memcontrol.c 142.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129 130 131 132
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

133 134 135 136
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
137
	struct lruvec		lruvec;
138
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139

140 141
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
142
	struct zone_reclaim_stat reclaim_stat;
143 144 145 146
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
147 148
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
149 150 151 152 153 154 155 156 157 158 159 160
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

181 182 183 184 185
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
186
/* For threshold */
187 188
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
189
	int current_threshold;
190 191 192 193 194
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
195 196 197 198 199 200 201 202 203 204 205 206

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
207 208 209 210 211
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
212

213 214
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215

B
Balbir Singh 已提交
216 217 218 219 220 221 222
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 224 225
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
226 227 228 229 230 231 232
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
233 234 235 236
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
237 238 239 240
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
241
	struct mem_cgroup_lru_info info;
242 243 244
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
245 246
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
247
#endif
248 249 250 251
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
252 253 254 255

	bool		oom_lock;
	atomic_t	under_oom;

256
	atomic_t	refcnt;
257

258
	int	swappiness;
259 260
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
261

262 263 264
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

265 266 267 268
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
269
	struct mem_cgroup_thresholds thresholds;
270

271
	/* thresholds for mem+swap usage. RCU-protected */
272
	struct mem_cgroup_thresholds memsw_thresholds;
273

K
KAMEZAWA Hiroyuki 已提交
274 275
	/* For oom notifier event fd */
	struct list_head oom_notify;
276

277 278 279 280 281
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
282
	/*
283
	 * percpu counter.
284
	 */
285
	struct mem_cgroup_stat_cpu *stat;
286 287 288 289 290 291
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
292 293 294 295

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
296 297
};

298 299 300 301 302 303
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
304
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306 307 308
	NR_MOVE_TYPE,
};

309 310
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
311
	spinlock_t	  lock; /* for from, to */
312 313 314
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
315
	unsigned long moved_charge;
316
	unsigned long moved_swap;
317 318 319
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
320
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 322
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
323

D
Daisuke Nishimura 已提交
324 325 326 327 328 329
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

330 331 332 333 334 335
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

336 337 338 339 340 341 342
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

343 344 345
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
348
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
349
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350 351 352
	NR_CHARGE_TYPE,
};

353
/* for encoding cft->private value on file */
354 355 356
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
357 358 359
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
360 361
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
362

363 364 365 366 367 368 369 370
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

371 372
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
373 374 375 376

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
377
#include <net/ip.h>
G
Glauber Costa 已提交
378 379 380 381

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
382
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
383 384 385 386
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

387 388 389 390 391 392 393 394 395 396 397 398 399 400
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
414
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
415 416 417 418 419 420
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
421

422
#ifdef CONFIG_INET
G
Glauber Costa 已提交
423 424 425 426 427 428 429 430
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
431 432 433
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

434
static void drain_all_stock_async(struct mem_cgroup *memcg);
435

436
static struct mem_cgroup_per_zone *
437
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438
{
439
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 441
}

442
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443
{
444
	return &memcg->css;
445 446
}

447
static struct mem_cgroup_per_zone *
448
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449
{
450 451
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
452

453
	return mem_cgroup_zoneinfo(memcg, nid, zid);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
472
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473
				struct mem_cgroup_per_zone *mz,
474 475
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
476 477 478 479 480 481 482 483
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

484 485 486
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
503 504 505
}

static void
506
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 508 509 510 511 512 513 514 515
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

516
static void
517
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 519 520 521
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
522
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 524 525 526
	spin_unlock(&mctz->lock);
}


527
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528
{
529
	unsigned long long excess;
530 531
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
532 533
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
534 535 536
	mctz = soft_limit_tree_from_page(page);

	/*
537 538
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
539
	 */
540 541 542
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
543 544 545 546
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
547
		if (excess || mz->on_tree) {
548 549 550
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
551
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552
			/*
553 554
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
555
			 */
556
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 558
			spin_unlock(&mctz->lock);
		}
559 560 561
	}
}

562
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 564 565 566 567
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
568
	for_each_node(node) {
569
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571
			mctz = soft_limit_tree_node_zone(node, zone);
572
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
		}
	}
}

577 578 579 580
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
581
	struct mem_cgroup_per_zone *mz;
582 583

retry:
584
	mz = NULL;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
633
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634
				 enum mem_cgroup_stat_index idx)
635
{
636
	long val = 0;
637 638
	int cpu;

639 640
	get_online_cpus();
	for_each_online_cpu(cpu)
641
		val += per_cpu(memcg->stat->count[idx], cpu);
642
#ifdef CONFIG_HOTPLUG_CPU
643 644 645
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
646 647
#endif
	put_online_cpus();
648 649 650
	return val;
}

651
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 653 654
					 bool charge)
{
	int val = (charge) ? 1 : -1;
655
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 657
}

658
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 660 661 662 663 664
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
665
		val += per_cpu(memcg->stat->events[idx], cpu);
666
#ifdef CONFIG_HOTPLUG_CPU
667 668 669
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
670 671 672 673
#endif
	return val;
}

674
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675
					 bool file, int nr_pages)
676
{
677 678
	preempt_disable();

679
	if (file)
680 681
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
682
	else
683 684
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
685

686 687
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
688
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689
	else {
690
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 692
		nr_pages = -nr_pages; /* for event */
	}
693

694
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695

696
	preempt_enable();
697 698
}

699
unsigned long
700
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701
			unsigned int lru_mask)
702 703
{
	struct mem_cgroup_per_zone *mz;
704 705 706
	enum lru_list l;
	unsigned long ret = 0;

707
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708 709 710 711 712 713 714 715 716

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
717
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 719
			int nid, unsigned int lru_mask)
{
720 721 722
	u64 total = 0;
	int zid;

723
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 725
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
726

727 728
	return total;
}
729

730
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731
			unsigned int lru_mask)
732
{
733
	int nid;
734 735
	u64 total = 0;

736
	for_each_node_state(nid, N_HIGH_MEMORY)
737
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738
	return total;
739 740
}

741 742
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
743 744 745
{
	unsigned long val, next;

746 747
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
748
	/* from time_after() in jiffies.h */
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
765
	}
766
	return false;
767 768 769 770 771 772
}

/*
 * Check events in order.
 *
 */
773
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774
{
775
	preempt_disable();
776
	/* threshold event is triggered in finer grain than soft limit */
777 778
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
779 780
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
781 782 783 784 785 786 787 788 789

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

790
		mem_cgroup_threshold(memcg);
791
		if (unlikely(do_softlimit))
792
			mem_cgroup_update_tree(memcg, page);
793
#if MAX_NUMNODES > 1
794
		if (unlikely(do_numainfo))
795
			atomic_inc(&memcg->numainfo_events);
796
#endif
797 798
	} else
		preempt_enable();
799 800
}

G
Glauber Costa 已提交
801
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
802 803 804 805 806 807
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

808
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
809
{
810 811 812 813 814 815 816 817
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

818 819 820 821
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

822
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
823
{
824
	struct mem_cgroup *memcg = NULL;
825 826 827

	if (!mm)
		return NULL;
828 829 830 831 832 833 834
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
835 836
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
837
			break;
838
	} while (!css_tryget(&memcg->css));
839
	rcu_read_unlock();
840
	return memcg;
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
863
{
864 865
	struct mem_cgroup *memcg = NULL;
	int id = 0;
866

867 868 869
	if (mem_cgroup_disabled())
		return NULL;

870 871
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
872

873 874
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
875

876 877
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
878

879 880 881 882 883
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
884

885
	while (!memcg) {
886
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
887
		struct cgroup_subsys_state *css;
888

889 890 891 892 893 894 895 896 897 898 899
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
900

901 902 903 904 905 906 907 908
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
909 910
		rcu_read_unlock();

911 912 913 914 915 916 917
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
918 919 920 921 922

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
923
}
K
KAMEZAWA Hiroyuki 已提交
924

925 926 927 928 929 930 931
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
932 933 934 935 936 937
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
938

939 940 941 942 943 944
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
945
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
946
	     iter != NULL;				\
947
	     iter = mem_cgroup_iter(root, iter, NULL))
948

949
#define for_each_mem_cgroup(iter)			\
950
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
951
	     iter != NULL;				\
952
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
953

954
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
955
{
956
	return (memcg == root_mem_cgroup);
957 958
}

959 960
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
961
	struct mem_cgroup *memcg;
962 963 964 965 966

	if (!mm)
		return;

	rcu_read_lock();
967 968
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
969 970 971 972
		goto out;

	switch (idx) {
	case PGFAULT:
973 974 975 976
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
977 978 979 980 981 982 983 984 985
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1035 1036
{
	struct mem_cgroup_per_zone *mz;
1037 1038
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1039

