memcontrol.c 126.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 64 65 66 67 68
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

69 70 71 72 73 74 75 76 77
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
78

79 80 81 82 83 84 85 86
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
87
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
88
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
89 90
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
91
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
92 93 94
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
	/* incremented at every  pagein/pageout */
	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
95
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
96 97 98 99 100 101 102 103

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

104 105 106 107
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
108 109 110
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
111 112
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
113 114

	struct zone_reclaim_stat reclaim_stat;
115 116 117 118
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
119 120
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
121 122 123 124 125 126 127 128 129 130 131 132
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

153 154 155 156 157
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
158
/* For threshold */
159 160
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
161
	int current_threshold;
162 163 164 165 166
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
167 168 169 170 171 172 173 174 175 176 177 178

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
179 180 181 182 183
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
184 185

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
186
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
187

B
Balbir Singh 已提交
188 189 190 191 192 193 194
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
195 196 197
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
198 199 200 201 202 203 204
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
205 206 207 208
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
209 210 211 212
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
213
	struct mem_cgroup_lru_info info;
214

K
KOSAKI Motohiro 已提交
215 216 217 218 219
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

220
	/*
221
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
222
	 * reclaimed from.
223
	 */
K
KAMEZAWA Hiroyuki 已提交
224
	int last_scanned_child;
225 226 227 228
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
229
	atomic_t	oom_lock;
230
	atomic_t	refcnt;
231

K
KOSAKI Motohiro 已提交
232
	unsigned int	swappiness;
233 234
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
235

236 237 238
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

239 240 241 242
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
243
	struct mem_cgroup_thresholds thresholds;
244

245
	/* thresholds for mem+swap usage. RCU-protected */
246
	struct mem_cgroup_thresholds memsw_thresholds;
247

K
KAMEZAWA Hiroyuki 已提交
248 249 250
	/* For oom notifier event fd */
	struct list_head oom_notify;

251 252 253 254 255
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
256
	/*
257
	 * percpu counter.
258
	 */
259
	struct mem_cgroup_stat_cpu *stat;
260 261 262 263 264 265
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
266 267
};

268 269 270 271 272 273
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
274
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
275
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
276 277 278
	NR_MOVE_TYPE,
};

279 280
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
281
	spinlock_t	  lock; /* for from, to */
282 283 284
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
285
	unsigned long moved_charge;
286
	unsigned long moved_swap;
287
	struct task_struct *moving_task;	/* a task moving charges */
288
	struct mm_struct *mm;
289 290
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
291
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
292 293
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
294

D
Daisuke Nishimura 已提交
295 296 297 298 299 300
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

301 302 303 304 305 306
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

307 308 309 310 311 312 313
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

314 315 316
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
317
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
318
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
319
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
320
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
321 322 323
	NR_CHARGE_TYPE,
};

324 325 326 327
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
328 329
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
330

331 332 333
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
334
#define _OOM_TYPE		(2)
335 336 337
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
338 339
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
340

341 342 343 344 345 346 347
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
348 349
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
350

351 352
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
353
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
354
static void drain_all_stock_async(void);
355

356 357 358 359 360 361
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

362 363 364 365 366
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
396
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
397
				struct mem_cgroup_per_zone *mz,
398 399
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
400 401 402 403 404 405 406 407
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

408 409 410
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
427 428 429 430 431 432 433 434 435 436 437 438 439
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

440 441 442 443 444 445
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
446
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
447 448 449 450 451 452
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
453
	unsigned long long excess;
454 455
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
456 457
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
458 459 460
	mctz = soft_limit_tree_from_page(page);

	/*
461 462
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
463
	 */
464 465
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
466
		excess = res_counter_soft_limit_excess(&mem->res);
467 468 469 470
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
471
		if (excess || mz->on_tree) {
472 473 474 475 476
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
477 478
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
479
			 */
480
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
481 482
			spin_unlock(&mctz->lock);
		}
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

501 502 503 504 505 506 507 508 509
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
510
	struct mem_cgroup_per_zone *mz;
511 512

retry:
513
	mz = NULL;
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
562 563 564 565 566 567
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

568 569
	get_online_cpus();
	for_each_online_cpu(cpu)
570
		val += per_cpu(mem->stat->count[idx], cpu);
571 572 573 574 575 576
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
577 578 579 580 581 582 583 584 585 586 587 588
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

589 590 591 592
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
593
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
594 595
}

596 597 598
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
599
{
600
	int val = (charge) ? 1 : -1;
601

602 603
	preempt_disable();

604
	if (PageCgroupCache(pc))
605
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
606
	else
607
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
608 609

	if (charge)
610
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
611
	else
612
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
613
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
614

615
	preempt_enable();
616 617
}

K
KAMEZAWA Hiroyuki 已提交
618
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
619
					enum lru_list idx)
620 621 622 623 624 625 626 627 628 629 630
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
631 632
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

656
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
657 658 659 660 661 662
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

663
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
664
{
665 666 667 668 669 670 671 672
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

673 674 675 676
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

677 678 679
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
680 681 682

	if (!mm)
		return NULL;
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
698 699
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
700
{
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
723 724 725 726 727 728 729 730 731
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
732 733
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
734
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
735

K
KAMEZAWA Hiroyuki 已提交
736
	css_put(&iter->css);
737 738
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
739
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
740

741 742 743
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
744 745
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
746
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
747 748 749

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
750
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
751
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
752
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
753
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
754
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
755
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
756

K
KAMEZAWA Hiroyuki 已提交
757
	return iter;
K
KAMEZAWA Hiroyuki 已提交
758
}
K
KAMEZAWA Hiroyuki 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

772 773 774
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
775

776 777 778 779 780
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
794

K
KAMEZAWA Hiroyuki 已提交
795 796 797 798
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
799

800
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
801 802 803
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
804
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
805
		return;
806
	VM_BUG_ON(!pc->mem_cgroup);
807 808 809 810
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
811
	mz = page_cgroup_zoneinfo(pc);
812
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
813 814 815
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
816 817
	list_del_init(&pc->lru);
	return;
818 819
}

K
KAMEZAWA Hiroyuki 已提交
820
void mem_cgroup_del_lru(struct page *page)
821
{
K
KAMEZAWA Hiroyuki 已提交
822 823
	mem_cgroup_del_lru_list(page, page_lru(page));
}
824

