memcontrol.c 146.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53
#include <net/sock.h>
M
Michal Hocko 已提交
54
#include <net/ip.h>
G
Glauber Costa 已提交
55
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
56

57 58
#include <asm/uaccess.h>

59 60
#include <trace/events/vmscan.h>

61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
62 63
EXPORT_SYMBOL(mem_cgroup_subsys);

64
#define MEM_CGROUP_RECLAIM_RETRIES	5
65
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
66

A
Andrew Morton 已提交
67
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
68
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
69
int do_swap_account __read_mostly;
70 71

/* for remember boot option*/
A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP_ENABLED
73 74 75 76 77
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

78
#else
79
#define do_swap_account		0
80 81 82
#endif


83 84 85 86 87 88 89 90
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
91
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
92
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
93
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
94 95 96
	MEM_CGROUP_STAT_NSTATS,
};

97 98 99 100 101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

104 105 106
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
107 108
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
109 110
	MEM_CGROUP_EVENTS_NSTATS,
};
111 112 113 114 115 116 117 118

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

119 120 121 122 123 124 125 126 127
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
128
	MEM_CGROUP_TARGET_NUMAINFO,
129 130
	MEM_CGROUP_NTARGETS,
};
131 132 133
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
134

135
struct mem_cgroup_stat_cpu {
136
	long count[MEM_CGROUP_STAT_NSTATS];
137
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
138
	unsigned long nr_page_events;
139
	unsigned long targets[MEM_CGROUP_NTARGETS];
140 141
};

142 143 144 145 146 147 148
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

149 150 151 152
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
153
	struct lruvec		lruvec;
154
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
155

156 157
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

158 159 160 161
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
162
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
163
						/* use container_of	   */
164 165 166 167 168 169 170 171 172 173
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

194 195 196 197 198
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
199
/* For threshold */
200
struct mem_cgroup_threshold_ary {
201
	/* An array index points to threshold just below or equal to usage. */
202
	int current_threshold;
203 204 205 206 207
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
208 209 210 211 212 213 214 215 216 217 218 219

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
220 221 222 223 224
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
225

226 227
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
228

B
Balbir Singh 已提交
229 230 231 232 233 234 235
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
236 237 238
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
239 240 241 242 243 244 245
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
264 265
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
266 267 268 269
		 */
		struct work_struct work_freeing;
	};

270 271 272 273
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
274
	struct mem_cgroup_lru_info info;
275 276 277
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
278 279
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
280
#endif
281 282 283 284
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
285 286 287 288

	bool		oom_lock;
	atomic_t	under_oom;

289
	atomic_t	refcnt;
290

291
	int	swappiness;
292 293
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
294

295 296 297
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

298 299 300 301
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
302
	struct mem_cgroup_thresholds thresholds;
303

304
	/* thresholds for mem+swap usage. RCU-protected */
305
	struct mem_cgroup_thresholds memsw_thresholds;
306

K
KAMEZAWA Hiroyuki 已提交
307 308
	/* For oom notifier event fd */
	struct list_head oom_notify;
309

310 311 312 313 314
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
315 316 317 318
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
319 320
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
321
	/*
322
	 * percpu counter.
323
	 */
324
	struct mem_cgroup_stat_cpu __percpu *stat;
325 326 327 328 329 330
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
331

M
Michal Hocko 已提交
332
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
333 334
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
335 336
};

337 338 339 340 341 342
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
343
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
344
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
345 346 347
	NR_MOVE_TYPE,
};

348 349
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
350
	spinlock_t	  lock; /* for from, to */
351 352 353
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
354
	unsigned long moved_charge;
355
	unsigned long moved_swap;
356 357 358
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
359
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
360 361
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
362

D
Daisuke Nishimura 已提交
363 364 365 366 367 368
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

369 370 371 372 373 374
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

375 376 377 378
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
379 380
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
381

382 383
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
384
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
385
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
386
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
387 388 389
	NR_CHARGE_TYPE,
};

390
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
391 392 393 394 395 396
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
};

397 398
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
399
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
400 401
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
402

403 404 405 406 407 408 409 410
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

411 412
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
413

414 415 416 417 418 419
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

420 421 422 423 424
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
425
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
426
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
427 428 429

void sock_update_memcg(struct sock *sk)
{
430
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
431
		struct mem_cgroup *memcg;
432
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
433 434 435

		BUG_ON(!sk->sk_prot->proto_cgroup);

436 437 438 439 440 441 442 443 444 445 446 447 448 449
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
450 451
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
452 453
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
454
			mem_cgroup_get(memcg);
455
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
456 457 458 459 460 461 462 463
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
464
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
465 466 467 468 469 470
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
471 472 473 474 475 476 477 478 479

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
480

481 482 483 484 485 486 487 488 489 490 491 492
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

493
static void drain_all_stock_async(struct mem_cgroup *memcg);
494

495
static struct mem_cgroup_per_zone *
496
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
497
{
498
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
499 500
}

501
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
502
{
503
	return &memcg->css;
504 505
}

506
static struct mem_cgroup_per_zone *
507
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
508
{
509 510
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
511

512
	return mem_cgroup_zoneinfo(memcg, nid, zid);
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
531
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
532
				struct mem_cgroup_per_zone *mz,
533 534
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
535 536 537 538 539 540 541 542
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

543 544 545
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
562 563 564
}

static void
565
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
566 567 568 569 570 571 572 573 574
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

575
static void
576
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
577 578 579 580
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
581
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
582 583 584 585
	spin_unlock(&mctz->lock);
}


586
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
587
{
588
	unsigned long long excess;
589 590
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
591 592
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
593 594 595
	mctz = soft_limit_tree_from_page(page);

	/*
596 597
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
598
	 */
599 600 601
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
602 603 604 605
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
606
		if (excess || mz->on_tree) {
607 608 609
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
610
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
611
			/*
612 613
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
614
			 */
615
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
616 617
			spin_unlock(&mctz->lock);
		}
618 619 620
	}
}

621
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
622 623 624 625 626
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
627
	for_each_node(node) {
628
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
629
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
630
			mctz = soft_limit_tree_node_zone(node, zone);
631
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
632 633 634 635
		}
	}
}

636 637 638 639
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
640
	struct mem_cgroup_per_zone *mz;
641 642

retry:
643
	mz = NULL;
644 645 646 647 648 649 650 651 652 653
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
654 655 656
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
692
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
693
				 enum mem_cgroup_stat_index idx)
694
{
695
	long val = 0;
696 697
	int cpu;

698 699
	get_online_cpus();
	for_each_online_cpu(cpu)
700
		val += per_cpu(memcg->stat->count[idx], cpu);
701
#ifdef CONFIG_HOTPLUG_CPU
702 703 704
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
705 706
#endif
	put_online_cpus();
707 708 709
	return val;
}

710
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
711 712 713
					 bool charge)
{
	int val = (charge) ? 1 : -1;
714
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
715 716
}

717
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
718 719 720 721 722 723
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
724
		val += per_cpu(memcg->stat->events[idx], cpu);
725
#ifdef CONFIG_HOTPLUG_CPU
726 727 728
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
729 730 731 732
#endif
	return val;
}

733
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
734
					 bool anon, int nr_pages)
735
{
736 737
	preempt_disable();

738 739 740 741 742 743
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
744
				nr_pages);
745
	else
746
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
747
				nr_pages);
748

749 750
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
751
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
752
	else {
753
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
754 755
		nr_pages = -nr_pages; /* for event */
	}
756

757
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
758

759
	preempt_enable();
760 761
}

762
unsigned long
763
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
764 765 766 767 768 769 770 771
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
772
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
773
			unsigned int lru_mask)
774 775
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
776
	enum lru_list lru;
777 778
	unsigned long ret = 0;

779
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
780

H
Hugh Dickins 已提交
781 782 783
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
784 785 786 787 788
	}
	return ret;
}

static unsigned long
789
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
790 791
			int nid, unsigned int lru_mask)
{
792 793 794
	u64 total = 0;
	int zid;

795
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
796 797
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
798

799 800
	return total;
}
801

802
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
803
			unsigned int lru_mask)
804
{
805
	int nid;
806 807
	u64 total = 0;

808
	for_each_node_state(nid, N_MEMORY)
809
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
810
	return total;
811 812
}

813 814
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
815 816 817
{
	unsigned long val, next;

818
	val = __this_cpu_read(memcg->stat->nr_page_events);
819
	next = __this_cpu_read(memcg->stat->targets[target]);
820
	/* from time_after() in jiffies.h */
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
837
	}
838
	return false;
839 840 841 842 843 844
}

/*
 * Check events in order.
 *
 */
845
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
846
{
847
	preempt_disable();
848
	/* threshold event is triggered in finer grain than soft limit */
849 850
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
851 852
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
853 854 855 856 857 858 859 860 861

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

862
		mem_cgroup_threshold(memcg);
863
		if (unlikely(do_softlimit))
864
			mem_cgroup_update_tree(memcg, page);
865
#if MAX_NUMNODES > 1
866
		if (unlikely(do_numainfo))
867
			atomic_inc(&memcg->numainfo_events);
868
#endif
869 870
	} else
		preempt_enable();
871 872
}

G
Glauber Costa 已提交
873
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
874
{
875 876
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
877 878
}

879
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
880
{
881 882 883 884 885 886 887 888
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

