 4565 4566
			retry_count--;
		else
			oldusage = curusage;
4567
	}
4568 4569
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4570

4571 4572 4573
	return ret;
}

L
Li Zefan 已提交
4574 4575
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4576
{
4577
	int retry_count;
4578
	u64 memlimit, memswlimit, oldusage, curusage;
4579 4580
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4581
	int enlarge = 0;
4582

4583
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4584
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4585
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4586 4587 4588 4589 4590 4591 4592 4593
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4594
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4595 4596 4597 4598 4599 4600 4601 4602
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4603 4604 4605
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4606
		ret = res_counter_set_limit(&memcg->memsw, val);
4607 4608 4609 4610 4611 4612
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4613 4614 4615 4616 4617
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4618 4619 4620
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4621
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4622
		/* Usage is reduced ? */
4623
		if (curusage >= oldusage)
4624
			retry_count--;
4625 4626
		else
			oldusage = curusage;
4627
	}
4628 4629
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4630 4631 4632
	return ret;
}

4633 4634 4635 4636 4637 4638 4639
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4640
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4641 4642
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4643
 */
4644
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4645
				int node, int zid, enum lru_list lru)
4646
{
4647
	struct lruvec *lruvec;
4648
	unsigned long flags;
4649
	struct list_head *list;
4650 4651
	struct page *busy;
	struct zone *zone;
4652

K
KAMEZAWA Hiroyuki 已提交
4653
	zone = &NODE_DATA(node)->node_zones[zid];
4654 4655
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4656

4657
	busy = NULL;
4658
	do {
4659
		struct page_cgroup *pc;
4660 4661
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4662
		spin_lock_irqsave(&zone->lru_lock, flags);
4663
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4664
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4665
			break;
4666
		}
4667 4668 4669
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4670
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4671
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4672 4673
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4674
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4675

4676
		pc = lookup_page_cgroup(page);
4677

4678
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4679
			/* found lock contention or "pc" is obsolete. */
4680
			busy = page;
4681 4682 4683
			cond_resched();
		} else
			busy = NULL;
4684
	} while (!list_empty(list));
4685 4686 4687
}

/*
4688 4689
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4690
 * This enables deleting this mem_cgroup.
4691 4692
 *
 * Caller is responsible for holding css reference on the memcg.
4693
 */
4694
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4695
{
4696
	int node, zid;
4697
	u64 usage;
4698

4699
	do {
4700 4701
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4702 4703
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4704
		for_each_node_state(node, N_MEMORY) {
4705
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4706 4707
				enum lru_list lru;
				for_each_lru(lru) {
4708
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4709
							node, zid, lru);
4710
				}
4711
			}
4712
		}
4713 4714
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4715
		cond_resched();
4716

4717
		/*
4718 4719 4720 4721 4722
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4723 4724 4725 4726 4727 4728
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4729 4730 4731
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4732 4733
}

4734 4735 4736 4737 4738 4739 4740
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4741
	struct cgroup_subsys_state *pos;
4742 4743

	/* bounce at first found */
4744
	css_for_each_child(pos, &memcg->css)
4745 4746 4747 4748 4749
		return true;
	return false;
}

/*
4750 4751
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4752 4753 4754 4755 4756 4757 4758 4759 4760
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4771

4772
	/* returns EBUSY if there is a task or if we come here twice. */
4773 4774 4775
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4776 4777
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4778
	/* try to free all pages in this cgroup */
4779
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4780
		int progress;
4781

4782 4783 4784
		if (signal_pending(current))
			return -EINTR;

4785
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4786
						false);
4787
		if (!progress) {
4788
			nr_retries--;
4789
			/* maybe some writeback is necessary */
4790
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4791
		}
4792 4793

	}
K
KAMEZAWA Hiroyuki 已提交
4794
	lru_add_drain();
4795 4796 4797
	mem_cgroup_reparent_charges(memcg);

	return 0;
4798 4799
}

4800 4801
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4802
{
4803
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4804

4805 4806
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4807
	return mem_cgroup_force_empty(memcg);
4808 4809
}

4810 4811
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4812
{
4813
	return mem_cgroup_from_css(css)->use_hierarchy;
4814 4815
}