K
KAMEZAWA Hiroyuki 已提交
825 826 827 828
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
829

830
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
831
		return;
832

K
KAMEZAWA Hiroyuki 已提交
833
	pc = lookup_page_cgroup(page);
834 835 836 837
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
838
	smp_rmb();
839 840
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
841 842 843
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
844 845
}

K
KAMEZAWA Hiroyuki 已提交
846
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
847
{
K
KAMEZAWA Hiroyuki 已提交
848 849
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
850

851
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
852 853
		return;
	pc = lookup_page_cgroup(page);
854
	VM_BUG_ON(PageCgroupAcctLRU(pc));
855 856 857 858
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
859 860
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
861
		return;
862

K
KAMEZAWA Hiroyuki 已提交
863
	mz = page_cgroup_zoneinfo(pc);
864
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
865 866 867
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
868 869
	list_add(&pc->lru, &mz->lists[lru]);
}
870

K
KAMEZAWA Hiroyuki 已提交
871
/*
872 873 874 875 876
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
877
 */
878
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
879
{
880 881 882 883 884 885 886 887 888 889 890 891
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
892 893
}

894 895 896 897 898 899 900 901
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
902
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
903 904 905 906 907
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
908 909 910
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
911
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
912 913 914
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
915 916
}

917 918 919
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
920
	struct mem_cgroup *curr = NULL;
921
	struct task_struct *p;
922

923 924 925 926 927
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
928 929
	if (!curr)
		return 0;
930 931 932 933 934 935 936
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
937 938 939 940
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
941 942 943
	return ret;
}

944
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
945 946 947
{
	unsigned long active;
	unsigned long inactive;
948 949
	unsigned long gb;
	unsigned long inactive_ratio;
950

K
KAMEZAWA Hiroyuki 已提交
951 952
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
953

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
981 982 983 984 985
		return 1;

	return 0;
}

986 987 988 989 990 991 992 993 994 995 996
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

997 998 999 1000
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1001
	int nid = zone_to_nid(zone);
1002 1003 1004 1005 1006 1007
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1008 1009 1010
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1011
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1028 1029 1030 1031 1032 1033 1034 1035
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
1036 1037 1038 1039 1040 1041 1042
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

1043 1044 1045 1046 1047
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1048
					int active, int file)
1049 1050 1051 1052 1053 1054
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1055
	struct page_cgroup *pc, *tmp;
1056
	int nid = zone_to_nid(z);
1057 1058
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1059
	int lru = LRU_FILE * file + active;
1060
	int ret;
1061

1062
	BUG_ON(!mem_cont);
1063
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1064
	src = &mz->lists[lru];
1065

1066 1067
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1068
		if (scan >= nr_to_scan)
1069
			break;
K
KAMEZAWA Hiroyuki 已提交
1070 1071

		page = pc->page;
1072 1073
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1074
		if (unlikely(!PageLRU(page)))
1075 1076
			continue;

H
Hugh Dickins 已提交
1077
		scan++;
1078 1079 1080
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1081
			list_move(&page->lru, dst);
1082
			mem_cgroup_del_lru(page);
1083
			nr_taken++;
1084 1085 1086 1087 1088 1089 1090
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1091 1092 1093 1094
		}
	}

	*scanned = scan;
1095 1096 1097 1098

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1099 1100 1101
	return nr_taken;
}

1102 1103 1104
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1133 1134 1135
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1136 1137 1138 1139

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1140
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1141 1142 1143
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1154 1155 1156
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1157
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1158 1159 1160
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1179 1180 1181

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1182 1183
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1184
	bool ret = false;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1219
/**
1220
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1239
	if (!memcg || !p)
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1286 1287 1288 1289 1290 1291 1292
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1293 1294 1295 1296
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1297 1298 1299
	return num;
}

D
David Rientjes 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
			total_swap_pages;
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1318
/*
K
KAMEZAWA Hiroyuki 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1361 1362
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1363 1364 1365
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1366 1367
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1368 1369
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1370
						struct zone *zone,
1371 1372
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1373
{
K
KAMEZAWA Hiroyuki 已提交
1374 1375 1376
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1377 1378
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1379 1380
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1381

1382 1383 1384 1385
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1386
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1387
		victim = mem_cgroup_select_victim(root_mem);
1388
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1389
			loop++;
1390 1391
			if (loop >= 1)
				drain_all_stock_async();
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1415
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1416 1417
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1418 1419
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1420
		/* we use swappiness of local cgroup */
1421 1422
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1423
				noswap, get_swappiness(victim), zone);
1424 1425 1426
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1427
		css_put(&victim->css);
1428 1429 1430 1431 1432 1433 1434
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1435
		total += ret;
1436 1437 1438 1439
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1440
			return 1 + total;
1441
	}
K
KAMEZAWA Hiroyuki 已提交
1442
	return total;
1443 1444
}

K
KAMEZAWA Hiroyuki 已提交
1445 1446 1447 1448 1449 1450
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1451 1452
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1453

K
KAMEZAWA Hiroyuki 已提交
1454 1455 1456 1457
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1458 1459 1460 1461

	if (lock_count == 1)
		return true;
	return false;
1462
}
1463

K
KAMEZAWA Hiroyuki 已提交
1464
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1465
{
K
KAMEZAWA Hiroyuki 已提交
1466 1467
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1468 1469 1470 1471 1472
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1473 1474
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1475 1476 1477
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1478 1479 1480 1481

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1518 1519
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1520
	if (mem && atomic_read(&mem->oom_lock))
1521 1522 1523
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1524 1525 1526 1527
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1528
{
K
KAMEZAWA Hiroyuki 已提交
1529
	struct oom_wait_info owait;
1530
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1531

K
KAMEZAWA Hiroyuki 已提交
1532 1533 1534 1535 1536
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1537
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1538 1539 1540 1541 1542 1543 1544 1545
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1546 1547 1548 1549
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1550
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1551 1552
	mutex_unlock(&memcg_oom_mutex);

1553 1554
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1555
		mem_cgroup_out_of_memory(mem, mask);
1556
	} else {
K
KAMEZAWA Hiroyuki 已提交
1557
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1558
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1559 1560 1561
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1562
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1563 1564 1565 1566 1567 1568 1569
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1570 1571
}