889
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
890 891
}

892
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
893
{
894
	struct mem_cgroup *memcg = NULL;
895 896 897

	if (!mm)
		return NULL;
898 899 900 901 902 903 904
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
905 906
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
907
			break;
908
	} while (!css_tryget(&memcg->css));
909
	rcu_read_unlock();
910
	return memcg;
911 912
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
933
{
934 935
	struct mem_cgroup *memcg = NULL;
	int id = 0;
936

937 938 939
	if (mem_cgroup_disabled())
		return NULL;

940 941
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
942

943 944
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
945

946 947
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
948

949 950 951 952 953
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
954

955
	while (!memcg) {
956
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
957
		struct cgroup_subsys_state *css;
958

959 960 961 962 963 964 965 966 967 968 969
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
970

971 972 973 974
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
975
				memcg = mem_cgroup_from_css(css);
976 977
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
978 979
		rcu_read_unlock();

980 981 982 983 984 985 986
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
987 988 989 990 991

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
992
}
K
KAMEZAWA Hiroyuki 已提交
993

994 995 996 997 998 999 1000
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1001 1002 1003 1004 1005 1006
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1007

1008 1009 1010 1011 1012 1013
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1014
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1015
	     iter != NULL;				\
1016
	     iter = mem_cgroup_iter(root, iter, NULL))
1017

1018
#define for_each_mem_cgroup(iter)			\
1019
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1020
	     iter != NULL;				\
1021
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1022

1023
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1024
{
1025
	struct mem_cgroup *memcg;
1026 1027

	rcu_read_lock();
1028 1029
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1030 1031 1032 1033
		goto out;

	switch (idx) {
	case PGFAULT:
1034 1035 1036 1037
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1038 1039 1040 1041 1042 1043 1044
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1045
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1046

1047 1048 1049
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1050
 * @memcg: memcg of the wanted lruvec
1051 1052 1053 1054 1055 1056 1057 1058 1059
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1060
	struct lruvec *lruvec;
1061

1062 1063 1064 1065
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1066 1067

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1078 1079
}

K
KAMEZAWA Hiroyuki 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1093

1094
/**
1095
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1096
 * @page: the page
1097
 * @zone: zone of the page
1098
 */
1099
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1100 1101
{
	struct mem_cgroup_per_zone *mz;
1102 1103
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1104
	struct lruvec *lruvec;
1105

1106 1107 1108 1109
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1110

K
KAMEZAWA Hiroyuki 已提交
1111
	pc = lookup_page_cgroup(page);
1112
	memcg = pc->mem_cgroup;
1113 1114

	/*
1115
	 * Surreptitiously switch any uncharged offlist page to root:
1116 1117 1118 1119 1120 1121 1122
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1123
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1124 1125
		pc->mem_cgroup = memcg = root_mem_cgroup;

1126
	mz = page_cgroup_zoneinfo(memcg, page);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1137
}
1138

1139
/**
1140 1141 1142 1143
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1144
 *
1145 1146
 * This function must be called when a page is added to or removed from an
 * lru list.
1147
 */
1148 1149
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1150 1151
{
	struct mem_cgroup_per_zone *mz;
1152
	unsigned long *lru_size;
1153 1154 1155 1156

	if (mem_cgroup_disabled())
		return;

1157 1158 1159 1160
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1161
}
1162

1163
/*
1164
 * Checks whether given mem is same or in the root_mem_cgroup's
1165 1166
 * hierarchy subtree
 */
1167 1168
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1169
{
1170 1171
	if (root_memcg == memcg)
		return true;
1172
	if (!root_memcg->use_hierarchy || !memcg)
1173
		return false;
1174 1175 1176 1177 1178 1179 1180 1181
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1182
	rcu_read_lock();
1183
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1184 1185
	rcu_read_unlock();
	return ret;
1186 1187
}

1188
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1189 1190
{
	int ret;
1191
	struct mem_cgroup *curr = NULL;
1192
	struct task_struct *p;
1193

1194
	p = find_lock_task_mm(task);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1210 1211
	if (!curr)
		return 0;
1212
	/*
1213
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1214
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1215 1216
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1217
	 */
1218
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1219
	css_put(&curr->css);
1220 1221 1222
	return ret;
}

1223
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1224
{
1225
	unsigned long inactive_ratio;
1226
	unsigned long inactive;
1227
	unsigned long active;
1228
	unsigned long gb;
1229

1230 1231
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1232

1233 1234 1235 1236 1237 1238
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1239
	return inactive * inactive_ratio < active;
1240 1241
}

1242
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1243 1244 1245 1246
{
	unsigned long active;
	unsigned long inactive;

1247 1248
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1249 1250 1251 1252

	return (active > inactive);
}

1253 1254 1255
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1256
/**
1257
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1258
 * @memcg: the memory cgroup
1259
 *
1260
 * Returns the maximum amount of memory @mem can be charged with, in
1261
 * pages.
1262
 */
1263
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1264
{
1265 1266
	unsigned long long margin;

1267
	margin = res_counter_margin(&memcg->res);
1268
	if (do_swap_account)
1269
		margin = min(margin, res_counter_margin(&memcg->memsw));
1270
	return margin >> PAGE_SHIFT;
1271 1272
}

1273
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1274 1275 1276 1277 1278 1279 1280
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1281
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1282 1283
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1298 1299 1300 1301

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1302
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1303
{
1304
	atomic_inc(&memcg_moving);
1305
	atomic_inc(&memcg->moving_account);
1306 1307 1308
	synchronize_rcu();
}

1309
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1310
{
1311 1312 1313 1314
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1315 1316
	if (memcg) {
		atomic_dec(&memcg_moving);
1317
		atomic_dec(&memcg->moving_account);
1318
	}
1319
}
1320

1321 1322 1323
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1324 1325
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1326 1327 1328 1329 1330 1331 1332
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1333
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1334 1335
{
	VM_BUG_ON(!rcu_read_lock_held());
1336
	return atomic_read(&memcg->moving_account) > 0;
1337
}
1338

1339
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1340
{
1341 1342
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1343
	bool ret = false;
1344 1345 1346 1347 1348 1349 1350 1351 1352
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1353

1354 1355
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1356 1357
unlock:
	spin_unlock(&mc.lock);
1358 1359 1360
	return ret;
}

1361
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1362 1363
{
	if (mc.moving_task && current != mc.moving_task) {
1364
		if (mem_cgroup_under_move(memcg)) {
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1377 1378 1379 1380
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1381
 * see mem_cgroup_stolen(), too.
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1395
/**
1396
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1415
	if (!memcg || !p)
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1461 1462 1463 1464
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1465
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1466 1467
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1468 1469
	struct mem_cgroup *iter;

1470
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1471
		num++;
1472 1473 1474
	return num;
}

D
David Rientjes 已提交
1475 1476 1477
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1478
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1479 1480 1481
{
	u64 limit;

1482 1483
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1484
	/*
1485
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1486
	 */
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1501 1502
}

1503 1504
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1505 1506 1507 1508 1509 1510 1511
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1606 1607
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1608
 * @memcg: the target memcg
1609 1610 1611 1612 1613 1614 1615
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1616
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1617 1618
		int nid, bool noswap)
{
1619
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1620 1621 1622
		return true;
	if (noswap || !total_swap_pages)
		return false;
1623
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1624 1625 1626 1627
		return true;
	return false;

}
1628 1629 1630 1631 1632 1633 1634 1635
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1636
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1637 1638
{
	int nid;
1639 1640 1641 1642
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1643
	if (!atomic_read(&memcg->numainfo_events))
1644
		return;
1645
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1646 1647 1648
		return;

	/* make a nodemask where this memcg uses memory from */
1649
	memcg->scan_nodes = node_states[N_MEMORY];
1650

1651
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1652

1653 1654
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1655
	}
1656

1657 1658
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1673
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1674 1675 1676
{
	int node;

1677 1678
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1679

1680
	node = next_node(node, memcg->scan_nodes);
1681
	if (node == MAX_NUMNODES)
1682
		node = first_node(memcg->scan_nodes);
1683 1684 1685 1686 1687 1688 1689 1690 1691
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1692
	memcg->last_scanned_node = node;
1693 1694 1695
	return node;
}

1696 1697 1698 1699 1700 1701
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1702
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1703 1704 1705 1706 1707 1708 1709
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1710 1711
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1712
		     nid < MAX_NUMNODES;
1713
		     nid = next_node(nid, memcg->scan_nodes)) {
1714

1715
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1716 1717 1718 1719 1720 1721
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1722
	for_each_node_state(nid, N_MEMORY) {
1723
		if (node_isset(nid, memcg->scan_nodes))
1724
			continue;
1725
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1726 1727 1728 1729 1730
			return true;
	}
	return false;
}

1731
#else
1732
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1733 1734 1735
{
	return 0;
}
1736

1737
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1738
{
1739
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1740
}
1741 1742
#endif

1743 1744 1745 1746
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1747
{
1748
	struct mem_cgroup *victim = NULL;
1749
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1750
	int loop = 0;
1751
	unsigned long excess;
1752
	unsigned long nr_scanned;
1753 1754 1755 1756
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1757

1758
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1759

1760
	while (1) {
1761
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1762
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1763
			loop++;
1764 1765 1766 1767 1768 1769
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1770
				if (!total)
1771 1772
					break;
				/*
L
Lucas De Marchi 已提交
1773
				 * We want to do more targeted reclaim.
1774 1775 1776 1777 1778
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1779
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1780 1781
					break;
			}
1782
			continue;
1783
		}
1784
		if (!mem_cgroup_reclaimable(victim, false))
1785
			continue;
1786 1787 1788 1789
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1790
			break;
1791
	}
1792
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1793
	return total;
1794 1795
}