1040
	if (mem_cgroup_disabled())
1041 1042
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1043
	pc = lookup_page_cgroup(page);
1044
	memcg = pc->mem_cgroup;
1045 1046 1047 1048
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1049
}
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1060
 */
1061
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1062 1063
{
	struct mem_cgroup_per_zone *mz;
1064
	struct mem_cgroup *memcg;
1065 1066 1067 1068 1069 1070
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1071 1072
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1073 1074
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
1075
	VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
1076
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1077 1078
}

1079
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1080
{
1081
	mem_cgroup_lru_del_list(page, page_lru(page));
1082 1083
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1102
{
1103 1104 1105
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1106
}
1107

1108
/*
1109
 * Checks whether given mem is same or in the root_mem_cgroup's
1110 1111
 * hierarchy subtree
 */
1112 1113
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1114
{
1115 1116 1117
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1118 1119 1120 1121 1122
	}

	return true;
}

1123
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1124 1125
{
	int ret;
1126
	struct mem_cgroup *curr = NULL;
1127
	struct task_struct *p;
1128

1129
	p = find_lock_task_mm(task);
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1145 1146
	if (!curr)
		return 0;
1147
	/*
1148
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1149
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1150 1151
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1152
	 */
1153
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1154
	css_put(&curr->css);
1155 1156 1157
	return ret;
}

1158
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1159
{
1160 1161 1162
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1163
	unsigned long inactive;
1164
	unsigned long active;
1165
	unsigned long gb;
1166

1167 1168 1169 1170
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1171

1172 1173 1174 1175 1176 1177
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1178
	return inactive * inactive_ratio < active;
1179 1180
}

1181
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1182 1183 1184
{
	unsigned long active;
	unsigned long inactive;
1185 1186
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1187

1188 1189 1190 1191
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1192 1193 1194 1195

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1196 1197 1198
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1199
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1216 1217
	if (!PageCgroupUsed(pc))
		return NULL;
1218 1219
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1220
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1221 1222 1223
	return &mz->reclaim_stat;
}

1224 1225 1226
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1227
/**
1228 1229
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1230
 *
1231
 * Returns the maximum amount of memory @mem can be charged with, in
1232
 * pages.
1233
 */
1234
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1235
{
1236 1237
	unsigned long long margin;

1238
	margin = res_counter_margin(&memcg->res);
1239
	if (do_swap_account)
1240
		margin = min(margin, res_counter_margin(&memcg->memsw));
1241
	return margin >> PAGE_SHIFT;
1242 1243
}

1244
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1245 1246 1247 1248 1249 1250 1251
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1252
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1253 1254
}

1255
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1256 1257
{
	int cpu;
1258 1259

	get_online_cpus();
1260
	spin_lock(&memcg->pcp_counter_lock);
1261
	for_each_online_cpu(cpu)
1262 1263 1264
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1265
	put_online_cpus();
1266 1267 1268 1269

	synchronize_rcu();
}

1270
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1271 1272 1273
{
	int cpu;

1274
	if (!memcg)
1275
		return;
1276
	get_online_cpus();
1277
	spin_lock(&memcg->pcp_counter_lock);
1278
	for_each_online_cpu(cpu)
1279 1280 1281
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1282
	put_online_cpus();
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1296
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1297 1298
{
	VM_BUG_ON(!rcu_read_lock_held());
1299
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1300
}
1301

1302
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1303
{
1304 1305
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1306
	bool ret = false;
1307 1308 1309 1310 1311 1312 1313 1314 1315
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1316

1317 1318
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1319 1320
unlock:
	spin_unlock(&mc.lock);
1321 1322 1323
	return ret;
}

1324
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1325 1326
{
	if (mc.moving_task && current != mc.moving_task) {
1327
		if (mem_cgroup_under_move(memcg)) {
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1340
/**
1341
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1360
	if (!memcg || !p)
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1407 1408 1409 1410
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1411
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1412 1413
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1414 1415
	struct mem_cgroup *iter;

1416
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1417
		num++;
1418 1419 1420
	return num;
}

D
David Rientjes 已提交
1421 1422 1423 1424 1425 1426 1427 1428
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1429 1430 1431
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1432 1433 1434 1435 1436 1437 1438 1439
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1486
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1487 1488
		int nid, bool noswap)
{
1489
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1490 1491 1492
		return true;
	if (noswap || !total_swap_pages)
		return false;
1493
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1494 1495 1496 1497
		return true;
	return false;

}
1498 1499 1500 1501 1502 1503 1504 1505
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1506
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1507 1508
{
	int nid;
1509 1510 1511 1512
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1513
	if (!atomic_read(&memcg->numainfo_events))
1514
		return;
1515
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1516 1517 1518
		return;

	/* make a nodemask where this memcg uses memory from */
1519
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1520 1521 1522

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1523 1524
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1525
	}
1526

1527 1528
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1543
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1544 1545 1546
{
	int node;

1547 1548
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1549

1550
	node = next_node(node, memcg->scan_nodes);
1551
	if (node == MAX_NUMNODES)
1552
		node = first_node(memcg->scan_nodes);
1553 1554 1555 1556 1557 1558 1559 1560 1561
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1562
	memcg->last_scanned_node = node;
1563 1564 1565
	return node;
}

1566 1567 1568 1569 1570 1571
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1572
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1573 1574 1575 1576 1577 1578 1579
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1580 1581
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1582
		     nid < MAX_NUMNODES;
1583
		     nid = next_node(nid, memcg->scan_nodes)) {
1584

1585
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1586 1587 1588 1589 1590 1591 1592
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1593
		if (node_isset(nid, memcg->scan_nodes))
1594
			continue;
1595
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1596 1597 1598 1599 1600
			return true;
	}
	return false;
}

1601
#else
1602
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1603 1604 1605
{
	return 0;
}
1606

1607
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1608
{
1609
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1610
}
1611 1612
#endif

1613 1614 1615 1616
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1617
{
1618
	struct mem_cgroup *victim = NULL;
1619
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1620
	int loop = 0;
1621
	unsigned long excess;
1622
	unsigned long nr_scanned;
1623 1624 1625 1626
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1627

1628
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1629

1630
	while (1) {
1631
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1632
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1633
			loop++;
1634 1635 1636 1637 1638 1639
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1640
				if (!total)
1641 1642
					break;
				/*
L
Lucas De Marchi 已提交
1643
				 * We want to do more targeted reclaim.
1644 1645 1646 1647 1648
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1649
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1650 1651
					break;
			}
1652
			continue;
1653
		}
1654
		if (!mem_cgroup_reclaimable(victim, false))
1655
			continue;
1656 1657 1658 1659
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1660
			break;
1661
	}
1662
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1663
	return total;
1664 1665
}

K
KAMEZAWA Hiroyuki 已提交
1666 1667 1668
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1669
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1670
 */
1671
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1672
{
1673
	struct mem_cgroup *iter, *failed = NULL;
1674

1675
	for_each_mem_cgroup_tree(iter, memcg) {
1676
		if (iter->oom_lock) {
1677 1678 1679 1680 1681
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1682 1683
			mem_cgroup_iter_break(memcg, iter);
			break;
1684 1685
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1686
	}
K
KAMEZAWA Hiroyuki 已提交
1687

1688
	if (!failed)
1689
		return true;
1690 1691 1692 1693 1694

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1695
	for_each_mem_cgroup_tree(iter, memcg) {
1696
		if (iter == failed) {
1697 1698
			mem_cgroup_iter_break(memcg, iter);
			break;
1699 1700 1701
		}
		iter->oom_lock = false;
	}
1702
	return false;
1703
}
1704

1705
/*
1706
 * Has to be called with memcg_oom_lock
1707
 */
1708
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1709
{
K
KAMEZAWA Hiroyuki 已提交
1710 1711
	struct mem_cgroup *iter;

1712
	for_each_mem_cgroup_tree(iter, memcg)
1713 1714 1715 1716
		iter->oom_lock = false;
	return 0;
}

1717
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1718 1719 1720
{
	struct mem_cgroup *iter;

1721
	for_each_mem_cgroup_tree(iter, memcg)
1722 1723 1724
		atomic_inc(&iter->under_oom);
}

1725
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1726 1727 1728
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1729 1730 1731 1732 1733
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1734
	for_each_mem_cgroup_tree(iter, memcg)
1735
		atomic_add_unless(&iter->under_oom, -1, 0);
1736 1737
}

1738
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1739 1740
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1741 1742 1743 1744 1745 1746 1747 1748
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1749 1750
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1751 1752 1753
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1754
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1755 1756 1757 1758 1759

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1760 1761
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1762 1763 1764 1765
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1766
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1767
{
1768 1769
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1770 1771
}

1772
static void memcg_oom_recover(struct mem_cgroup *memcg)
1773
{
1774 1775
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1776 1777
}

K
KAMEZAWA Hiroyuki 已提交
1778 1779 1780
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1781
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1782
{
K
KAMEZAWA Hiroyuki 已提交
1783
	struct oom_wait_info owait;
1784
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1785