4816 4817
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4818 4819
{
	int retval = 0;
4820
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4821
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4822

4823
	mutex_lock(&memcg_create_mutex);
4824 4825 4826 4827

	if (memcg->use_hierarchy == val)
		goto out;

4828
	/*
4829
	 * If parent's use_hierarchy is set, we can't make any modifications
4830 4831 4832 4833 4834 4835
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4836
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4837
				(val == 1 || val == 0)) {
4838
		if (!__memcg_has_children(memcg))
4839
			memcg->use_hierarchy = val;
4840 4841 4842 4843
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4844 4845

out:
4846
	mutex_unlock(&memcg_create_mutex);
4847 4848 4849 4850

	return retval;
}

4851

4852
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4853
					       enum mem_cgroup_stat_index idx)
4854
{
K
KAMEZAWA Hiroyuki 已提交
4855
	struct mem_cgroup *iter;
4856
	long val = 0;
4857

4858
	/* Per-cpu values can be negative, use a signed accumulator */
4859
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4860 4861 4862 4863 4864
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4865 4866
}

4867
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4868
{
K
KAMEZAWA Hiroyuki 已提交
4869
	u64 val;
4870

4871
	if (!mem_cgroup_is_root(memcg)) {
4872
		if (!swap)
4873
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4874
		else
4875
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4876 4877
	}

4878 4879 4880 4881
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4882 4883
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4884

K
KAMEZAWA Hiroyuki 已提交
4885
	if (swap)
4886
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4887 4888 4889 4890

	return val << PAGE_SHIFT;
}

4891 4892 4893
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4894
{
4895
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4896
	char str[64];
4897
	u64 val;
G
Glauber Costa 已提交
4898 4899
	int name, len;
	enum res_type type;
4900 4901 4902

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4903

4904 4905
	switch (type) {
	case _MEM:
4906
		if (name == RES_USAGE)
4907
			val = mem_cgroup_usage(memcg, false);
4908
		else
4909
			val = res_counter_read_u64(&memcg->res, name);
4910 4911
		break;
	case _MEMSWAP:
4912
		if (name == RES_USAGE)
4913
			val = mem_cgroup_usage(memcg, true);
4914
		else
4915
			val = res_counter_read_u64(&memcg->memsw, name);
4916
		break;
4917 4918 4919
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4920 4921 4922
	default:
		BUG();
	}
4923 4924 4925

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4926
}
4927

4928
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4929 4930 4931
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4932
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4945
	mutex_lock(&memcg_create_mutex);
4946
	mutex_lock(&set_limit_mutex);
4947
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
4948
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4949 4950 4951 4952 4953 4954
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4955 4956
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
4957
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
4958 4959
			goto out;
		}
4960 4961 4962 4963 4964 4965
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
4966 4967 4968 4969
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
4970
	mutex_unlock(&memcg_create_mutex);
4971 4972 4973 4974
#endif
	return ret;
}

4975
#ifdef CONFIG_MEMCG_KMEM
4976
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4977
{
4978
	int ret = 0;
4979 4980
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
4981 4982
		goto out;

4983
	memcg->kmem_account_flags = parent->kmem_account_flags;
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
4994 4995 4996 4997
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
4998 4999 5000
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5001 5002 5003 5004
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5005
	memcg_stop_kmem_account();
5006
	ret = memcg_update_cache_sizes(memcg);
5007
	memcg_resume_kmem_account();
5008 5009 5010
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5011
}
5012
#endif /* CONFIG_MEMCG_KMEM */
5013

5014 5015 5016 5017
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5018
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5019
			    const char *buffer)
B
Balbir Singh 已提交
5020
{
5021
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5022 5023
	enum res_type type;
	int name;
5024 5025 5026
	unsigned long long val;
	int ret;

5027 5028
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5029

5030
	switch (name) {
5031
	case RES_LIMIT:
5032 5033 5034 5035
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5036 5037
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5038 5039 5040
		if (ret)
			break;
		if (type == _MEM)
5041
			ret = mem_cgroup_resize_limit(memcg, val);
5042
		else if (type == _MEMSWAP)
5043
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5044
		else if (type == _KMEM)
5045
			ret = memcg_update_kmem_limit(css, val);
5046 5047
		else
			return -EINVAL;
5048
		break;
5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5063 5064 5065 5066 5067
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5068 5069
}