K
KAMEZAWA Hiroyuki 已提交
1796 1797 1798
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1799
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1800
 */
1801
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1802
{
1803
	struct mem_cgroup *iter, *failed = NULL;
1804

1805
	for_each_mem_cgroup_tree(iter, memcg) {
1806
		if (iter->oom_lock) {
1807 1808 1809 1810 1811
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1812 1813
			mem_cgroup_iter_break(memcg, iter);
			break;
1814 1815
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1816
	}
K
KAMEZAWA Hiroyuki 已提交
1817

1818
	if (!failed)
1819
		return true;
1820 1821 1822 1823 1824

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1825
	for_each_mem_cgroup_tree(iter, memcg) {
1826
		if (iter == failed) {
1827 1828
			mem_cgroup_iter_break(memcg, iter);
			break;
1829 1830 1831
		}
		iter->oom_lock = false;
	}
1832
	return false;
1833
}
1834

1835
/*
1836
 * Has to be called with memcg_oom_lock
1837
 */
1838
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1839
{
K
KAMEZAWA Hiroyuki 已提交
1840 1841
	struct mem_cgroup *iter;

1842
	for_each_mem_cgroup_tree(iter, memcg)
1843 1844 1845 1846
		iter->oom_lock = false;
	return 0;
}

1847
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1848 1849 1850
{
	struct mem_cgroup *iter;

1851
	for_each_mem_cgroup_tree(iter, memcg)
1852 1853 1854
		atomic_inc(&iter->under_oom);
}

1855
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1856 1857 1858
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1859 1860 1861 1862 1863
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1864
	for_each_mem_cgroup_tree(iter, memcg)
1865
		atomic_add_unless(&iter->under_oom, -1, 0);
1866 1867
}

1868
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1869 1870
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1871
struct oom_wait_info {
1872
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1873 1874 1875 1876 1877 1878
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1879 1880
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1881 1882 1883
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1884
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1885 1886

	/*
1887
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1888 1889
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1890 1891
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1892 1893 1894 1895
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1896
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1897
{
1898 1899
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1900 1901
}

1902
static void memcg_oom_recover(struct mem_cgroup *memcg)
1903
{
1904 1905
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1906 1907
}

K
KAMEZAWA Hiroyuki 已提交
1908 1909 1910
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1911 1912
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1913
{
K
KAMEZAWA Hiroyuki 已提交
1914
	struct oom_wait_info owait;
1915
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1916

1917
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1918 1919 1920 1921
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1922
	need_to_kill = true;
1923
	mem_cgroup_mark_under_oom(memcg);
1924

1925
	/* At first, try to OOM lock hierarchy under memcg.*/
1926
	spin_lock(&memcg_oom_lock);
1927
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1928 1929 1930 1931 1932
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1933
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1934
	if (!locked || memcg->oom_kill_disable)
1935 1936
		need_to_kill = false;
	if (locked)
1937
		mem_cgroup_oom_notify(memcg);
1938
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1939

1940 1941
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1942
		mem_cgroup_out_of_memory(memcg, mask, order);
1943
	} else {
K
KAMEZAWA Hiroyuki 已提交
1944
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1945
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1946
	}
1947
	spin_lock(&memcg_oom_lock);
1948
	if (locked)
1949 1950
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1951
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1952

1953
	mem_cgroup_unmark_under_oom(memcg);
1954

K
KAMEZAWA Hiroyuki 已提交
1955 1956 1957
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1958
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1959
	return true;
1960 1961
}

1962 1963 1964
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1982 1983
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1984
 */
1985

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
1999
	 * need to take move_lock_mem_cgroup(). Because we already hold
2000
	 * rcu_read_lock(), any calls to move_account will be delayed until
2001
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2002
	 */
2003
	if (!mem_cgroup_stolen(memcg))
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2021
	 * should take move_lock_mem_cgroup().
2022 2023 2024 2025
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2026 2027
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2028
{
2029
	struct mem_cgroup *memcg;
2030
	struct page_cgroup *pc = lookup_page_cgroup(page);
2031
	unsigned long uninitialized_var(flags);
2032

2033
	if (mem_cgroup_disabled())
2034
		return;
2035

2036 2037
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2038
		return;
2039 2040

	switch (idx) {
2041 2042
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2043 2044 2045
		break;
	default:
		BUG();
2046
	}
2047

2048
	this_cpu_add(memcg->stat->count[idx], val);
2049
}
2050

2051 2052 2053 2054
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2055
#define CHARGE_BATCH	32U
2056 2057
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2058
	unsigned int nr_pages;
2059
	struct work_struct work;
2060
	unsigned long flags;
2061
#define FLUSHING_CACHED_CHARGE	0
2062 2063
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2064
static DEFINE_MUTEX(percpu_charge_mutex);
2065

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2076
 */
2077
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2078 2079 2080 2081
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2082 2083 2084
	if (nr_pages > CHARGE_BATCH)
		return false;

2085
	stock = &get_cpu_var(memcg_stock);
2086 2087
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2101 2102 2103 2104
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2105
		if (do_swap_account)
2106 2107
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2120
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2121 2122 2123 2124
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2125
 * This will be consumed by consume_stock() function, later.
2126
 */
2127
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2128 2129 2130
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2131
	if (stock->cached != memcg) { /* reset if necessary */
2132
		drain_stock(stock);
2133
		stock->cached = memcg;
2134
	}
2135
	stock->nr_pages += nr_pages;
2136 2137 2138 2139
	put_cpu_var(memcg_stock);
}

/*
2140
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2141 2142
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2143
 */
2144
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2145
{
2146
	int cpu, curcpu;
2147

2148 2149
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2150
	curcpu = get_cpu();
2151 2152
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2153
		struct mem_cgroup *memcg;
2154

2155 2156
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2157
			continue;
2158
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2159
			continue;
2160 2161 2162 2163 2164 2165
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2166
	}
2167
	put_cpu();
2168 2169 2170 2171 2172 2173

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2174
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2175 2176 2177
			flush_work(&stock->work);
	}
out:
2178
 	put_online_cpus();
2179 2180 2181 2182 2183 2184 2185 2186
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2187
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2188
{
2189 2190 2191 2192 2193
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2194
	drain_all_stock(root_memcg, false);
2195
	mutex_unlock(&percpu_charge_mutex);
2196 2197 2198
}

/* This is a synchronous drain interface. */
2199
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2200 2201
{
	/* called when force_empty is called */
2202
	mutex_lock(&percpu_charge_mutex);
2203
	drain_all_stock(root_memcg, true);
2204
	mutex_unlock(&percpu_charge_mutex);
2205 2206
}

2207 2208 2209 2210
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2211
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2212 2213 2214
{
	int i;

2215
	spin_lock(&memcg->pcp_counter_lock);
2216
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2217
		long x = per_cpu(memcg->stat->count[i], cpu);
2218

2219 2220
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2221
	}
2222
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2223
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2224

2225 2226
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2227
	}
2228
	spin_unlock(&memcg->pcp_counter_lock);
2229 2230 2231
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2232 2233 2234 2235 2236
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2237
	struct mem_cgroup *iter;
2238

2239
	if (action == CPU_ONLINE)
2240 2241
		return NOTIFY_OK;

2242
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2243
		return NOTIFY_OK;
2244

2245
	for_each_mem_cgroup(iter)
2246 2247
		mem_cgroup_drain_pcp_counter(iter, cpu);

2248 2249 2250 2251 2252
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2263
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2264 2265
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2266
{
2267
	unsigned long csize = nr_pages * PAGE_SIZE;
2268 2269 2270 2271 2272
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2273
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2274 2275 2276 2277

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2278
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2279 2280 2281
		if (likely(!ret))
			return CHARGE_OK;

2282
		res_counter_uncharge(&memcg->res, csize);
2283 2284 2285 2286
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2287 2288 2289 2290
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2291
	if (nr_pages > min_pages)
2292 2293 2294 2295 2296
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2297 2298 2299
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2300
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2301
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2302
		return CHARGE_RETRY;
2303
	/*
2304 2305 2306 2307 2308 2309 2310
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2311
	 */
2312
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2326
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2327 2328 2329 2330 2331
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2332
/*
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2352
 */
2353
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2354
				   gfp_t gfp_mask,
2355
				   unsigned int nr_pages,
2356
				   struct mem_cgroup **ptr,
2357
				   bool oom)
2358
{
2359
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2360
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2361
	struct mem_cgroup *memcg = NULL;
2362
	int ret;
2363

K
KAMEZAWA Hiroyuki 已提交
2364 2365 2366 2367 2368 2369 2370 2371
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2372

2373
	/*
2374 2375
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2376
	 * thread group leader migrates. It's possible that mm is not
2377
	 * set, if so charge the root memcg (happens for pagecache usage).
2378
	 */
2379
	if (!*ptr && !mm)
2380
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2381
again:
2382 2383 2384
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2385
			goto done;
2386
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2387
			goto done;
2388
		css_get(&memcg->css);
2389
	} else {
K
KAMEZAWA Hiroyuki 已提交
2390
		struct task_struct *p;
2391

K
KAMEZAWA Hiroyuki 已提交
2392 2393 2394
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2395
		 * Because we don't have task_lock(), "p" can exit.
2396
		 * In that case, "memcg" can point to root or p can be NULL with
2397 2398 2399 2400 2401 2402
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2403
		 */
2404
		memcg = mem_cgroup_from_task(p);
2405 2406 2407
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2408 2409 2410
			rcu_read_unlock();
			goto done;
		}
2411
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2424
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2425 2426 2427 2428 2429
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2430

