memcontrol.c 142.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75
#else
76
#define do_swap_account		0
77 78 79
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97 98 99 100
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

101 102 103
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
104 105
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
106 107
	MEM_CGROUP_EVENTS_NSTATS,
};
108 109 110 111 112 113 114 115

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

116 117 118 119 120 121 122 123 124
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
125
	MEM_CGROUP_TARGET_NUMAINFO,
126 127
	MEM_CGROUP_NTARGETS,
};
128 129 130
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
131

132
struct mem_cgroup_stat_cpu {
133
	long count[MEM_CGROUP_STAT_NSTATS];
134
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135
	unsigned long nr_page_events;
136
	unsigned long targets[MEM_CGROUP_NTARGETS];
137 138
};

139 140 141 142 143 144 145
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

146 147 148 149
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
150
	struct lruvec		lruvec;
151
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
152

153 154
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

155 156 157 158
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
159
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
160
						/* use container_of	   */
161 162 163 164 165 166 167 168 169 170
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

191 192 193 194 195
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
196
/* For threshold */
197
struct mem_cgroup_threshold_ary {
198
	/* An array index points to threshold just below or equal to usage. */
199
	int current_threshold;
200 201 202 203 204
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
205 206 207 208 209 210 211 212 213 214 215 216

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
217 218 219 220 221
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
222

223 224
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225

B
Balbir Singh 已提交
226 227 228 229 230 231 232
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 234 235
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
236 237 238 239 240 241 242
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
261 262
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
263 264 265 266
		 */
		struct work_struct work_freeing;
	};

267 268 269 270
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
271
	struct mem_cgroup_lru_info info;
272 273 274
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
275 276
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
277
#endif
278 279 280 281
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
282 283 284 285

	bool		oom_lock;
	atomic_t	under_oom;

286
	atomic_t	refcnt;
287

288
	int	swappiness;
289 290
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
291

292 293 294
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

295 296 297 298
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
299
	struct mem_cgroup_thresholds thresholds;
300

301
	/* thresholds for mem+swap usage. RCU-protected */
302
	struct mem_cgroup_thresholds memsw_thresholds;
303

K
KAMEZAWA Hiroyuki 已提交
304 305
	/* For oom notifier event fd */
	struct list_head oom_notify;
306

307 308 309 310 311
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
312 313 314 315
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
316 317
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
318
	/*
319
	 * percpu counter.
320
	 */
321
	struct mem_cgroup_stat_cpu __percpu *stat;
322 323 324 325 326 327
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
328 329 330 331

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
332 333
};

334 335 336 337 338 339
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
340
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
341
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
342 343 344
	NR_MOVE_TYPE,
};

345 346
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
347
	spinlock_t	  lock; /* for from, to */
348 349 350
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
351
	unsigned long moved_charge;
352
	unsigned long moved_swap;
353 354 355
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
356
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 358
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
359

D
Daisuke Nishimura 已提交
360 361 362 363 364 365
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

366 367 368 369 370 371
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

372 373 374 375
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
376 377
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
378

379 380 381
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
382
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
383
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
384
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
385
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
386 387 388
	NR_CHARGE_TYPE,
};

389
/* for encoding cft->private value on file */
390 391 392
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
393 394
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
395
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
396 397
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
398

399 400 401 402 403 404 405 406
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

407 408
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
409 410 411 412

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
413
#include <net/ip.h>
G
Glauber Costa 已提交
414 415 416 417

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
418
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
419 420 421 422
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

423 424 425 426 427 428 429 430 431 432 433 434 435 436
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
450
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
451 452 453 454 455 456
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
457

458
#ifdef CONFIG_INET
G
Glauber Costa 已提交
459 460 461 462 463 464 465 466
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
467 468 469
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

470
static void drain_all_stock_async(struct mem_cgroup *memcg);
471

472
static struct mem_cgroup_per_zone *
473
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
474
{
475
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
476 477
}

478
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
479
{
480
	return &memcg->css;
481 482
}

483
static struct mem_cgroup_per_zone *
484
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
485
{
486 487
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
488

489
	return mem_cgroup_zoneinfo(memcg, nid, zid);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
508
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
509
				struct mem_cgroup_per_zone *mz,
510 511
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
512 513 514 515 516 517 518 519
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

520 521 522
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
539 540 541
}

static void
542
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
543 544 545 546 547 548 549 550 551
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

552
static void
553
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
554 555 556 557
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
558
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
559 560 561 562
	spin_unlock(&mctz->lock);
}


563
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
564
{
565
	unsigned long long excess;
566 567
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
568 569
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
570 571 572
	mctz = soft_limit_tree_from_page(page);

	/*
573 574
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
575
	 */
576 577 578
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
579 580 581 582
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
583
		if (excess || mz->on_tree) {
584 585 586
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
587
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
588
			/*
589 590
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
591
			 */
592
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
593 594
			spin_unlock(&mctz->lock);
		}
595 596 597
	}
}

598
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
599 600 601 602 603
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
604
	for_each_node(node) {
605
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
606
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
607
			mctz = soft_limit_tree_node_zone(node, zone);
608
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
609 610 611 612
		}
	}
}

613 614 615 616
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
617
	struct mem_cgroup_per_zone *mz;
618 619

retry:
620
	mz = NULL;
621 622 623 624 625 626 627 628 629 630
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
631 632 633
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
669
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
670
				 enum mem_cgroup_stat_index idx)
671
{
672
	long val = 0;
673 674
	int cpu;

675 676
	get_online_cpus();
	for_each_online_cpu(cpu)
677
		val += per_cpu(memcg->stat->count[idx], cpu);
678
#ifdef CONFIG_HOTPLUG_CPU
679 680 681
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
682 683
#endif
	put_online_cpus();
684 685 686
	return val;
}

687
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
688 689 690
					 bool charge)
{
	int val = (charge) ? 1 : -1;
691
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
692 693
}

694
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
695 696 697 698 699 700
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
701
		val += per_cpu(memcg->stat->events[idx], cpu);
702
#ifdef CONFIG_HOTPLUG_CPU
703 704 705
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
706 707 708 709
#endif
	return val;
}

710
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
711
					 bool anon, int nr_pages)
712
{
713 714
	preempt_disable();

715 716 717 718 719 720
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
721
				nr_pages);
722
	else
723
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
724
				nr_pages);
725

726 727
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
728
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
729
	else {
730
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
731 732
		nr_pages = -nr_pages; /* for event */
	}
733

734
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
735

736
	preempt_enable();
737 738
}

739
unsigned long
740
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
741 742 743 744 745 746 747 748
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
749
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
750
			unsigned int lru_mask)
751 752
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
753
	enum lru_list lru;
754 755
	unsigned long ret = 0;

756
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
757

H
Hugh Dickins 已提交
758 759 760
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
761 762 763 764 765
	}
	return ret;
}

static unsigned long
766
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
767 768
			int nid, unsigned int lru_mask)
{
769 770 771
	u64 total = 0;
	int zid;

772
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
773 774
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
775

776 777
	return total;
}
778

779
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
780
			unsigned int lru_mask)
781
{
782
	int nid;
783 784
	u64 total = 0;

785
	for_each_node_state(nid, N_HIGH_MEMORY)
786
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
787
	return total;
788 789
}

790 791
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
792 793 794
{
	unsigned long val, next;

795
	val = __this_cpu_read(memcg->stat->nr_page_events);
796
	next = __this_cpu_read(memcg->stat->targets[target]);
797
	/* from time_after() in jiffies.h */
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
814
	}
815
	return false;
816 817 818 819 820 821
}

/*
 * Check events in order.
 *
 */
822
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
823
{
824
	preempt_disable();
825
	/* threshold event is triggered in finer grain than soft limit */
826 827
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
828 829
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
830 831 832 833 834 835 836 837 838

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

839
		mem_cgroup_threshold(memcg);
840
		if (unlikely(do_softlimit))
841
			mem_cgroup_update_tree(memcg, page);
842
#if MAX_NUMNODES > 1
843
		if (unlikely(do_numainfo))
844
			atomic_inc(&memcg->numainfo_events);
845
#endif
846 847
	} else
		preempt_enable();
848 849
}

G
Glauber Costa 已提交
850
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
851 852 853 854 855 856
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

857
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
858
{
859 860 861 862 863 864 865 866
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

867 868 869 870
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

871
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
872
{
873
	struct mem_cgroup *memcg = NULL;
874 875 876

	if (!mm)
		return NULL;
877 878 879 880 881 882 883
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
884 885
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
886
			break;
887
	} while (!css_tryget(&memcg->css));
888
	rcu_read_unlock();
889
	return memcg;
890 891
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
912
{
913 914
	struct mem_cgroup *memcg = NULL;
	int id = 0;
915

916 917 918
	if (mem_cgroup_disabled())
		return NULL;

919 920
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
921

922 923
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
924

925 926
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
927

928 929 930 931 932
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
933

934
	while (!memcg) {
935
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
936
		struct cgroup_subsys_state *css;
937

938 939 940 941 942 943 944 945 946 947 948
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
949

950 951 952 953 954 955 956 957
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
958 959
		rcu_read_unlock();

960 961 962 963 964 965 966
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
967 968 969 970 971

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
972
}
K
KAMEZAWA Hiroyuki 已提交
973