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5080 5081
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5094
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5095
{
5096
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5097 5098
	int name;
	enum res_type type;
5099

5100 5101
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5102

5103
	switch (name) {
5104
	case RES_MAX_USAGE:
5105
		if (type == _MEM)
5106
			res_counter_reset_max(&memcg->res);
5107
		else if (type == _MEMSWAP)
5108
			res_counter_reset_max(&memcg->memsw);
5109 5110 5111 5112
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5113 5114
		break;
	case RES_FAILCNT:
5115
		if (type == _MEM)
5116
			res_counter_reset_failcnt(&memcg->res);
5117
		else if (type == _MEMSWAP)
5118
			res_counter_reset_failcnt(&memcg->memsw);
5119 5120 5121 5122
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5123 5124
		break;
	}
5125

5126
	return 0;
5127 5128
}

5129
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5130 5131
					struct cftype *cft)
{
5132
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5133 5134
}

5135
#ifdef CONFIG_MMU
5136
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5137 5138
					struct cftype *cft, u64 val)
{
5139
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5140 5141 5142

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5143

5144
	/*
5145 5146 5147 5148
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5149
	 */
5150
	memcg->move_charge_at_immigrate = val;
5151 5152
	return 0;
}
5153
#else
5154
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5155 5156 5157 5158 5159
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5160

5161
#ifdef CONFIG_NUMA
5162 5163
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5164 5165 5166 5167
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5168
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5169

5170
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5171
	seq_printf(m, "total=%lu", total_nr);
5172
	for_each_node_state(nid, N_MEMORY) {
5173
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5174 5175 5176 5177
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5178
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5179
	seq_printf(m, "file=%lu", file_nr);
5180
	for_each_node_state(nid, N_MEMORY) {
5181
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5182
				LRU_ALL_FILE);
5183 5184 5185 5186
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5187
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5188
	seq_printf(m, "anon=%lu", anon_nr);
5189
	for_each_node_state(nid, N_MEMORY) {
5190
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5191
				LRU_ALL_ANON);
5192 5193 5194 5195
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5196
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5197
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5198
	for_each_node_state(nid, N_MEMORY) {
5199
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5200
				BIT(LRU_UNEVICTABLE));
5201 5202 5203 5204 5205 5206 5207
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5208 5209 5210 5211 5212
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5213
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5214
				 struct seq_file *m)
5215
{
5216
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5217 5218
	struct mem_cgroup *mi;
	unsigned int i;
5219

5220
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5221
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5222
			continue;
5223 5224
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5225
	}
L
Lee Schermerhorn 已提交
5226

5227 5228 5229 5230 5231 5232 5233 5234
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5235
	/* Hierarchical information */
5236 5237
	{
		unsigned long long limit, memsw_limit;
5238
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5239
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5240
		if (do_swap_account)
5241 5242
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5243
	}
K
KOSAKI Motohiro 已提交
5244

5245 5246 5247
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5248
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5249
			continue;
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5270
	}
K
KAMEZAWA Hiroyuki 已提交
5271

K
KOSAKI Motohiro 已提交
5272 5273 5274 5275
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5276
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5277 5278 5279 5280 5281
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5282
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5283
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5284

5285 5286 5287 5288
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5289
			}
5290 5291 5292 5293
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5294 5295 5296
	}
#endif

5297 5298 5299
	return 0;
}

5300 5301
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5302
{
5303
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5304

5305
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5306 5307
}

5308 5309
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5310
{
5311
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5312
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5313

T
Tejun Heo 已提交
5314
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5315 5316
		return -EINVAL;

5317
	mutex_lock(&memcg_create_mutex);
5318

K
KOSAKI Motohiro 已提交
5319
	/* If under hierarchy, only empty-root can set this value */
5320
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5321
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5322
		return -EINVAL;
5323
	}
K
KOSAKI Motohiro 已提交
5324 5325 5326

	memcg->swappiness = val;

5327
	mutex_unlock(&memcg_create_mutex);
5328

K
KOSAKI Motohiro 已提交
5329 5330 5331
	return 0;
}

5332 5333 5334 5335 5336 5337 5338 5339
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5340
		t = rcu_dereference(memcg->thresholds.primary);
5341
	else
5342
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5343 5344 5345 5346 5347 5348 5349