2431 2432
	do {
		bool oom_check;
2433

2434
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2435
		if (fatal_signal_pending(current)) {
2436
			css_put(&memcg->css);
2437
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2438
		}
2439

2440 2441 2442 2443
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2444
		}
2445

2446 2447
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2448 2449 2450 2451
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2452
			batch = nr_pages;
2453 2454
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2455
			goto again;
2456
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2457
			css_put(&memcg->css);
2458 2459
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2460
			if (!oom) {
2461
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2462
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2463
			}
2464 2465 2466 2467
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2468
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2469
			goto bypass;
2470
		}
2471 2472
	} while (ret != CHARGE_OK);

2473
	if (batch > nr_pages)
2474 2475
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2476
done:
2477
	*ptr = memcg;
2478 2479
	return 0;
nomem:
2480
	*ptr = NULL;
2481
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2482
bypass:
2483 2484
	*ptr = root_mem_cgroup;
	return -EINTR;
2485
}
2486

2487 2488 2489 2490 2491
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2492
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2493
				       unsigned int nr_pages)
2494
{
2495
	if (!mem_cgroup_is_root(memcg)) {
2496 2497
		unsigned long bytes = nr_pages * PAGE_SIZE;

2498
		res_counter_uncharge(&memcg->res, bytes);
2499
		if (do_swap_account)
2500
			res_counter_uncharge(&memcg->memsw, bytes);
2501
	}
2502 2503
}

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2522 2523
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2524 2525 2526
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2538
	return mem_cgroup_from_css(css);
2539 2540
}

2541
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2542
{
2543
	struct mem_cgroup *memcg = NULL;
2544
	struct page_cgroup *pc;
2545
	unsigned short id;
2546 2547
	swp_entry_t ent;

2548 2549 2550
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2551
	lock_page_cgroup(pc);
2552
	if (PageCgroupUsed(pc)) {
2553 2554 2555
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2556
	} else if (PageSwapCache(page)) {
2557
		ent.val = page_private(page);
2558
		id = lookup_swap_cgroup_id(ent);
2559
		rcu_read_lock();
2560 2561 2562
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2563
		rcu_read_unlock();
2564
	}
2565
	unlock_page_cgroup(pc);
2566
	return memcg;
2567 2568
}

2569
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2570
				       struct page *page,
2571
				       unsigned int nr_pages,
2572 2573
				       enum charge_type ctype,
				       bool lrucare)
2574
{
2575
	struct page_cgroup *pc = lookup_page_cgroup(page);
2576
	struct zone *uninitialized_var(zone);
2577
	struct lruvec *lruvec;
2578
	bool was_on_lru = false;
2579
	bool anon;
2580

2581
	lock_page_cgroup(pc);
2582
	VM_BUG_ON(PageCgroupUsed(pc));
2583 2584 2585 2586
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2587 2588 2589 2590 2591 2592 2593 2594 2595

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2596
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2597
			ClearPageLRU(page);
2598
			del_page_from_lru_list(page, lruvec, page_lru(page));
2599 2600 2601 2602
			was_on_lru = true;
		}
	}

2603
	pc->mem_cgroup = memcg;
2604 2605 2606 2607 2608 2609 2610
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2611
	smp_wmb();
2612
	SetPageCgroupUsed(pc);
2613

2614 2615
	if (lrucare) {
		if (was_on_lru) {
2616
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2617 2618
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2619
			add_page_to_lru_list(page, lruvec, page_lru(page));
2620 2621 2622 2623
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2624
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2625 2626 2627 2628 2629
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2630
	unlock_page_cgroup(pc);
2631

2632 2633 2634 2635 2636
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2637
	memcg_check_events(memcg, page);
2638
}
2639

2640 2641
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2642
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2643 2644
/*
 * Because tail pages are not marked as "used", set it. We're under
2645 2646 2647
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2648
 */
2649
void mem_cgroup_split_huge_fixup(struct page *head)
2650 2651
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2652 2653
	struct page_cgroup *pc;
	int i;
2654

2655 2656
	if (mem_cgroup_disabled())
		return;
2657 2658 2659 2660 2661 2662
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2663
}
2664
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2665

2666
/**
2667
 * mem_cgroup_move_account - move account of the page
2668
 * @page: the page
2669
 * @nr_pages: number of regular pages (>1 for huge pages)
2670 2671 2672 2673 2674
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2675
 * - page is not on LRU (isolate_page() is useful.)
2676
 * - compound_lock is held when nr_pages > 1
2677
 *
2678 2679
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2680
 */
2681 2682 2683 2684
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2685
				   struct mem_cgroup *to)
2686
{
2687 2688
	unsigned long flags;
	int ret;
2689
	bool anon = PageAnon(page);
2690

2691
	VM_BUG_ON(from == to);
2692
	VM_BUG_ON(PageLRU(page));
2693 2694 2695 2696 2697 2698 2699
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2700
	if (nr_pages > 1 && !PageTransHuge(page))
2701 2702 2703 2704 2705 2706 2707 2708
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2709
	move_lock_mem_cgroup(from, &flags);
2710

2711
	if (!anon && page_mapped(page)) {
2712 2713 2714 2715 2716
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2717
	}
2718
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2719

2720
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2721
	pc->mem_cgroup = to;
2722
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2723
	move_unlock_mem_cgroup(from, &flags);
2724 2725
	ret = 0;
unlock:
2726
	unlock_page_cgroup(pc);
2727 2728 2729
	/*
	 * check events
	 */
2730 2731
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2732
out:
2733 2734 2735
	return ret;
}

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
2756
 */
2757 2758
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2759
				  struct mem_cgroup *child)
2760 2761
{
	struct mem_cgroup *parent;
2762
	unsigned int nr_pages;
2763
	unsigned long uninitialized_var(flags);
2764 2765
	int ret;

2766
	VM_BUG_ON(mem_cgroup_is_root(child));
2767

2768 2769 2770 2771 2772
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2773

2774
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2775

2776 2777 2778 2779 2780 2781
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2782

2783 2784
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
2785
		flags = compound_lock_irqsave(page);
2786
	}
2787

2788
	ret = mem_cgroup_move_account(page, nr_pages,
2789
				pc, child, parent);
2790 2791
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2792

2793
	if (nr_pages > 1)
2794
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2795
	putback_lru_page(page);
2796
put:
2797
	put_page(page);
2798
out:
2799 2800 2801
	return ret;
}

2802 2803 2804 2805 2806 2807 2808
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2809
				gfp_t gfp_mask, enum charge_type ctype)
2810
{
2811
	struct mem_cgroup *memcg = NULL;
2812
	unsigned int nr_pages = 1;
2813
	bool oom = true;
2814
	int ret;
A
Andrea Arcangeli 已提交
2815

A
Andrea Arcangeli 已提交
2816
	if (PageTransHuge(page)) {
2817
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2818
		VM_BUG_ON(!PageTransHuge(page));
2819 2820 2821 2822 2823
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2824
	}
2825

2826
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2827
	if (ret == -ENOMEM)
2828
		return ret;
2829
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2830 2831 2832
	return 0;
}

2833 2834
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2835
{
2836
	if (mem_cgroup_disabled())
2837
		return 0;
2838 2839 2840
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2841
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2842
					MEM_CGROUP_CHARGE_TYPE_ANON);
2843 2844
}

2845 2846 2847
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2848
 * struct page_cgroup is acquired. This refcnt will be consumed by
2849 2850
 * "commit()" or removed by "cancel()"
 */
2851 2852 2853 2854
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
2855
{
2856
	struct mem_cgroup *memcg;
2857
	struct page_cgroup *pc;
2858
	int ret;
2859

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
2870 2871
	if (!do_swap_account)
		goto charge_cur_mm;
2872 2873
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2874
		goto charge_cur_mm;
2875 2876
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2877
	css_put(&memcg->css);
2878 2879
	if (ret == -EINTR)
		ret = 0;
2880
	return ret;
2881
charge_cur_mm:
2882 2883 2884 2885
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2886 2887
}

2888 2889 2890 2891 2892 2893
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
2908 2909 2910
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

2911 2912 2913 2914 2915 2916 2917 2918 2919
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
2920
static void
2921
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2922
					enum charge_type ctype)
2923
{
2924
	if (mem_cgroup_disabled())
2925
		return;
2926
	if (!memcg)
2927
		return;
2928

2929
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2930 2931 2932
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2933 2934 2935
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2936
	 */
2937
	if (do_swap_account && PageSwapCache(page)) {
2938
		swp_entry_t ent = {.val = page_private(page)};
2939
		mem_cgroup_uncharge_swap(ent);
2940
	}
2941 2942
}

2943 2944
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2945
{
2946
	__mem_cgroup_commit_charge_swapin(page, memcg,
2947
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
2948 2949
}

2950 2951
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2952
{
2953 2954 2955 2956
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

2957
	if (mem_cgroup_disabled())
2958 2959 2960 2961 2962 2963 2964
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
2965 2966
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
2967 2968 2969 2970
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
2971 2972
}

2973
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2974 2975
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2976 2977 2978
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2979

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2991
		batch->memcg = memcg;
2992 2993
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2994
	 * In those cases, all pages freed continuously can be expected to be in
2995 2996 2997 2998 2999 3000 3001 3002
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3003
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3004 3005
		goto direct_uncharge;