974 975 976 977 978 979 980
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
981 982 983 984 985 986
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
987

988 989 990 991 992 993
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
994
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
995
	     iter != NULL;				\
996
	     iter = mem_cgroup_iter(root, iter, NULL))
997

998
#define for_each_mem_cgroup(iter)			\
999
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1000
	     iter != NULL;				\
1001
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1002

1003
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1004
{
1005
	return (memcg == root_mem_cgroup);
1006 1007
}

1008 1009
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
1010
	struct mem_cgroup *memcg;
1011 1012 1013 1014 1015

	if (!mm)
		return;

	rcu_read_lock();
1016 1017
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1018 1019 1020 1021
		goto out;

	switch (idx) {
	case PGFAULT:
1022 1023 1024 1025
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1026 1027 1028 1029 1030 1031 1032 1033 1034
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1035 1036 1037
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1038
 * @memcg: memcg of the wanted lruvec
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1069

1070
/**
1071
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1072
 * @page: the page
1073
 * @zone: zone of the page
1074
 */
1075
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1076 1077
{
	struct mem_cgroup_per_zone *mz;
1078 1079
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1080

1081
	if (mem_cgroup_disabled())
1082 1083
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1084
	pc = lookup_page_cgroup(page);
1085
	memcg = pc->mem_cgroup;
1086 1087

	/*
1088
	 * Surreptitiously switch any uncharged offlist page to root:
1089 1090 1091 1092 1093 1094 1095
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1096
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1097 1098
		pc->mem_cgroup = memcg = root_mem_cgroup;

1099 1100
	mz = page_cgroup_zoneinfo(memcg, page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1101
}
1102

1103
/**
1104 1105 1106 1107
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1108
 *
1109 1110
 * This function must be called when a page is added to or removed from an
 * lru list.
1111
 */
1112 1113
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1114 1115
{
	struct mem_cgroup_per_zone *mz;
1116
	unsigned long *lru_size;
1117 1118 1119 1120

	if (mem_cgroup_disabled())
		return;

1121 1122 1123 1124
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1125
}
1126

1127
/*
1128
 * Checks whether given mem is same or in the root_mem_cgroup's
1129 1130
 * hierarchy subtree
 */
1131 1132
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1133
{
1134 1135 1136 1137
	if (root_memcg == memcg)
		return true;
	if (!root_memcg->use_hierarchy)
		return false;
1138 1139 1140 1141 1142 1143 1144 1145
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1146
	rcu_read_lock();
1147
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1148 1149
	rcu_read_unlock();
	return ret;
1150 1151
}

1152
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1153 1154
{
	int ret;
1155
	struct mem_cgroup *curr = NULL;
1156
	struct task_struct *p;
1157

1158
	p = find_lock_task_mm(task);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1174 1175
	if (!curr)
		return 0;
1176
	/*
1177
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1178
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1179 1180
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1181
	 */
1182
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1183
	css_put(&curr->css);
1184 1185 1186
	return ret;
}

1187
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1188
{
1189
	unsigned long inactive_ratio;
1190
	unsigned long inactive;
1191
	unsigned long active;
1192
	unsigned long gb;
1193

1194 1195
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1196

1197 1198 1199 1200 1201 1202
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1203
	return inactive * inactive_ratio < active;
1204 1205
}

1206
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1207 1208 1209 1210
{
	unsigned long active;
	unsigned long inactive;

1211 1212
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1213 1214 1215 1216

	return (active > inactive);
}

1217 1218 1219
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1220
/**
1221 1222
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1223
 *
1224
 * Returns the maximum amount of memory @mem can be charged with, in
1225
 * pages.
1226
 */
1227
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1228
{
1229 1230
	unsigned long long margin;

1231
	margin = res_counter_margin(&memcg->res);
1232
	if (do_swap_account)
1233
		margin = min(margin, res_counter_margin(&memcg->memsw));
1234
	return margin >> PAGE_SHIFT;
1235 1236
}

1237
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1238 1239 1240 1241 1242 1243 1244
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1245
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1246 1247
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1262 1263 1264 1265

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1266
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1267
{
1268
	atomic_inc(&memcg_moving);
1269
	atomic_inc(&memcg->moving_account);
1270 1271 1272
	synchronize_rcu();
}

1273
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1274
{
1275 1276 1277 1278
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1279 1280
	if (memcg) {
		atomic_dec(&memcg_moving);
1281
		atomic_dec(&memcg->moving_account);
1282
	}
1283
}
1284

1285 1286 1287
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1288 1289
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1290 1291 1292 1293 1294 1295 1296
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1297
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1298 1299
{
	VM_BUG_ON(!rcu_read_lock_held());
1300
	return atomic_read(&memcg->moving_account) > 0;
1301
}
1302

1303
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1304
{
1305 1306
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1307
	bool ret = false;
1308 1309 1310 1311 1312 1313 1314 1315 1316
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1317

1318 1319
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1320 1321
unlock:
	spin_unlock(&mc.lock);
1322 1323 1324
	return ret;
}

1325
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1326 1327
{
	if (mc.moving_task && current != mc.moving_task) {
1328
		if (mem_cgroup_under_move(memcg)) {
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1341 1342 1343 1344
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1345
 * see mem_cgroup_stolen(), too.
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1359
/**
1360
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1379
	if (!memcg || !p)
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1425 1426 1427 1428
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1429
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1430 1431
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1432 1433
	struct mem_cgroup *iter;

1434
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1435
		num++;
1436 1437 1438
	return num;
}

D
David Rientjes 已提交
1439 1440 1441 1442 1443 1444 1445 1446
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1447 1448 1449
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1450 1451 1452 1453 1454 1455 1456 1457
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1504
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1505 1506
		int nid, bool noswap)
{
1507
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1508 1509 1510
		return true;
	if (noswap || !total_swap_pages)
		return false;
1511
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1512 1513 1514 1515
		return true;
	return false;

}
1516 1517 1518 1519 1520 1521 1522 1523
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1524
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1525 1526
{
	int nid;
1527 1528 1529 1530
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1531
	if (!atomic_read(&memcg->numainfo_events))
1532
		return;
1533
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1534 1535 1536
		return;

	/* make a nodemask where this memcg uses memory from */
1537
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1538 1539 1540

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1541 1542
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1543
	}
1544

1545 1546
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1561
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1562 1563 1564
{
	int node;

1565 1566
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1567

1568
	node = next_node(node, memcg->scan_nodes);
1569
	if (node == MAX_NUMNODES)
1570
		node = first_node(memcg->scan_nodes);
1571 1572 1573 1574 1575 1576 1577 1578 1579
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1580
	memcg->last_scanned_node = node;
1581 1582 1583
	return node;
}

1584 1585 1586 1587 1588 1589
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1590
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1591 1592 1593 1594 1595 1596 1597
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1598 1599
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1600
		     nid < MAX_NUMNODES;
1601
		     nid = next_node(nid, memcg->scan_nodes)) {
1602

1603
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1604 1605 1606 1607 1608 1609 1610
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1611
		if (node_isset(nid, memcg->scan_nodes))
1612
			continue;
1613
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1614 1615 1616 1617 1618
			return true;
	}
	return false;
}

1619
#else
1620
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1621 1622 1623
{
	return 0;
}
1624

1625
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1626
{
1627
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1628
}
1629 1630
#endif

1631 1632 1633 1634
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1635
{
1636
	struct mem_cgroup *victim = NULL;
1637
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1638
	int loop = 0;
1639
	unsigned long excess;
1640
	unsigned long nr_scanned;
1641 1642 1643 1644
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1645

1646
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1647

1648
	while (1) {
1649
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1650
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1651
			loop++;
1652 1653 1654 1655 1656 1657
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1658
				if (!total)
1659 1660
					break;
				/*
L
Lucas De Marchi 已提交
1661
				 * We want to do more targeted reclaim.
1662 1663 1664 1665 1666
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1667
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1668 1669
					break;
			}
1670
			continue;
1671
		}
1672
		if (!mem_cgroup_reclaimable(victim, false))
1673
			continue;
1674 1675 1676 1677
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1678
			break;
1679
	}
1680
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1681
	return total;
1682 1683
}

K
KAMEZAWA Hiroyuki 已提交
1684 1685 1686
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1687
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1688
 */
1689
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1690
{
1691
	struct mem_cgroup *iter, *failed = NULL;
1692

1693
	for_each_mem_cgroup_tree(iter, memcg) {
1694
		if (iter->oom_lock) {
1695 1696 1697 1698 1699
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1700 1701
			mem_cgroup_iter_break(memcg, iter);
			break;
1702 1703
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1704
	}
K
KAMEZAWA Hiroyuki 已提交
1705

1706
	if (!failed)
1707
		return true;
1708 1709 1710 1711 1712

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1713
	for_each_mem_cgroup_tree(iter, memcg) {
1714
		if (iter == failed) {
1715 1716
			mem_cgroup_iter_break(memcg, iter);
			break;
1717 1718 1719
		}
		iter->oom_lock = false;
	}
1720
	return false;
1721
}
1722

1723
/*
1724
 * Has to be called with memcg_oom_lock
1725
 */
1726
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1727
{
K
KAMEZAWA Hiroyuki 已提交
1728 1729
	struct mem_cgroup *iter;