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5350
	 * current_threshold points to threshold just below or equal to usage.
5351 5352 5353
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5354
	i = t->current_threshold;
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5378
	t->current_threshold = i - 1;
5379 5380 5381 5382 5383 5384
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5385 5386 5387 5388 5389 5390 5391
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5392 5393 5394 5395 5396 5397 5398
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5399 5400 5401 5402 5403 5404 5405
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5406 5407
}

5408
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5409 5410 5411
{
	struct mem_cgroup_eventfd_list *ev;

5412
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5413 5414 5415 5416
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5417
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5418
{
K
KAMEZAWA Hiroyuki 已提交
5419 5420
	struct mem_cgroup *iter;

5421
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5422
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5423 5424
}

5425
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5426
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5427
{
5428
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5429 5430
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5431
	enum res_type type = MEMFILE_TYPE(cft->private);
5432
	u64 threshold, usage;
5433
	int i, size, ret;
5434 5435 5436 5437 5438 5439

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5440

5441
	if (type == _MEM)
5442
		thresholds = &memcg->thresholds;
5443
	else if (type == _MEMSWAP)
5444
		thresholds = &memcg->memsw_thresholds;
5445 5446 5447 5448 5449 5450
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5451
	if (thresholds->primary)
5452 5453
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5454
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5455 5456

	/* Allocate memory for new array of thresholds */
5457
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5458
			GFP_KERNEL);
5459
	if (!new) {
5460 5461 5462
		ret = -ENOMEM;
		goto unlock;
	}
5463
	new->size = size;
5464 5465

	/* Copy thresholds (if any) to new array */
5466 5467
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5468
				sizeof(struct mem_cgroup_threshold));
5469 5470
	}

5471
	/* Add new threshold */
5472 5473
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5474 5475

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5476
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5477 5478 5479
			compare_thresholds, NULL);

	/* Find current threshold */
5480
	new->current_threshold = -1;
5481
	for (i = 0; i < size; i++) {
5482
		if (new->entries[i].threshold <= usage) {
5483
			/*
5484 5485
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5486 5487
			 * it here.
			 */
5488
			++new->current_threshold;
5489 5490
		} else
			break;
5491 5492
	}

5493 5494 5495 5496 5497
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5498

5499
	/* To be sure that nobody uses thresholds */
5500 5501 5502 5503 5504 5505 5506 5507
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5508
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5509
	struct cftype *cft, struct eventfd_ctx *eventfd)
5510
{
5511
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5512 5513
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5514
	enum res_type type = MEMFILE_TYPE(cft->private);
5515
	u64 usage;
5516
	int i, j, size;
5517 5518 5519

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5520
		thresholds = &memcg->thresholds;
5521
	else if (type == _MEMSWAP)
5522
		thresholds = &memcg->memsw_thresholds;
5523 5524 5525
	else
		BUG();

5526 5527 5528
	if (!thresholds->primary)
		goto unlock;

5529 5530 5531 5532 5533 5534
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5535 5536 5537
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5538 5539 5540
			size++;
	}

5541
	new = thresholds->spare;
5542

5543 5544
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5545 5546
		kfree(new);
		new = NULL;
5547
		goto swap_buffers;
5548 5549
	}

5550
	new->size = size;
5551 5552

	/* Copy thresholds and find current threshold */
5553 5554 5555
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5556 5557
			continue;

5558
		new->entries[j] = thresholds->primary->entries[i];
5559
		if (new->entries[j].threshold <= usage) {
5560
			/*
5561
			 * new->current_threshold will not be used
5562 5563 5564
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5565
			++new->current_threshold;
5566 5567 5568 5569
		}
		j++;
	}

5570
swap_buffers:
5571 5572
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5573 5574 5575 5576 5577 5578
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5579
	rcu_assign_pointer(thresholds->primary, new);
5580

5581
	/* To be sure that nobody uses thresholds */
5582
	synchronize_rcu();
5583
unlock:
5584 5585
	mutex_unlock(&memcg->thresholds_lock);
}
5586