1572 1573 1574
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1594
 */
1595 1596

static void mem_cgroup_update_file_stat(struct page *page, int idx, int val)
1597 1598
{
	struct mem_cgroup *mem;
1599 1600
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1601 1602 1603 1604

	if (unlikely(!pc))
		return;

1605
	rcu_read_lock();
1606
	mem = pc->mem_cgroup;
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
	if (unlikely(mem_cgroup_stealed(mem))) {
		/* take a lock against to access pc->mem_cgroup */
		lock_page_cgroup(pc);
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1618 1619 1620 1621 1622 1623 1624 1625

	this_cpu_add(mem->stat->count[idx], val);

	switch (idx) {
	case MEM_CGROUP_STAT_FILE_MAPPED:
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1626
			ClearPageCgroupFileMapped(pc);
1627 1628 1629
		break;
	default:
		BUG();
1630
	}
1631

1632 1633 1634 1635 1636
out:
	if (unlikely(need_unlock))
		unlock_page_cgroup(pc);
	rcu_read_unlock();
	return;
1637
}
1638

1639 1640 1641 1642 1643
void mem_cgroup_update_file_mapped(struct page *page, int val)
{
	mem_cgroup_update_file_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, val);
}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1705
 * This will be consumed by consume_stock() function, later.
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
		s64 x = per_cpu(mem->stat->count[i], cpu);

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1783 1784 1785 1786
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1787 1788 1789 1790 1791
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1792
	struct mem_cgroup *iter;
1793

1794 1795 1796 1797 1798 1799
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1800
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1801
		return NOTIFY_OK;
1802 1803 1804 1805

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1806 1807 1808 1809 1810
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);

	if (csize > PAGE_SIZE) /* change csize and retry */
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
					gfp_mask, flags);
	/*
	 * try_to_free_mem_cgroup_pages() might not give us a full
	 * picture of reclaim. Some pages are reclaimed and might be
	 * moved to swap cache or just unmapped from the cgroup.
	 * Check the limit again to see if the reclaim reduced the
	 * current usage of the cgroup before giving up
	 */
	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1878 1879 1880
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1881
 */
1882
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1883
		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1884
{
1885 1886 1887
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
1888
	int csize = CHARGE_SIZE;
1889

K
KAMEZAWA Hiroyuki 已提交
1890 1891 1892 1893 1894 1895 1896 1897
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1898

1899
	/*
1900 1901
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1902 1903 1904
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1905 1906 1907 1908
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1909
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1910 1911 1912 1913 1914
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
		if (consume_stock(mem))
			goto done;
1915 1916
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1917
		struct task_struct *p;
1918

K
KAMEZAWA Hiroyuki 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		VM_BUG_ON(!p);
		/*
		 * because we don't have task_lock(), "p" can exit while
		 * we're here. In that case, "mem" can point to root
		 * cgroup but never be NULL. (and task_struct itself is freed
		 * by RCU, cgroup itself is RCU safe.) Then, we have small
		 * risk here to get wrong cgroup. But such kind of mis-account
		 * by race always happens because we don't have cgroup_mutex().
		 * It's overkill and we allow that small race, here.
		 */
		mem = mem_cgroup_from_task(p);
		VM_BUG_ON(!mem);
		if (mem_cgroup_is_root(mem)) {
			rcu_read_unlock();
			goto done;
		}
		if (consume_stock(mem)) {
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1956

1957 1958
	do {
		bool oom_check;
1959

1960
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1961 1962
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1963
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1964
		}
1965

1966 1967 1968 1969
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1970
		}
1971

1972
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1973

1974 1975 1976 1977 1978
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
			csize = PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
1979 1980 1981
			css_put(&mem->css);
			mem = NULL;
			goto again;
1982
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
1983
			css_put(&mem->css);
1984 1985
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
1986 1987
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1988
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
1989
			}
1990 1991 1992 1993
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
1994
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1995
			goto bypass;
1996
		}
1997 1998
	} while (ret != CHARGE_OK);

1999 2000
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
2001
	css_put(&mem->css);
2002
done:
K
KAMEZAWA Hiroyuki 已提交
2003
	*memcg = mem;
2004 2005
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2006
	*memcg = NULL;
2007
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2008 2009 2010
bypass:
	*memcg = NULL;
	return 0;
2011
}
2012

2013 2014 2015 2016 2017
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2018 2019
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
2020 2021
{
	if (!mem_cgroup_is_root(mem)) {
2022
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2023
		if (do_swap_account)
2024
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2025
	}
2026 2027 2028 2029 2030
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
2031 2032
}

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2052
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2053
{
2054
	struct mem_cgroup *mem = NULL;
2055
	struct page_cgroup *pc;
2056
	unsigned short id;
2057 2058
	swp_entry_t ent;

2059 2060 2061
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2062
	lock_page_cgroup(pc);
2063
	if (PageCgroupUsed(pc)) {
2064
		mem = pc->mem_cgroup;
2065 2066
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2067
	} else if (PageSwapCache(page)) {
2068
		ent.val = page_private(page);
2069 2070 2071 2072 2073 2074
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2075
	}
2076
	unlock_page_cgroup(pc);
2077 2078 2079
	return mem;
}

2080
/*
2081
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
2092 2093 2094 2095

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2096
		mem_cgroup_cancel_charge(mem);
2097
		return;
2098
	}
2099

2100
	pc->mem_cgroup = mem;
2101 2102 2103 2104 2105 2106 2107
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2108
	smp_wmb();
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2122

K
KAMEZAWA Hiroyuki 已提交
2123
	mem_cgroup_charge_statistics(mem, pc, true);
2124 2125

	unlock_page_cgroup(pc);
2126 2127 2128 2129 2130
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2131
	memcg_check_events(mem, pc->page);
2132
}
2133

2134
/**
2135
 * __mem_cgroup_move_account - move account of the page
2136 2137 2138
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2139
 * @uncharge: whether we should call uncharge and css_put against @from.
2140 2141
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2142
 * - page is not on LRU (isolate_page() is useful.)
2143
 * - the pc is locked, used, and ->mem_cgroup points to @from.
2144
 *
2145 2146 2147 2148
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2149 2150
 */