1786
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1787 1788 1789 1790
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1791
	need_to_kill = true;
1792
	mem_cgroup_mark_under_oom(memcg);
1793

1794
	/* At first, try to OOM lock hierarchy under memcg.*/
1795
	spin_lock(&memcg_oom_lock);
1796
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1797 1798 1799 1800 1801
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1802
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1803
	if (!locked || memcg->oom_kill_disable)
1804 1805
		need_to_kill = false;
	if (locked)
1806
		mem_cgroup_oom_notify(memcg);
1807
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1808

1809 1810
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1811
		mem_cgroup_out_of_memory(memcg, mask);
1812
	} else {
K
KAMEZAWA Hiroyuki 已提交
1813
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1814
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1815
	}
1816
	spin_lock(&memcg_oom_lock);
1817
	if (locked)
1818 1819
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1820
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1821

1822
	mem_cgroup_unmark_under_oom(memcg);
1823

K
KAMEZAWA Hiroyuki 已提交
1824 1825 1826
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1827
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1828
	return true;
1829 1830
}

1831 1832 1833
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1853
 */
1854

1855 1856
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1857
{
1858
	struct mem_cgroup *memcg;
1859 1860
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1861
	unsigned long uninitialized_var(flags);
1862

1863
	if (mem_cgroup_disabled())
1864 1865
		return;

1866
	rcu_read_lock();
1867 1868
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1869 1870
		goto out;
	/* pc->mem_cgroup is unstable ? */
1871
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1872
		/* take a lock against to access pc->mem_cgroup */
1873
		move_lock_page_cgroup(pc, &flags);
1874
		need_unlock = true;
1875 1876
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1877 1878
			goto out;
	}
1879 1880

	switch (idx) {
1881
	case MEMCG_NR_FILE_MAPPED:
1882 1883 1884
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1885
			ClearPageCgroupFileMapped(pc);
1886
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1887 1888 1889
		break;
	default:
		BUG();
1890
	}
1891

1892
	this_cpu_add(memcg->stat->count[idx], val);
1893

1894 1895
out:
	if (unlikely(need_unlock))
1896
		move_unlock_page_cgroup(pc, &flags);
1897 1898
	rcu_read_unlock();
	return;
1899
}
1900
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1901

1902 1903 1904 1905
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1906
#define CHARGE_BATCH	32U
1907 1908
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1909
	unsigned int nr_pages;
1910
	struct work_struct work;
1911 1912
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1913 1914
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1915
static DEFINE_MUTEX(percpu_charge_mutex);
1916 1917

/*
1918
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1919 1920 1921 1922
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
1923
static bool consume_stock(struct mem_cgroup *memcg)
1924 1925 1926 1927 1928
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1929
	if (memcg == stock->cached && stock->nr_pages)
1930
		stock->nr_pages--;
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1944 1945 1946 1947
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1948
		if (do_swap_account)
1949 1950
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
1963
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1964 1965 1966 1967
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1968
 * This will be consumed by consume_stock() function, later.
1969
 */
1970
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1971 1972 1973
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1974
	if (stock->cached != memcg) { /* reset if necessary */
1975
		drain_stock(stock);
1976
		stock->cached = memcg;
1977
	}
1978
	stock->nr_pages += nr_pages;
1979 1980 1981 1982
	put_cpu_var(memcg_stock);
}

/*
1983
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1984 1985
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
1986
 */
1987
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
1988
{
1989
	int cpu, curcpu;
1990

1991 1992
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1993
	curcpu = get_cpu();
1994 1995
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1996
		struct mem_cgroup *memcg;
1997

1998 1999
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2000
			continue;
2001
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2002
			continue;
2003 2004 2005 2006 2007 2008
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2009
	}
2010
	put_cpu();
2011 2012 2013 2014 2015 2016

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2017
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2018 2019 2020
			flush_work(&stock->work);
	}
out:
2021
 	put_online_cpus();
2022 2023 2024 2025 2026 2027 2028 2029
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2030
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2031
{
2032 2033 2034 2035 2036
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2037
	drain_all_stock(root_memcg, false);
2038
	mutex_unlock(&percpu_charge_mutex);
2039 2040 2041
}

/* This is a synchronous drain interface. */
2042
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2043 2044
{
	/* called when force_empty is called */
2045
	mutex_lock(&percpu_charge_mutex);
2046
	drain_all_stock(root_memcg, true);
2047
	mutex_unlock(&percpu_charge_mutex);
2048 2049
}

2050 2051 2052 2053
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2054
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2055 2056 2057
{
	int i;

2058
	spin_lock(&memcg->pcp_counter_lock);
2059
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2060
		long x = per_cpu(memcg->stat->count[i], cpu);
2061

2062 2063
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2064
	}
2065
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2066
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2067

2068 2069
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2070
	}
2071
	/* need to clear ON_MOVE value, works as a kind of lock. */
2072 2073
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2074 2075
}

2076
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2077 2078 2079
{
	int idx = MEM_CGROUP_ON_MOVE;

2080 2081 2082
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2083 2084 2085
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2086 2087 2088 2089 2090
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2091
	struct mem_cgroup *iter;
2092

2093
	if ((action == CPU_ONLINE)) {
2094
		for_each_mem_cgroup(iter)
2095 2096 2097 2098
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2099
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2100
		return NOTIFY_OK;
2101

2102
	for_each_mem_cgroup(iter)
2103 2104
		mem_cgroup_drain_pcp_counter(iter, cpu);

2105 2106 2107 2108 2109
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2120
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2121
				unsigned int nr_pages, bool oom_check)
2122
{
2123
	unsigned long csize = nr_pages * PAGE_SIZE;
2124 2125 2126 2127 2128
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2129
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2130 2131 2132 2133

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2134
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2135 2136 2137
		if (likely(!ret))
			return CHARGE_OK;

2138
		res_counter_uncharge(&memcg->res, csize);
2139 2140 2141 2142
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2143
	/*
2144 2145
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2146 2147 2148 2149
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2150
	if (nr_pages == CHARGE_BATCH)
2151 2152 2153 2154 2155
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2156
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2157
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2158
		return CHARGE_RETRY;
2159
	/*
2160 2161 2162 2163 2164 2165 2166
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2167
	 */
2168
	if (nr_pages == 1 && ret)
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2188
/*
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2208
 */
2209
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2210
				   gfp_t gfp_mask,
2211
				   unsigned int nr_pages,
2212
				   struct mem_cgroup **ptr,
2213
				   bool oom)
2214
{
2215
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2216
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2217
	struct mem_cgroup *memcg = NULL;
2218
	int ret;
2219

K
KAMEZAWA Hiroyuki 已提交
2220 2221 2222 2223 2224 2225 2226 2227
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2228

2229
	/*
2230 2231
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2232 2233 2234
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2235
	if (!*ptr && !mm)
2236
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2237
again:
2238 2239 2240 2241
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2242
			goto done;
2243
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2244
			goto done;
2245
		css_get(&memcg->css);
2246
	} else {
K
KAMEZAWA Hiroyuki 已提交
2247
		struct task_struct *p;
2248

K
KAMEZAWA Hiroyuki 已提交
2249 2250 2251
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2252
		 * Because we don't have task_lock(), "p" can exit.
2253
		 * In that case, "memcg" can point to root or p can be NULL with
2254 2255 2256 2257 2258 2259
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2260
		 */
2261
		memcg = mem_cgroup_from_task(p);
2262 2263 2264
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2265 2266 2267
			rcu_read_unlock();
			goto done;
		}
2268
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2281
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2282 2283 2284 2285 2286
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2287

2288 2289
	do {
		bool oom_check;
2290

2291
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2292
		if (fatal_signal_pending(current)) {
2293
			css_put(&memcg->css);
2294
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2295
		}
2296

2297 2298 2299 2300
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2301
		}
2302

2303
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2304 2305 2306 2307
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2308
			batch = nr_pages;
2309 2310
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2311
			goto again;
2312
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2313
			css_put(&memcg->css);
2314 2315
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2316
			if (!oom) {
2317
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2318
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2319
			}
2320 2321 2322 2323
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2324
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2325
			goto bypass;
2326
		}
2327 2328
	} while (ret != CHARGE_OK);

2329
	if (batch > nr_pages)
2330 2331
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2332
done:
2333
	*ptr = memcg;
2334 2335
	return 0;
nomem:
2336
	*ptr = NULL;
2337
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2338
bypass:
2339 2340
	*ptr = root_mem_cgroup;
	return -EINTR;
2341
}
2342

2343 2344 2345 2346 2347
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2348
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2349
				       unsigned int nr_pages)
2350
{
2351
	if (!mem_cgroup_is_root(memcg)) {
2352 2353
		unsigned long bytes = nr_pages * PAGE_SIZE;

2354
		res_counter_uncharge(&memcg->res, bytes);
2355
		if (do_swap_account)
2356
			res_counter_uncharge(&memcg->memsw, bytes);
2357
	}
2358 2359
}