5587
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5588 5589
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5590
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5591
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5592
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5593 5594 5595 5596 5597 5598

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5599
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5600 5601 5602 5603 5604

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5605
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5606
		eventfd_signal(eventfd, 1);
5607
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5608 5609 5610 5611

	return 0;
}

5612
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5613 5614
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5615
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5616
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5617
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5618 5619 5620

	BUG_ON(type != _OOM_TYPE);

5621
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5622

5623
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5624 5625 5626 5627 5628 5629
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5630
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5631 5632
}

5633
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5634 5635
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5636
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5637

5638
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5639

5640
	if (atomic_read(&memcg->under_oom))
5641 5642 5643 5644 5645 5646
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5647
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5648 5649
	struct cftype *cft, u64 val)
{
5650
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5651
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5652 5653

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5654
	if (!parent || !((val == 0) || (val == 1)))
5655 5656
		return -EINVAL;

5657
	mutex_lock(&memcg_create_mutex);
5658
	/* oom-kill-disable is a flag for subhierarchy. */
5659
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5660
		mutex_unlock(&memcg_create_mutex);
5661 5662
		return -EINVAL;
	}
5663
	memcg->oom_kill_disable = val;
5664
	if (!val)
5665
		memcg_oom_recover(memcg);
5666
	mutex_unlock(&memcg_create_mutex);
5667 5668 5669
	return 0;
}

A
Andrew Morton 已提交
5670
#ifdef CONFIG_MEMCG_KMEM
5671
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5672
{
5673 5674
	int ret;

5675
	memcg->kmemcg_id = -1;
5676 5677 5678
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5679

5680
	return mem_cgroup_sockets_init(memcg, ss);
5681
}
5682

5683
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5684
{
5685
	mem_cgroup_sockets_destroy(memcg);
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5712 5713 5714 5715 5716 5717 5718

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5719
		css_put(&memcg->css);
G
Glauber Costa 已提交
5720
}
5721
#else
5722
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5723 5724 5725
{
	return 0;
}
G
Glauber Costa 已提交
5726

5727 5728 5729 5730 5731
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5732 5733
{
}
5734 5735
#endif

B
Balbir Singh 已提交
5736 5737
static struct cftype mem_cgroup_files[] = {
	{
5738
		.name = "usage_in_bytes",
5739
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5740
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5741 5742
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5743
	},
5744 5745
	{
		.name = "max_usage_in_bytes",
5746
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5747
		.trigger = mem_cgroup_reset,
5748
		.read = mem_cgroup_read,
5749
	},
B
Balbir Singh 已提交
5750
	{
5751
		.name = "limit_in_bytes",
5752
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5753
		.write_string = mem_cgroup_write,
5754
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5755
	},
5756 5757 5758 5759
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5760
		.read = mem_cgroup_read,
5761
	},
B
Balbir Singh 已提交
5762 5763
	{
		.name = "failcnt",
5764
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5765
		.trigger = mem_cgroup_reset,
5766
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5767
	},
5768 5769
	{
		.name = "stat",
5770
		.read_seq_string = memcg_stat_show,
5771
	},
5772 5773 5774 5775
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5776 5777
	{
		.name = "use_hierarchy",
5778
		.flags = CFTYPE_INSANE,
5779 5780 5781
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5782 5783 5784 5785 5786
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5787 5788 5789 5790 5791
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5792 5793
	{
		.name = "oom_control",
5794 5795
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5796 5797 5798 5799
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5800 5801 5802 5803 5804
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5805 5806 5807
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5808
		.read_seq_string = memcg_numa_stat_show,
5809 5810
	},
#endif
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5835 5836 5837 5838 5839 5840
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5841
#endif
5842
	{ },	/* terminate */
5843
};
5844

5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5875
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5876 5877
{
	struct mem_cgroup_per_node *pn;
5878
	struct mem_cgroup_per_zone *mz;
5879
	int zone, tmp = node;
5880 5881 5882 5883 5884 5885 5886 5887
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5888 5889
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5890
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5891 5892
	if (!pn)
		return 1;
5893 5894 5895

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5896
		lruvec_init(&mz->lruvec);
5897
		mz->memcg = memcg;
5898
	}
5899
	memcg->nodeinfo[node] = pn;
5900 5901 5902
	return 0;
}