1730
	for_each_mem_cgroup_tree(iter, memcg)
1731 1732 1733 1734
		iter->oom_lock = false;
	return 0;
}

1735
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1736 1737 1738
{
	struct mem_cgroup *iter;

1739
	for_each_mem_cgroup_tree(iter, memcg)
1740 1741 1742
		atomic_inc(&iter->under_oom);
}

1743
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1744 1745 1746
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1747 1748 1749 1750 1751
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1752
	for_each_mem_cgroup_tree(iter, memcg)
1753
		atomic_add_unless(&iter->under_oom, -1, 0);
1754 1755
}

1756
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1757 1758
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1759
struct oom_wait_info {
1760
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1761 1762 1763 1764 1765 1766
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1767 1768
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1769 1770 1771
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1772
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1773 1774

	/*
1775
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1776 1777
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1778 1779
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1780 1781 1782 1783
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1784
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1785
{
1786 1787
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1788 1789
}

1790
static void memcg_oom_recover(struct mem_cgroup *memcg)
1791
{
1792 1793
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1794 1795
}

K
KAMEZAWA Hiroyuki 已提交
1796 1797 1798
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1799 1800
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1801
{
K
KAMEZAWA Hiroyuki 已提交
1802
	struct oom_wait_info owait;
1803
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1804

1805
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1806 1807 1808 1809
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1810
	need_to_kill = true;
1811
	mem_cgroup_mark_under_oom(memcg);
1812

1813
	/* At first, try to OOM lock hierarchy under memcg.*/
1814
	spin_lock(&memcg_oom_lock);
1815
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1816 1817 1818 1819 1820
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1821
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1822
	if (!locked || memcg->oom_kill_disable)
1823 1824
		need_to_kill = false;
	if (locked)
1825
		mem_cgroup_oom_notify(memcg);
1826
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1827

1828 1829
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1830
		mem_cgroup_out_of_memory(memcg, mask, order);
1831
	} else {
K
KAMEZAWA Hiroyuki 已提交
1832
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1833
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1834
	}
1835
	spin_lock(&memcg_oom_lock);
1836
	if (locked)
1837 1838
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1839
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1840

1841
	mem_cgroup_unmark_under_oom(memcg);
1842

K
KAMEZAWA Hiroyuki 已提交
1843 1844 1845
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1846
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1847
	return true;
1848 1849
}

1850 1851 1852
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1870 1871
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1872
 */
1873

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
	 * need to take move_lock_page_cgroup(). Because we already hold
	 * rcu_read_lock(), any calls to move_account will be delayed until
1889
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1890
	 */
1891
	if (!mem_cgroup_stolen(memcg))
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
	 * should take move_lock_page_cgroup().
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1914 1915
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1916
{
1917
	struct mem_cgroup *memcg;
1918
	struct page_cgroup *pc = lookup_page_cgroup(page);
1919
	unsigned long uninitialized_var(flags);
1920

1921
	if (mem_cgroup_disabled())
1922
		return;
1923

1924 1925
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1926
		return;
1927 1928

	switch (idx) {
1929 1930
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1931 1932 1933
		break;
	default:
		BUG();
1934
	}
1935

1936
	this_cpu_add(memcg->stat->count[idx], val);
1937
}
1938

1939 1940 1941 1942
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1943
#define CHARGE_BATCH	32U
1944 1945
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1946
	unsigned int nr_pages;
1947
	struct work_struct work;
1948
	unsigned long flags;
1949
#define FLUSHING_CACHED_CHARGE	0
1950 1951
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1952
static DEFINE_MUTEX(percpu_charge_mutex);
1953 1954

/*
1955
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1956 1957 1958 1959
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
1960
static bool consume_stock(struct mem_cgroup *memcg)
1961 1962 1963 1964 1965
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1966
	if (memcg == stock->cached && stock->nr_pages)
1967
		stock->nr_pages--;
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1981 1982 1983 1984
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1985
		if (do_swap_account)
1986 1987
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2000
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2001 2002 2003 2004
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2005
 * This will be consumed by consume_stock() function, later.
2006
 */
2007
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2008 2009 2010
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2011
	if (stock->cached != memcg) { /* reset if necessary */
2012
		drain_stock(stock);
2013
		stock->cached = memcg;
2014
	}
2015
	stock->nr_pages += nr_pages;
2016 2017 2018 2019
	put_cpu_var(memcg_stock);
}

/*
2020
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2021 2022
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2023
 */
2024
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2025
{
2026
	int cpu, curcpu;
2027

2028 2029
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2030
	curcpu = get_cpu();
2031 2032
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2033
		struct mem_cgroup *memcg;
2034

2035 2036
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2037
			continue;
2038
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2039
			continue;
2040 2041 2042 2043 2044 2045
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2046
	}
2047
	put_cpu();
2048 2049 2050 2051 2052 2053

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2054
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2055 2056 2057
			flush_work(&stock->work);
	}
out:
2058
 	put_online_cpus();
2059 2060 2061 2062 2063 2064 2065 2066
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2067
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2068
{
2069 2070 2071 2072 2073
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2074
	drain_all_stock(root_memcg, false);
2075
	mutex_unlock(&percpu_charge_mutex);
2076 2077 2078
}

/* This is a synchronous drain interface. */
2079
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2080 2081
{
	/* called when force_empty is called */
2082
	mutex_lock(&percpu_charge_mutex);
2083
	drain_all_stock(root_memcg, true);
2084
	mutex_unlock(&percpu_charge_mutex);
2085 2086
}

2087 2088 2089 2090
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2091
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2092 2093 2094
{
	int i;

2095
	spin_lock(&memcg->pcp_counter_lock);
2096
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2097
		long x = per_cpu(memcg->stat->count[i], cpu);
2098

2099 2100
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2101
	}
2102
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2103
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2104

2105 2106
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2107
	}
2108
	spin_unlock(&memcg->pcp_counter_lock);
2109 2110 2111
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2112 2113 2114 2115 2116
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2117
	struct mem_cgroup *iter;
2118

2119
	if (action == CPU_ONLINE)
2120 2121
		return NOTIFY_OK;

2122
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2123
		return NOTIFY_OK;
2124

2125
	for_each_mem_cgroup(iter)
2126 2127
		mem_cgroup_drain_pcp_counter(iter, cpu);

2128 2129 2130 2131 2132
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2143
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2144
				unsigned int nr_pages, bool oom_check)
2145
{
2146
	unsigned long csize = nr_pages * PAGE_SIZE;
2147 2148 2149 2150 2151
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2152
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2153 2154 2155 2156

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2157
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2158 2159 2160
		if (likely(!ret))
			return CHARGE_OK;

2161
		res_counter_uncharge(&memcg->res, csize);
2162 2163 2164 2165
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2166
	/*
2167 2168
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2169 2170 2171 2172
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2173
	if (nr_pages == CHARGE_BATCH)
2174 2175 2176 2177 2178
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2179
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2180
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2181
		return CHARGE_RETRY;
2182
	/*
2183 2184 2185 2186 2187 2188 2189
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2190
	 */
2191
	if (nr_pages == 1 && ret)
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2205
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2206 2207 2208 2209 2210
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2211
/*
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2231
 */
2232
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2233
				   gfp_t gfp_mask,
2234
				   unsigned int nr_pages,
2235
				   struct mem_cgroup **ptr,
2236
				   bool oom)
2237
{
2238
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2239
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2240
	struct mem_cgroup *memcg = NULL;
2241
	int ret;
2242

K
KAMEZAWA Hiroyuki 已提交
2243 2244 2245 2246 2247 2248 2249 2250
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2251

2252
	/*
2253 2254
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2255 2256 2257
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2258
	if (!*ptr && !mm)
2259
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2260
again:
2261 2262 2263 2264
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2265
			goto done;
2266
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2267
			goto done;
2268
		css_get(&memcg->css);
2269
	} else {
K
KAMEZAWA Hiroyuki 已提交
2270
		struct task_struct *p;
2271

K
KAMEZAWA Hiroyuki 已提交
2272 2273 2274
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2275
		 * Because we don't have task_lock(), "p" can exit.
2276
		 * In that case, "memcg" can point to root or p can be NULL with
2277 2278 2279 2280 2281 2282
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2283
		 */
2284
		memcg = mem_cgroup_from_task(p);
2285 2286 2287
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2288 2289 2290
			rcu_read_unlock();
			goto done;
		}
2291
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2304
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2305 2306 2307 2308 2309
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2310

2311 2312
	do {
		bool oom_check;
2313

2314
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2315
		if (fatal_signal_pending(current)) {
2316
			css_put(&memcg->css);
2317
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2318
		}
2319

2320 2321 2322 2323
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2324
		}
2325

2326
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2327 2328 2329 2330
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2331
			batch = nr_pages;
2332 2333
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2334
			goto again;
2335
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2336
			css_put(&memcg->css);
2337 2338
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2339
			if (!oom) {
2340
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2341
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2342
			}
2343 2344 2345 2346
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2347
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2348
			goto bypass;
2349
		}
2350 2351
	} while (ret != CHARGE_OK);

2352
	if (batch > nr_pages)
2353 2354
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2355
done:
2356
	*ptr = memcg;
2357 2358
	return 0;
nomem:
2359
	*ptr = NULL;
2360
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2361
bypass:
2362 2363
	*ptr = root_mem_cgroup;
	return -EINTR;
2364
}
2365