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2379
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2380
{
2381
	struct mem_cgroup *memcg = NULL;
2382
	struct page_cgroup *pc;
2383
	unsigned short id;
2384 2385
	swp_entry_t ent;

2386 2387 2388
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2389
	lock_page_cgroup(pc);
2390
	if (PageCgroupUsed(pc)) {
2391 2392 2393
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2394
	} else if (PageSwapCache(page)) {
2395
		ent.val = page_private(page);
2396
		id = lookup_swap_cgroup_id(ent);
2397
		rcu_read_lock();
2398 2399 2400
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2401
		rcu_read_unlock();
2402
	}
2403
	unlock_page_cgroup(pc);
2404
	return memcg;
2405 2406
}

2407
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2408
				       struct page *page,
2409
				       unsigned int nr_pages,
2410
				       struct page_cgroup *pc,
2411
				       enum charge_type ctype)
2412
{
2413 2414 2415
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2416
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2417 2418 2419 2420 2421 2422
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2423
	pc->mem_cgroup = memcg;
2424 2425 2426 2427 2428 2429 2430
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2431
	smp_wmb();
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2445

2446
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2447
	unlock_page_cgroup(pc);
2448
	WARN_ON_ONCE(PageLRU(page));
2449 2450 2451 2452 2453
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2454
	memcg_check_events(memcg, page);
2455
}
2456

2457 2458 2459
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2460
			(1 << PCG_MIGRATION))
2461 2462
/*
 * Because tail pages are not marked as "used", set it. We're under
2463 2464 2465
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2466
 */
2467
void mem_cgroup_split_huge_fixup(struct page *head)
2468 2469
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2470 2471
	struct page_cgroup *pc;
	int i;
2472

2473 2474
	if (mem_cgroup_disabled())
		return;
2475 2476 2477 2478 2479 2480
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2481
}
2482
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2483

2484
/**
2485
 * mem_cgroup_move_account - move account of the page
2486
 * @page: the page
2487
 * @nr_pages: number of regular pages (>1 for huge pages)
2488 2489 2490
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2491
 * @uncharge: whether we should call uncharge and css_put against @from.
2492 2493
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2494
 * - page is not on LRU (isolate_page() is useful.)
2495
 * - compound_lock is held when nr_pages > 1
2496
 *
2497
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2498
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2499 2500
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2501
 */
2502 2503 2504 2505 2506 2507
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2508
{
2509 2510
	unsigned long flags;
	int ret;
2511

2512
	VM_BUG_ON(from == to);
2513
	VM_BUG_ON(PageLRU(page));
2514 2515 2516 2517 2518 2519 2520
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2521
	if (nr_pages > 1 && !PageTransHuge(page))
2522 2523 2524 2525 2526 2527 2528 2529 2530
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2531

2532
	if (PageCgroupFileMapped(pc)) {
2533 2534 2535 2536 2537
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2538
	}
2539
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2540 2541
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2542
		__mem_cgroup_cancel_charge(from, nr_pages);
2543

2544
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2545
	pc->mem_cgroup = to;
2546
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2547 2548 2549
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2550
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2551
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2552
	 * status here.
2553
	 */
2554 2555 2556
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2557
	unlock_page_cgroup(pc);
2558 2559 2560
	/*
	 * check events
	 */
2561 2562
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2563
out:
2564 2565 2566 2567 2568 2569 2570
	return ret;
}

/*
 * move charges to its parent.
 */

2571 2572
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2573 2574 2575 2576 2577 2578
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2579
	unsigned int nr_pages;
2580
	unsigned long uninitialized_var(flags);
2581 2582 2583 2584 2585 2586
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2587 2588 2589 2590 2591
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2592

2593
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2594

2595
	parent = mem_cgroup_from_cont(pcg);
2596
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2597
	if (ret)
2598
		goto put_back;
2599

2600
	if (nr_pages > 1)
2601 2602
		flags = compound_lock_irqsave(page);

2603
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2604
	if (ret)
2605
		__mem_cgroup_cancel_charge(parent, nr_pages);
2606

2607
	if (nr_pages > 1)
2608
		compound_unlock_irqrestore(page, flags);
2609
put_back:
K
KAMEZAWA Hiroyuki 已提交
2610
	putback_lru_page(page);
2611
put:
2612
	put_page(page);
2613
out:
2614 2615 2616
	return ret;
}

2617 2618 2619 2620 2621 2622 2623
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2624
				gfp_t gfp_mask, enum charge_type ctype)
2625
{
2626
	struct mem_cgroup *memcg = NULL;
2627
	unsigned int nr_pages = 1;
2628
	struct page_cgroup *pc;
2629
	bool oom = true;
2630
	int ret;
A
Andrea Arcangeli 已提交
2631

A
Andrea Arcangeli 已提交
2632
	if (PageTransHuge(page)) {
2633
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2634
		VM_BUG_ON(!PageTransHuge(page));
2635 2636 2637 2638 2639
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2640
	}
2641 2642

	pc = lookup_page_cgroup(page);
2643
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2644
	if (ret == -ENOMEM)
2645
		return ret;
2646
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2647 2648 2649
	return 0;
}

2650 2651
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2652
{
2653
	if (mem_cgroup_disabled())
2654
		return 0;
2655 2656 2657
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2658
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2659
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2660 2661
}

D
Daisuke Nishimura 已提交
2662 2663 2664 2665
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2666
static void
2667
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2668 2669 2670
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
2671 2672 2673 2674
	struct zone *zone = page_zone(page);
	unsigned long flags;
	bool removed = false;

2675 2676 2677 2678 2679
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
2680 2681 2682 2683 2684 2685
	spin_lock_irqsave(&zone->lru_lock, flags);
	if (PageLRU(page)) {
		del_page_from_lru_list(zone, page, page_lru(page));
		ClearPageLRU(page);
		removed = true;
	}
2686
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2687 2688 2689 2690 2691
	if (removed) {
		add_page_to_lru_list(zone, page, page_lru(page));
		SetPageLRU(page);
	}
	spin_unlock_irqrestore(&zone->lru_lock, flags);
2692 2693 2694
	return;
}

2695 2696
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2697
{
2698
	struct mem_cgroup *memcg = NULL;
2699
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2700 2701
	int ret;

2702
	if (mem_cgroup_disabled())
2703
		return 0;
2704 2705
	if (PageCompound(page))
		return 0;
2706

2707
	if (unlikely(!mm))
2708
		mm = &init_mm;
2709 2710
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2711

2712
	if (!PageSwapCache(page))
2713
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2714
	else { /* page is swapcache/shmem */
2715
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2716
		if (!ret)
2717 2718
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2719
	return ret;
2720 2721
}

2722 2723 2724
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2725
 * struct page_cgroup is acquired. This refcnt will be consumed by
2726 2727
 * "commit()" or removed by "cancel()"
 */
2728 2729
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2730
				 gfp_t mask, struct mem_cgroup **memcgp)
2731
{
2732
	struct mem_cgroup *memcg;
2733
	int ret;
2734

2735
	*memcgp = NULL;
2736

2737
	if (mem_cgroup_disabled())
2738 2739 2740 2741 2742 2743
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2744 2745 2746
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2747 2748
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2749
		goto charge_cur_mm;
2750 2751
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2752
		goto charge_cur_mm;
2753 2754
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2755
	css_put(&memcg->css);
2756 2757
	if (ret == -EINTR)
		ret = 0;
2758
	return ret;
2759 2760 2761
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2762 2763 2764 2765
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2766 2767
}

D
Daisuke Nishimura 已提交
2768
static void
2769
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2770
					enum charge_type ctype)
2771
{
2772
	if (mem_cgroup_disabled())
2773
		return;
2774
	if (!memcg)
2775
		return;
2776
	cgroup_exclude_rmdir(&memcg->css);
2777

2778
	__mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2779 2780 2781
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2782 2783 2784
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2785
	 */
2786
	if (do_swap_account && PageSwapCache(page)) {
2787
		swp_entry_t ent = {.val = page_private(page)};
2788
		struct mem_cgroup *swap_memcg;
2789 2790 2791 2792
		unsigned short id;

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
2793 2794
		swap_memcg = mem_cgroup_lookup(id);
		if (swap_memcg) {
2795 2796 2797 2798
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2799 2800 2801 2802 2803
			if (!mem_cgroup_is_root(swap_memcg))
				res_counter_uncharge(&swap_memcg->memsw,
						     PAGE_SIZE);
			mem_cgroup_swap_statistics(swap_memcg, false);
			mem_cgroup_put(swap_memcg);
2804
		}
2805
		rcu_read_unlock();
2806
	}
2807 2808 2809 2810 2811
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2812
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2813 2814
}

2815 2816
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2817
{
2818 2819
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2820 2821
}