2151
static void __mem_cgroup_move_account(struct page_cgroup *pc,
2152
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2153 2154
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
2155
	VM_BUG_ON(PageLRU(pc->page));
2156
	VM_BUG_ON(!page_is_cgroup_locked(pc));
2157 2158
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
2159

2160
	if (PageCgroupFileMapped(pc)) {
2161 2162 2163 2164 2165
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2166
	}
2167 2168 2169 2170
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
2171

2172
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2173 2174
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
2175 2176 2177
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2178 2179 2180
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2181
	 */
2182 2183 2184 2185 2186 2187 2188
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
2189
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2190 2191 2192 2193
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2194
		__mem_cgroup_move_account(pc, from, to, uncharge);
2195 2196 2197
		ret = 0;
	}
	unlock_page_cgroup(pc);
2198 2199 2200 2201 2202
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
2214
	struct page *page = pc->page;
2215 2216 2217 2218 2219 2220 2221 2222 2223
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2224 2225 2226 2227 2228
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
2229

2230
	parent = mem_cgroup_from_cont(pcg);
2231
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2232
	if (ret || !parent)
2233
		goto put_back;
2234

2235 2236 2237
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
2238
put_back:
K
KAMEZAWA Hiroyuki 已提交
2239
	putback_lru_page(page);
2240
put:
2241
	put_page(page);
2242
out:
2243 2244 2245
	return ret;
}

2246 2247 2248 2249 2250 2251 2252
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2253
				gfp_t gfp_mask, enum charge_type ctype)
2254
{
2255
	struct mem_cgroup *mem = NULL;
2256 2257 2258 2259 2260 2261 2262 2263 2264
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

2265
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2266
	if (ret || !mem)
2267 2268 2269
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
2270 2271 2272
	return 0;
}

2273 2274
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2275
{
2276
	if (mem_cgroup_disabled())
2277
		return 0;
2278 2279
	if (PageCompound(page))
		return 0;
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2291
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2292
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2293 2294
}

D
Daisuke Nishimura 已提交
2295 2296 2297 2298
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2299 2300
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2301
{
2302 2303
	int ret;

2304
	if (mem_cgroup_disabled())
2305
		return 0;
2306 2307
	if (PageCompound(page))
		return 0;
2308 2309 2310 2311 2312 2313 2314 2315
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2316 2317
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2318 2319 2320 2321
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2322 2323 2324 2325 2326 2327
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2328 2329
			return 0;
		}
2330
		unlock_page_cgroup(pc);
2331 2332
	}

2333
	if (unlikely(!mm))
2334
		mm = &init_mm;
2335

2336 2337
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2338
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2339

D
Daisuke Nishimura 已提交
2340 2341
	/* shmem */
	if (PageSwapCache(page)) {
2342 2343
		struct mem_cgroup *mem = NULL;

D
Daisuke Nishimura 已提交
2344 2345 2346 2347 2348 2349
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2350
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2351 2352

	return ret;
2353 2354
}

2355 2356 2357
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2358
 * struct page_cgroup is acquired. This refcnt will be consumed by
2359 2360
 * "commit()" or removed by "cancel()"
 */
2361 2362 2363 2364 2365
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2366
	int ret;
2367

2368
	if (mem_cgroup_disabled())
2369 2370 2371 2372 2373 2374
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2375 2376 2377
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2378 2379
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2380
		goto charge_cur_mm;
2381
	mem = try_get_mem_cgroup_from_page(page);
2382 2383
	if (!mem)
		goto charge_cur_mm;
2384
	*ptr = mem;
2385
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2386 2387
	css_put(&mem->css);
	return ret;
2388 2389 2390
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2391
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2392 2393
}

D
Daisuke Nishimura 已提交
2394 2395 2396
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2397 2398 2399
{
	struct page_cgroup *pc;

2400
	if (mem_cgroup_disabled())
2401 2402 2403
		return;
	if (!ptr)
		return;
2404
	cgroup_exclude_rmdir(&ptr->css);
2405
	pc = lookup_page_cgroup(page);
2406
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2407
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2408
	mem_cgroup_lru_add_after_commit_swapcache(page);
2409 2410 2411
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2412 2413 2414
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2415
	 */
2416
	if (do_swap_account && PageSwapCache(page)) {
2417
		swp_entry_t ent = {.val = page_private(page)};
2418
		unsigned short id;
2419
		struct mem_cgroup *memcg;
2420 2421 2422 2423

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2424
		if (memcg) {
2425 2426 2427 2428
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2429
			if (!mem_cgroup_is_root(memcg))
2430
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2431
			mem_cgroup_swap_statistics(memcg, false);
2432 2433
			mem_cgroup_put(memcg);
		}
2434
		rcu_read_unlock();
2435
	}
2436 2437 2438 2439 2440 2441
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2442 2443
}

D
Daisuke Nishimura 已提交
2444 2445 2446 2447 2448 2449
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2450 2451
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2452
	if (mem_cgroup_disabled())
2453 2454 2455
		return;
	if (!mem)
		return;
2456
	mem_cgroup_cancel_charge(mem);
2457 2458
}

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2503 2504
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2505 2506
	return;
}
2507

2508
/*
2509
 * uncharge if !page_mapped(page)
2510
 */
2511
static struct mem_cgroup *
2512
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2513
{
H
Hugh Dickins 已提交
2514
	struct page_cgroup *pc;
2515
	struct mem_cgroup *mem = NULL;
2516

2517
	if (mem_cgroup_disabled())
2518
		return NULL;
2519

K
KAMEZAWA Hiroyuki 已提交
2520
	if (PageSwapCache(page))
2521
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2522

2523
	/*
2524
	 * Check if our page_cgroup is valid
2525
	 */
2526 2527
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2528
		return NULL;
2529

2530
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2531

2532 2533
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2534 2535 2536 2537 2538
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2539
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2540 2541
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2553
	}
K
KAMEZAWA Hiroyuki 已提交
2554

K
KAMEZAWA Hiroyuki 已提交
2555
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2556

2557
	ClearPageCgroupUsed(pc);
2558 2559 2560 2561 2562 2563
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2564

2565
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2566 2567 2568 2569
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2570
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2571 2572 2573 2574 2575 2576
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2577