3006 3007 3008 3009 3010
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3011
	if (batch->memcg != memcg)
3012 3013
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3014
	batch->nr_pages++;
3015
	if (uncharge_memsw)
3016
		batch->memsw_nr_pages++;
3017 3018
	return;
direct_uncharge:
3019
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3020
	if (uncharge_memsw)
3021 3022 3023
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3024
}
3025

3026
/*
3027
 * uncharge if !page_mapped(page)
3028
 */
3029
static struct mem_cgroup *
3030 3031
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3032
{
3033
	struct mem_cgroup *memcg = NULL;
3034 3035
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3036
	bool anon;
3037

3038
	if (mem_cgroup_disabled())
3039
		return NULL;
3040

3041
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3042

A
Andrea Arcangeli 已提交
3043
	if (PageTransHuge(page)) {
3044
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3045 3046
		VM_BUG_ON(!PageTransHuge(page));
	}
3047
	/*
3048
	 * Check if our page_cgroup is valid
3049
	 */
3050
	pc = lookup_page_cgroup(page);
3051
	if (unlikely(!PageCgroupUsed(pc)))
3052
		return NULL;
3053

3054
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3055

3056
	memcg = pc->mem_cgroup;
3057

K
KAMEZAWA Hiroyuki 已提交
3058 3059 3060
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3061 3062
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3063
	switch (ctype) {
3064
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3065 3066 3067 3068 3069
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3070 3071
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3072
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3073
		/* See mem_cgroup_prepare_migration() */
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3095
	}
K
KAMEZAWA Hiroyuki 已提交
3096

3097
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3098

3099
	ClearPageCgroupUsed(pc);
3100 3101 3102 3103 3104 3105
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3106

3107
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3108
	/*
3109
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3110 3111
	 * will never be freed.
	 */
3112
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3113
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3114 3115
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3116
	}
3117 3118 3119 3120 3121 3122
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3123
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3124

3125
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3126 3127 3128

unlock_out:
	unlock_page_cgroup(pc);
3129
	return NULL;
3130 3131
}

3132 3133
void mem_cgroup_uncharge_page(struct page *page)
{
3134 3135 3136
	/* early check. */
	if (page_mapped(page))
		return;
3137
	VM_BUG_ON(page->mapping && !PageAnon(page));
3138 3139
	if (PageSwapCache(page))
		return;
3140
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3141 3142 3143 3144 3145
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3146
	VM_BUG_ON(page->mapping);
3147
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3148 3149
}

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3164 3165
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3186 3187 3188 3189 3190 3191
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3192
	memcg_oom_recover(batch->memcg);
3193 3194 3195 3196
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3197
#ifdef CONFIG_SWAP
3198
/*
3199
 * called after __delete_from_swap_cache() and drop "page" account.
3200 3201
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3202 3203
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3204 3205
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3206 3207 3208 3209 3210
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3211
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3212

K
KAMEZAWA Hiroyuki 已提交
3213 3214 3215 3216 3217
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3218
		swap_cgroup_record(ent, css_id(&memcg->css));
3219
}
3220
#endif
3221

A
Andrew Morton 已提交
3222
#ifdef CONFIG_MEMCG_SWAP
3223 3224 3225 3226 3227
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3228
{
3229
	struct mem_cgroup *memcg;
3230
	unsigned short id;
3231 3232 3233 3234

	if (!do_swap_account)
		return;

3235 3236 3237
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3238
	if (memcg) {
3239 3240 3241 3242
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3243
		if (!mem_cgroup_is_root(memcg))
3244
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3245
		mem_cgroup_swap_statistics(memcg, false);
3246 3247
		mem_cgroup_put(memcg);
	}
3248
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3249
}
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3266
				struct mem_cgroup *from, struct mem_cgroup *to)
3267 3268 3269 3270 3271 3272 3273 3274
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3275
		mem_cgroup_swap_statistics(to, true);
3276
		/*
3277 3278 3279 3280 3281 3282
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3283 3284 3285 3286 3287 3288 3289 3290
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3291
				struct mem_cgroup *from, struct mem_cgroup *to)
3292 3293 3294
{
	return -EINVAL;
}
3295
#endif
K
KAMEZAWA Hiroyuki 已提交
3296

3297
/*
3298 3299
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3300
 */
3301 3302
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3303
{
3304
	struct mem_cgroup *memcg = NULL;
3305
	unsigned int nr_pages = 1;
3306
	struct page_cgroup *pc;
3307
	enum charge_type ctype;
3308

3309
	*memcgp = NULL;
3310

3311
	if (mem_cgroup_disabled())
3312
		return;
3313

3314 3315 3316
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

3317 3318 3319
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3320 3321
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3353
	}
3354
	unlock_page_cgroup(pc);
3355 3356 3357 3358
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3359
	if (!memcg)
3360
		return;
3361

3362
	*memcgp = memcg;
3363 3364 3365 3366 3367 3368 3369
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3370
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3371
	else
3372
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3373 3374 3375 3376 3377
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3378
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
3379
}
3380

3381
/* remove redundant charge if migration failed*/
3382
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3383
	struct page *oldpage, struct page *newpage, bool migration_ok)
3384
{
3385
	struct page *used, *unused;
3386
	struct page_cgroup *pc;
3387
	bool anon;
3388

3389
	if (!memcg)
3390
		return;
3391

3392
	if (!migration_ok) {
3393 3394
		used = oldpage;
		unused = newpage;
3395
	} else {
3396
		used = newpage;
3397 3398
		unused = oldpage;
	}
3399
	anon = PageAnon(used);
3400 3401 3402 3403
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3404
	css_put(&memcg->css);
3405
	/*
3406 3407 3408
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3409
	 */
3410 3411 3412 3413 3414
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3415
	/*
3416 3417 3418 3419 3420 3421
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3422
	 */
3423
	if (anon)
3424
		mem_cgroup_uncharge_page(used);
3425
}
3426

3427 3428 3429 3430 3431 3432 3433 3434
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3435
	struct mem_cgroup *memcg = NULL;
3436 3437 3438 3439 3440 3441 3442 3443 3444
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3445 3446 3447 3448 3449
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3450 3451
	unlock_page_cgroup(pc);

3452 3453 3454 3455 3456 3457
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
3458 3459 3460 3461 3462
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3463
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3464 3465
}

3466 3467 3468 3469 3470 3471
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3472 3473 3474 3475 3476
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3496
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3497 3498 3499 3500 3501
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3502 3503
static DEFINE_MUTEX(set_limit_mutex);

3504
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3505
				unsigned long long val)
3506
{
3507
	int retry_count;
3508
	u64 memswlimit, memlimit;
3509
	int ret = 0;
3510 3511
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3512
	int enlarge;
3513 3514 3515 3516 3517 3518 3519 3520 3521

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3522

3523
	enlarge = 0;
3524
	while (retry_count) {
3525 3526 3527 3528
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3529 3530 3531
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3532
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3533 3534 3535 3536 3537 3538
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3539 3540
			break;
		}
3541 3542 3543 3544 3545

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3546
		ret = res_counter_set_limit(&memcg->res, val);
3547 3548 3549 3550 3551 3552
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3553 3554 3555 3556 3557
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3558 3559
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3560 3561 3562 3563 3564 3565
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3566
	}
3567 3568
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3569

3570 3571 3572
	return ret;
}

L
Li Zefan 已提交
3573 3574
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3575
{
3576
	int retry_count;
3577
	u64 memlimit, memswlimit, oldusage, curusage;
3578 3579
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3580
	int enlarge = 0;
3581

3582 3583 3584
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3585 3586 3587 3588 3589 3590 3591 3592
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3593
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3594 3595 3596 3597 3598 3599 3600 3601
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3602 3603 3604
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3605
		ret = res_counter_set_limit(&memcg->memsw, val);
3606 3607 3608 3609 3610 3611
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3612 3613 3614 3615 3616
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3617 3618 3619
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3620
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3621
		/* Usage is reduced ? */
3622
		if (curusage >= oldusage)
3623
			retry_count--;
3624 3625
		else
			oldusage = curusage;
3626
	}
3627 3628
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3629 3630 3631
	return ret;
}

3632
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3633 3634
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3635 3636 3637 3638 3639 3640
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3641
	unsigned long long excess;
3642
	unsigned long nr_scanned;
3643 3644 3645 3646

	if (order > 0)
		return 0;

3647
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3661
		nr_scanned = 0;
3662
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3663
						    gfp_mask, &nr_scanned);
3664
		nr_reclaimed += reclaimed;
3665
		*total_scanned += nr_scanned;
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3688
				if (next_mz == mz)
3689
					css_put(&next_mz->memcg->css);
3690
				else /* next_mz == NULL or other memcg */
3691 3692 3693
					break;
			} while (1);
		}
3694 3695
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3696 3697 3698 3699 3700 3701 3702 3703
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3704
		/* If excess == 0, no tree ops */
3705
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3706
		spin_unlock(&mctz->lock);
3707
		css_put(&mz->memcg->css);
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3720
		css_put(&next_mz->memcg->css);
3721 3722 3723
	return nr_reclaimed;
}

3724 3725 3726 3727 3728 3729 3730
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
3731
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3732 3733
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
3734
 */
3735
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3736
				int node, int zid, enum lru_list lru)
3737
{
3738
	struct lruvec *lruvec;
3739
	unsigned long flags;
3740
	struct list_head *list;
3741 3742
	struct page *busy;
	struct zone *zone;
3743