2366 2367 2368 2369 2370
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2371
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2372
				       unsigned int nr_pages)
2373
{
2374
	if (!mem_cgroup_is_root(memcg)) {
2375 2376
		unsigned long bytes = nr_pages * PAGE_SIZE;

2377
		res_counter_uncharge(&memcg->res, bytes);
2378
		if (do_swap_account)
2379
			res_counter_uncharge(&memcg->memsw, bytes);
2380
	}
2381 2382
}

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2420
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2421
{
2422
	struct mem_cgroup *memcg = NULL;
2423
	struct page_cgroup *pc;
2424
	unsigned short id;
2425 2426
	swp_entry_t ent;

2427 2428 2429
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2430
	lock_page_cgroup(pc);
2431
	if (PageCgroupUsed(pc)) {
2432 2433 2434
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2435
	} else if (PageSwapCache(page)) {
2436
		ent.val = page_private(page);
2437
		id = lookup_swap_cgroup_id(ent);
2438
		rcu_read_lock();
2439 2440 2441
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2442
		rcu_read_unlock();
2443
	}
2444
	unlock_page_cgroup(pc);
2445
	return memcg;
2446 2447
}

2448
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2449
				       struct page *page,
2450
				       unsigned int nr_pages,
2451 2452
				       enum charge_type ctype,
				       bool lrucare)
2453
{
2454
	struct page_cgroup *pc = lookup_page_cgroup(page);
2455
	struct zone *uninitialized_var(zone);
2456
	struct lruvec *lruvec;
2457
	bool was_on_lru = false;
2458
	bool anon;
2459

2460 2461 2462
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2463
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2464 2465 2466 2467 2468 2469
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2470 2471 2472 2473 2474 2475 2476 2477 2478

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2479
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2480
			ClearPageLRU(page);
2481
			del_page_from_lru_list(page, lruvec, page_lru(page));
2482 2483 2484 2485
			was_on_lru = true;
		}
	}

2486
	pc->mem_cgroup = memcg;
2487 2488 2489 2490 2491 2492 2493
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2494
	smp_wmb();
2495
	SetPageCgroupUsed(pc);
2496

2497 2498
	if (lrucare) {
		if (was_on_lru) {
2499
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2500 2501
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2502
			add_page_to_lru_list(page, lruvec, page_lru(page));
2503 2504 2505 2506
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2507 2508 2509 2510 2511 2512
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2513
	unlock_page_cgroup(pc);
2514

2515 2516 2517 2518 2519
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2520
	memcg_check_events(memcg, page);
2521
}
2522

2523 2524
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2525
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2526 2527
/*
 * Because tail pages are not marked as "used", set it. We're under
2528 2529 2530
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2531
 */
2532
void mem_cgroup_split_huge_fixup(struct page *head)
2533 2534
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2535 2536
	struct page_cgroup *pc;
	int i;
2537

2538 2539
	if (mem_cgroup_disabled())
		return;
2540 2541 2542 2543 2544 2545
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2546
}
2547
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2548

2549
/**
2550
 * mem_cgroup_move_account - move account of the page
2551
 * @page: the page
2552
 * @nr_pages: number of regular pages (>1 for huge pages)
2553 2554 2555 2556 2557
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2558
 * - page is not on LRU (isolate_page() is useful.)
2559
 * - compound_lock is held when nr_pages > 1
2560
 *
2561 2562
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2563
 */
2564 2565 2566 2567
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2568
				   struct mem_cgroup *to)
2569
{
2570 2571
	unsigned long flags;
	int ret;
2572
	bool anon = PageAnon(page);
2573

2574
	VM_BUG_ON(from == to);
2575
	VM_BUG_ON(PageLRU(page));
2576 2577 2578 2579 2580 2581 2582
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2583
	if (nr_pages > 1 && !PageTransHuge(page))
2584 2585 2586 2587 2588 2589 2590 2591
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2592
	move_lock_mem_cgroup(from, &flags);
2593

2594
	if (!anon && page_mapped(page)) {
2595 2596 2597 2598 2599
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2600
	}
2601
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2602

2603
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2604
	pc->mem_cgroup = to;
2605
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2606 2607 2608
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2609
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2610
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2611
	 * status here.
2612
	 */
2613
	move_unlock_mem_cgroup(from, &flags);
2614 2615
	ret = 0;
unlock:
2616
	unlock_page_cgroup(pc);
2617 2618 2619
	/*
	 * check events
	 */
2620 2621
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2622
out:
2623 2624 2625 2626 2627 2628 2629
	return ret;
}

/*
 * move charges to its parent.
 */

2630 2631
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2632 2633 2634 2635
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct mem_cgroup *parent;
2636
	unsigned int nr_pages;
2637
	unsigned long uninitialized_var(flags);
2638 2639 2640
	int ret;

	/* Is ROOT ? */
2641
	if (mem_cgroup_is_root(child))
2642 2643
		return -EINVAL;

2644 2645 2646 2647 2648
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2649

2650
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2651

2652 2653 2654 2655 2656 2657
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2658

2659
	if (nr_pages > 1)
2660 2661
		flags = compound_lock_irqsave(page);

2662
	ret = mem_cgroup_move_account(page, nr_pages,
2663
				pc, child, parent);
2664 2665
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2666

2667
	if (nr_pages > 1)
2668
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2669
	putback_lru_page(page);
2670
put:
2671
	put_page(page);
2672
out:
2673 2674 2675
	return ret;
}

2676 2677 2678 2679 2680 2681 2682
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2683
				gfp_t gfp_mask, enum charge_type ctype)
2684
{
2685
	struct mem_cgroup *memcg = NULL;
2686
	unsigned int nr_pages = 1;
2687
	bool oom = true;
2688
	int ret;
A
Andrea Arcangeli 已提交
2689

A
Andrea Arcangeli 已提交
2690
	if (PageTransHuge(page)) {
2691
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2692
		VM_BUG_ON(!PageTransHuge(page));
2693 2694 2695 2696 2697
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2698
	}
2699

2700
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2701
	if (ret == -ENOMEM)
2702
		return ret;
2703
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2704 2705 2706
	return 0;
}

2707 2708
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2709
{
2710
	if (mem_cgroup_disabled())
2711
		return 0;
2712 2713 2714
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2715
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2716
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2717 2718
}

D
Daisuke Nishimura 已提交
2719 2720 2721 2722
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2723 2724
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2725
{
2726
	struct mem_cgroup *memcg = NULL;
2727
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2728 2729
	int ret;

2730
	if (mem_cgroup_disabled())
2731
		return 0;
2732 2733
	if (PageCompound(page))
		return 0;
2734

2735
	if (unlikely(!mm))
2736
		mm = &init_mm;
2737 2738
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2739

2740
	if (!PageSwapCache(page))
2741
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2742
	else { /* page is swapcache/shmem */
2743
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2744
		if (!ret)
2745 2746
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2747
	return ret;
2748 2749
}

2750 2751 2752
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2753
 * struct page_cgroup is acquired. This refcnt will be consumed by
2754 2755
 * "commit()" or removed by "cancel()"
 */
2756 2757
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2758
				 gfp_t mask, struct mem_cgroup **memcgp)
2759
{
2760
	struct mem_cgroup *memcg;
2761
	int ret;
2762

2763
	*memcgp = NULL;
2764

2765
	if (mem_cgroup_disabled())
2766 2767 2768 2769 2770 2771
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2772 2773 2774
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2775 2776
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2777
		goto charge_cur_mm;
2778 2779
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2780
		goto charge_cur_mm;
2781 2782
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2783
	css_put(&memcg->css);
2784 2785
	if (ret == -EINTR)
		ret = 0;
2786
	return ret;
2787 2788 2789
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2790 2791 2792 2793
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2794 2795
}

D
Daisuke Nishimura 已提交
2796
static void
2797
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2798
					enum charge_type ctype)
2799
{
2800
	if (mem_cgroup_disabled())
2801
		return;
2802
	if (!memcg)
2803
		return;
2804
	cgroup_exclude_rmdir(&memcg->css);
2805

2806
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2807 2808 2809
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2810 2811 2812
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2813
	 */
2814
	if (do_swap_account && PageSwapCache(page)) {
2815
		swp_entry_t ent = {.val = page_private(page)};
2816
		mem_cgroup_uncharge_swap(ent);
2817
	}
2818 2819 2820 2821 2822
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2823
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2824 2825
}

2826 2827
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2828
{
2829 2830
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2831 2832
}

2833
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2834
{
2835
	if (mem_cgroup_disabled())
2836
		return;
2837
	if (!memcg)
2838
		return;
2839
	__mem_cgroup_cancel_charge(memcg, 1);
2840 2841
}

2842
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2843 2844
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2845 2846 2847
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2848

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2860
		batch->memcg = memcg;
2861 2862
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2863
	 * In those cases, all pages freed continuously can be expected to be in
2864 2865 2866 2867 2868 2869 2870 2871
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2872
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2873 2874
		goto direct_uncharge;

2875 2876 2877 2878 2879
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2880
	if (batch->memcg != memcg)
2881 2882
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2883
	batch->nr_pages++;
2884
	if (uncharge_memsw)
2885
		batch->memsw_nr_pages++;
2886 2887
	return;
direct_uncharge:
2888
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2889
	if (uncharge_memsw)
2890 2891 2892
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2893
}
2894