2822
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2823
{
2824
	if (mem_cgroup_disabled())
2825
		return;
2826
	if (!memcg)
2827
		return;
2828
	__mem_cgroup_cancel_charge(memcg, 1);
2829 2830
}

2831
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2832 2833
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2834 2835 2836
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2837

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2849
		batch->memcg = memcg;
2850 2851
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2852
	 * In those cases, all pages freed continuously can be expected to be in
2853 2854 2855 2856 2857 2858 2859 2860
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2861
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2862 2863
		goto direct_uncharge;

2864 2865 2866 2867 2868
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2869
	if (batch->memcg != memcg)
2870 2871
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2872
	batch->nr_pages++;
2873
	if (uncharge_memsw)
2874
		batch->memsw_nr_pages++;
2875 2876
	return;
direct_uncharge:
2877
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2878
	if (uncharge_memsw)
2879 2880 2881
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2882 2883
	return;
}
2884

2885
/*
2886
 * uncharge if !page_mapped(page)
2887
 */
2888
static struct mem_cgroup *
2889
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2890
{
2891
	struct mem_cgroup *memcg = NULL;
2892 2893
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2894

2895
	if (mem_cgroup_disabled())
2896
		return NULL;
2897

K
KAMEZAWA Hiroyuki 已提交
2898
	if (PageSwapCache(page))
2899
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2900

A
Andrea Arcangeli 已提交
2901
	if (PageTransHuge(page)) {
2902
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2903 2904
		VM_BUG_ON(!PageTransHuge(page));
	}
2905
	/*
2906
	 * Check if our page_cgroup is valid
2907
	 */
2908
	pc = lookup_page_cgroup(page);
2909
	if (unlikely(!PageCgroupUsed(pc)))
2910
		return NULL;
2911

2912
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2913

2914
	memcg = pc->mem_cgroup;
2915

K
KAMEZAWA Hiroyuki 已提交
2916 2917 2918 2919 2920
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2921
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2922 2923
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2935
	}
K
KAMEZAWA Hiroyuki 已提交
2936

2937
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2938

2939
	ClearPageCgroupUsed(pc);
2940 2941 2942 2943 2944 2945
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2946

2947
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2948
	/*
2949
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
2950 2951
	 * will never be freed.
	 */
2952
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
2953
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2954 2955
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
2956
	}
2957 2958
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2959

2960
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
2961 2962 2963

unlock_out:
	unlock_page_cgroup(pc);
2964
	return NULL;
2965 2966
}

2967 2968
void mem_cgroup_uncharge_page(struct page *page)
{
2969 2970 2971
	/* early check. */
	if (page_mapped(page))
		return;
2972
	VM_BUG_ON(page->mapping && !PageAnon(page));
2973 2974 2975 2976 2977 2978
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2979
	VM_BUG_ON(page->mapping);
2980 2981 2982
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
2997 2998
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3019 3020 3021 3022 3023 3024
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3025
	memcg_oom_recover(batch->memcg);
3026 3027 3028 3029
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
/*
 * A function for resetting pc->mem_cgroup for newly allocated pages.
 * This function should be called if the newpage will be added to LRU
 * before start accounting.
 */
void mem_cgroup_reset_owner(struct page *newpage)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(newpage);
	VM_BUG_ON(PageCgroupUsed(pc));
	pc->mem_cgroup = root_mem_cgroup;
}

3047
#ifdef CONFIG_SWAP
3048
/*
3049
 * called after __delete_from_swap_cache() and drop "page" account.
3050 3051
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3052 3053
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3054 3055
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3056 3057 3058 3059 3060 3061
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3062

K
KAMEZAWA Hiroyuki 已提交
3063 3064 3065 3066 3067
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3068
		swap_cgroup_record(ent, css_id(&memcg->css));
3069
}
3070
#endif
3071 3072 3073 3074 3075 3076 3077

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3078
{
3079
	struct mem_cgroup *memcg;
3080
	unsigned short id;
3081 3082 3083 3084

	if (!do_swap_account)
		return;

3085 3086 3087
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3088
	if (memcg) {
3089 3090 3091 3092
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3093
		if (!mem_cgroup_is_root(memcg))
3094
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3095
		mem_cgroup_swap_statistics(memcg, false);
3096 3097
		mem_cgroup_put(memcg);
	}
3098
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3099
}
3100 3101 3102 3103 3104 3105

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3106
 * @need_fixup: whether we should fixup res_counters and refcounts.
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3117
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3118 3119 3120 3121 3122 3123 3124 3125
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3126
		mem_cgroup_swap_statistics(to, true);
3127
		/*
3128 3129 3130 3131 3132 3133
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3134 3135
		 */
		mem_cgroup_get(to);
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3147 3148 3149 3150 3151 3152
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3153
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3154 3155 3156
{
	return -EINVAL;
}
3157
#endif
K
KAMEZAWA Hiroyuki 已提交
3158

3159
/*
3160 3161
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3162
 */
3163
int mem_cgroup_prepare_migration(struct page *page,
3164
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3165
{
3166
	struct mem_cgroup *memcg = NULL;
3167
	struct page_cgroup *pc;
3168
	enum charge_type ctype;
3169
	int ret = 0;
3170

3171
	*memcgp = NULL;
3172

A
Andrea Arcangeli 已提交
3173
	VM_BUG_ON(PageTransHuge(page));
3174
	if (mem_cgroup_disabled())
3175 3176
		return 0;

3177 3178 3179
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3180 3181
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3213
	}
3214
	unlock_page_cgroup(pc);
3215 3216 3217 3218
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3219
	if (!memcg)
3220
		return 0;
3221

3222 3223
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3224
	css_put(&memcg->css);/* drop extra refcnt */
3225
	if (ret) {
3226 3227 3228 3229 3230 3231 3232 3233 3234
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3235
		/* we'll need to revisit this error code (we have -EINTR) */
3236
		return -ENOMEM;
3237
	}
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3251
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype);
3252
	return ret;
3253
}
3254

3255
/* remove redundant charge if migration failed*/
3256
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3257
	struct page *oldpage, struct page *newpage, bool migration_ok)
3258
{
3259
	struct page *used, *unused;
3260 3261
	struct page_cgroup *pc;

3262
	if (!memcg)
3263
		return;
3264
	/* blocks rmdir() */
3265
	cgroup_exclude_rmdir(&memcg->css);
3266
	if (!migration_ok) {
3267 3268
		used = oldpage;
		unused = newpage;
3269
	} else {
3270
		used = newpage;
3271 3272
		unused = oldpage;
	}
3273
	/*
3274 3275 3276
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3277
	 */
3278 3279 3280 3281
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3282

3283 3284
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3285
	/*
3286 3287 3288 3289 3290 3291
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3292
	 */
3293 3294
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3295
	/*
3296 3297
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3298 3299 3300
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3301
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3302
}
3303

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3335
	__mem_cgroup_commit_charge_lrucare(newpage, memcg, type);
3336 3337
}

3338 3339 3340 3341 3342 3343
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3344 3345 3346 3347 3348
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3368
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3369 3370 3371 3372 3373
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3374 3375
static DEFINE_MUTEX(set_limit_mutex);

3376
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3377
				unsigned long long val)
3378
{
3379
	int retry_count;
3380
	u64 memswlimit, memlimit;
3381
	int ret = 0;
3382 3383
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3384
	int enlarge;
3385 3386 3387 3388 3389 3390 3391 3392 3393

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3394

3395
	enlarge = 0;
3396
	while (retry_count) {
3397 3398 3399 3400
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3401 3402 3403
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3404
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3405 3406 3407 3408 3409 3410
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3411 3412
			break;
		}
3413 3414 3415 3416 3417

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3418
		ret = res_counter_set_limit(&memcg->res, val);
3419 3420 3421 3422 3423 3424
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3425 3426 3427 3428 3429
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3430 3431
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3432 3433 3434 3435 3436 3437
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3438
	}
3439 3440
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3441

3442 3443 3444
	return ret;
}

L
Li Zefan 已提交
3445 3446
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3447
{
3448
	int retry_count;
3449
	u64 memlimit, memswlimit, oldusage, curusage;
3450 3451
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3452
	int enlarge = 0;
3453

3454 3455 3456
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3457 3458 3459 3460 3461 3462 3463 3464
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3465
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3466 3467 3468 3469 3470 3471 3472 3473
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3474 3475 3476
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3477
		ret = res_counter_set_limit(&memcg->memsw, val);
3478 3479 3480 3481 3482 3483
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3484 3485 3486 3487 3488
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3489 3490 3491
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3492
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3493
		/* Usage is reduced ? */
3494
		if (curusage >= oldusage)
3495
			retry_count--;
3496 3497
		else
			oldusage = curusage;
3498
	}
3499 3500
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3501 3502 3503
	return ret;
}

3504
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3505 3506
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3507 3508 3509 3510 3511 3512
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3513
	unsigned long long excess;
3514
	unsigned long nr_scanned;
3515 3516 3517 3518

	if (order > 0)
		return 0;