K
KAMEZAWA Hiroyuki 已提交
3744
	zone = &NODE_DATA(node)->node_zones[zid];
3745 3746
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3747

3748
	busy = NULL;
3749
	do {
3750
		struct page_cgroup *pc;
3751 3752
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3753
		spin_lock_irqsave(&zone->lru_lock, flags);
3754
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3755
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3756
			break;
3757
		}
3758 3759 3760
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3761
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3762
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3763 3764
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3765
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3766

3767
		pc = lookup_page_cgroup(page);
3768

3769
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3770
			/* found lock contention or "pc" is obsolete. */
3771
			busy = page;
3772 3773 3774
			cond_resched();
		} else
			busy = NULL;
3775
	} while (!list_empty(list));
3776 3777 3778
}

/*
3779 3780
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
3781
 * This enables deleting this mem_cgroup.
3782 3783
 *
 * Caller is responsible for holding css reference on the memcg.
3784
 */
3785
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3786
{
3787
	int node, zid;
3788

3789
	do {
3790 3791
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3792 3793
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
3794
		for_each_node_state(node, N_MEMORY) {
3795
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3796 3797
				enum lru_list lru;
				for_each_lru(lru) {
3798
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3799
							node, zid, lru);
3800
				}
3801
			}
3802
		}
3803 3804
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3805
		cond_resched();
3806

3807 3808 3809 3810 3811 3812 3813 3814
		/*
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
3827

3828
	/* returns EBUSY if there is a task or if we come here twice. */
3829 3830 3831
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

3832 3833
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3834
	/* try to free all pages in this cgroup */
3835
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3836
		int progress;
3837

3838 3839 3840
		if (signal_pending(current))
			return -EINTR;

3841
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3842
						false);
3843
		if (!progress) {
3844
			nr_retries--;
3845
			/* maybe some writeback is necessary */
3846
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3847
		}
3848 3849

	}
K
KAMEZAWA Hiroyuki 已提交
3850
	lru_add_drain();
3851 3852 3853
	mem_cgroup_reparent_charges(memcg);

	return 0;
3854 3855
}

3856
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3857
{
3858 3859 3860
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

3861 3862
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3863 3864 3865 3866 3867
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
3868 3869 3870
}


3871 3872 3873 3874 3875 3876 3877 3878 3879
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3880
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3881
	struct cgroup *parent = cont->parent;
3882
	struct mem_cgroup *parent_memcg = NULL;
3883 3884

	if (parent)
3885
		parent_memcg = mem_cgroup_from_cont(parent);
3886 3887

	cgroup_lock();
3888 3889 3890 3891

	if (memcg->use_hierarchy == val)
		goto out;

3892
	/*
3893
	 * If parent's use_hierarchy is set, we can't make any modifications
3894 3895 3896 3897 3898 3899
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3900
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3901 3902
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3903
			memcg->use_hierarchy = val;
3904 3905 3906 3907
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3908 3909

out:
3910 3911 3912 3913 3914
	cgroup_unlock();

	return retval;
}

3915

3916
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3917
					       enum mem_cgroup_stat_index idx)
3918
{
K
KAMEZAWA Hiroyuki 已提交
3919
	struct mem_cgroup *iter;
3920
	long val = 0;
3921

3922
	/* Per-cpu values can be negative, use a signed accumulator */
3923
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3924 3925 3926 3927 3928
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3929 3930
}

3931
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3932
{
K
KAMEZAWA Hiroyuki 已提交
3933
	u64 val;
3934

3935
	if (!mem_cgroup_is_root(memcg)) {
3936
		if (!swap)
3937
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3938
		else
3939
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3940 3941
	}

3942 3943
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3944

K
KAMEZAWA Hiroyuki 已提交
3945
	if (swap)
3946
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3947 3948 3949 3950

	return val << PAGE_SHIFT;
}

3951 3952 3953
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3954
{
3955
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3956
	char str[64];
3957
	u64 val;
G
Glauber Costa 已提交
3958 3959
	int name, len;
	enum res_type type;
3960 3961 3962

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3963 3964 3965 3966

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3967 3968
	switch (type) {
	case _MEM:
3969
		if (name == RES_USAGE)
3970
			val = mem_cgroup_usage(memcg, false);
3971
		else
3972
			val = res_counter_read_u64(&memcg->res, name);
3973 3974
		break;
	case _MEMSWAP:
3975
		if (name == RES_USAGE)
3976
			val = mem_cgroup_usage(memcg, true);
3977
		else
3978
			val = res_counter_read_u64(&memcg->memsw, name);
3979 3980 3981 3982
		break;
	default:
		BUG();
	}
3983 3984 3985

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3986
}
3987 3988 3989 3990
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3991 3992
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3993
{
3994
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
3995 3996
	enum res_type type;
	int name;
3997 3998 3999
	unsigned long long val;
	int ret;

4000 4001
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4002 4003 4004 4005

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4006
	switch (name) {
4007
	case RES_LIMIT:
4008 4009 4010 4011
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4012 4013
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4014 4015 4016
		if (ret)
			break;
		if (type == _MEM)
4017
			ret = mem_cgroup_resize_limit(memcg, val);
4018 4019
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4020
		break;
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4035 4036 4037 4038 4039
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4040 4041
}

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4069
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4070
{
4071
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4072 4073
	int name;
	enum res_type type;
4074

4075 4076
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4077 4078 4079 4080

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4081
	switch (name) {
4082
	case RES_MAX_USAGE:
4083
		if (type == _MEM)
4084
			res_counter_reset_max(&memcg->res);
4085
		else
4086
			res_counter_reset_max(&memcg->memsw);
4087 4088
		break;
	case RES_FAILCNT:
4089
		if (type == _MEM)
4090
			res_counter_reset_failcnt(&memcg->res);
4091
		else
4092
			res_counter_reset_failcnt(&memcg->memsw);
4093 4094
		break;
	}
4095

4096
	return 0;
4097 4098
}

4099 4100 4101 4102 4103 4104
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4105
#ifdef CONFIG_MMU
4106 4107 4108
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4109
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4110 4111 4112 4113 4114 4115 4116 4117 4118

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4119
	memcg->move_charge_at_immigrate = val;
4120 4121 4122 4123
	cgroup_unlock();

	return 0;
}
4124 4125 4126 4127 4128 4129 4130
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4131

4132
#ifdef CONFIG_NUMA
4133
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4134
				      struct seq_file *m)
4135 4136 4137 4138
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4139
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4140

4141
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4142
	seq_printf(m, "total=%lu", total_nr);
4143
	for_each_node_state(nid, N_MEMORY) {
4144
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4145 4146 4147 4148
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4149
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4150
	seq_printf(m, "file=%lu", file_nr);
4151
	for_each_node_state(nid, N_MEMORY) {
4152
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4153
				LRU_ALL_FILE);
4154 4155 4156 4157
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4158
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4159
	seq_printf(m, "anon=%lu", anon_nr);
4160
	for_each_node_state(nid, N_MEMORY) {
4161
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4162
				LRU_ALL_ANON);
4163 4164 4165 4166
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4167
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4168
	seq_printf(m, "unevictable=%lu", unevictable_nr);
4169
	for_each_node_state(nid, N_MEMORY) {
4170
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4171
				BIT(LRU_UNEVICTABLE));
4172 4173 4174 4175 4176 4177 4178
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4192
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4193
				 struct seq_file *m)
4194
{
4195
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4196 4197
	struct mem_cgroup *mi;
	unsigned int i;
4198

4199
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4200
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4201
			continue;
4202 4203
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4204
	}
L
Lee Schermerhorn 已提交
4205

4206 4207 4208 4209 4210 4211 4212 4213
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4214
	/* Hierarchical information */
4215 4216
	{
		unsigned long long limit, memsw_limit;
4217
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4218
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4219
		if (do_swap_account)
4220 4221
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4222
	}
K
KOSAKI Motohiro 已提交
4223

4224 4225 4226
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4227
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4228
			continue;
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4249
	}
K
KAMEZAWA Hiroyuki 已提交
4250

K
KOSAKI Motohiro 已提交
4251 4252 4253 4254
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4255
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4256 4257 4258 4259 4260
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4261
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4262
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4263

4264 4265 4266 4267
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4268
			}
4269 4270 4271 4272
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4273 4274 4275
	}
#endif

4276 4277 4278
	return 0;
}

K
KOSAKI Motohiro 已提交
4279 4280 4281 4282
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4283
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4284 4285 4286 4287 4288 4289 4290
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4291

K
KOSAKI Motohiro 已提交
4292 4293 4294 4295 4296 4297 4298
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4299 4300 4301

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4302 4303
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4304 4305
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4306
		return -EINVAL;
4307
	}
K
KOSAKI Motohiro 已提交
4308 4309 4310

	memcg->swappiness = val;

4311 4312
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4313 4314 4315
	return 0;
}

4316 4317 4318 4319 4320 4321 4322 4323
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4324
		t = rcu_dereference(memcg->thresholds.primary);
4325
	else
4326
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4327 4328 4329 4330 4331 4332 4333

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4334
	 * current_threshold points to threshold just below or equal to usage.
4335 4336 4337
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4338
	i = t->current_threshold;
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4362
	t->current_threshold = i - 1;
4363 4364 4365 4366 4367 4368
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4369 4370 4371 4372 4373 4374 4375
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4386
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4387 4388 4389
{
	struct mem_cgroup_eventfd_list *ev;