2578
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2579 2580 2581

unlock_out:
	unlock_page_cgroup(pc);
2582
	return NULL;
2583 2584
}

2585 2586
void mem_cgroup_uncharge_page(struct page *page)
{
2587 2588 2589 2590 2591
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2592 2593 2594 2595 2596 2597
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2598
	VM_BUG_ON(page->mapping);
2599 2600 2601
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2642
	memcg_oom_recover(batch->memcg);
2643 2644 2645 2646
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2647
#ifdef CONFIG_SWAP
2648
/*
2649
 * called after __delete_from_swap_cache() and drop "page" account.
2650 2651
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2652 2653
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2654 2655
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2656 2657 2658 2659 2660 2661
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2662

K
KAMEZAWA Hiroyuki 已提交
2663 2664 2665 2666 2667
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2668
		swap_cgroup_record(ent, css_id(&memcg->css));
2669
}
2670
#endif
2671 2672 2673 2674 2675 2676 2677

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2678
{
2679
	struct mem_cgroup *memcg;
2680
	unsigned short id;
2681 2682 2683 2684

	if (!do_swap_account)
		return;

2685 2686 2687
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2688
	if (memcg) {
2689 2690 2691 2692
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2693
		if (!mem_cgroup_is_root(memcg))
2694
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2695
		mem_cgroup_swap_statistics(memcg, false);
2696 2697
		mem_cgroup_put(memcg);
	}
2698
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2699
}
2700 2701 2702 2703 2704 2705

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2706
 * @need_fixup: whether we should fixup res_counters and refcounts.
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2717
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2718 2719 2720 2721 2722 2723 2724 2725
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2726
		mem_cgroup_swap_statistics(to, true);
2727
		/*
2728 2729 2730 2731 2732 2733
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2734 2735
		 */
		mem_cgroup_get(to);
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2747 2748 2749 2750 2751 2752
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2753
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2754 2755 2756
{
	return -EINVAL;
}
2757
#endif
K
KAMEZAWA Hiroyuki 已提交
2758

2759
/*
2760 2761
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2762
 */
2763 2764
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2765 2766
{
	struct page_cgroup *pc;
2767
	struct mem_cgroup *mem = NULL;
2768
	enum charge_type ctype;
2769
	int ret = 0;
2770

2771
	if (mem_cgroup_disabled())
2772 2773
		return 0;

2774 2775 2776
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2777 2778
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2810
	}
2811
	unlock_page_cgroup(pc);
2812 2813 2814 2815 2816 2817
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2818

A
Andrea Arcangeli 已提交
2819
	*ptr = mem;
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2833
	}
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
	__mem_cgroup_commit_charge(mem, pc, ctype);
2848
	return ret;
2849
}
2850

2851
/* remove redundant charge if migration failed*/
2852
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2853
	struct page *oldpage, struct page *newpage)
2854
{
2855
	struct page *used, *unused;
2856 2857 2858 2859
	struct page_cgroup *pc;

	if (!mem)
		return;
2860
	/* blocks rmdir() */
2861
	cgroup_exclude_rmdir(&mem->css);
2862 2863
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
2864 2865
		used = oldpage;
		unused = newpage;
2866
	} else {
2867
		used = newpage;
2868 2869
		unused = oldpage;
	}
2870
	/*
2871 2872 2873
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2874
	 */
2875 2876 2877 2878
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2879

2880 2881
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

2882
	/*
2883 2884 2885 2886 2887 2888
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2889
	 */
2890 2891
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2892
	/*
2893 2894
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2895 2896 2897 2898
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2899
}
2900

2901
/*
2902 2903 2904 2905 2906 2907
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2908
 */
2909
int mem_cgroup_shmem_charge_fallback(struct page *page,
2910 2911
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2912
{
2913
	struct mem_cgroup *mem = NULL;
2914
	int ret;
2915

2916
	if (mem_cgroup_disabled())
2917
		return 0;
2918

2919 2920 2921
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2922

2923
	return ret;
2924 2925
}

2926 2927
static DEFINE_MUTEX(set_limit_mutex);

2928
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2929
				unsigned long long val)
2930
{
2931
	int retry_count;
2932
	u64 memswlimit, memlimit;
2933
	int ret = 0;
2934 2935
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
2936
	int enlarge;
2937 2938 2939 2940 2941 2942 2943 2944 2945

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2946

2947
	enlarge = 0;
2948
	while (retry_count) {
2949 2950 2951 2952
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2963 2964
			break;
		}
2965 2966 2967 2968 2969

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

2970
		ret = res_counter_set_limit(&memcg->res, val);
2971 2972 2973 2974 2975 2976
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2977 2978 2979 2980 2981
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2982
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2983
						MEM_CGROUP_RECLAIM_SHRINK);
2984 2985 2986 2987 2988 2989
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2990
	}
2991 2992
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2993

2994 2995 2996
	return ret;
}

L
Li Zefan 已提交
2997 2998
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2999
{
3000
	int retry_count;
3001
	u64 memlimit, memswlimit, oldusage, curusage;
3002 3003
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3004
	int enlarge = 0;
3005

3006 3007 3008
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3026 3027 3028
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3029
		ret = res_counter_set_limit(&memcg->memsw, val);
3030 3031 3032 3033 3034 3035
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3036 3037 3038 3039 3040
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3041
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3042 3043
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
3044
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3045
		/* Usage is reduced ? */
3046
		if (curusage >= oldusage)
3047
			retry_count--;
3048 3049
		else
			oldusage = curusage;
3050
	}
3051 3052
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3053 3054 3055
	return ret;
}

3056
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3057
					    gfp_t gfp_mask)
3058 3059 3060 3061 3062 3063
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3064
	unsigned long long excess;
3065 3066 3067 3068

	if (order > 0)
		return 0;

3069
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3117
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3118 3119 3120 3121 3122 3123 3124 3125
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3126 3127
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3146 3147 3148 3149
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3150
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3151
				int node, int zid, enum lru_list lru)
3152
{
K
KAMEZAWA Hiroyuki 已提交
3153 3154
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3155
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3156
	unsigned long flags, loop;
3157
	struct list_head *list;
3158
	int ret = 0;
3159

K
KAMEZAWA Hiroyuki 已提交
3160 3161
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3162
	list = &mz->lists[lru];
3163

3164 3165 3166 3167 3168 3169
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3170
		spin_lock_irqsave(&zone->lru_lock, flags);
3171
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3172
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3173
			break;
3174 3175 3176 3177
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3178
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3179
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3180 3181
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3182
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3183