5903
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5904
{
5905
	kfree(memcg->nodeinfo[node]);
5906 5907
}

5908 5909
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5910
	struct mem_cgroup *memcg;
5911
	size_t size = memcg_size();
5912

5913
	/* Can be very big if nr_node_ids is very big */
5914
	if (size < PAGE_SIZE)
5915
		memcg = kzalloc(size, GFP_KERNEL);
5916
	else
5917
		memcg = vzalloc(size);
5918

5919
	if (!memcg)
5920 5921
		return NULL;

5922 5923
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5924
		goto out_free;
5925 5926
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5927 5928 5929

out_free:
	if (size < PAGE_SIZE)
5930
		kfree(memcg);
5931
	else
5932
		vfree(memcg);
5933
	return NULL;
5934 5935
}

5936
/*
5937 5938 5939 5940 5941 5942 5943 5944
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5945
 */
5946 5947

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5948
{
5949
	int node;
5950
	size_t size = memcg_size();
5951

5952 5953 5954 5955 5956 5957 5958
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5970
	disarm_static_keys(memcg);
5971 5972 5973 5974
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5975
}
5976

5977 5978 5979
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5980
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5981
{
5982
	if (!memcg->res.parent)
5983
		return NULL;
5984
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5985
}
G
Glauber Costa 已提交
5986
EXPORT_SYMBOL(parent_mem_cgroup);
5987

L
Li Zefan 已提交
5988
static struct cgroup_subsys_state * __ref
5989
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
5990
{
5991
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5992
	long error = -ENOMEM;
5993
	int node;
B
Balbir Singh 已提交
5994

5995 5996
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5997
		return ERR_PTR(error);
5998

B
Bob Liu 已提交
5999
	for_each_node(node)
6000
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6001
			goto free_out;
6002

6003
	/* root ? */
6004
	if (parent_css == NULL) {
6005
		root_mem_cgroup = memcg;
6006 6007 6008
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6009
	}
6010

6011 6012 6013 6014 6015
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6016
	vmpressure_init(&memcg->vmpressure);
6017
	spin_lock_init(&memcg->soft_lock);
6018 6019 6020 6021 6022 6023 6024 6025 6026

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6027
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6028
{
6029 6030
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6031 6032
	int error = 0;

T
Tejun Heo 已提交
6033
	if (!parent)
6034 6035
		return 0;

6036
	mutex_lock(&memcg_create_mutex);
6037 6038 6039 6040 6041 6042

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6043 6044
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6045
		res_counter_init(&memcg->kmem, &parent->kmem);
6046

6047
		/*
6048 6049
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6050
		 */
6051
	} else {
6052 6053
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6054
		res_counter_init(&memcg->kmem, NULL);
6055 6056 6057 6058 6059
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6060
		if (parent != root_mem_cgroup)
6061
			mem_cgroup_subsys.broken_hierarchy = true;
6062
	}
6063 6064

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6065
	mutex_unlock(&memcg_create_mutex);
6066
	return error;
B
Balbir Singh 已提交
6067 6068
}

M
Michal Hocko 已提交
6069 6070 6071 6072 6073 6074 6075 6076
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6077
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6078 6079 6080 6081 6082 6083

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6084
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6085 6086
}

6087
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6088
{
6089
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6090

6091 6092
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6093
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6094
	mem_cgroup_reparent_charges(memcg);
6095 6096 6097
	if (memcg->soft_contributed) {
		while ((memcg = parent_mem_cgroup(memcg)))
			atomic_dec(&memcg->children_in_excess);
6098 6099 6100

		if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
			atomic_dec(&root_mem_cgroup->children_in_excess);
6101
	}
G
Glauber Costa 已提交
6102
	mem_cgroup_destroy_all_caches(memcg);
6103
	vmpressure_cleanup(&memcg->vmpressure);
6104 6105
}

6106
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6107
{
6108
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6109

6110
	memcg_destroy_kmem(memcg);
6111
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6112 6113
}

6114
#ifdef CONFIG_MMU
6115
/* Handlers for move charge at task migration. */
6116 6117
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6118
{
6119 6120
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6121
	struct mem_cgroup *memcg = mc.to;
6122