2895
/*
2896
 * uncharge if !page_mapped(page)
2897
 */
2898
static struct mem_cgroup *
2899
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2900
{
2901
	struct mem_cgroup *memcg = NULL;
2902 2903
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2904
	bool anon;
2905

2906
	if (mem_cgroup_disabled())
2907
		return NULL;
2908

K
KAMEZAWA Hiroyuki 已提交
2909
	if (PageSwapCache(page))
2910
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2911

A
Andrea Arcangeli 已提交
2912
	if (PageTransHuge(page)) {
2913
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2914 2915
		VM_BUG_ON(!PageTransHuge(page));
	}
2916
	/*
2917
	 * Check if our page_cgroup is valid
2918
	 */
2919
	pc = lookup_page_cgroup(page);
2920
	if (unlikely(!PageCgroupUsed(pc)))
2921
		return NULL;
2922

2923
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2924

2925
	memcg = pc->mem_cgroup;
2926

K
KAMEZAWA Hiroyuki 已提交
2927 2928 2929
	if (!PageCgroupUsed(pc))
		goto unlock_out;

2930 2931
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
2932 2933
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2934 2935 2936 2937 2938
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
2939 2940
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
2941
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2942 2943
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2955
	}
K
KAMEZAWA Hiroyuki 已提交
2956

2957
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2958

2959
	ClearPageCgroupUsed(pc);
2960 2961 2962 2963 2964 2965
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2966

2967
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2968
	/*
2969
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
2970 2971
	 * will never be freed.
	 */
2972
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
2973
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2974 2975
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
2976
	}
2977 2978
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2979

2980
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
2981 2982 2983

unlock_out:
	unlock_page_cgroup(pc);
2984
	return NULL;
2985 2986
}

2987 2988
void mem_cgroup_uncharge_page(struct page *page)
{
2989 2990 2991
	/* early check. */
	if (page_mapped(page))
		return;
2992
	VM_BUG_ON(page->mapping && !PageAnon(page));
2993 2994 2995 2996 2997 2998
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2999
	VM_BUG_ON(page->mapping);
3000 3001 3002
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3017 3018
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3039 3040 3041 3042 3043 3044
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3045
	memcg_oom_recover(batch->memcg);
3046 3047 3048 3049
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3050
#ifdef CONFIG_SWAP
3051
/*
3052
 * called after __delete_from_swap_cache() and drop "page" account.
3053 3054
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3055 3056
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3057 3058
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3059 3060 3061 3062 3063 3064
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3065

K
KAMEZAWA Hiroyuki 已提交
3066 3067 3068 3069 3070
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3071
		swap_cgroup_record(ent, css_id(&memcg->css));
3072
}
3073
#endif
3074 3075 3076 3077 3078 3079 3080

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3081
{
3082
	struct mem_cgroup *memcg;
3083
	unsigned short id;
3084 3085 3086 3087

	if (!do_swap_account)
		return;

3088 3089 3090
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3091
	if (memcg) {
3092 3093 3094 3095
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3096
		if (!mem_cgroup_is_root(memcg))
3097
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3098
		mem_cgroup_swap_statistics(memcg, false);
3099 3100
		mem_cgroup_put(memcg);
	}
3101
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3102
}
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3119
				struct mem_cgroup *from, struct mem_cgroup *to)
3120 3121 3122 3123 3124 3125 3126 3127
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3128
		mem_cgroup_swap_statistics(to, true);
3129
		/*
3130 3131 3132 3133 3134 3135
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3136 3137 3138 3139 3140 3141 3142 3143
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3144
				struct mem_cgroup *from, struct mem_cgroup *to)
3145 3146 3147
{
	return -EINVAL;
}
3148
#endif
K
KAMEZAWA Hiroyuki 已提交
3149

3150
/*
3151 3152
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3153
 */
3154
int mem_cgroup_prepare_migration(struct page *page,
3155
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3156
{
3157
	struct mem_cgroup *memcg = NULL;
3158
	struct page_cgroup *pc;
3159
	enum charge_type ctype;
3160
	int ret = 0;
3161

3162
	*memcgp = NULL;
3163

A
Andrea Arcangeli 已提交
3164
	VM_BUG_ON(PageTransHuge(page));
3165
	if (mem_cgroup_disabled())
3166 3167
		return 0;

3168 3169 3170
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3171 3172
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3204
	}
3205
	unlock_page_cgroup(pc);
3206 3207 3208 3209
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3210
	if (!memcg)
3211
		return 0;
3212

3213 3214
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3215
	css_put(&memcg->css);/* drop extra refcnt */
3216
	if (ret) {
3217 3218 3219 3220 3221 3222 3223 3224 3225
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3226
		/* we'll need to revisit this error code (we have -EINTR) */
3227
		return -ENOMEM;
3228
	}
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3241
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3242
	return ret;
3243
}
3244

3245
/* remove redundant charge if migration failed*/
3246
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3247
	struct page *oldpage, struct page *newpage, bool migration_ok)
3248
{
3249
	struct page *used, *unused;
3250
	struct page_cgroup *pc;
3251
	bool anon;
3252

3253
	if (!memcg)
3254
		return;
3255
	/* blocks rmdir() */
3256
	cgroup_exclude_rmdir(&memcg->css);
3257
	if (!migration_ok) {
3258 3259
		used = oldpage;
		unused = newpage;
3260
	} else {
3261
		used = newpage;
3262 3263
		unused = oldpage;
	}
3264
	/*
3265 3266 3267
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3268
	 */
3269 3270 3271 3272
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3273 3274 3275 3276
	anon = PageAnon(used);
	__mem_cgroup_uncharge_common(unused,
		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3277

3278
	/*
3279 3280 3281 3282 3283 3284
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3285
	 */
3286
	if (anon)
3287
		mem_cgroup_uncharge_page(used);
3288
	/*
3289 3290
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3291 3292 3293
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3294
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3295
}
3296

3297 3298 3299 3300 3301 3302 3303 3304
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3305
	struct mem_cgroup *memcg = NULL;
3306 3307 3308 3309 3310 3311 3312 3313 3314
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3315 3316 3317 3318 3319
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3320 3321
	unlock_page_cgroup(pc);

3322 3323 3324 3325 3326 3327 3328
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;

3329 3330 3331 3332 3333 3334 3335 3336
	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3337
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3338 3339
}

3340 3341 3342 3343 3344 3345
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3346 3347 3348 3349 3350
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3370
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3371 3372 3373 3374 3375
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3376 3377
static DEFINE_MUTEX(set_limit_mutex);

3378
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3379
				unsigned long long val)
3380
{
3381
	int retry_count;
3382
	u64 memswlimit, memlimit;
3383
	int ret = 0;
3384 3385
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3386
	int enlarge;
3387 3388 3389 3390 3391 3392 3393 3394 3395

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3396

3397
	enlarge = 0;
3398
	while (retry_count) {
3399 3400 3401 3402
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3403 3404 3405
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3406
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3407 3408 3409 3410 3411 3412
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3413 3414
			break;
		}
3415 3416 3417 3418 3419

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3420
		ret = res_counter_set_limit(&memcg->res, val);
3421 3422 3423 3424 3425 3426
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3427 3428 3429 3430 3431
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3432 3433
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3434 3435 3436 3437 3438 3439
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3440
	}
3441 3442
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3443

3444 3445 3446
	return ret;
}

L
Li Zefan 已提交
3447 3448
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3449
{
3450
	int retry_count;
3451
	u64 memlimit, memswlimit, oldusage, curusage;
3452 3453
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3454
	int enlarge = 0;
3455

3456 3457 3458
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3459 3460 3461 3462 3463 3464 3465 3466
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3467
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3468 3469 3470 3471 3472 3473 3474 3475
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3476 3477 3478
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3479
		ret = res_counter_set_limit(&memcg->memsw, val);
3480 3481 3482 3483 3484 3485
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3486 3487 3488 3489 3490
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3491 3492 3493
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3494
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3495
		/* Usage is reduced ? */
3496
		if (curusage >= oldusage)
3497
			retry_count--;
3498 3499
		else
			oldusage = curusage;
3500
	}
3501 3502
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3503 3504 3505
	return ret;
}

3506
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3507 3508
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3509 3510 3511 3512 3513 3514
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3515
	unsigned long long excess;
3516
	unsigned long nr_scanned;
3517 3518 3519 3520

	if (order > 0)
		return 0;

3521
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3535
		nr_scanned = 0;
3536
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3537
						    gfp_mask, &nr_scanned);
3538
		nr_reclaimed += reclaimed;
3539
		*total_scanned += nr_scanned;
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3562
				if (next_mz == mz)
3563
					css_put(&next_mz->memcg->css);
3564
				else /* next_mz == NULL or other memcg */
3565 3566 3567
					break;
			} while (1);
		}
3568 3569
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3570 3571 3572 3573 3574 3575 3576 3577
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3578
		/* If excess == 0, no tree ops */
3579
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3580
		spin_unlock(&mctz->lock);
3581
		css_put(&mz->memcg->css);
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3594
		css_put(&next_mz->memcg->css);
3595 3596 3597
	return nr_reclaimed;
}