3519
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3533
		nr_scanned = 0;
3534 3535
		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
						    gfp_mask, &nr_scanned);
3536
		nr_reclaimed += reclaimed;
3537
		*total_scanned += nr_scanned;
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3560
				if (next_mz == mz)
3561
					css_put(&next_mz->mem->css);
3562
				else /* next_mz == NULL or other memcg */
3563 3564 3565 3566
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3567
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3568 3569 3570 3571 3572 3573 3574 3575
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3576 3577
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3596 3597 3598 3599
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3600
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3601
				int node, int zid, enum lru_list lru)
3602
{
K
KAMEZAWA Hiroyuki 已提交
3603 3604
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3605
	struct list_head *list;
3606 3607
	struct page *busy;
	struct zone *zone;
3608
	int ret = 0;
3609

K
KAMEZAWA Hiroyuki 已提交
3610
	zone = &NODE_DATA(node)->node_zones[zid];
3611
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3612
	list = &mz->lruvec.lists[lru];
3613

3614 3615 3616 3617 3618
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3619
		struct page_cgroup *pc;
3620 3621
		struct page *page;

3622
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3623
		spin_lock_irqsave(&zone->lru_lock, flags);
3624
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3625
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3626
			break;
3627
		}
3628 3629 3630
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3631
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3632
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3633 3634
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3635
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3636

3637
		pc = lookup_page_cgroup(page);
3638

3639
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3640
		if (ret == -ENOMEM || ret == -EINTR)
3641
			break;
3642 3643 3644

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3645
			busy = page;
3646 3647 3648
			cond_resched();
		} else
			busy = NULL;
3649
	}
K
KAMEZAWA Hiroyuki 已提交
3650

3651 3652 3653
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3654 3655 3656 3657 3658 3659
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3660
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3661
{
3662 3663 3664
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3665
	struct cgroup *cgrp = memcg->css.cgroup;
3666

3667
	css_get(&memcg->css);
3668 3669

	shrink = 0;
3670 3671 3672
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3673
move_account:
3674
	do {
3675
		ret = -EBUSY;
3676 3677 3678 3679
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3680
			goto out;
3681 3682
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3683
		drain_all_stock_sync(memcg);
3684
		ret = 0;
3685
		mem_cgroup_start_move(memcg);
3686
		for_each_node_state(node, N_HIGH_MEMORY) {
3687
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3688
				enum lru_list l;
3689
				for_each_lru(l) {
3690
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3691
							node, zid, l);
3692 3693 3694
					if (ret)
						break;
				}
3695
			}
3696 3697 3698
			if (ret)
				break;
		}
3699 3700
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3701 3702 3703
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3704
		cond_resched();
3705
	/* "ret" should also be checked to ensure all lists are empty. */
3706
	} while (memcg->res.usage > 0 || ret);
3707
out:
3708
	css_put(&memcg->css);
3709
	return ret;
3710 3711

try_to_free:
3712 3713
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3714 3715 3716
		ret = -EBUSY;
		goto out;
	}
3717 3718
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3719 3720
	/* try to free all pages in this cgroup */
	shrink = 1;
3721
	while (nr_retries && memcg->res.usage > 0) {
3722
		int progress;
3723 3724 3725 3726 3727

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3728
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3729
						false);
3730
		if (!progress) {
3731
			nr_retries--;
3732
			/* maybe some writeback is necessary */
3733
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3734
		}
3735 3736

	}
K
KAMEZAWA Hiroyuki 已提交
3737
	lru_add_drain();
3738
	/* try move_account...there may be some *locked* pages. */
3739
	goto move_account;
3740 3741
}

3742 3743 3744 3745 3746 3747
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3748 3749 3750 3751 3752 3753 3754 3755 3756
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3757
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3758
	struct cgroup *parent = cont->parent;
3759
	struct mem_cgroup *parent_memcg = NULL;
3760 3761

	if (parent)
3762
		parent_memcg = mem_cgroup_from_cont(parent);
3763 3764 3765

	cgroup_lock();
	/*
3766
	 * If parent's use_hierarchy is set, we can't make any modifications
3767 3768 3769 3770 3771 3772
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3773
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3774 3775
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3776
			memcg->use_hierarchy = val;
3777 3778 3779 3780 3781 3782 3783 3784 3785
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3786

3787
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3788
					       enum mem_cgroup_stat_index idx)
3789
{
K
KAMEZAWA Hiroyuki 已提交
3790
	struct mem_cgroup *iter;
3791
	long val = 0;
3792

3793
	/* Per-cpu values can be negative, use a signed accumulator */
3794
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3795 3796 3797 3798 3799
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3800 3801
}

3802
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3803
{
K
KAMEZAWA Hiroyuki 已提交
3804
	u64 val;
3805

3806
	if (!mem_cgroup_is_root(memcg)) {
3807
		if (!swap)
3808
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3809
		else
3810
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3811 3812
	}

3813 3814
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3815

K
KAMEZAWA Hiroyuki 已提交
3816
	if (swap)
3817
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3818 3819 3820 3821

	return val << PAGE_SHIFT;
}

3822
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3823
{
3824
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3825
	u64 val;
3826 3827 3828 3829 3830 3831
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3832
		if (name == RES_USAGE)
3833
			val = mem_cgroup_usage(memcg, false);
3834
		else
3835
			val = res_counter_read_u64(&memcg->res, name);
3836 3837
		break;
	case _MEMSWAP:
3838
		if (name == RES_USAGE)
3839
			val = mem_cgroup_usage(memcg, true);
3840
		else
3841
			val = res_counter_read_u64(&memcg->memsw, name);
3842 3843 3844 3845 3846 3847
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3848
}
3849 3850 3851 3852
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3853 3854
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3855
{
3856
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3857
	int type, name;
3858 3859 3860
	unsigned long long val;
	int ret;

3861 3862 3863
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3864
	case RES_LIMIT:
3865 3866 3867 3868
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3869 3870
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3871 3872 3873
		if (ret)
			break;
		if (type == _MEM)
3874
			ret = mem_cgroup_resize_limit(memcg, val);
3875 3876
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3877
		break;
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3892 3893 3894 3895 3896
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3897 3898
}

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3927
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3928
{
3929
	struct mem_cgroup *memcg;
3930
	int type, name;
3931

3932
	memcg = mem_cgroup_from_cont(cont);
3933 3934 3935
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3936
	case RES_MAX_USAGE:
3937
		if (type == _MEM)
3938
			res_counter_reset_max(&memcg->res);
3939
		else
3940
			res_counter_reset_max(&memcg->memsw);
3941 3942
		break;
	case RES_FAILCNT:
3943
		if (type == _MEM)
3944
			res_counter_reset_failcnt(&memcg->res);
3945
		else
3946
			res_counter_reset_failcnt(&memcg->memsw);
3947 3948
		break;
	}
3949

3950
	return 0;
3951 3952
}

3953 3954 3955 3956 3957 3958
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3959
#ifdef CONFIG_MMU
3960 3961 3962
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
3963
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3964 3965 3966 3967 3968 3969 3970 3971 3972

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
3973
	memcg->move_charge_at_immigrate = val;
3974 3975 3976 3977
	cgroup_unlock();

	return 0;
}
3978 3979 3980 3981 3982 3983 3984
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3985

K
KAMEZAWA Hiroyuki 已提交
3986 3987 3988 3989 3990

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3991
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3992 3993
	MCS_PGPGIN,
	MCS_PGPGOUT,
3994
	MCS_SWAP,
3995 3996
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4007 4008
};

K
KAMEZAWA Hiroyuki 已提交
4009 4010 4011 4012 4013 4014
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4015
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4016 4017
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4018
	{"swap", "total_swap"},
4019 4020
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4021 4022 4023 4024 4025 4026 4027 4028
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4029
static void
4030
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4031 4032 4033 4034
{
	s64 val;

	/* per cpu stat */
4035
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4036
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4037
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4038
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4039
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4040
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4041
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4042
	s->stat[MCS_PGPGIN] += val;
4043
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4044
	s->stat[MCS_PGPGOUT] += val;
4045
	if (do_swap_account) {
4046
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4047 4048
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4049
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4050
	s->stat[MCS_PGFAULT] += val;
4051
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4052
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4053 4054

	/* per zone stat */
4055
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4056
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4057
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4058
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4059
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4060
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4061
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4062
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4063
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4064 4065 4066 4067
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4068
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4069
{
K
KAMEZAWA Hiroyuki 已提交
4070 4071
	struct mem_cgroup *iter;

4072
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4073
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4074 4075
}

4076 4077 4078 4079 4080 4081 4082 4083 4084
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4085
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4086 4087
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4088
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4089 4090 4091 4092
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4093
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4094 4095
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4096 4097
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4098 4099 4100 4101
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4102
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4103 4104
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4105 4106
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4107 4108 4109 4110
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4111
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4112 4113
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4114 4115
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4116 4117 4118 4119 4120 4121 4122
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4123 4124
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4125 4126
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4127
	struct mcs_total_stat mystat;
4128 4129
	int i;