6123
	if (mem_cgroup_is_root(memcg)) {
6124 6125 6126 6127 6128 6129 6130 6131
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6132
		 * "memcg" cannot be under rmdir() because we've already checked
6133 6134 6135 6136
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6137
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6138
			goto one_by_one;
6139
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6140
						PAGE_SIZE * count, &dummy)) {
6141
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6158 6159
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6160
		if (ret)
6161
			/* mem_cgroup_clear_mc() will do uncharge later */
6162
			return ret;
6163 6164
		mc.precharge++;
	}
6165 6166 6167 6168
	return ret;
}

/**
6169
 * get_mctgt_type - get target type of moving charge
6170 6171 6172
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6173
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6174 6175 6176 6177 6178 6179
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6180 6181 6182
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6183 6184 6185 6186 6187
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6188
	swp_entry_t	ent;
6189 6190 6191
};

enum mc_target_type {
6192
	MC_TARGET_NONE = 0,
6193
	MC_TARGET_PAGE,
6194
	MC_TARGET_SWAP,
6195 6196
};

D
Daisuke Nishimura 已提交
6197 6198
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6199
{
D
Daisuke Nishimura 已提交
6200
	struct page *page = vm_normal_page(vma, addr, ptent);
6201

D
Daisuke Nishimura 已提交
6202 6203 6204 6205
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6206
		if (!move_anon())
D
Daisuke Nishimura 已提交
6207
			return NULL;
6208 6209
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6210 6211 6212 6213 6214 6215 6216
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6217
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6218 6219 6220 6221 6222 6223 6224 6225
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6226 6227 6228 6229
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6230
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6231 6232 6233 6234 6235
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6236 6237 6238 6239 6240 6241 6242
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6243

6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6263 6264 6265 6266 6267 6268
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6269
		if (do_swap_account)
6270
			*entry = swap;
6271
		page = find_get_page(swap_address_space(swap), swap.val);
6272
	}
6273
#endif
6274 6275 6276
	return page;
}

6277
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6278 6279 6280 6281
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6282
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6283 6284 6285 6286 6287 6288
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6289 6290
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6291 6292

	if (!page && !ent.val)
6293
		return ret;
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6309 6310
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6311
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6312 6313 6314
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6315 6316 6317 6318
	}
	return ret;
}

6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6354 6355 6356 6357 6358 6359 6360 6361
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6362 6363 6364 6365
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6366
		return 0;
6367
	}
6368

6369 6370
	if (pmd_trans_unstable(pmd))
		return 0;
6371 6372
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6373
		if (get_mctgt_type(vma, addr, *pte, NULL))
6374 6375 6376 6377
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6378 6379 6380
	return 0;
}

6381 6382 6383 6384 6385
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6386
	down_read(&mm->mmap_sem);
6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6398
	up_read(&mm->mmap_sem);
6399 6400 6401 6402 6403 6404 6405 6406 6407

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6408 6409 6410 6411 6412
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6413 6414
}

6415 6416
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6417
{
6418 6419
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6420
	int i;
6421

6422
	/* we must uncharge all the leftover precharges from mc.to */
6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6434
	}
6435 6436 6437 6438 6439 6440
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6441 6442 6443

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6444 6445 6446 6447 6448 6449 6450 6451 6452

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6453
		/* we've already done css_get(mc.to) */
6454 6455
		mc.moved_swap = 0;
	}
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6471
	spin_lock(&mc.lock);
6472 6473
	mc.from = NULL;
	mc.to = NULL;
6474
	spin_unlock(&mc.lock);
6475
	mem_cgroup_end_move(from);
6476 6477
}

6478
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6479
				 struct cgroup_taskset *tset)
6480
{
6481
	struct task_struct *p = cgroup_taskset_first(tset);
6482
	int ret = 0;
6483
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6484
	unsigned long move_charge_at_immigrate;
6485

6486 6487 6488 6489 6490 6491 6492
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6493 6494 6495
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6496
		VM_BUG_ON(from == memcg);
6497 6498 6499 6500 6501