3598 3599 3600 3601
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3602
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3603
				int node, int zid, enum lru_list lru)
3604
{
K
KAMEZAWA Hiroyuki 已提交
3605 3606
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3607
	struct list_head *list;
3608 3609
	struct page *busy;
	struct zone *zone;
3610
	int ret = 0;
3611

K
KAMEZAWA Hiroyuki 已提交
3612
	zone = &NODE_DATA(node)->node_zones[zid];
3613
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3614
	list = &mz->lruvec.lists[lru];
3615

3616
	loop = mz->lru_size[lru];
3617 3618 3619 3620
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3621
		struct page_cgroup *pc;
3622 3623
		struct page *page;

3624
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3625
		spin_lock_irqsave(&zone->lru_lock, flags);
3626
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3627
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3628
			break;
3629
		}
3630 3631 3632
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3633
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3634
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3635 3636
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3637
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3638

3639
		pc = lookup_page_cgroup(page);
3640

3641
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3642
		if (ret == -ENOMEM || ret == -EINTR)
3643
			break;
3644 3645 3646

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3647
			busy = page;
3648 3649 3650
			cond_resched();
		} else
			busy = NULL;
3651
	}
K
KAMEZAWA Hiroyuki 已提交
3652

3653 3654 3655
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3656 3657 3658 3659 3660 3661
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3662
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3663
{
3664 3665 3666
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3667
	struct cgroup *cgrp = memcg->css.cgroup;
3668

3669
	css_get(&memcg->css);
3670 3671

	shrink = 0;
3672 3673 3674
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3675
move_account:
3676
	do {
3677
		ret = -EBUSY;
3678 3679 3680 3681
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3682
			goto out;
3683 3684
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3685
		drain_all_stock_sync(memcg);
3686
		ret = 0;
3687
		mem_cgroup_start_move(memcg);
3688
		for_each_node_state(node, N_HIGH_MEMORY) {
3689
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3690 3691
				enum lru_list lru;
				for_each_lru(lru) {
3692
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3693
							node, zid, lru);
3694 3695 3696
					if (ret)
						break;
				}
3697
			}
3698 3699 3700
			if (ret)
				break;
		}
3701 3702
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3703 3704 3705
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3706
		cond_resched();
3707
	/* "ret" should also be checked to ensure all lists are empty. */
3708
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3709
out:
3710
	css_put(&memcg->css);
3711
	return ret;
3712 3713

try_to_free:
3714 3715
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3716 3717 3718
		ret = -EBUSY;
		goto out;
	}
3719 3720
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3721 3722
	/* try to free all pages in this cgroup */
	shrink = 1;
3723
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3724
		int progress;
3725 3726 3727 3728 3729

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3730
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3731
						false);
3732
		if (!progress) {
3733
			nr_retries--;
3734
			/* maybe some writeback is necessary */
3735
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3736
		}
3737 3738

	}
K
KAMEZAWA Hiroyuki 已提交
3739
	lru_add_drain();
3740
	/* try move_account...there may be some *locked* pages. */
3741
	goto move_account;
3742 3743
}

3744
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3745 3746 3747 3748 3749
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3750 3751 3752 3753 3754 3755 3756 3757 3758
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3759
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3760
	struct cgroup *parent = cont->parent;
3761
	struct mem_cgroup *parent_memcg = NULL;
3762 3763

	if (parent)
3764
		parent_memcg = mem_cgroup_from_cont(parent);
3765 3766 3767

	cgroup_lock();
	/*
3768
	 * If parent's use_hierarchy is set, we can't make any modifications
3769 3770 3771 3772 3773 3774
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3775
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3776 3777
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3778
			memcg->use_hierarchy = val;
3779 3780 3781 3782 3783 3784 3785 3786 3787
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3788

3789
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3790
					       enum mem_cgroup_stat_index idx)
3791
{
K
KAMEZAWA Hiroyuki 已提交
3792
	struct mem_cgroup *iter;
3793
	long val = 0;
3794

3795
	/* Per-cpu values can be negative, use a signed accumulator */
3796
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3797 3798 3799 3800 3801
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3802 3803
}

3804
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3805
{
K
KAMEZAWA Hiroyuki 已提交
3806
	u64 val;
3807

3808
	if (!mem_cgroup_is_root(memcg)) {
3809
		if (!swap)
3810
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3811
		else
3812
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3813 3814
	}

3815 3816
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3817

K
KAMEZAWA Hiroyuki 已提交
3818
	if (swap)
3819
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3820 3821 3822 3823

	return val << PAGE_SHIFT;
}

3824 3825 3826
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3827
{
3828
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3829
	char str[64];
3830
	u64 val;
3831
	int type, name, len;
3832 3833 3834

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3835 3836 3837 3838

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3839 3840
	switch (type) {
	case _MEM:
3841
		if (name == RES_USAGE)
3842
			val = mem_cgroup_usage(memcg, false);
3843
		else
3844
			val = res_counter_read_u64(&memcg->res, name);
3845 3846
		break;
	case _MEMSWAP:
3847
		if (name == RES_USAGE)
3848
			val = mem_cgroup_usage(memcg, true);
3849
		else
3850
			val = res_counter_read_u64(&memcg->memsw, name);
3851 3852 3853 3854
		break;
	default:
		BUG();
	}
3855 3856 3857

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3858
}
3859 3860 3861 3862
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3863 3864
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3865
{
3866
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3867
	int type, name;
3868 3869 3870
	unsigned long long val;
	int ret;

3871 3872
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3873 3874 3875 3876

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3877
	switch (name) {
3878
	case RES_LIMIT:
3879 3880 3881 3882
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3883 3884
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3885 3886 3887
		if (ret)
			break;
		if (type == _MEM)
3888
			ret = mem_cgroup_resize_limit(memcg, val);
3889 3890
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3891
		break;
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3906 3907 3908 3909 3910
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3911 3912
}

3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

3940
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3941
{
3942
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3943
	int type, name;
3944

3945 3946
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
3947 3948 3949 3950

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3951
	switch (name) {
3952
	case RES_MAX_USAGE:
3953
		if (type == _MEM)
3954
			res_counter_reset_max(&memcg->res);
3955
		else
3956
			res_counter_reset_max(&memcg->memsw);
3957 3958
		break;
	case RES_FAILCNT:
3959
		if (type == _MEM)
3960
			res_counter_reset_failcnt(&memcg->res);
3961
		else
3962
			res_counter_reset_failcnt(&memcg->memsw);
3963 3964
		break;
	}
3965

3966
	return 0;
3967 3968
}

3969 3970 3971 3972 3973 3974
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3975
#ifdef CONFIG_MMU
3976 3977 3978
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
3979
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3980 3981 3982 3983 3984 3985 3986 3987 3988

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
3989
	memcg->move_charge_at_immigrate = val;
3990 3991 3992 3993
	cgroup_unlock();

	return 0;
}
3994 3995 3996 3997 3998 3999 4000
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4001

4002
#ifdef CONFIG_NUMA
4003 4004
static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
				      struct seq_file *m)
4005 4006 4007 4008
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4009
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4010

4011
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4012 4013
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4014
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4015 4016 4017 4018
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4019
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4020 4021
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4022
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4023
				LRU_ALL_FILE);
4024 4025 4026 4027
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4028
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4029 4030
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4031
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4032
				LRU_ALL_ANON);
4033 4034 4035 4036
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4037
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4038 4039
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4040
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4041
				BIT(LRU_UNEVICTABLE));
4042 4043 4044 4045 4046 4047 4048
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4062
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4063
				 struct seq_file *m)
4064
{
4065
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4066 4067
	struct mem_cgroup *mi;
	unsigned int i;
4068

4069 4070
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4071
			continue;
4072 4073
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4074
	}
L
Lee Schermerhorn 已提交
4075

4076 4077 4078 4079 4080 4081 4082 4083
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4084
	/* Hierarchical information */
4085 4086
	{
		unsigned long long limit, memsw_limit;
4087
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4088
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4089
		if (do_swap_account)
4090 4091
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4092
	}
K
KOSAKI Motohiro 已提交
4093

4094 4095 4096 4097
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

		if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4098
			continue;
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4119
	}
K
KAMEZAWA Hiroyuki 已提交
4120

K
KOSAKI Motohiro 已提交
4121 4122 4123 4124
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4125
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4126 4127 4128 4129 4130
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4131
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4132
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4133

4134 4135 4136 4137
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4138
			}
4139 4140 4141 4142
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4143 4144 4145
	}
#endif

4146 4147 4148
	return 0;
}

K
KOSAKI Motohiro 已提交
4149 4150 4151 4152
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4153
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4154 4155 4156 4157 4158 4159 4160
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4161

K
KOSAKI Motohiro 已提交
4162 4163 4164 4165 4166 4167 4168
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4169 4170 4171

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4172 4173
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4174 4175
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4176
		return -EINVAL;
4177
	}
K
KOSAKI Motohiro 已提交
4178 4179 4180

	memcg->swappiness = val;

4181 4182
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4183 4184 4185
	return 0;
}

4186 4187 4188 4189 4190 4191 4192 4193
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4194
		t = rcu_dereference(memcg->thresholds.primary);
4195
	else
4196
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4197 4198 4199 4200 4201 4202 4203