4390
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4391 4392 4393 4394
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4395
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4396
{
K
KAMEZAWA Hiroyuki 已提交
4397 4398
	struct mem_cgroup *iter;

4399
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4400
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4401 4402 4403 4404
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4405 4406
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4407 4408
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
4409
	enum res_type type = MEMFILE_TYPE(cft->private);
4410
	u64 threshold, usage;
4411
	int i, size, ret;
4412 4413 4414 4415 4416 4417

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4418

4419
	if (type == _MEM)
4420
		thresholds = &memcg->thresholds;
4421
	else if (type == _MEMSWAP)
4422
		thresholds = &memcg->memsw_thresholds;
4423 4424 4425 4426 4427 4428
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4429
	if (thresholds->primary)
4430 4431
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4432
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4433 4434

	/* Allocate memory for new array of thresholds */
4435
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4436
			GFP_KERNEL);
4437
	if (!new) {
4438 4439 4440
		ret = -ENOMEM;
		goto unlock;
	}
4441
	new->size = size;
4442 4443

	/* Copy thresholds (if any) to new array */
4444 4445
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4446
				sizeof(struct mem_cgroup_threshold));
4447 4448
	}

4449
	/* Add new threshold */
4450 4451
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4452 4453

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4454
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4455 4456 4457
			compare_thresholds, NULL);

	/* Find current threshold */
4458
	new->current_threshold = -1;
4459
	for (i = 0; i < size; i++) {
4460
		if (new->entries[i].threshold <= usage) {
4461
			/*
4462 4463
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4464 4465
			 * it here.
			 */
4466
			++new->current_threshold;
4467 4468
		} else
			break;
4469 4470
	}

4471 4472 4473 4474 4475
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4476

4477
	/* To be sure that nobody uses thresholds */
4478 4479 4480 4481 4482 4483 4484 4485
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4486
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4487
	struct cftype *cft, struct eventfd_ctx *eventfd)
4488 4489
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4490 4491
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
4492
	enum res_type type = MEMFILE_TYPE(cft->private);
4493
	u64 usage;
4494
	int i, j, size;
4495 4496 4497

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4498
		thresholds = &memcg->thresholds;
4499
	else if (type == _MEMSWAP)
4500
		thresholds = &memcg->memsw_thresholds;
4501 4502 4503
	else
		BUG();

4504 4505 4506
	if (!thresholds->primary)
		goto unlock;

4507 4508 4509 4510 4511 4512
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4513 4514 4515
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4516 4517 4518
			size++;
	}

4519
	new = thresholds->spare;
4520

4521 4522
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4523 4524
		kfree(new);
		new = NULL;
4525
		goto swap_buffers;
4526 4527
	}

4528
	new->size = size;
4529 4530

	/* Copy thresholds and find current threshold */
4531 4532 4533
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4534 4535
			continue;

4536
		new->entries[j] = thresholds->primary->entries[i];
4537
		if (new->entries[j].threshold <= usage) {
4538
			/*
4539
			 * new->current_threshold will not be used
4540 4541 4542
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4543
			++new->current_threshold;
4544 4545 4546 4547
		}
		j++;
	}

4548
swap_buffers:
4549 4550
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4551 4552 4553 4554 4555 4556
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4557
	rcu_assign_pointer(thresholds->primary, new);
4558

4559
	/* To be sure that nobody uses thresholds */
4560
	synchronize_rcu();
4561
unlock:
4562 4563
	mutex_unlock(&memcg->thresholds_lock);
}
4564

K
KAMEZAWA Hiroyuki 已提交
4565 4566 4567 4568 4569
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
4570
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
4571 4572 4573 4574 4575 4576

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4577
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4578 4579 4580 4581 4582

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4583
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4584
		eventfd_signal(eventfd, 1);
4585
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4586 4587 4588 4589

	return 0;
}

4590
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4591 4592
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4593
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4594
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
4595
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
4596 4597 4598

	BUG_ON(type != _OOM_TYPE);

4599
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4600

4601
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4602 4603 4604 4605 4606 4607
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4608
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4609 4610
}

4611 4612 4613
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4614
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4615

4616
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4617

4618
	if (atomic_read(&memcg->under_oom))
4619 4620 4621 4622 4623 4624 4625 4626 4627
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4628
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4640
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4641 4642 4643
		cgroup_unlock();
		return -EINVAL;
	}
4644
	memcg->oom_kill_disable = val;
4645
	if (!val)
4646
		memcg_oom_recover(memcg);
4647 4648 4649 4650
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
4651
#ifdef CONFIG_MEMCG_KMEM
4652
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4653
{
4654
	return mem_cgroup_sockets_init(memcg, ss);
4655 4656
};

4657
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4658
{
4659
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4660
}
4661
#else
4662
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4663 4664 4665
{
	return 0;
}
G
Glauber Costa 已提交
4666

4667
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4668 4669
{
}
4670 4671
#endif

B
Balbir Singh 已提交
4672 4673
static struct cftype mem_cgroup_files[] = {
	{
4674
		.name = "usage_in_bytes",
4675
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4676
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4677 4678
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4679
	},
4680 4681
	{
		.name = "max_usage_in_bytes",
4682
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4683
		.trigger = mem_cgroup_reset,
4684
		.read = mem_cgroup_read,
4685
	},
B
Balbir Singh 已提交
4686
	{
4687
		.name = "limit_in_bytes",
4688
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4689
		.write_string = mem_cgroup_write,
4690
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4691
	},
4692 4693 4694 4695
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4696
		.read = mem_cgroup_read,
4697
	},
B
Balbir Singh 已提交
4698 4699
	{
		.name = "failcnt",
4700
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4701
		.trigger = mem_cgroup_reset,
4702
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4703
	},
4704 4705
	{
		.name = "stat",
4706
		.read_seq_string = memcg_stat_show,
4707
	},
4708 4709 4710 4711
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4712 4713 4714 4715 4716
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4717 4718 4719 4720 4721
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4722 4723 4724 4725 4726
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4727 4728
	{
		.name = "oom_control",
4729 4730
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4731 4732 4733 4734
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4735 4736 4737
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4738
		.read_seq_string = memcg_numa_stat_show,
4739 4740
	},
#endif
A
Andrew Morton 已提交
4741
#ifdef CONFIG_MEMCG_SWAP
4742 4743 4744
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4745
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4746 4747
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4748 4749 4750 4751 4752
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4753
		.read = mem_cgroup_read,
4754 4755 4756 4757 4758
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4759
		.read = mem_cgroup_read,
4760 4761 4762 4763 4764
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4765
		.read = mem_cgroup_read,
4766 4767
	},
#endif
4768
	{ },	/* terminate */
4769
};
4770

4771
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4772 4773
{
	struct mem_cgroup_per_node *pn;
4774
	struct mem_cgroup_per_zone *mz;
4775
	int zone, tmp = node;
4776 4777 4778 4779 4780 4781 4782 4783
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4784 4785
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4786
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4787 4788
	if (!pn)
		return 1;
4789 4790 4791

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4792
		lruvec_init(&mz->lruvec);
4793
		mz->usage_in_excess = 0;
4794
		mz->on_tree = false;
4795
		mz->memcg = memcg;
4796
	}
4797
	memcg->info.nodeinfo[node] = pn;
4798 4799 4800
	return 0;
}

4801
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4802
{
4803
	kfree(memcg->info.nodeinfo[node]);
4804 4805
}

4806 4807
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4808
	struct mem_cgroup *memcg;
4809
	int size = sizeof(struct mem_cgroup);
4810

4811
	/* Can be very big if MAX_NUMNODES is very big */
4812
	if (size < PAGE_SIZE)
4813
		memcg = kzalloc(size, GFP_KERNEL);
4814
	else
4815
		memcg = vzalloc(size);
4816

4817
	if (!memcg)
4818 4819
		return NULL;

4820 4821
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4822
		goto out_free;
4823 4824
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4825 4826 4827

out_free:
	if (size < PAGE_SIZE)
4828
		kfree(memcg);
4829
	else
4830
		vfree(memcg);
4831
	return NULL;
4832 4833
}

4834
/*
4835
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4836 4837 4838
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
4839
static void free_work(struct work_struct *work)
4840 4841
{
	struct mem_cgroup *memcg;
4842
	int size = sizeof(struct mem_cgroup);
4843 4844

	memcg = container_of(work, struct mem_cgroup, work_freeing);
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
4857 4858 4859 4860
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
4861
}
4862 4863

static void free_rcu(struct rcu_head *rcu_head)
4864 4865 4866 4867
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4868
	INIT_WORK(&memcg->work_freeing, free_work);
4869 4870 4871
	schedule_work(&memcg->work_freeing);
}

4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4883
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4884
{
K
KAMEZAWA Hiroyuki 已提交
4885 4886
	int node;

4887 4888
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4889

B
Bob Liu 已提交
4890
	for_each_node(node)
4891
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4892

4893
	free_percpu(memcg->stat);
4894
	call_rcu(&memcg->rcu_freeing, free_rcu);
4895 4896
}

4897
static void mem_cgroup_get(struct mem_cgroup *memcg)
4898
{
4899
	atomic_inc(&memcg->refcnt);
4900 4901
}

4902
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4903
{
4904 4905 4906
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4907 4908 4909
		if (parent)
			mem_cgroup_put(parent);
	}
4910 4911
}

4912
static void mem_cgroup_put(struct mem_cgroup *memcg)
4913
{
4914
	__mem_cgroup_put(memcg, 1);
4915 4916
}