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6502 6503 6504 6505
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6506
			VM_BUG_ON(mc.moved_charge);
6507
			VM_BUG_ON(mc.moved_swap);
6508
			mem_cgroup_start_move(from);
6509
			spin_lock(&mc.lock);
6510
			mc.from = from;
6511
			mc.to = memcg;
6512
			mc.immigrate_flags = move_charge_at_immigrate;
6513
			spin_unlock(&mc.lock);
6514
			/* We set mc.moving_task later */
6515 6516 6517 6518

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6519 6520
		}
		mmput(mm);
6521 6522 6523 6524
	}
	return ret;
}

6525
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6526
				     struct cgroup_taskset *tset)
6527
{
6528
	mem_cgroup_clear_mc();
6529 6530
}

6531 6532 6533
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6534
{
6535 6536 6537 6538
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6539 6540 6541 6542
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6543

6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6555
		if (mc.precharge < HPAGE_PMD_NR) {
6556 6557 6558 6559 6560 6561 6562 6563 6564
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6565
							pc, mc.from, mc.to)) {
6566 6567 6568 6569 6570 6571 6572 6573
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6574
		return 0;
6575 6576
	}

6577 6578
	if (pmd_trans_unstable(pmd))
		return 0;
6579 6580 6581 6582
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6583
		swp_entry_t ent;
6584 6585 6586 6587

		if (!mc.precharge)
			break;

6588
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6589 6590 6591 6592 6593
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6594
			if (!mem_cgroup_move_account(page, 1, pc,
6595
						     mc.from, mc.to)) {
6596
				mc.precharge--;
6597 6598
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6599 6600
			}
			putback_lru_page(page);
6601
put:			/* get_mctgt_type() gets the page */
6602 6603
			put_page(page);
			break;
6604 6605
		case MC_TARGET_SWAP:
			ent = target.ent;
6606
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6607
				mc.precharge--;
6608 6609 6610
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6611
			break;
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6626
		ret = mem_cgroup_do_precharge(1);
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6670
	up_read(&mm->mmap_sem);
6671 6672
}

6673
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6674
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6675
{
6676
	struct task_struct *p = cgroup_taskset_first(tset);
6677
	struct mm_struct *mm = get_task_mm(p);
6678 6679

	if (mm) {
6680 6681
		if (mc.to)
			mem_cgroup_move_charge(mm);
6682 6683
		mmput(mm);
	}
6684 6685
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6686
}
6687
#else	/* !CONFIG_MMU */
6688
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6689
				 struct cgroup_taskset *tset)
6690 6691 6692
{
	return 0;
}
6693
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6694
				     struct cgroup_taskset *tset)
6695 6696
{
}
6697
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6698
				 struct cgroup_taskset *tset)
6699 6700 6701
{
}
#endif
B
Balbir Singh 已提交
6702

6703 6704 6705 6706
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6707
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6708 6709 6710 6711 6712 6713
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6714 6715
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6716 6717
}

B
Balbir Singh 已提交
6718 6719 6720
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6721
	.css_alloc = mem_cgroup_css_alloc,
6722
	.css_online = mem_cgroup_css_online,
6723 6724
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6725 6726
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6727
	.attach = mem_cgroup_move_task,
6728
	.bind = mem_cgroup_bind,
6729
	.base_cftypes = mem_cgroup_files,
6730
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6731
	.use_id = 1,
B
Balbir Singh 已提交
6732
};
6733

A
Andrew Morton 已提交
6734
#ifdef CONFIG_MEMCG_SWAP
6735 6736
static int __init enable_swap_account(char *s)
{
6737
	if (!strcmp(s, "1"))
6738
		really_do_swap_account = 1;
6739
	else if (!strcmp(s, "0"))
6740 6741 6742
		really_do_swap_account = 0;
	return 1;
}
6743
__setup("swapaccount=", enable_swap_account);
6744

6745 6746
static void __init memsw_file_init(void)
{
6747 6748 6749 6750 6751 6752 6753 6754 6755
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6756
}
6757

6758
#else
6759
static void __init enable_swap_cgroup(void)
6760 6761
{
}
6762
#endif
6763 6764

/*
6765 6766 6767 6768 6769 6770
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6771 6772 6773 6774
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6775
	enable_swap_cgroup();
6776
	memcg_stock_init();
6777 6778 6779
	return 0;
}
subsys_initcall(mem_cgroup_init);