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4204
	 * current_threshold points to threshold just below or equal to usage.
4205 4206 4207
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4208
	i = t->current_threshold;
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4232
	t->current_threshold = i - 1;
4233 4234 4235 4236 4237 4238
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4239 4240 4241 4242 4243 4244 4245
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4256
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4257 4258 4259
{
	struct mem_cgroup_eventfd_list *ev;

4260
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4261 4262 4263 4264
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4265
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4266
{
K
KAMEZAWA Hiroyuki 已提交
4267 4268
	struct mem_cgroup *iter;

4269
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4270
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4271 4272 4273 4274
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4275 4276
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4277 4278
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4279 4280
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4281
	int i, size, ret;
4282 4283 4284 4285 4286 4287

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4288

4289
	if (type == _MEM)
4290
		thresholds = &memcg->thresholds;
4291
	else if (type == _MEMSWAP)
4292
		thresholds = &memcg->memsw_thresholds;
4293 4294 4295 4296 4297 4298
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4299
	if (thresholds->primary)
4300 4301
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4302
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4303 4304

	/* Allocate memory for new array of thresholds */
4305
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4306
			GFP_KERNEL);
4307
	if (!new) {
4308 4309 4310
		ret = -ENOMEM;
		goto unlock;
	}
4311
	new->size = size;
4312 4313

	/* Copy thresholds (if any) to new array */
4314 4315
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4316
				sizeof(struct mem_cgroup_threshold));
4317 4318
	}

4319
	/* Add new threshold */
4320 4321
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4322 4323

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4324
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4325 4326 4327
			compare_thresholds, NULL);

	/* Find current threshold */
4328
	new->current_threshold = -1;
4329
	for (i = 0; i < size; i++) {
4330
		if (new->entries[i].threshold <= usage) {
4331
			/*
4332 4333
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4334 4335
			 * it here.
			 */
4336
			++new->current_threshold;
4337 4338
		} else
			break;
4339 4340
	}

4341 4342 4343 4344 4345
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4346

4347
	/* To be sure that nobody uses thresholds */
4348 4349 4350 4351 4352 4353 4354 4355
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4356
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4357
	struct cftype *cft, struct eventfd_ctx *eventfd)
4358 4359
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4360 4361
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4362 4363
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4364
	int i, j, size;
4365 4366 4367

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4368
		thresholds = &memcg->thresholds;
4369
	else if (type == _MEMSWAP)
4370
		thresholds = &memcg->memsw_thresholds;
4371 4372 4373
	else
		BUG();

4374 4375 4376
	if (!thresholds->primary)
		goto unlock;

4377 4378 4379 4380 4381 4382
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4383 4384 4385
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4386 4387 4388
			size++;
	}

4389
	new = thresholds->spare;
4390

4391 4392
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4393 4394
		kfree(new);
		new = NULL;
4395
		goto swap_buffers;
4396 4397
	}

4398
	new->size = size;
4399 4400

	/* Copy thresholds and find current threshold */
4401 4402 4403
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4404 4405
			continue;

4406
		new->entries[j] = thresholds->primary->entries[i];
4407
		if (new->entries[j].threshold <= usage) {
4408
			/*
4409
			 * new->current_threshold will not be used
4410 4411 4412
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4413
			++new->current_threshold;
4414 4415 4416 4417
		}
		j++;
	}

4418
swap_buffers:
4419 4420
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4421 4422 4423 4424 4425 4426
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4427
	rcu_assign_pointer(thresholds->primary, new);
4428

4429
	/* To be sure that nobody uses thresholds */
4430
	synchronize_rcu();
4431
unlock:
4432 4433
	mutex_unlock(&memcg->thresholds_lock);
}
4434

K
KAMEZAWA Hiroyuki 已提交
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4447
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4448 4449 4450 4451 4452

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4453
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4454
		eventfd_signal(eventfd, 1);
4455
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4456 4457 4458 4459

	return 0;
}

4460
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4461 4462
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4463
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4464 4465 4466 4467 4468
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4469
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4470

4471
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4472 4473 4474 4475 4476 4477
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4478
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4479 4480
}

4481 4482 4483
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4484
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4485

4486
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4487

4488
	if (atomic_read(&memcg->under_oom))
4489 4490 4491 4492 4493 4494 4495 4496 4497
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4498
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4510
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4511 4512 4513
		cgroup_unlock();
		return -EINVAL;
	}
4514
	memcg->oom_kill_disable = val;
4515
	if (!val)
4516
		memcg_oom_recover(memcg);
4517 4518 4519 4520
	cgroup_unlock();
	return 0;
}

4521
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4522
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4523
{
4524
	return mem_cgroup_sockets_init(memcg, ss);
4525 4526
};

4527
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4528
{
4529
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4530
}
4531
#else
4532
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4533 4534 4535
{
	return 0;
}
G
Glauber Costa 已提交
4536

4537
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4538 4539
{
}
4540 4541
#endif

B
Balbir Singh 已提交
4542 4543
static struct cftype mem_cgroup_files[] = {
	{
4544
		.name = "usage_in_bytes",
4545
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4546
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4547 4548
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4549
	},
4550 4551
	{
		.name = "max_usage_in_bytes",
4552
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4553
		.trigger = mem_cgroup_reset,
4554
		.read = mem_cgroup_read,
4555
	},
B
Balbir Singh 已提交
4556
	{
4557
		.name = "limit_in_bytes",
4558
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4559
		.write_string = mem_cgroup_write,
4560
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4561
	},
4562 4563 4564 4565
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4566
		.read = mem_cgroup_read,
4567
	},
B
Balbir Singh 已提交
4568 4569
	{
		.name = "failcnt",
4570
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4571
		.trigger = mem_cgroup_reset,
4572
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4573
	},
4574 4575
	{
		.name = "stat",
4576
		.read_seq_string = mem_control_stat_show,
4577
	},
4578 4579 4580 4581
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4582 4583 4584 4585 4586
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4587 4588 4589 4590 4591
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4592 4593 4594 4595 4596
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4597 4598
	{
		.name = "oom_control",
4599 4600
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4601 4602 4603 4604
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4605 4606 4607
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4608
		.read_seq_string = mem_control_numa_stat_show,
4609 4610
	},
#endif
4611 4612 4613 4614
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4615
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4616 4617
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4618 4619 4620 4621 4622
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4623
		.read = mem_cgroup_read,
4624 4625 4626 4627 4628
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4629
		.read = mem_cgroup_read,
4630 4631 4632 4633 4634
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4635
		.read = mem_cgroup_read,
4636 4637
	},
#endif
4638
	{ },	/* terminate */
4639
};
4640

4641
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4642 4643
{
	struct mem_cgroup_per_node *pn;
4644
	struct mem_cgroup_per_zone *mz;
4645
	int zone, tmp = node;
4646 4647 4648 4649 4650 4651 4652 4653
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4654 4655
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4656
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4657 4658
	if (!pn)
		return 1;
4659 4660 4661

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4662
		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4663
		mz->usage_in_excess = 0;
4664
		mz->on_tree = false;
4665
		mz->memcg = memcg;
4666
	}
4667
	memcg->info.nodeinfo[node] = pn;
4668 4669 4670
	return 0;
}

4671
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4672
{
4673
	kfree(memcg->info.nodeinfo[node]);
4674 4675
}

4676 4677
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4678
	struct mem_cgroup *memcg;
4679
	int size = sizeof(struct mem_cgroup);
4680

4681
	/* Can be very big if MAX_NUMNODES is very big */
4682
	if (size < PAGE_SIZE)
4683
		memcg = kzalloc(size, GFP_KERNEL);
4684
	else
4685
		memcg = vzalloc(size);
4686

4687
	if (!memcg)
4688 4689
		return NULL;

4690 4691
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4692
		goto out_free;
4693 4694
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4695 4696 4697

out_free:
	if (size < PAGE_SIZE)
4698
		kfree(memcg);
4699
	else
4700
		vfree(memcg);
4701
	return NULL;
4702 4703
}

4704
/*
4705
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4706 4707 4708
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
4709
static void free_work(struct work_struct *work)
4710 4711
{
	struct mem_cgroup *memcg;
4712
	int size = sizeof(struct mem_cgroup);
4713 4714

	memcg = container_of(work, struct mem_cgroup, work_freeing);
4715 4716 4717 4718
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
4719
}
4720 4721

static void free_rcu(struct rcu_head *rcu_head)
4722 4723 4724 4725
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4726
	INIT_WORK(&memcg->work_freeing, free_work);
4727 4728 4729
	schedule_work(&memcg->work_freeing);
}

4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4741
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4742
{
K
KAMEZAWA Hiroyuki 已提交
4743 4744
	int node;

4745 4746
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4747

B
Bob Liu 已提交
4748
	for_each_node(node)
4749
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4750

4751
	free_percpu(memcg->stat);
4752
	call_rcu(&memcg->rcu_freeing, free_rcu);
4753 4754
}

4755
static void mem_cgroup_get(struct mem_cgroup *memcg)
4756
{
4757
	atomic_inc(&memcg->refcnt);
4758 4759
}

4760
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4761
{
4762 4763 4764
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4765 4766 4767
		if (parent)
			mem_cgroup_put(parent);
	}
4768 4769
}

4770
static void mem_cgroup_put(struct mem_cgroup *memcg)
4771
{
4772
	__mem_cgroup_put(memcg, 1);
4773 4774
}