K
KAMEZAWA Hiroyuki 已提交
4130 4131
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4132

4133

4134 4135 4136
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4137
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4138
	}
L
Lee Schermerhorn 已提交
4139

K
KAMEZAWA Hiroyuki 已提交
4140
	/* Hierarchical information */
4141 4142 4143 4144 4145 4146 4147
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4148

K
KAMEZAWA Hiroyuki 已提交
4149 4150
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4151 4152 4153
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4154
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4155
	}
K
KAMEZAWA Hiroyuki 已提交
4156

K
KOSAKI Motohiro 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4184 4185 4186
	return 0;
}

K
KOSAKI Motohiro 已提交
4187 4188 4189 4190
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4191
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4192 4193 4194 4195 4196 4197 4198
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4199

K
KOSAKI Motohiro 已提交
4200 4201 4202 4203 4204 4205 4206
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4207 4208 4209

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4210 4211
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4212 4213
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4214
		return -EINVAL;
4215
	}
K
KOSAKI Motohiro 已提交
4216 4217 4218

	memcg->swappiness = val;

4219 4220
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4221 4222 4223
	return 0;
}

4224 4225 4226 4227 4228 4229 4230 4231
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4232
		t = rcu_dereference(memcg->thresholds.primary);
4233
	else
4234
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4246
	i = t->current_threshold;
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4270
	t->current_threshold = i - 1;
4271 4272 4273 4274 4275 4276
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4277 4278 4279 4280 4281 4282 4283
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4294
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4295 4296 4297
{
	struct mem_cgroup_eventfd_list *ev;

4298
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4299 4300 4301 4302
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4303
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4304
{
K
KAMEZAWA Hiroyuki 已提交
4305 4306
	struct mem_cgroup *iter;

4307
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4308
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4309 4310 4311 4312
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4313 4314
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4315 4316
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4317 4318
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4319
	int i, size, ret;
4320 4321 4322 4323 4324 4325

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4326

4327
	if (type == _MEM)
4328
		thresholds = &memcg->thresholds;
4329
	else if (type == _MEMSWAP)
4330
		thresholds = &memcg->memsw_thresholds;
4331 4332 4333 4334 4335 4336
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4337
	if (thresholds->primary)
4338 4339
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4340
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4341 4342

	/* Allocate memory for new array of thresholds */
4343
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4344
			GFP_KERNEL);
4345
	if (!new) {
4346 4347 4348
		ret = -ENOMEM;
		goto unlock;
	}
4349
	new->size = size;
4350 4351

	/* Copy thresholds (if any) to new array */
4352 4353
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4354
				sizeof(struct mem_cgroup_threshold));
4355 4356
	}

4357
	/* Add new threshold */
4358 4359
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4360 4361

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4362
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4363 4364 4365
			compare_thresholds, NULL);

	/* Find current threshold */
4366
	new->current_threshold = -1;
4367
	for (i = 0; i < size; i++) {
4368
		if (new->entries[i].threshold < usage) {
4369
			/*
4370 4371
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4372 4373
			 * it here.
			 */
4374
			++new->current_threshold;
4375 4376 4377
		}
	}

4378 4379 4380 4381 4382
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4383

4384
	/* To be sure that nobody uses thresholds */
4385 4386 4387 4388 4389 4390 4391 4392
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4393
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4394
	struct cftype *cft, struct eventfd_ctx *eventfd)
4395 4396
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4397 4398
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4399 4400
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4401
	int i, j, size;
4402 4403 4404

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4405
		thresholds = &memcg->thresholds;
4406
	else if (type == _MEMSWAP)
4407
		thresholds = &memcg->memsw_thresholds;
4408 4409 4410 4411 4412 4413 4414 4415 4416
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

4417 4418 4419
	if (!thresholds->primary)
		goto unlock;

4420 4421 4422 4423 4424 4425
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4426 4427 4428
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4429 4430 4431
			size++;
	}

4432
	new = thresholds->spare;
4433

4434 4435
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4436 4437
		kfree(new);
		new = NULL;
4438
		goto swap_buffers;
4439 4440
	}

4441
	new->size = size;
4442 4443

	/* Copy thresholds and find current threshold */
4444 4445 4446
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4447 4448
			continue;

4449 4450
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4451
			/*
4452
			 * new->current_threshold will not be used
4453 4454 4455
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4456
			++new->current_threshold;
4457 4458 4459 4460
		}
		j++;
	}

4461
swap_buffers:
4462 4463 4464
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4465

4466
	/* To be sure that nobody uses thresholds */
4467
	synchronize_rcu();
4468
unlock:
4469 4470
	mutex_unlock(&memcg->thresholds_lock);
}
4471

K
KAMEZAWA Hiroyuki 已提交
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4484
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4485 4486 4487 4488 4489

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4490
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4491
		eventfd_signal(eventfd, 1);
4492
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4493 4494 4495 4496

	return 0;
}

4497
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4498 4499
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4500
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4501 4502 4503 4504 4505
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4506
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4507

4508
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4509 4510 4511 4512 4513 4514
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4515
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4516 4517
}

4518 4519 4520
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4521
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4522

4523
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4524

4525
	if (atomic_read(&memcg->under_oom))
4526 4527 4528 4529 4530 4531 4532 4533 4534
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4535
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4547
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4548 4549 4550
		cgroup_unlock();
		return -EINVAL;
	}
4551
	memcg->oom_kill_disable = val;
4552
	if (!val)
4553
		memcg_oom_recover(memcg);
4554 4555 4556 4557
	cgroup_unlock();
	return 0;
}

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4574 4575 4576
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4577 4578 4579 4580 4581 4582 4583
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4584
	return mem_cgroup_sockets_init(cont, ss);
4585 4586
};

G
Glauber Costa 已提交
4587 4588 4589 4590 4591
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4592 4593 4594 4595 4596
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4597 4598 4599 4600 4601

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4602 4603
#endif

B
Balbir Singh 已提交
4604 4605
static struct cftype mem_cgroup_files[] = {
	{
4606
		.name = "usage_in_bytes",
4607
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4608
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4609 4610
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4611
	},
4612 4613
	{
		.name = "max_usage_in_bytes",
4614
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4615
		.trigger = mem_cgroup_reset,
4616 4617
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4618
	{
4619
		.name = "limit_in_bytes",
4620
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4621
		.write_string = mem_cgroup_write,
4622
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4623
	},
4624 4625 4626 4627 4628 4629
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4630 4631
	{
		.name = "failcnt",
4632
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4633
		.trigger = mem_cgroup_reset,
4634
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4635
	},
4636 4637
	{
		.name = "stat",
4638
		.read_map = mem_control_stat_show,
4639
	},
4640 4641 4642 4643
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4644 4645 4646 4647 4648
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4649 4650 4651 4652 4653
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4654 4655 4656 4657 4658
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4659 4660
	{
		.name = "oom_control",
4661 4662
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4663 4664 4665 4666
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4667 4668 4669 4670
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4671
		.mode = S_IRUGO,
4672 4673
	},
#endif
B
Balbir Singh 已提交
4674 4675
};

4676 4677 4678 4679 4680 4681
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4682 4683
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4719
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4720 4721
{
	struct mem_cgroup_per_node *pn;
4722
	struct mem_cgroup_per_zone *mz;
4723
	enum lru_list l;
4724
	int zone, tmp = node;
4725 4726 4727 4728 4729 4730 4731 4732
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4733 4734
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4735
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4736 4737
	if (!pn)
		return 1;
4738 4739 4740

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4741
		for_each_lru(l)
4742
			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4743
		mz->usage_in_excess = 0;
4744
		mz->on_tree = false;
4745
		mz->mem = memcg;
4746
	}
4747
	memcg->info.nodeinfo[node] = pn;
4748 4749 4750
	return 0;
}

4751
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4752
{
4753
	kfree(memcg->info.nodeinfo[node]);
4754 4755
}

4756 4757 4758
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4759
	int size = sizeof(struct mem_cgroup);
4760

4761
	/* Can be very big if MAX_NUMNODES is very big */
4762
	if (size < PAGE_SIZE)
4763
		mem = kzalloc(size, GFP_KERNEL);
4764
	else
4765
		mem = vzalloc(size);
4766

4767 4768 4769
	if (!mem)
		return NULL;

4770
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4771 4772
	if (!mem->stat)
		goto out_free;
4773
	spin_lock_init(&mem->pcp_counter_lock);
4774
	return mem;
4775 4776 4777 4778 4779 4780 4781

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4782 4783
}

4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4795
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4796
{
K
KAMEZAWA Hiroyuki 已提交
4797 4798
	int node;