K
KAMEZAWA Hiroyuki 已提交
3184
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3185
		if (ret == -ENOMEM)
3186
			break;
3187 3188 3189 3190 3191 3192 3193

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3194
	}
K
KAMEZAWA Hiroyuki 已提交
3195

3196 3197 3198
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3199 3200 3201 3202 3203 3204
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3205
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3206
{
3207 3208 3209
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3210
	struct cgroup *cgrp = mem->css.cgroup;
3211

3212
	css_get(&mem->css);
3213 3214

	shrink = 0;
3215 3216 3217
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3218
move_account:
3219
	do {
3220
		ret = -EBUSY;
3221 3222 3223 3224
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3225
			goto out;
3226 3227
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3228
		drain_all_stock_sync();
3229
		ret = 0;
3230
		mem_cgroup_start_move(mem);
3231
		for_each_node_state(node, N_HIGH_MEMORY) {
3232
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3233
				enum lru_list l;
3234 3235
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3236
							node, zid, l);
3237 3238 3239
					if (ret)
						break;
				}
3240
			}
3241 3242 3243
			if (ret)
				break;
		}
3244
		mem_cgroup_end_move(mem);
3245
		memcg_oom_recover(mem);
3246 3247 3248
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3249
		cond_resched();
3250 3251
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3252 3253 3254
out:
	css_put(&mem->css);
	return ret;
3255 3256

try_to_free:
3257 3258
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3259 3260 3261
		ret = -EBUSY;
		goto out;
	}
3262 3263
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3264 3265 3266 3267
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3268 3269 3270 3271 3272

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3273 3274
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3275
		if (!progress) {
3276
			nr_retries--;
3277
			/* maybe some writeback is necessary */
3278
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3279
		}
3280 3281

	}
K
KAMEZAWA Hiroyuki 已提交
3282
	lru_add_drain();
3283
	/* try move_account...there may be some *locked* pages. */
3284
	goto move_account;
3285 3286
}

3287 3288 3289 3290 3291 3292
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3311
	 * If parent's use_hierarchy is set, we can't make any modifications
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3331

K
KAMEZAWA Hiroyuki 已提交
3332 3333
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx)
3334
{
K
KAMEZAWA Hiroyuki 已提交
3335 3336
	struct mem_cgroup *iter;
	s64 val = 0;
3337

K
KAMEZAWA Hiroyuki 已提交
3338 3339 3340 3341 3342 3343 3344
	/* each per cpu's value can be minus.Then, use s64 */
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3345 3346
}

3347 3348
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3349
	u64 val;
3350 3351 3352 3353 3354 3355 3356 3357

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

K
KAMEZAWA Hiroyuki 已提交
3358 3359
	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3360

K
KAMEZAWA Hiroyuki 已提交
3361 3362 3363
	if (swap)
		val += mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT);
3364 3365 3366 3367

	return val << PAGE_SHIFT;
}

3368
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3369
{
3370
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3371
	u64 val;
3372 3373 3374 3375 3376 3377
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3378 3379 3380
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3381
			val = res_counter_read_u64(&mem->res, name);
3382 3383
		break;
	case _MEMSWAP:
3384 3385 3386
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3387
			val = res_counter_read_u64(&mem->memsw, name);
3388 3389 3390 3391 3392 3393
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3394
}
3395 3396 3397 3398
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3399 3400
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3401
{
3402
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3403
	int type, name;
3404 3405 3406
	unsigned long long val;
	int ret;

3407 3408 3409
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3410
	case RES_LIMIT:
3411 3412 3413 3414
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3415 3416
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3417 3418 3419
		if (ret)
			break;
		if (type == _MEM)
3420
			ret = mem_cgroup_resize_limit(memcg, val);
3421 3422
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3423
		break;
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3438 3439 3440 3441 3442
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3443 3444
}

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3473
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3474 3475
{
	struct mem_cgroup *mem;
3476
	int type, name;
3477 3478

	mem = mem_cgroup_from_cont(cont);
3479 3480 3481
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3482
	case RES_MAX_USAGE:
3483 3484 3485 3486
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3487 3488
		break;
	case RES_FAILCNT:
3489 3490 3491 3492
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3493 3494
		break;
	}
3495

3496
	return 0;
3497 3498
}

3499 3500 3501 3502 3503 3504
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3505
#ifdef CONFIG_MMU
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3524 3525 3526 3527 3528 3529 3530
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3531

K
KAMEZAWA Hiroyuki 已提交
3532 3533 3534 3535 3536

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3537
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3538 3539
	MCS_PGPGIN,
	MCS_PGPGOUT,
3540
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3551 3552
};

K
KAMEZAWA Hiroyuki 已提交
3553 3554 3555 3556 3557 3558
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3559
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3560 3561
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3562
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3563 3564 3565 3566 3567 3568 3569 3570
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3571 3572
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3573 3574 3575 3576
{
	s64 val;

	/* per cpu stat */
3577
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3578
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3579
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3580
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3581
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3582
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3583
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3584
	s->stat[MCS_PGPGIN] += val;
3585
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3586
	s->stat[MCS_PGPGOUT] += val;
3587
	if (do_swap_account) {
3588
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3589 3590
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3608 3609 3610 3611
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3612 3613
}

3614 3615
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3616 3617
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3618
	struct mcs_total_stat mystat;
3619 3620
	int i;

K
KAMEZAWA Hiroyuki 已提交
3621 3622
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3623

3624 3625 3626
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3627
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3628
	}
L
Lee Schermerhorn 已提交
3629

K
KAMEZAWA Hiroyuki 已提交
3630
	/* Hierarchical information */
3631 3632 3633 3634 3635 3636 3637
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3638

K
KAMEZAWA Hiroyuki 已提交
3639 3640
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3641 3642 3643
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3644
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3645
	}
K
KAMEZAWA Hiroyuki 已提交
3646

K
KOSAKI Motohiro 已提交
3647
#ifdef CONFIG_DEBUG_VM
3648
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3676 3677 3678
	return 0;
}

K
KOSAKI Motohiro 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3691

K
KOSAKI Motohiro 已提交
3692 3693 3694 3695 3696 3697 3698
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3699 3700 3701