4775 4776 4777
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4778
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4779
{
4780
	if (!memcg->res.parent)
4781
		return NULL;
4782
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4783
}
G
Glauber Costa 已提交
4784
EXPORT_SYMBOL(parent_mem_cgroup);
4785

4786 4787 4788
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4789
	if (!mem_cgroup_disabled() && really_do_swap_account)
4790 4791 4792 4793 4794 4795 4796 4797
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4798 4799 4800 4801 4802 4803
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4804
	for_each_node(node) {
4805 4806 4807 4808 4809
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4810
			goto err_cleanup;
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4821 4822

err_cleanup:
B
Bob Liu 已提交
4823
	for_each_node(node) {
4824 4825 4826 4827 4828 4829 4830
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4831 4832
}

L
Li Zefan 已提交
4833
static struct cgroup_subsys_state * __ref
4834
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4835
{
4836
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4837
	long error = -ENOMEM;
4838
	int node;
B
Balbir Singh 已提交
4839

4840 4841
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4842
		return ERR_PTR(error);
4843

B
Bob Liu 已提交
4844
	for_each_node(node)
4845
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4846
			goto free_out;
4847

4848
	/* root ? */
4849
	if (cont->parent == NULL) {
4850
		int cpu;
4851
		enable_swap_cgroup();
4852
		parent = NULL;
4853 4854
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4855
		root_mem_cgroup = memcg;
4856 4857 4858 4859 4860
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4861
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4862
	} else {
4863
		parent = mem_cgroup_from_cont(cont->parent);
4864 4865
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4866
	}
4867

4868
	if (parent && parent->use_hierarchy) {
4869 4870
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4871 4872 4873 4874 4875 4876 4877
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4878
	} else {
4879 4880
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4881
	}
4882 4883
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4884

K
KOSAKI Motohiro 已提交
4885
	if (parent)
4886 4887 4888 4889
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
4890
	spin_lock_init(&memcg->move_lock);
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
4902
	return &memcg->css;
4903
free_out:
4904
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4905
	return ERR_PTR(error);
B
Balbir Singh 已提交
4906 4907
}

4908
static int mem_cgroup_pre_destroy(struct cgroup *cont)
4909
{
4910
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4911

4912
	return mem_cgroup_force_empty(memcg, false);
4913 4914
}

4915
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
4916
{
4917
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4918

4919
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
4920

4921
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
4922 4923
}

4924
#ifdef CONFIG_MMU
4925
/* Handlers for move charge at task migration. */
4926 4927
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4928
{
4929 4930
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4931
	struct mem_cgroup *memcg = mc.to;
4932

4933
	if (mem_cgroup_is_root(memcg)) {
4934 4935 4936 4937 4938 4939 4940 4941
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
4942
		 * "memcg" cannot be under rmdir() because we've already checked
4943 4944 4945 4946
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
4947
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
4948
			goto one_by_one;
4949
		if (do_swap_account && res_counter_charge(&memcg->memsw,
4950
						PAGE_SIZE * count, &dummy)) {
4951
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4968 4969
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
4970
		if (ret)
4971
			/* mem_cgroup_clear_mc() will do uncharge later */
4972
			return ret;
4973 4974
		mc.precharge++;
	}
4975 4976 4977 4978
	return ret;
}

/**
4979
 * get_mctgt_type - get target type of moving charge
4980 4981 4982
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4983
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4984 4985 4986 4987 4988 4989
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4990 4991 4992
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4993 4994 4995 4996 4997
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4998
	swp_entry_t	ent;
4999 5000 5001
};

enum mc_target_type {
5002
	MC_TARGET_NONE = 0,
5003
	MC_TARGET_PAGE,
5004
	MC_TARGET_SWAP,
5005 5006
};

D
Daisuke Nishimura 已提交
5007 5008
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5009
{
D
Daisuke Nishimura 已提交
5010
	struct page *page = vm_normal_page(vma, addr, ptent);
5011

D
Daisuke Nishimura 已提交
5012 5013 5014 5015
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5016
		if (!move_anon())
D
Daisuke Nishimura 已提交
5017
			return NULL;
5018 5019
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5020 5021 5022 5023 5024 5025 5026
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5027
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5028 5029 5030 5031 5032 5033 5034 5035
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5036 5037 5038 5039 5040
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5041 5042 5043 5044 5045
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5046 5047 5048 5049 5050 5051 5052
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5053

5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5073 5074 5075 5076 5077 5078
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5079
		if (do_swap_account)
5080 5081
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5082
	}
5083
#endif
5084 5085 5086
	return page;
}

5087
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5088 5089 5090 5091
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5092
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5093 5094 5095 5096 5097 5098
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5099 5100
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5101 5102

	if (!page && !ent.val)
5103
		return ret;
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5119 5120
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5121
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5122 5123 5124
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5125 5126 5127 5128
	}
	return ret;
}

5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5164 5165 5166 5167 5168 5169 5170 5171
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5172 5173 5174 5175
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5176
		return 0;
5177
	}
5178

5179 5180
	if (pmd_trans_unstable(pmd))
		return 0;
5181 5182
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5183
		if (get_mctgt_type(vma, addr, *pte, NULL))
5184 5185 5186 5187
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5188 5189 5190
	return 0;
}

5191 5192 5193 5194 5195
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5196
	down_read(&mm->mmap_sem);
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5208
	up_read(&mm->mmap_sem);
5209 5210 5211 5212 5213 5214 5215 5216 5217

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5218 5219 5220 5221 5222
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5223 5224
}

5225 5226
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5227
{
5228 5229 5230
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5231
	/* we must uncharge all the leftover precharges from mc.to */
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5243
	}
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5278
	spin_lock(&mc.lock);
5279 5280
	mc.from = NULL;
	mc.to = NULL;
5281
	spin_unlock(&mc.lock);
5282
	mem_cgroup_end_move(from);
5283 5284
}

5285 5286
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5287
{
5288
	struct task_struct *p = cgroup_taskset_first(tset);
5289
	int ret = 0;
5290
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5291

5292
	if (memcg->move_charge_at_immigrate) {
5293 5294 5295
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5296
		VM_BUG_ON(from == memcg);
5297 5298 5299 5300 5301

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5302 5303 5304 5305
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5306
			VM_BUG_ON(mc.moved_charge);
5307
			VM_BUG_ON(mc.moved_swap);
5308
			mem_cgroup_start_move(from);
5309
			spin_lock(&mc.lock);
5310
			mc.from = from;
5311
			mc.to = memcg;
5312
			spin_unlock(&mc.lock);
5313
			/* We set mc.moving_task later */
5314 5315 5316 5317

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5318 5319
		}
		mmput(mm);
5320 5321 5322 5323
	}
	return ret;
}

5324 5325
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5326
{
5327
	mem_cgroup_clear_mc();
5328 5329
}

5330 5331 5332
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5333
{
5334 5335 5336 5337
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5338 5339 5340 5341
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5342

5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5354
		if (mc.precharge < HPAGE_PMD_NR) {
5355 5356 5357 5358 5359 5360 5361 5362 5363
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5364
							pc, mc.from, mc.to)) {
5365 5366 5367 5368 5369 5370 5371 5372
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5373
		return 0;
5374 5375
	}

5376 5377
	if (pmd_trans_unstable(pmd))
		return 0;
5378 5379 5380 5381
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5382
		swp_entry_t ent;
5383 5384 5385 5386

		if (!mc.precharge)
			break;

5387
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5388 5389 5390 5391 5392
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5393
			if (!mem_cgroup_move_account(page, 1, pc,
5394
						     mc.from, mc.to)) {
5395
				mc.precharge--;
5396 5397
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5398 5399
			}
			putback_lru_page(page);
5400
put:			/* get_mctgt_type() gets the page */
5401 5402
			put_page(page);
			break;
5403 5404
		case MC_TARGET_SWAP:
			ent = target.ent;
5405
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5406
				mc.precharge--;
5407 5408 5409
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5410
			break;
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5425
		ret = mem_cgroup_do_precharge(1);
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5469
	up_read(&mm->mmap_sem);
5470 5471
}

5472 5473
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5474
{
5475
	struct task_struct *p = cgroup_taskset_first(tset);
5476
	struct mm_struct *mm = get_task_mm(p);
5477 5478

	if (mm) {
5479 5480
		if (mc.to)
			mem_cgroup_move_charge(mm);
5481 5482
		mmput(mm);
	}
5483 5484
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5485
}
5486
#else	/* !CONFIG_MMU */
5487 5488
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5489 5490 5491
{
	return 0;
}
5492 5493
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5494 5495
{
}
5496 5497
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5498 5499 5500
{
}
#endif
B
Balbir Singh 已提交
5501

B
Balbir Singh 已提交
5502 5503 5504 5505
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5506
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5507
	.destroy = mem_cgroup_destroy,
5508 5509
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5510
	.attach = mem_cgroup_move_task,
5511
	.base_cftypes = mem_cgroup_files,
5512
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5513
	.use_id = 1,
5514
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5515
};
5516 5517

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5518 5519 5520
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5521
	if (!strcmp(s, "1"))
5522
		really_do_swap_account = 1;
5523
	else if (!strcmp(s, "0"))
5524 5525 5526
		really_do_swap_account = 0;
	return 1;
}
5527
__setup("swapaccount=", enable_swap_account);
5528 5529

#endif