4917 4918 4919
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4920
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4921
{
4922
	if (!memcg->res.parent)
4923
		return NULL;
4924
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4925
}
G
Glauber Costa 已提交
4926
EXPORT_SYMBOL(parent_mem_cgroup);
4927

A
Andrew Morton 已提交
4928
#ifdef CONFIG_MEMCG_SWAP
4929 4930
static void __init enable_swap_cgroup(void)
{
4931
	if (!mem_cgroup_disabled() && really_do_swap_account)
4932 4933 4934 4935 4936 4937 4938 4939
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4940 4941 4942 4943 4944 4945
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4946
	for_each_node(node) {
4947 4948 4949 4950 4951
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4952
			goto err_cleanup;
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4963 4964

err_cleanup:
B
Bob Liu 已提交
4965
	for_each_node(node) {
4966 4967 4968 4969 4970 4971 4972
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4973 4974
}

L
Li Zefan 已提交
4975
static struct cgroup_subsys_state * __ref
4976
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
4977
{
4978
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4979
	long error = -ENOMEM;
4980
	int node;
B
Balbir Singh 已提交
4981

4982 4983
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4984
		return ERR_PTR(error);
4985

B
Bob Liu 已提交
4986
	for_each_node(node)
4987
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4988
			goto free_out;
4989

4990
	/* root ? */
4991
	if (cont->parent == NULL) {
4992
		int cpu;
4993
		enable_swap_cgroup();
4994
		parent = NULL;
4995 4996
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4997
		root_mem_cgroup = memcg;
4998 4999 5000 5001 5002
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5003
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5004
	} else {
5005
		parent = mem_cgroup_from_cont(cont->parent);
5006 5007
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5008
	}
5009

5010
	if (parent && parent->use_hierarchy) {
5011 5012
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5013 5014 5015 5016 5017 5018 5019
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5020
	} else {
5021 5022
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5023 5024 5025 5026 5027 5028 5029
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
5030
	}
5031 5032
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5033

K
KOSAKI Motohiro 已提交
5034
	if (parent)
5035 5036 5037 5038
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5039
	spin_lock_init(&memcg->move_lock);
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5051
	return &memcg->css;
5052
free_out:
5053
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5054
	return ERR_PTR(error);
B
Balbir Singh 已提交
5055 5056
}

5057
static void mem_cgroup_css_offline(struct cgroup *cont)
5058
{
5059
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5060

5061
	mem_cgroup_reparent_charges(memcg);
5062 5063
}

5064
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
5065
{
5066
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5067

5068
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5069

5070
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5071 5072
}

5073
#ifdef CONFIG_MMU
5074
/* Handlers for move charge at task migration. */
5075 5076
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5077
{
5078 5079
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5080
	struct mem_cgroup *memcg = mc.to;
5081

5082
	if (mem_cgroup_is_root(memcg)) {
5083 5084 5085 5086 5087 5088 5089 5090
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5091
		 * "memcg" cannot be under rmdir() because we've already checked
5092 5093 5094 5095
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5096
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5097
			goto one_by_one;
5098
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5099
						PAGE_SIZE * count, &dummy)) {
5100
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5117 5118
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5119
		if (ret)
5120
			/* mem_cgroup_clear_mc() will do uncharge later */
5121
			return ret;
5122 5123
		mc.precharge++;
	}
5124 5125 5126 5127
	return ret;
}

/**
5128
 * get_mctgt_type - get target type of moving charge
5129 5130 5131
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5132
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5133 5134 5135 5136 5137 5138
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5139 5140 5141
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5142 5143 5144 5145 5146
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5147
	swp_entry_t	ent;
5148 5149 5150
};

enum mc_target_type {
5151
	MC_TARGET_NONE = 0,
5152
	MC_TARGET_PAGE,
5153
	MC_TARGET_SWAP,
5154 5155
};

D
Daisuke Nishimura 已提交
5156 5157
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5158
{
D
Daisuke Nishimura 已提交
5159
	struct page *page = vm_normal_page(vma, addr, ptent);
5160

D
Daisuke Nishimura 已提交
5161 5162 5163 5164
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5165
		if (!move_anon())
D
Daisuke Nishimura 已提交
5166
			return NULL;
5167 5168
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5169 5170 5171 5172 5173 5174 5175
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5176
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5177 5178 5179 5180 5181 5182 5183 5184
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5185 5186 5187 5188 5189
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5190 5191 5192 5193 5194
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5195 5196 5197 5198 5199 5200 5201
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5202

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5222 5223 5224 5225 5226 5227
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5228
		if (do_swap_account)
5229 5230
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5231
	}
5232
#endif
5233 5234 5235
	return page;
}

5236
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5237 5238 5239 5240
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5241
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5242 5243 5244 5245 5246 5247
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5248 5249
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5250 5251

	if (!page && !ent.val)
5252
		return ret;
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5268 5269
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5270
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5271 5272 5273
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5274 5275 5276 5277
	}
	return ret;
}

5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5313 5314 5315 5316 5317 5318 5319 5320
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5321 5322 5323 5324
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5325
		return 0;
5326
	}
5327

5328 5329
	if (pmd_trans_unstable(pmd))
		return 0;
5330 5331
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5332
		if (get_mctgt_type(vma, addr, *pte, NULL))
5333 5334 5335 5336
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5337 5338 5339
	return 0;
}

5340 5341 5342 5343 5344
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5345
	down_read(&mm->mmap_sem);
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5357
	up_read(&mm->mmap_sem);
5358 5359 5360 5361 5362 5363 5364 5365 5366

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5367 5368 5369 5370 5371
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5372 5373
}

5374 5375
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5376
{
5377 5378 5379
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5380
	/* we must uncharge all the leftover precharges from mc.to */
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5392
	}
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5427
	spin_lock(&mc.lock);
5428 5429
	mc.from = NULL;
	mc.to = NULL;
5430
	spin_unlock(&mc.lock);
5431
	mem_cgroup_end_move(from);
5432 5433
}

5434 5435
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5436
{
5437
	struct task_struct *p = cgroup_taskset_first(tset);
5438
	int ret = 0;
5439
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5440

5441
	if (memcg->move_charge_at_immigrate) {
5442 5443 5444
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5445
		VM_BUG_ON(from == memcg);
5446 5447 5448 5449 5450

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5451 5452 5453 5454
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5455
			VM_BUG_ON(mc.moved_charge);
5456
			VM_BUG_ON(mc.moved_swap);
5457
			mem_cgroup_start_move(from);
5458
			spin_lock(&mc.lock);
5459
			mc.from = from;
5460
			mc.to = memcg;
5461
			spin_unlock(&mc.lock);
5462
			/* We set mc.moving_task later */
5463 5464 5465 5466

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5467 5468
		}
		mmput(mm);
5469 5470 5471 5472
	}
	return ret;
}

5473 5474
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5475
{
5476
	mem_cgroup_clear_mc();
5477 5478
}

5479 5480 5481
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5482
{
5483 5484 5485 5486
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5487 5488 5489 5490
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5491

5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5503
		if (mc.precharge < HPAGE_PMD_NR) {
5504 5505 5506 5507 5508 5509 5510 5511 5512
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5513
							pc, mc.from, mc.to)) {
5514 5515 5516 5517 5518 5519 5520 5521
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5522
		return 0;
5523 5524
	}

5525 5526
	if (pmd_trans_unstable(pmd))
		return 0;
5527 5528 5529 5530
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5531
		swp_entry_t ent;
5532 5533 5534 5535

		if (!mc.precharge)
			break;

5536
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5537 5538 5539 5540 5541
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5542
			if (!mem_cgroup_move_account(page, 1, pc,
5543
						     mc.from, mc.to)) {
5544
				mc.precharge--;
5545 5546
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5547 5548
			}
			putback_lru_page(page);
5549
put:			/* get_mctgt_type() gets the page */
5550 5551
			put_page(page);
			break;
5552 5553
		case MC_TARGET_SWAP:
			ent = target.ent;
5554
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5555
				mc.precharge--;
5556 5557 5558
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5559
			break;
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5574
		ret = mem_cgroup_do_precharge(1);
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5618
	up_read(&mm->mmap_sem);
5619 5620
}

5621 5622
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5623
{
5624
	struct task_struct *p = cgroup_taskset_first(tset);
5625
	struct mm_struct *mm = get_task_mm(p);
5626 5627

	if (mm) {
5628 5629
		if (mc.to)
			mem_cgroup_move_charge(mm);
5630 5631
		mmput(mm);
	}
5632 5633
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5634
}
5635
#else	/* !CONFIG_MMU */
5636 5637
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5638 5639 5640
{
	return 0;
}
5641 5642
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5643 5644
{
}
5645 5646
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5647 5648 5649
{
}
#endif
B
Balbir Singh 已提交
5650

B
Balbir Singh 已提交
5651 5652 5653
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
5654 5655 5656
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5657 5658
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5659
	.attach = mem_cgroup_move_task,
5660
	.base_cftypes = mem_cgroup_files,
5661
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5662
	.use_id = 1,
B
Balbir Singh 已提交
5663
};
5664

A
Andrew Morton 已提交
5665
#ifdef CONFIG_MEMCG_SWAP
5666 5667 5668
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5669
	if (!strcmp(s, "1"))
5670
		really_do_swap_account = 1;
5671
	else if (!strcmp(s, "0"))
5672 5673 5674
		really_do_swap_account = 0;
	return 1;
}
5675
__setup("swapaccount=", enable_swap_account);
5676 5677

#endif