4799 4800
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4801

B
Bob Liu 已提交
4802
	for_each_node(node)
4803
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4804

4805
	free_percpu(memcg->stat);
4806
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4807
		kfree(memcg);
4808
	else
4809
		vfree(memcg);
4810 4811
}

4812
static void mem_cgroup_get(struct mem_cgroup *memcg)
4813
{
4814
	atomic_inc(&memcg->refcnt);
4815 4816
}

4817
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4818
{
4819 4820 4821
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4822 4823 4824
		if (parent)
			mem_cgroup_put(parent);
	}
4825 4826
}

4827
static void mem_cgroup_put(struct mem_cgroup *memcg)
4828
{
4829
	__mem_cgroup_put(memcg, 1);
4830 4831
}

4832 4833 4834
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4835
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4836
{
4837
	if (!memcg->res.parent)
4838
		return NULL;
4839
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4840
}
G
Glauber Costa 已提交
4841
EXPORT_SYMBOL(parent_mem_cgroup);
4842

4843 4844 4845
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4846
	if (!mem_cgroup_disabled() && really_do_swap_account)
4847 4848 4849 4850 4851 4852 4853 4854
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4855 4856 4857 4858 4859 4860
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4861
	for_each_node(node) {
4862 4863 4864 4865 4866
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4867
			goto err_cleanup;
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4878 4879

err_cleanup:
B
Bob Liu 已提交
4880
	for_each_node(node) {
4881 4882 4883 4884 4885 4886 4887
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4888 4889
}

L
Li Zefan 已提交
4890
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4891 4892
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4893
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4894
	long error = -ENOMEM;
4895
	int node;
B
Balbir Singh 已提交
4896

4897 4898
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4899
		return ERR_PTR(error);
4900

B
Bob Liu 已提交
4901
	for_each_node(node)
4902
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4903
			goto free_out;
4904

4905
	/* root ? */
4906
	if (cont->parent == NULL) {
4907
		int cpu;
4908
		enable_swap_cgroup();
4909
		parent = NULL;
4910 4911
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4912
		root_mem_cgroup = memcg;
4913 4914 4915 4916 4917
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4918
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4919
	} else {
4920
		parent = mem_cgroup_from_cont(cont->parent);
4921 4922
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4923
	}
4924

4925
	if (parent && parent->use_hierarchy) {
4926 4927
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4928 4929 4930 4931 4932 4933 4934
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4935
	} else {
4936 4937
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4938
	}
4939 4940
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4941

K
KOSAKI Motohiro 已提交
4942
	if (parent)
4943 4944 4945 4946 4947
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
4948
free_out:
4949
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4950
	return ERR_PTR(error);
B
Balbir Singh 已提交
4951 4952
}

4953
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4954 4955
					struct cgroup *cont)
{
4956
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4957

4958
	return mem_cgroup_force_empty(memcg, false);
4959 4960
}

B
Balbir Singh 已提交
4961 4962 4963
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4964
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4965

G
Glauber Costa 已提交
4966 4967
	kmem_cgroup_destroy(ss, cont);

4968
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
4969 4970 4971 4972 4973
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4974 4975 4976 4977 4978 4979 4980
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
4981 4982 4983 4984

	if (!ret)
		ret = register_kmem_files(cont, ss);

4985
	return ret;
B
Balbir Singh 已提交
4986 4987
}

4988
#ifdef CONFIG_MMU
4989
/* Handlers for move charge at task migration. */
4990 4991
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4992
{
4993 4994
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4995
	struct mem_cgroup *memcg = mc.to;
4996

4997
	if (mem_cgroup_is_root(memcg)) {
4998 4999 5000 5001 5002 5003 5004 5005
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5006
		 * "memcg" cannot be under rmdir() because we've already checked
5007 5008 5009 5010
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5011
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5012
			goto one_by_one;
5013
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5014
						PAGE_SIZE * count, &dummy)) {
5015
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5032 5033
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5034
		if (ret)
5035
			/* mem_cgroup_clear_mc() will do uncharge later */
5036
			return ret;
5037 5038
		mc.precharge++;
	}
5039 5040 5041 5042 5043 5044 5045 5046
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5047
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5048 5049 5050 5051 5052 5053
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5054 5055 5056
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5057 5058 5059 5060 5061
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5062
	swp_entry_t	ent;
5063 5064 5065 5066 5067
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5068
	MC_TARGET_SWAP,
5069 5070
};

D
Daisuke Nishimura 已提交
5071 5072
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5073
{
D
Daisuke Nishimura 已提交
5074
	struct page *page = vm_normal_page(vma, addr, ptent);
5075

D
Daisuke Nishimura 已提交
5076 5077 5078 5079 5080 5081
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5082 5083
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5102 5103
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5104
		return NULL;
5105
	}
D
Daisuke Nishimura 已提交
5106 5107 5108 5109 5110 5111
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5133 5134 5135 5136 5137 5138
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5139
		if (do_swap_account)
5140 5141
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5142
	}
5143
#endif
5144 5145 5146
	return page;
}

D
Daisuke Nishimura 已提交
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5159 5160
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5161 5162 5163

	if (!page && !ent.val)
		return 0;
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5179 5180
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5181
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5182 5183 5184
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5197 5198
	split_huge_page_pmd(walk->mm, pmd);

5199 5200 5201 5202 5203 5204 5205
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5206 5207 5208
	return 0;
}

5209 5210 5211 5212 5213
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5214
	down_read(&mm->mmap_sem);
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5226
	up_read(&mm->mmap_sem);
5227 5228 5229 5230 5231 5232 5233 5234 5235

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5236 5237 5238 5239 5240
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5241 5242
}

5243 5244
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5245
{
5246 5247 5248
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5249
	/* we must uncharge all the leftover precharges from mc.to */
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5261
	}
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5296
	spin_lock(&mc.lock);
5297 5298
	mc.from = NULL;
	mc.to = NULL;
5299
	spin_unlock(&mc.lock);
5300
	mem_cgroup_end_move(from);
5301 5302
}

5303 5304
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5305
				struct cgroup_taskset *tset)
5306
{
5307
	struct task_struct *p = cgroup_taskset_first(tset);
5308
	int ret = 0;
5309
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5310

5311
	if (memcg->move_charge_at_immigrate) {
5312 5313 5314
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5315
		VM_BUG_ON(from == memcg);
5316 5317 5318 5319 5320

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5321 5322 5323 5324
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5325
			VM_BUG_ON(mc.moved_charge);
5326
			VM_BUG_ON(mc.moved_swap);
5327
			mem_cgroup_start_move(from);
5328
			spin_lock(&mc.lock);
5329
			mc.from = from;
5330
			mc.to = memcg;
5331
			spin_unlock(&mc.lock);
5332
			/* We set mc.moving_task later */
5333 5334 5335 5336

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5337 5338
		}
		mmput(mm);
5339 5340 5341 5342 5343 5344
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5345
				struct cgroup_taskset *tset)
5346
{
5347
	mem_cgroup_clear_mc();
5348 5349
}

5350 5351 5352
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5353
{
5354 5355 5356 5357 5358
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5359
	split_huge_page_pmd(walk->mm, pmd);
5360 5361 5362 5363 5364 5365 5366 5367
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5368
		swp_entry_t ent;
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5380 5381
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5382
				mc.precharge--;
5383 5384
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5385 5386 5387 5388 5389
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5390 5391
		case MC_TARGET_SWAP:
			ent = target.ent;
5392 5393
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5394
				mc.precharge--;
5395 5396 5397
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5398
			break;
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5413
		ret = mem_cgroup_do_precharge(1);
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5457
	up_read(&mm->mmap_sem);
5458 5459
}

B
Balbir Singh 已提交
5460 5461
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5462
				struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5463
{
5464
	struct task_struct *p = cgroup_taskset_first(tset);
5465
	struct mm_struct *mm = get_task_mm(p);
5466 5467

	if (mm) {
5468 5469 5470
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5471 5472
		mmput(mm);
	}
5473 5474
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5475
}
5476 5477 5478
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5479
				struct cgroup_taskset *tset)
5480 5481 5482 5483 5484
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5485
				struct cgroup_taskset *tset)
5486 5487 5488 5489
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5490
				struct cgroup_taskset *tset)
5491 5492 5493
{
}
#endif
B
Balbir Singh 已提交
5494

B
Balbir Singh 已提交
5495 5496 5497 5498
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5499
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5500 5501
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5502 5503
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5504
	.attach = mem_cgroup_move_task,
5505
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5506
	.use_id = 1,
B
Balbir Singh 已提交
5507
};
5508 5509

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5510 5511 5512
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5513
	if (!strcmp(s, "1"))
5514
		really_do_swap_account = 1;
5515
	else if (!strcmp(s, "0"))
5516 5517 5518
		really_do_swap_account = 0;
	return 1;
}
5519
__setup("swapaccount=", enable_swap_account);
5520 5521

#endif