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3702 3703
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3704 3705
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3706
		return -EINVAL;
3707
	}
K
KOSAKI Motohiro 已提交
3708 3709 3710 3711 3712

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3713 3714
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3715 3716 3717
	return 0;
}

3718 3719 3720 3721 3722 3723 3724 3725
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3726
		t = rcu_dereference(memcg->thresholds.primary);
3727
	else
3728
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3740
	i = t->current_threshold;
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3764
	t->current_threshold = i - 1;
3765 3766 3767 3768 3769 3770
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3771 3772 3773 3774 3775 3776 3777
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3788
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
3799 3800 3801 3802
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3803 3804 3805 3806
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3807 3808
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3809 3810
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3811 3812
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3813
	int i, size, ret;
3814 3815 3816 3817 3818 3819

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3820

3821
	if (type == _MEM)
3822
		thresholds = &memcg->thresholds;
3823
	else if (type == _MEMSWAP)
3824
		thresholds = &memcg->memsw_thresholds;
3825 3826 3827 3828 3829 3830
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3831
	if (thresholds->primary)
3832 3833
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3834
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3835 3836

	/* Allocate memory for new array of thresholds */
3837
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3838
			GFP_KERNEL);
3839
	if (!new) {
3840 3841 3842
		ret = -ENOMEM;
		goto unlock;
	}
3843
	new->size = size;
3844 3845

	/* Copy thresholds (if any) to new array */
3846 3847
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3848
				sizeof(struct mem_cgroup_threshold));
3849 3850
	}

3851
	/* Add new threshold */
3852 3853
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3854 3855

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3856
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3857 3858 3859
			compare_thresholds, NULL);

	/* Find current threshold */
3860
	new->current_threshold = -1;
3861
	for (i = 0; i < size; i++) {
3862
		if (new->entries[i].threshold < usage) {
3863
			/*
3864 3865
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3866 3867
			 * it here.
			 */
3868
			++new->current_threshold;
3869 3870 3871
		}
	}

3872 3873 3874 3875 3876
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3877

3878
	/* To be sure that nobody uses thresholds */
3879 3880 3881 3882 3883 3884 3885 3886
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3887
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3888
	struct cftype *cft, struct eventfd_ctx *eventfd)
3889 3890
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3891 3892
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3893 3894
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3895
	int i, j, size;
3896 3897 3898

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3899
		thresholds = &memcg->thresholds;
3900
	else if (type == _MEMSWAP)
3901
		thresholds = &memcg->memsw_thresholds;
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3917 3918 3919
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3920 3921 3922
			size++;
	}

3923
	new = thresholds->spare;
3924

3925 3926
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3927 3928
		kfree(new);
		new = NULL;
3929
		goto swap_buffers;
3930 3931
	}

3932
	new->size = size;
3933 3934

	/* Copy thresholds and find current threshold */
3935 3936 3937
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3938 3939
			continue;

3940 3941
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
3942
			/*
3943
			 * new->current_threshold will not be used
3944 3945 3946
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3947
			++new->current_threshold;
3948 3949 3950 3951
		}
		j++;
	}

3952
swap_buffers:
3953 3954 3955
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
3956

3957
	/* To be sure that nobody uses thresholds */
3958 3959 3960 3961
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
3962

K
KAMEZAWA Hiroyuki 已提交
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

3988
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4043 4044
	if (!val)
		memcg_oom_recover(mem);
4045 4046 4047 4048
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4049 4050
static struct cftype mem_cgroup_files[] = {
	{
4051
		.name = "usage_in_bytes",
4052
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4053
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4054 4055
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4056
	},
4057 4058
	{
		.name = "max_usage_in_bytes",
4059
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4060
		.trigger = mem_cgroup_reset,
4061 4062
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4063
	{
4064
		.name = "limit_in_bytes",
4065
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4066
		.write_string = mem_cgroup_write,
4067
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4068
	},
4069 4070 4071 4072 4073 4074
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4075 4076
	{
		.name = "failcnt",
4077
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4078
		.trigger = mem_cgroup_reset,
4079
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4080
	},
4081 4082
	{
		.name = "stat",
4083
		.read_map = mem_control_stat_show,
4084
	},
4085 4086 4087 4088
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4089 4090 4091 4092 4093
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4094 4095 4096 4097 4098
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4099 4100 4101 4102 4103
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4104 4105
	{
		.name = "oom_control",
4106 4107
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4108 4109 4110 4111
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4112 4113
};

4114 4115 4116 4117 4118 4119
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4120 4121
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4157 4158 4159
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4160
	struct mem_cgroup_per_zone *mz;
4161
	enum lru_list l;
4162
	int zone, tmp = node;
4163 4164 4165 4166 4167 4168 4169 4170
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4171 4172 4173
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4174 4175
	if (!pn)
		return 1;
4176

4177 4178
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
4179 4180 4181

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4182 4183
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4184
		mz->usage_in_excess = 0;
4185 4186
		mz->on_tree = false;
		mz->mem = mem;
4187
	}
4188 4189 4190
	return 0;
}

4191 4192 4193 4194 4195
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4196 4197 4198
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4199
	int size = sizeof(struct mem_cgroup);
4200

4201
	/* Can be very big if MAX_NUMNODES is very big */
4202 4203
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
4204
	else
4205
		mem = vmalloc(size);
4206

4207 4208 4209 4210
	if (!mem)
		return NULL;

	memset(mem, 0, size);
4211
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4212 4213
	if (!mem->stat)
		goto out_free;
4214
	spin_lock_init(&mem->pcp_counter_lock);
4215
	return mem;
4216 4217 4218 4219 4220 4221 4222

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4223 4224
}

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4236
static void __mem_cgroup_free(struct mem_cgroup *mem)
4237
{
K
KAMEZAWA Hiroyuki 已提交
4238 4239
	int node;

4240
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4241 4242
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4243 4244 4245
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4246 4247
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4248 4249 4250 4251 4252
		kfree(mem);
	else
		vfree(mem);
}

4253 4254 4255 4256 4257
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4258
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4259
{
4260
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4261
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4262
		__mem_cgroup_free(mem);
4263 4264 4265
		if (parent)
			mem_cgroup_put(parent);
	}
4266 4267
}

4268 4269 4270 4271 4272
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4273 4274 4275 4276 4277 4278 4279 4280 4281
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4282

4283 4284 4285
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4286
	if (!mem_cgroup_disabled() && really_do_swap_account)
4287 4288 4289 4290 4291 4292 4293 4294
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4320
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4321 4322
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4323
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4324
	long error = -ENOMEM;
4325
	int node;
B
Balbir Singh 已提交
4326

4327 4328
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4329
		return ERR_PTR(error);
4330

4331 4332 4333
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4334

4335
	/* root ? */
4336
	if (cont->parent == NULL) {
4337
		int cpu;
4338
		enable_swap_cgroup();
4339
		parent = NULL;
4340
		root_mem_cgroup = mem;
4341 4342
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4343 4344 4345 4346 4347
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4348
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4349
	} else {
4350
		parent = mem_cgroup_from_cont(cont->parent);
4351
		mem->use_hierarchy = parent->use_hierarchy;
4352
		mem->oom_kill_disable = parent->oom_kill_disable;
4353
	}
4354

4355 4356 4357
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4358 4359 4360 4361 4362 4363 4364
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4365 4366 4367 4368
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4369
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4370
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4371
	INIT_LIST_HEAD(&mem->oom_notify);
4372

K
KOSAKI Motohiro 已提交
4373 4374
	if (parent)
		mem->swappiness = get_swappiness(parent);
4375
	atomic_set(&mem->refcnt, 1);
4376
	mem->move_charge_at_immigrate = 0;
4377
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4378
	return &mem->css;
4379
free_out:
4380
	__mem_cgroup_free(mem);
4381
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4382
	return ERR_PTR(error);
B
Balbir Singh 已提交
4383 4384
}

4385
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4386 4387 4388
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4389 4390

	return mem_cgroup_force_empty(mem, false);
4391 4392
}

B
Balbir Singh 已提交
4393 4394 4395
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4396 4397 4398
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4399 4400 4401 4402 4403
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4404 4405 4406 4407 4408 4409 4410 4411
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4412 4413
}

4414
#ifdef CONFIG_MMU
4415
/* Handlers for move charge at task migration. */
4416 4417
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4418
{
4419 4420
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4421 4422
	struct mem_cgroup *mem = mc.to;

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4458
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4459 4460 4461 4462 4463
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4464 4465 4466 4467 4468 4469 4470 4471
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4472
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4473 4474 4475 4476 4477 4478
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4479 4480 4481
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4482 4483 4484 4485 4486
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4487
	swp_entry_t	ent;
4488 4489 4490 4491 4492
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4493
	MC_TARGET_SWAP,
4494 4495
};

D
Daisuke Nishimura 已提交
4496 4497
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4498
{
D
Daisuke Nishimura 已提交
4499
	struct page *page = vm_normal_page(vma, addr, ptent);
4500

D
Daisuke Nishimura 已提交
4501 4502 4503 4504 4505 4506
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4507 4508
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4527 4528
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4529
		return NULL;
4530
	}
D
Daisuke Nishimura 已提交
4531 4532 4533 4534 4535 4536
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4582 4583
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4584 4585 4586

	if (!page && !ent.val)
		return 0;
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4602 4603
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4604 4605 4606 4607
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4627 4628 4629
	return 0;
}

4630 4631 4632 4633 4634
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4635
	/* We've already held the mmap_sem */
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4656
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4657 4658 4659 4660
}

static void mem_cgroup_clear_mc(void)
{
4661 4662 4663
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4664
	/* we must uncharge all the leftover precharges from mc.to */
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4676
	}
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4697 4698 4699 4700
	if (mc.mm) {
		up_read(&mc.mm->mmap_sem);
		mmput(mc.mm);
	}
4701
	spin_lock(&mc.lock);
4702 4703
	mc.from = NULL;
	mc.to = NULL;
4704
	spin_unlock(&mc.lock);
4705 4706
	mc.moving_task = NULL;
	mc.mm = NULL;
4707
	mem_cgroup_end_move(from);
4708 4709
	memcg_oom_recover(from);
	memcg_oom_recover(to);
4710
	wake_up_all(&mc.waitq);
4711 4712
}

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4731
		if (mm->owner == p) {
4732 4733 4734 4735 4736 4737 4738
			/*
			 * We do all the move charge works under one mmap_sem to
			 * avoid deadlock with down_write(&mmap_sem)
			 * -> try_charge() -> if (mc.moving_task) -> sleep.
			 */
			down_read(&mm->mmap_sem);

4739 4740 4741
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4742
			VM_BUG_ON(mc.moved_charge);
4743
			VM_BUG_ON(mc.moved_swap);
4744
			VM_BUG_ON(mc.moving_task);
4745 4746
			VM_BUG_ON(mc.mm);

4747
			mem_cgroup_start_move(from);
4748
			spin_lock(&mc.lock);
4749 4750 4751
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4752
			mc.moved_charge = 0;
4753
			mc.moved_swap = 0;
4754
			spin_unlock(&mc.lock);
4755 4756
			mc.moving_task = current;
			mc.mm = mm;
4757 4758 4759 4760

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4761 4762 4763
			/* We call up_read() and mmput() in clear_mc(). */
		} else
			mmput(mm);
4764 4765 4766 4767 4768 4769 4770 4771 4772
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4773
	mem_cgroup_clear_mc();
4774 4775
}

4776 4777 4778
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4779
{
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4793
		swp_entry_t ent;
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4805 4806
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4807
				mc.precharge--;
4808 4809
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4810 4811 4812 4813 4814
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4815 4816
		case MC_TARGET_SWAP:
			ent = target.ent;
4817 4818
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4819
				mc.precharge--;
4820 4821 4822
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4823
			break;
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4838
		ret = mem_cgroup_do_precharge(1);
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
4851
	/* We've already held the mmap_sem */
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
4870 4871
}

B
Balbir Singh 已提交
4872 4873 4874
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4875 4876
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4877
{
4878
	if (!mc.mm)
4879 4880 4881
		/* no need to move charge */
		return;

4882
	mem_cgroup_move_charge(mc.mm);
4883
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4884
}
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4907

B
Balbir Singh 已提交
4908 4909 4910 4911
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4912
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4913 4914
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4915 4916
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4917
	.attach = mem_cgroup_move_task,
4918
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4919
	.use_id = 1,
B
Balbir Singh 已提交
4920
};
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif