memcontrol.c 178.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/slab.h>
43
#include <linux/swap.h>
44
#include <linux/swapops.h>
45
#include <linux/spinlock.h>
46 47
#include <linux/eventfd.h>
#include <linux/sort.h>
48
#include <linux/fs.h>
49
#include <linux/seq_file.h>
50
#include <linux/vmalloc.h>
51
#include <linux/vmpressure.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
90
	"rss_huge",
91
	"mapped_file",
92
	"writeback",
93 94 95
	"swap",
};

96 97 98
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
99 100
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
101 102
	MEM_CGROUP_EVENTS_NSTATS,
};
103 104 105 106 107 108 109 110

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

111 112 113 114 115 116 117 118
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

119 120 121 122 123 124 125 126
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
127
	MEM_CGROUP_TARGET_NUMAINFO,
128 129
	MEM_CGROUP_NTARGETS,
};
130 131 132
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
133

134
struct mem_cgroup_stat_cpu {
135
	long count[MEM_CGROUP_STAT_NSTATS];
136
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
137
	unsigned long nr_page_events;
138
	unsigned long targets[MEM_CGROUP_NTARGETS];
139 140
};

141
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
142 143 144 145
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
146
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
147 148
	unsigned long last_dead_count;

149 150 151 152
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

153 154 155 156
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
157
	struct lruvec		lruvec;
158
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
159

160 161
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

162
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
163
						/* use container_of	   */
164 165 166 167 168 169
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

170 171 172 173 174
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
175
/* For threshold */
176
struct mem_cgroup_threshold_ary {
177
	/* An array index points to threshold just below or equal to usage. */
178
	int current_threshold;
179 180 181 182 183
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
184 185 186 187 188 189 190 191 192 193 194 195

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
196 197 198 199 200
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
201

202 203
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
204

B
Balbir Singh 已提交
205 206 207 208 209 210 211
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
212 213 214
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
215 216 217 218 219 220 221
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
222

223 224 225
	/* vmpressure notifications */
	struct vmpressure vmpressure;

226 227 228 229
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
230

231 232 233 234
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
235 236 237 238
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
239
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
240 241 242

	bool		oom_lock;
	atomic_t	under_oom;
243
	atomic_t	oom_wakeups;
244

245
	int	swappiness;
246 247
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
248

249 250 251
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

252 253 254 255
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
256
	struct mem_cgroup_thresholds thresholds;
257

258
	/* thresholds for mem+swap usage. RCU-protected */
259
	struct mem_cgroup_thresholds memsw_thresholds;
260

K
KAMEZAWA Hiroyuki 已提交
261 262
	/* For oom notifier event fd */
	struct list_head oom_notify;
263

264 265 266 267
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
268
	unsigned long move_charge_at_immigrate;
269 270 271 272
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
273 274
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
275
	/*
276
	 * percpu counter.
277
	 */
278
	struct mem_cgroup_stat_cpu __percpu *stat;
279 280 281 282 283 284
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
285

M
Michal Hocko 已提交
286
	atomic_t	dead_count;
M
Michal Hocko 已提交
287
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
288 289
	struct tcp_memcontrol tcp_mem;
#endif
290 291 292 293 294 295 296 297
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
298 299 300 301 302 303 304

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
305

306 307
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
308 309
};

310 311 312 313 314 315
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

316 317 318
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
319
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
320
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
321 322
};

323 324 325
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
326 327 328 329 330 331

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
332 333 334 335 336 337

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

338 339 340 341 342
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

343 344 345 346 347
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

348 349
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
350 351 352 353 354
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
355 356 357 358 359 360 361 362 363
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
364 365
#endif

366 367
/* Stuffs for move charges at task migration. */
/*
368 369
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
370 371
 */
enum move_type {
372
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
373
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
374 375 376
	NR_MOVE_TYPE,
};

377 378
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
379
	spinlock_t	  lock; /* for from, to */
380 381
	struct mem_cgroup *from;
	struct mem_cgroup *to;
382
	unsigned long immigrate_flags;
383
	unsigned long precharge;
384
	unsigned long moved_charge;
385
	unsigned long moved_swap;
386 387 388
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
389
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
390 391
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
392

D
Daisuke Nishimura 已提交
393 394
static bool move_anon(void)
{
395
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
396 397
}

398 399
static bool move_file(void)
{
400
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
401 402
}

403 404 405 406
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
407
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
408

409 410
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
411
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
412
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
413
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
414 415 416
	NR_CHARGE_TYPE,
};

417
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
418 419 420 421
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
422
	_KMEM,
G
Glauber Costa 已提交
423 424
};

425 426
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
427
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
428 429
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
430

431 432 433 434 435 436 437 438
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

439 440 441 442 443 444 445
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

446 447
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
448
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
449 450
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

469 470 471 472 473
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
474
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
475
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
476 477 478

void sock_update_memcg(struct sock *sk)
{
479
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
480
		struct mem_cgroup *memcg;
481
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
482 483 484

		BUG_ON(!sk->sk_prot->proto_cgroup);

485 486 487 488 489 490 491 492 493 494
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
495
			css_get(&sk->sk_cgrp->memcg->css);
496 497 498
			return;
		}

G
Glauber Costa 已提交
499 500
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
501
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
502 503
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
504
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
505 506 507 508 509 510 511 512
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
513
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
514 515 516
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
517
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
518 519
	}
}
G
Glauber Costa 已提交
520 521 522 523 524 525 526 527 528

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
529

530 531 532 533 534 535 536 537 538 539 540 541
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

542
#ifdef CONFIG_MEMCG_KMEM
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
561 562
int memcg_limited_groups_array_size;

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

578 579 580 581 582 583
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
584
struct static_key memcg_kmem_enabled_key;
585
EXPORT_SYMBOL(memcg_kmem_enabled_key);
586 587 588

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
589
	if (memcg_kmem_is_active(memcg)) {
590
		static_key_slow_dec(&memcg_kmem_enabled_key);
591 592
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
593 594 595 596 597
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
598 599 600 601 602 603 604 605 606 607 608 609 610
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

611
static void drain_all_stock_async(struct mem_cgroup *memcg);
612

613
static struct mem_cgroup_per_zone *
614
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
615
{
616
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
617
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
618 619
}

620
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
621
{
622
	return &memcg->css;
623 624
}

625
static struct mem_cgroup_per_zone *
626
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
627
{
628 629
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
630

631
	return mem_cgroup_zoneinfo(memcg, nid, zid);
632 633
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
653
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
654
				 enum mem_cgroup_stat_index idx)
655
{
656
	long val = 0;
657 658
	int cpu;

659 660
	get_online_cpus();
	for_each_online_cpu(cpu)
661
		val += per_cpu(memcg->stat->count[idx], cpu);
662
#ifdef CONFIG_HOTPLUG_CPU
663 664 665
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
666 667
#endif
	put_online_cpus();
668 669 670
	return val;
}

671
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
672 673 674
					 bool charge)
{
	int val = (charge) ? 1 : -1;
675
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
676 677
}

678
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
679 680 681 682 683 684
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
685
		val += per_cpu(memcg->stat->events[idx], cpu);
686
#ifdef CONFIG_HOTPLUG_CPU
687 688 689
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
690 691 692 693
#endif
	return val;
}

694
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
695
					 struct page *page,
696
					 bool anon, int nr_pages)
697
{
698 699
	preempt_disable();

700 701 702 703 704 705
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
706
				nr_pages);
707
	else
708
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
709
				nr_pages);
710

711 712 713 714
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

715 716
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
717
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
718
	else {
719
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
720 721
		nr_pages = -nr_pages; /* for event */
	}
722

723
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
724

725
	preempt_enable();
726 727
}

728
unsigned long
729
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
730 731 732 733 734 735 736 737
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
738
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
739
			unsigned int lru_mask)
740 741
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
742
	enum lru_list lru;
743 744
	unsigned long ret = 0;

745
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
746

H
Hugh Dickins 已提交
747 748 749
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
750 751 752 753 754
	}
	return ret;
}

static unsigned long
755
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
756 757
			int nid, unsigned int lru_mask)
{
758 759 760
	u64 total = 0;
	int zid;

761
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
762 763
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
764

765 766
	return total;
}
767

768
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
769
			unsigned int lru_mask)
770
{
771
	int nid;
772 773
	u64 total = 0;

774
	for_each_node_state(nid, N_MEMORY)
775
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
776
	return total;
777 778
}

779 780
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
781 782 783
{
	unsigned long val, next;

784
	val = __this_cpu_read(memcg->stat->nr_page_events);
785
	next = __this_cpu_read(memcg->stat->targets[target]);
786
	/* from time_after() in jiffies.h */
787 788 789 790 791 792 793 794 795 796 797 798 799
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
800
	}
801
	return false;
802 803 804 805 806 807
}

/*
 * Check events in order.
 *
 */
808
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
809
{
810
	preempt_disable();
811
	/* threshold event is triggered in finer grain than soft limit */
812 813
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
814
		bool do_numainfo __maybe_unused;
815 816 817 818 819 820 821

#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

822
		mem_cgroup_threshold(memcg);
823
#if MAX_NUMNODES > 1
824
		if (unlikely(do_numainfo))
825
			atomic_inc(&memcg->numainfo_events);
826
#endif
827 828
	} else
		preempt_enable();
829 830
}

831
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
832
{
833 834 835 836 837 838 839 840
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

841
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
842 843
}

844
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
845
{
846
	struct mem_cgroup *memcg = NULL;
847 848 849

	if (!mm)
		return NULL;
850 851 852 853 854 855 856
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
857 858
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
859
			break;
860
	} while (!css_tryget(&memcg->css));
861
	rcu_read_unlock();
862
	return memcg;
863 864
}

865 866 867 868 869 870 871 872 873
static enum mem_cgroup_filter_t
mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
		mem_cgroup_iter_filter cond)
{
	if (!cond)
		return VISIT;
	return cond(memcg, root);
}

874 875 876 877 878 879 880
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
881
		struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
882
{
883
	struct cgroup_subsys_state *prev_css, *next_css;
884

885
	prev_css = last_visited ? &last_visited->css : NULL;
886
skip_node:
887
	next_css = css_next_descendant_pre(prev_css, &root->css);
888 889 890 891 892 893 894 895

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
896 897 898
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

899 900
		switch (mem_cgroup_filter(mem, root, cond)) {
		case SKIP:
901
			prev_css = next_css;
902
			goto skip_node;
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
		case SKIP_TREE:
			if (mem == root)
				return NULL;
			/*
			 * css_rightmost_descendant is not an optimal way to
			 * skip through a subtree (especially for imbalanced
			 * trees leaning to right) but that's what we have right
			 * now. More effective solution would be traversing
			 * right-up for first non-NULL without calling
			 * css_next_descendant_pre afterwards.
			 */
			prev_css = css_rightmost_descendant(next_css);
			goto skip_node;
		case VISIT:
			if (css_tryget(&mem->css))
				return mem;
			else {
				prev_css = next_css;
				goto skip_node;
			}
			break;
924 925 926 927 928 929
		}
	}

	return NULL;
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

982 983 984 985 986
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
987
 * @cond: filter for visited nodes, NULL for no filter
988 989 990 991 992 993 994 995 996 997 998 999
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1000
struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1001
				   struct mem_cgroup *prev,
1002 1003
				   struct mem_cgroup_reclaim_cookie *reclaim,
				   mem_cgroup_iter_filter cond)
K
KAMEZAWA Hiroyuki 已提交
1004
{
1005
	struct mem_cgroup *memcg = NULL;
1006
	struct mem_cgroup *last_visited = NULL;
1007

1008 1009 1010 1011
	if (mem_cgroup_disabled()) {
		/* first call must return non-NULL, second return NULL */
		return (struct mem_cgroup *)(unsigned long)!prev;
	}
1012

1013 1014
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1015

1016
	if (prev && !reclaim)
1017
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1018

1019 1020
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1021
			goto out_css_put;
1022 1023 1024
		if (mem_cgroup_filter(root, root, cond) == VISIT)
			return root;
		return NULL;
1025
	}
K
KAMEZAWA Hiroyuki 已提交
1026

1027
	rcu_read_lock();
1028
	while (!memcg) {
1029
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1030
		int uninitialized_var(seq);
1031

1032 1033 1034 1035 1036 1037 1038
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1039
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1040
				iter->last_visited = NULL;
1041 1042
				goto out_unlock;
			}
M
Michal Hocko 已提交
1043

1044
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1045
		}
K
KAMEZAWA Hiroyuki 已提交
1046

1047
		memcg = __mem_cgroup_iter_next(root, last_visited, cond);
K
KAMEZAWA Hiroyuki 已提交
1048

1049
		if (reclaim) {
1050
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1051

M
Michal Hocko 已提交
1052
			if (!memcg)
1053 1054 1055 1056
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1057

1058 1059 1060 1061 1062
		/*
		 * We have finished the whole tree walk or no group has been
		 * visited because filter told us to skip the root node.
		 */
		if (!memcg && (prev || (cond && !last_visited)))
1063
			goto out_unlock;
1064
	}
1065 1066
out_unlock:
	rcu_read_unlock();
1067 1068 1069 1070
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1071
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1072
}
K
KAMEZAWA Hiroyuki 已提交
1073

1074 1075 1076 1077 1078 1079 1080
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1081 1082 1083 1084 1085 1086
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1087

1088 1089 1090 1091 1092 1093
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1094
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1095
	     iter != NULL;				\
1096
	     iter = mem_cgroup_iter(root, iter, NULL))
1097

1098
#define for_each_mem_cgroup(iter)			\
1099
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1100
	     iter != NULL;				\
1101
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1102

1103
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1104
{
1105
	struct mem_cgroup *memcg;
1106 1107

	rcu_read_lock();
1108 1109
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1110 1111 1112 1113
		goto out;

	switch (idx) {
	case PGFAULT:
1114 1115 1116 1117
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1118 1119 1120 1121 1122 1123 1124
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1125
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1126

1127 1128 1129
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1130
 * @memcg: memcg of the wanted lruvec
1131 1132 1133 1134 1135 1136 1137 1138 1139
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1140
	struct lruvec *lruvec;
1141

1142 1143 1144 1145
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1146 1147

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1158 1159
}

K
KAMEZAWA Hiroyuki 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1173

1174
/**
1175
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1176
 * @page: the page
1177
 * @zone: zone of the page
1178
 */
1179
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1180 1181
{
	struct mem_cgroup_per_zone *mz;
1182 1183
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1184
	struct lruvec *lruvec;
1185

1186 1187 1188 1189
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1190

K
KAMEZAWA Hiroyuki 已提交
1191
	pc = lookup_page_cgroup(page);
1192
	memcg = pc->mem_cgroup;
1193 1194

	/*
1195
	 * Surreptitiously switch any uncharged offlist page to root:
1196 1197 1198 1199 1200 1201 1202
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1203
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1204 1205
		pc->mem_cgroup = memcg = root_mem_cgroup;

1206
	mz = page_cgroup_zoneinfo(memcg, page);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1217
}
1218

1219
/**
1220 1221 1222 1223
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1224
 *
1225 1226
 * This function must be called when a page is added to or removed from an
 * lru list.
1227
 */
1228 1229
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1230 1231
{
	struct mem_cgroup_per_zone *mz;
1232
	unsigned long *lru_size;
1233 1234 1235 1236

	if (mem_cgroup_disabled())
		return;

1237 1238 1239 1240
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1241
}
1242

1243
/*
1244
 * Checks whether given mem is same or in the root_mem_cgroup's
1245 1246
 * hierarchy subtree
 */
1247 1248
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1249
{
1250 1251
	if (root_memcg == memcg)
		return true;
1252
	if (!root_memcg->use_hierarchy || !memcg)
1253
		return false;
1254 1255 1256 1257 1258 1259 1260 1261
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1262
	rcu_read_lock();
1263
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1264 1265
	rcu_read_unlock();
	return ret;
1266 1267
}

1268 1269
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1270
{
1271
	struct mem_cgroup *curr = NULL;
1272
	struct task_struct *p;
1273
	bool ret;
1274

1275
	p = find_lock_task_mm(task);
1276 1277 1278 1279 1280 1281 1282 1283 1284
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1285
		rcu_read_lock();
1286 1287 1288
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1289
		rcu_read_unlock();
1290
	}
1291
	if (!curr)
1292
		return false;
1293
	/*
1294
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1295
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1296 1297
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1298
	 */
1299
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1300
	css_put(&curr->css);
1301 1302 1303
	return ret;
}

1304
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1305
{
1306
	unsigned long inactive_ratio;
1307
	unsigned long inactive;
1308
	unsigned long active;
1309
	unsigned long gb;
1310

1311 1312
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1313

1314 1315 1316 1317 1318 1319
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1320
	return inactive * inactive_ratio < active;
1321 1322
}

1323 1324 1325
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1326
/**
1327
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1328
 * @memcg: the memory cgroup
1329
 *
1330
 * Returns the maximum amount of memory @mem can be charged with, in
1331
 * pages.
1332
 */
1333
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1334
{
1335 1336
	unsigned long long margin;

1337
	margin = res_counter_margin(&memcg->res);
1338
	if (do_swap_account)
1339
		margin = min(margin, res_counter_margin(&memcg->memsw));
1340
	return margin >> PAGE_SHIFT;
1341 1342
}

1343
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1344 1345
{
	/* root ? */
T
Tejun Heo 已提交
1346
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1347 1348
		return vm_swappiness;

1349
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1350 1351
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1366 1367 1368 1369

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1370
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1371
{
1372
	atomic_inc(&memcg_moving);
1373
	atomic_inc(&memcg->moving_account);
1374 1375 1376
	synchronize_rcu();
}

1377
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1378
{
1379 1380 1381 1382
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1383 1384
	if (memcg) {
		atomic_dec(&memcg_moving);
1385
		atomic_dec(&memcg->moving_account);
1386
	}
1387
}
1388

1389 1390 1391
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1392 1393
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1394 1395 1396 1397 1398 1399 1400
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1401
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1402 1403
{
	VM_BUG_ON(!rcu_read_lock_held());
1404
	return atomic_read(&memcg->moving_account) > 0;
1405
}
1406

1407
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1408
{
1409 1410
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1411
	bool ret = false;
1412 1413 1414 1415 1416 1417 1418 1419 1420
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1421

1422 1423
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1424 1425
unlock:
	spin_unlock(&mc.lock);
1426 1427 1428
	return ret;
}

1429
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1430 1431
{
	if (mc.moving_task && current != mc.moving_task) {
1432
		if (mem_cgroup_under_move(memcg)) {
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1445 1446 1447 1448
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1449
 * see mem_cgroup_stolen(), too.
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1463
#define K(x) ((x) << (PAGE_SHIFT-10))
1464
/**
1465
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1483 1484
	struct mem_cgroup *iter;
	unsigned int i;
1485

1486
	if (!p)
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1505
	pr_info("Task in %s killed", memcg_name);
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1518
	pr_cont(" as a result of limit of %s\n", memcg_name);
1519 1520
done:

1521
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1522 1523 1524
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1525
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1526 1527 1528
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1529
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1530 1531 1532
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1557 1558
}

1559 1560 1561 1562
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1563
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1564 1565
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1566 1567
	struct mem_cgroup *iter;

1568
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1569
		num++;
1570 1571 1572
	return num;
}

D
David Rientjes 已提交
1573 1574 1575
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1576
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1577 1578 1579
{
	u64 limit;

1580 1581
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1582
	/*
1583
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1584
	 */
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1599 1600
}

1601 1602
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1603 1604 1605 1606 1607 1608 1609
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1610
	/*
1611 1612 1613
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1614
	 */
1615
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1616 1617 1618 1619 1620
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1621 1622
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1623
		struct css_task_iter it;
1624 1625
		struct task_struct *task;

1626 1627
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1640
				css_task_iter_end(&it);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1657
		css_task_iter_end(&it);
1658 1659 1660 1661 1662 1663 1664 1665 1666
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1703
#if MAX_NUMNODES > 1
1704 1705
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1706
 * @memcg: the target memcg
1707 1708 1709 1710 1711 1712 1713
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1714
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1715 1716
		int nid, bool noswap)
{
1717
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1718 1719 1720
		return true;
	if (noswap || !total_swap_pages)
		return false;
1721
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1722 1723 1724 1725
		return true;
	return false;

}
1726 1727 1728 1729 1730 1731 1732

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1733
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1734 1735
{
	int nid;
1736 1737 1738 1739
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1740
	if (!atomic_read(&memcg->numainfo_events))
1741
		return;
1742
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1743 1744 1745
		return;

	/* make a nodemask where this memcg uses memory from */
1746
	memcg->scan_nodes = node_states[N_MEMORY];
1747

1748
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1749

1750 1751
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1752
	}
1753

1754 1755
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1770
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1771 1772 1773
{
	int node;

1774 1775
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1776

1777
	node = next_node(node, memcg->scan_nodes);
1778
	if (node == MAX_NUMNODES)
1779
		node = first_node(memcg->scan_nodes);
1780 1781 1782 1783 1784 1785 1786 1787 1788
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1789
	memcg->last_scanned_node = node;
1790 1791 1792 1793
	return node;
}

#else
1794
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1795 1796 1797
{
	return 0;
}
1798

1799 1800
#endif

1801
/*
1802 1803
 * A group is eligible for the soft limit reclaim under the given root
 * hierarchy if
A
Andrew Morton 已提交
1804 1805
 *	a) it is over its soft limit
 *	b) any parent up the hierarchy is over its soft limit
1806
 */
1807 1808
enum mem_cgroup_filter_t
mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1809
		struct mem_cgroup *root)
1810
{
1811
	struct mem_cgroup *parent = memcg;
1812 1813

	if (res_counter_soft_limit_excess(&memcg->res))
1814
		return VISIT;
1815 1816

	/*
1817 1818
	 * If any parent up to the root in the hierarchy is over its soft limit
	 * then we have to obey and reclaim from this group as well.
1819
	 */
A
Andrew Morton 已提交
1820
	while ((parent = parent_mem_cgroup(parent))) {
1821
		if (res_counter_soft_limit_excess(&parent->res))
1822
			return VISIT;
1823 1824
		if (parent == root)
			break;
1825
	}
1826

1827
	return SKIP;
1828 1829
}

1830 1831
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1832 1833 1834 1835
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1836
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1837
{
1838
	struct mem_cgroup *iter, *failed = NULL;
1839

1840 1841
	spin_lock(&memcg_oom_lock);

1842
	for_each_mem_cgroup_tree(iter, memcg) {
1843
		if (iter->oom_lock) {
1844 1845 1846 1847 1848
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1849 1850
			mem_cgroup_iter_break(memcg, iter);
			break;
1851 1852
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1853
	}
K
KAMEZAWA Hiroyuki 已提交
1854

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1866 1867
		}
	}
1868 1869 1870 1871

	spin_unlock(&memcg_oom_lock);

	return !failed;
1872
}
1873

1874
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1875
{
K
KAMEZAWA Hiroyuki 已提交
1876 1877
	struct mem_cgroup *iter;

1878
	spin_lock(&memcg_oom_lock);
1879
	for_each_mem_cgroup_tree(iter, memcg)
1880
		iter->oom_lock = false;
1881
	spin_unlock(&memcg_oom_lock);
1882 1883
}

1884
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1885 1886 1887
{
	struct mem_cgroup *iter;

1888
	for_each_mem_cgroup_tree(iter, memcg)
1889 1890 1891
		atomic_inc(&iter->under_oom);
}

1892
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1893 1894 1895
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1896 1897 1898 1899 1900
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1901
	for_each_mem_cgroup_tree(iter, memcg)
1902
		atomic_add_unless(&iter->under_oom, -1, 0);
1903 1904
}

K
KAMEZAWA Hiroyuki 已提交
1905 1906
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1907
struct oom_wait_info {
1908
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1909 1910 1911 1912 1913 1914
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1915 1916
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1917 1918 1919
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1920
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1921 1922

	/*
1923
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1924 1925
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1926 1927
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1928 1929 1930 1931
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1932
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1933
{
1934
	atomic_inc(&memcg->oom_wakeups);
1935 1936
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1937 1938
}

1939
static void memcg_oom_recover(struct mem_cgroup *memcg)
1940
{
1941 1942
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1943 1944
}

K
KAMEZAWA Hiroyuki 已提交
1945
/*
1946
 * try to call OOM killer
K
KAMEZAWA Hiroyuki 已提交
1947
 */
1948
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1949
{
1950
	bool locked;
1951
	int wakeups;
K
KAMEZAWA Hiroyuki 已提交
1952

1953 1954 1955 1956
	if (!current->memcg_oom.may_oom)
		return;

	current->memcg_oom.in_memcg_oom = 1;
1957

K
KAMEZAWA Hiroyuki 已提交
1958
	/*
1959 1960 1961 1962 1963
	 * As with any blocking lock, a contender needs to start
	 * listening for wakeups before attempting the trylock,
	 * otherwise it can miss the wakeup from the unlock and sleep
	 * indefinitely.  This is just open-coded because our locking
	 * is so particular to memcg hierarchies.
K
KAMEZAWA Hiroyuki 已提交
1964
	 */
1965
	wakeups = atomic_read(&memcg->oom_wakeups);
1966 1967 1968 1969
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

1970
	if (locked)
1971
		mem_cgroup_oom_notify(memcg);
K
KAMEZAWA Hiroyuki 已提交
1972

1973 1974
	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
1975
		mem_cgroup_out_of_memory(memcg, mask, order);
1976 1977 1978 1979 1980 1981 1982
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
1983
	} else {
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
		/*
		 * A system call can just return -ENOMEM, but if this
		 * is a page fault and somebody else is handling the
		 * OOM already, we need to sleep on the OOM waitqueue
		 * for this memcg until the situation is resolved.
		 * Which can take some time because it might be
		 * handled by a userspace task.
		 *
		 * However, this is the charge context, which means
		 * that we may sit on a large call stack and hold
		 * various filesystem locks, the mmap_sem etc. and we
		 * don't want the OOM handler to deadlock on them
		 * while we sit here and wait.  Store the current OOM
		 * context in the task_struct, then return -ENOMEM.
		 * At the end of the page fault handler, with the
		 * stack unwound, pagefault_out_of_memory() will check
		 * back with us by calling
		 * mem_cgroup_oom_synchronize(), possibly putting the
		 * task to sleep.
		 */
		current->memcg_oom.oom_locked = locked;
		current->memcg_oom.wakeups = wakeups;
		css_get(&memcg->css);
		current->memcg_oom.wait_on_memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2008
	}
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
 *
 * This has to be called at the end of a page fault if the the memcg
 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
 *
 * Memcg supports userspace OOM handling, so failed allocations must
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
 * the end of the page fault to put the task to sleep and clean up the
 * OOM state.
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
 * finalized, %false otherwise.
 */
bool mem_cgroup_oom_synchronize(void)
{
	struct oom_wait_info owait;
	struct mem_cgroup *memcg;

	/* OOM is global, do not handle */
	if (!current->memcg_oom.in_memcg_oom)
		return false;

	/*
	 * We invoked the OOM killer but there is a chance that a kill
	 * did not free up any charges.  Everybody else might already
	 * be sleeping, so restart the fault and keep the rampage
	 * going until some charges are released.
	 */
	memcg = current->memcg_oom.wait_on_memcg;
	if (!memcg)
		goto out;

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		goto out_memcg;

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2055

2056 2057 2058 2059 2060 2061 2062 2063
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	/* Only sleep if we didn't miss any wakeups since OOM */
	if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
		schedule();
	finish_wait(&memcg_oom_waitq, &owait.wait);
out_memcg:
	mem_cgroup_unmark_under_oom(memcg);
	if (current->memcg_oom.oom_locked) {
2064 2065 2066 2067 2068 2069 2070 2071
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2072 2073 2074 2075
	css_put(&memcg->css);
	current->memcg_oom.wait_on_memcg = NULL;
out:
	current->memcg_oom.in_memcg_oom = 0;
K
KAMEZAWA Hiroyuki 已提交
2076
	return true;
2077 2078
}

2079 2080 2081
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2099 2100
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2101
 */
2102

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2116
	 * need to take move_lock_mem_cgroup(). Because we already hold
2117
	 * rcu_read_lock(), any calls to move_account will be delayed until
2118
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2119
	 */
2120
	if (!mem_cgroup_stolen(memcg))
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2138
	 * should take move_lock_mem_cgroup().
2139 2140 2141 2142
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2143
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2144
				 enum mem_cgroup_stat_index idx, int val)
2145
{
2146
	struct mem_cgroup *memcg;
2147
	struct page_cgroup *pc = lookup_page_cgroup(page);
2148
	unsigned long uninitialized_var(flags);
2149

2150
	if (mem_cgroup_disabled())
2151
		return;
2152

2153
	VM_BUG_ON(!rcu_read_lock_held());
2154 2155
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2156
		return;
2157

2158
	this_cpu_add(memcg->stat->count[idx], val);
2159
}
2160

2161 2162 2163 2164
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2165
#define CHARGE_BATCH	32U
2166 2167
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2168
	unsigned int nr_pages;
2169
	struct work_struct work;
2170
	unsigned long flags;
2171
#define FLUSHING_CACHED_CHARGE	0
2172 2173
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2174
static DEFINE_MUTEX(percpu_charge_mutex);
2175

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2186
 */
2187
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2188 2189 2190 2191
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2192 2193 2194
	if (nr_pages > CHARGE_BATCH)
		return false;

2195
	stock = &get_cpu_var(memcg_stock);
2196 2197
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2211 2212 2213 2214
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2215
		if (do_swap_account)
2216 2217
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2230
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2231 2232
}

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2244 2245
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2246
 * This will be consumed by consume_stock() function, later.
2247
 */
2248
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2249 2250 2251
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2252
	if (stock->cached != memcg) { /* reset if necessary */
2253
		drain_stock(stock);
2254
		stock->cached = memcg;
2255
	}
2256
	stock->nr_pages += nr_pages;
2257 2258 2259 2260
	put_cpu_var(memcg_stock);
}

/*
2261
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2262 2263
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2264
 */
2265
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2266
{
2267
	int cpu, curcpu;
2268

2269 2270
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2271
	curcpu = get_cpu();
2272 2273
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2274
		struct mem_cgroup *memcg;
2275

2276 2277
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2278
			continue;
2279
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2280
			continue;
2281 2282 2283 2284 2285 2286
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2287
	}
2288
	put_cpu();
2289 2290 2291 2292 2293 2294

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2295
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2296 2297 2298
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2299
	put_online_cpus();
2300 2301 2302 2303 2304 2305 2306 2307
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2308
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2309
{
2310 2311 2312 2313 2314
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2315
	drain_all_stock(root_memcg, false);
2316
	mutex_unlock(&percpu_charge_mutex);
2317 2318 2319
}

/* This is a synchronous drain interface. */
2320
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2321 2322
{
	/* called when force_empty is called */
2323
	mutex_lock(&percpu_charge_mutex);
2324
	drain_all_stock(root_memcg, true);
2325
	mutex_unlock(&percpu_charge_mutex);
2326 2327
}

2328 2329 2330 2331
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2332
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2333 2334 2335
{
	int i;

2336
	spin_lock(&memcg->pcp_counter_lock);
2337
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2338
		long x = per_cpu(memcg->stat->count[i], cpu);
2339

2340 2341
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2342
	}
2343
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2344
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2345

2346 2347
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2348
	}
2349
	spin_unlock(&memcg->pcp_counter_lock);
2350 2351
}

2352
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2353 2354 2355 2356 2357
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2358
	struct mem_cgroup *iter;
2359

2360
	if (action == CPU_ONLINE)
2361 2362
		return NOTIFY_OK;

2363
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2364
		return NOTIFY_OK;
2365

2366
	for_each_mem_cgroup(iter)
2367 2368
		mem_cgroup_drain_pcp_counter(iter, cpu);

2369 2370 2371 2372 2373
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2374 2375 2376 2377 2378 2379 2380 2381 2382

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2383
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2384
				unsigned int nr_pages, unsigned int min_pages,
2385
				bool invoke_oom)
2386
{
2387
	unsigned long csize = nr_pages * PAGE_SIZE;
2388 2389 2390 2391 2392
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2393
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2394 2395 2396 2397

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2398
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2399 2400 2401
		if (likely(!ret))
			return CHARGE_OK;

2402
		res_counter_uncharge(&memcg->res, csize);
2403 2404 2405 2406
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2407 2408 2409 2410
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2411
	if (nr_pages > min_pages)
2412 2413 2414 2415 2416
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2417 2418 2419
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2420
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2421
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2422
		return CHARGE_RETRY;
2423
	/*
2424 2425 2426 2427 2428 2429 2430
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2431
	 */
2432
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2433 2434 2435 2436 2437 2438 2439 2440 2441
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2442 2443
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2444

2445
	return CHARGE_NOMEM;
2446 2447
}

2448
/*
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2468
 */
2469
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2470
				   gfp_t gfp_mask,
2471
				   unsigned int nr_pages,
2472
				   struct mem_cgroup **ptr,
2473
				   bool oom)
2474
{
2475
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2476
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2477
	struct mem_cgroup *memcg = NULL;
2478
	int ret;
2479

K
KAMEZAWA Hiroyuki 已提交
2480 2481 2482 2483 2484 2485 2486 2487
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2488

2489
	/*
2490 2491
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2492
	 * thread group leader migrates. It's possible that mm is not
2493
	 * set, if so charge the root memcg (happens for pagecache usage).
2494
	 */
2495
	if (!*ptr && !mm)
2496
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2497
again:
2498 2499 2500
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2501
			goto done;
2502
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2503
			goto done;
2504
		css_get(&memcg->css);
2505
	} else {
K
KAMEZAWA Hiroyuki 已提交
2506
		struct task_struct *p;
2507

K
KAMEZAWA Hiroyuki 已提交
2508 2509 2510
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2511
		 * Because we don't have task_lock(), "p" can exit.
2512
		 * In that case, "memcg" can point to root or p can be NULL with
2513 2514 2515 2516 2517 2518
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2519
		 */
2520
		memcg = mem_cgroup_from_task(p);
2521 2522 2523
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2524 2525 2526
			rcu_read_unlock();
			goto done;
		}
2527
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2540
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2541 2542 2543 2544 2545
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2546

2547
	do {
2548
		bool invoke_oom = oom && !nr_oom_retries;
2549

2550
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2551
		if (fatal_signal_pending(current)) {
2552
			css_put(&memcg->css);
2553
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2554
		}
2555

2556 2557
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2558 2559 2560 2561
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2562
			batch = nr_pages;
2563 2564
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2565
			goto again;
2566
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2567
			css_put(&memcg->css);
2568 2569
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2570
			if (!oom || invoke_oom) {
2571
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2572
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2573
			}
2574 2575
			nr_oom_retries--;
			break;
2576
		}
2577 2578
	} while (ret != CHARGE_OK);

2579
	if (batch > nr_pages)
2580 2581
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2582
done:
2583
	*ptr = memcg;
2584 2585
	return 0;
nomem:
2586
	*ptr = NULL;
2587
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2588
bypass:
2589 2590
	*ptr = root_mem_cgroup;
	return -EINTR;
2591
}
2592

2593 2594 2595 2596 2597
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2598
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2599
				       unsigned int nr_pages)
2600
{
2601
	if (!mem_cgroup_is_root(memcg)) {
2602 2603
		unsigned long bytes = nr_pages * PAGE_SIZE;

2604
		res_counter_uncharge(&memcg->res, bytes);
2605
		if (do_swap_account)
2606
			res_counter_uncharge(&memcg->memsw, bytes);
2607
	}
2608 2609
}

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2628 2629
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2630 2631 2632
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2644
	return mem_cgroup_from_css(css);
2645 2646
}

2647
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2648
{
2649
	struct mem_cgroup *memcg = NULL;
2650
	struct page_cgroup *pc;
2651
	unsigned short id;
2652 2653
	swp_entry_t ent;

2654 2655 2656
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2657
	lock_page_cgroup(pc);
2658
	if (PageCgroupUsed(pc)) {
2659 2660 2661
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2662
	} else if (PageSwapCache(page)) {
2663
		ent.val = page_private(page);
2664
		id = lookup_swap_cgroup_id(ent);
2665
		rcu_read_lock();
2666 2667 2668
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2669
		rcu_read_unlock();
2670
	}
2671
	unlock_page_cgroup(pc);
2672
	return memcg;
2673 2674
}

2675
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2676
				       struct page *page,
2677
				       unsigned int nr_pages,
2678 2679
				       enum charge_type ctype,
				       bool lrucare)
2680
{
2681
	struct page_cgroup *pc = lookup_page_cgroup(page);
2682
	struct zone *uninitialized_var(zone);
2683
	struct lruvec *lruvec;
2684
	bool was_on_lru = false;
2685
	bool anon;
2686

2687
	lock_page_cgroup(pc);
2688
	VM_BUG_ON(PageCgroupUsed(pc));
2689 2690 2691 2692
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2693 2694 2695 2696 2697 2698 2699 2700 2701

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2702
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2703
			ClearPageLRU(page);
2704
			del_page_from_lru_list(page, lruvec, page_lru(page));
2705 2706 2707 2708
			was_on_lru = true;
		}
	}

2709
	pc->mem_cgroup = memcg;
2710 2711 2712 2713 2714 2715
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2716
	 */
K
KAMEZAWA Hiroyuki 已提交
2717
	smp_wmb();
2718
	SetPageCgroupUsed(pc);
2719

2720 2721
	if (lrucare) {
		if (was_on_lru) {
2722
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2723 2724
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2725
			add_page_to_lru_list(page, lruvec, page_lru(page));
2726 2727 2728 2729
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2730
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2731 2732 2733 2734
		anon = true;
	else
		anon = false;

2735
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2736
	unlock_page_cgroup(pc);
2737

2738
	/*
2739
	 * "charge_statistics" updated event counter.
2740
	 */
2741
	memcg_check_events(memcg, page);
2742
}
2743

2744 2745
static DEFINE_MUTEX(set_limit_mutex);

2746 2747 2748 2749 2750 2751 2752
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2766
#ifdef CONFIG_SLABINFO
2767 2768
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2769
{
2770
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2840 2841 2842 2843 2844

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2845 2846 2847 2848 2849 2850 2851 2852
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2853
	if (memcg_kmem_test_and_clear_dead(memcg))
2854
		css_put(&memcg->css);
2855 2856
}

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

2940 2941
static void kmem_cache_destroy_work_func(struct work_struct *w);

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
2953
		size += offsetof(struct memcg_cache_params, memcg_caches);
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
2993 2994
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
2995
{
2996
	size_t size;
2997 2998 2999 3000

	if (!memcg_kmem_enabled())
		return 0;

3001 3002
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3003
		size += memcg_limited_groups_array_size * sizeof(void *);
3004 3005
	} else
		size = sizeof(struct memcg_cache_params);
3006

3007 3008 3009 3010
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3011
	if (memcg) {
3012
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3013
		s->memcg_params->root_cache = root_cache;
3014 3015
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3016 3017 3018
	} else
		s->memcg_params->is_root_cache = true;

3019 3020 3021 3022 3023
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3048
	css_put(&memcg->css);
3049
out:
3050 3051 3052
	kfree(s->memcg_params);
}

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3114 3115 3116 3117 3118 3119 3120 3121
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3142 3143 3144 3145 3146 3147 3148
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3149 3150 3151 3152 3153 3154 3155 3156 3157
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3158

3159 3160 3161
/*
 * Called with memcg_cache_mutex held
 */
3162 3163 3164 3165
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3166
	static char *tmp_name = NULL;
3167

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3186

3187
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3188
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3189

3190 3191 3192
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3208 3209
	if (new_cachep) {
		css_put(&memcg->css);
3210
		goto out;
3211
	}
3212 3213 3214 3215

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3216
		css_put(&memcg->css);
3217 3218 3219
		goto out;
	}

G
Glauber Costa 已提交
3220
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3272
		cancel_work_sync(&c->memcg_params->destroy);
3273 3274 3275 3276 3277
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3278 3279 3280 3281 3282 3283
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3313 3314
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3315 3316 3317 3318
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3319 3320
	if (cw == NULL) {
		css_put(&memcg->css);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3371 3372 3373
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3374 3375 3376 3377
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3378
		goto out;
3379 3380 3381 3382 3383 3384 3385 3386

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3387 3388 3389
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3390 3391
	}

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3419 3420 3421
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3458 3459 3460
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3545 3546 3547 3548
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3549 3550
#endif /* CONFIG_MEMCG_KMEM */

3551 3552
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3553
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3554 3555
/*
 * Because tail pages are not marked as "used", set it. We're under
3556 3557 3558
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3559
 */
3560
void mem_cgroup_split_huge_fixup(struct page *head)
3561 3562
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3563
	struct page_cgroup *pc;
3564
	struct mem_cgroup *memcg;
3565
	int i;
3566

3567 3568
	if (mem_cgroup_disabled())
		return;
3569 3570

	memcg = head_pc->mem_cgroup;
3571 3572
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3573
		pc->mem_cgroup = memcg;
3574 3575 3576
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3577 3578
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3579
}
3580
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3581

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
	WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
	__this_cpu_add(from->stat->count[idx], -nr_pages);
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3596
/**
3597
 * mem_cgroup_move_account - move account of the page
3598
 * @page: the page
3599
 * @nr_pages: number of regular pages (>1 for huge pages)
3600 3601 3602 3603 3604
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3605
 * - page is not on LRU (isolate_page() is useful.)
3606
 * - compound_lock is held when nr_pages > 1
3607
 *
3608 3609
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3610
 */
3611 3612 3613 3614
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3615
				   struct mem_cgroup *to)
3616
{
3617 3618
	unsigned long flags;
	int ret;
3619
	bool anon = PageAnon(page);
3620

3621
	VM_BUG_ON(from == to);
3622
	VM_BUG_ON(PageLRU(page));
3623 3624 3625 3626 3627 3628 3629
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3630
	if (nr_pages > 1 && !PageTransHuge(page))
3631 3632 3633 3634 3635 3636 3637 3638
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3639
	move_lock_mem_cgroup(from, &flags);
3640

3641 3642 3643 3644 3645 3646 3647 3648
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3649
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3650

3651
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3652
	pc->mem_cgroup = to;
3653
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3654
	move_unlock_mem_cgroup(from, &flags);
3655 3656
	ret = 0;
unlock:
3657
	unlock_page_cgroup(pc);
3658 3659 3660
	/*
	 * check events
	 */
3661 3662
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3663
out:
3664 3665 3666
	return ret;
}

3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3687
 */
3688 3689
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3690
				  struct mem_cgroup *child)
3691 3692
{
	struct mem_cgroup *parent;
3693
	unsigned int nr_pages;
3694
	unsigned long uninitialized_var(flags);
3695 3696
	int ret;

3697
	VM_BUG_ON(mem_cgroup_is_root(child));
3698

3699 3700 3701 3702 3703
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3704

3705
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3706

3707 3708 3709 3710 3711 3712
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3713

3714 3715
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3716
		flags = compound_lock_irqsave(page);
3717
	}
3718

3719
	ret = mem_cgroup_move_account(page, nr_pages,
3720
				pc, child, parent);
3721 3722
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3723

3724
	if (nr_pages > 1)
3725
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3726
	putback_lru_page(page);
3727
put:
3728
	put_page(page);
3729
out:
3730 3731 3732
	return ret;
}

3733 3734 3735 3736 3737 3738 3739
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3740
				gfp_t gfp_mask, enum charge_type ctype)
3741
{
3742
	struct mem_cgroup *memcg = NULL;
3743
	unsigned int nr_pages = 1;
3744
	bool oom = true;
3745
	int ret;
A
Andrea Arcangeli 已提交
3746

A
Andrea Arcangeli 已提交
3747
	if (PageTransHuge(page)) {
3748
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3749
		VM_BUG_ON(!PageTransHuge(page));
3750 3751 3752 3753 3754
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3755
	}
3756

3757
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3758
	if (ret == -ENOMEM)
3759
		return ret;
3760
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3761 3762 3763
	return 0;
}

3764 3765
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3766
{
3767
	if (mem_cgroup_disabled())
3768
		return 0;
3769 3770 3771
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3772
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3773
					MEM_CGROUP_CHARGE_TYPE_ANON);
3774 3775
}

3776 3777 3778
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3779
 * struct page_cgroup is acquired. This refcnt will be consumed by
3780 3781
 * "commit()" or removed by "cancel()"
 */
3782 3783 3784 3785
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3786
{
3787
	struct mem_cgroup *memcg;
3788
	struct page_cgroup *pc;
3789
	int ret;
3790

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3801 3802
	if (!do_swap_account)
		goto charge_cur_mm;
3803 3804
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3805
		goto charge_cur_mm;
3806 3807
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3808
	css_put(&memcg->css);
3809 3810
	if (ret == -EINTR)
		ret = 0;
3811
	return ret;
3812
charge_cur_mm:
3813 3814 3815 3816
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3817 3818
}

3819 3820 3821 3822 3823 3824
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3839 3840 3841
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3842 3843 3844 3845 3846 3847 3848 3849 3850
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3851
static void
3852
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3853
					enum charge_type ctype)
3854
{
3855
	if (mem_cgroup_disabled())
3856
		return;
3857
	if (!memcg)
3858
		return;
3859

3860
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3861 3862 3863
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3864 3865 3866
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3867
	 */
3868
	if (do_swap_account && PageSwapCache(page)) {
3869
		swp_entry_t ent = {.val = page_private(page)};
3870
		mem_cgroup_uncharge_swap(ent);
3871
	}
3872 3873
}

3874 3875
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3876
{
3877
	__mem_cgroup_commit_charge_swapin(page, memcg,
3878
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3879 3880
}

3881 3882
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3883
{
3884 3885 3886 3887
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3888
	if (mem_cgroup_disabled())
3889 3890 3891 3892 3893 3894 3895
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3896 3897
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3898 3899 3900 3901
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3902 3903
}

3904
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3905 3906
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3907 3908 3909
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3910

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3922
		batch->memcg = memcg;
3923 3924
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3925
	 * In those cases, all pages freed continuously can be expected to be in
3926 3927 3928 3929 3930 3931 3932 3933
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3934
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3935 3936
		goto direct_uncharge;

3937 3938 3939 3940 3941
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3942
	if (batch->memcg != memcg)
3943 3944
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3945
	batch->nr_pages++;
3946
	if (uncharge_memsw)
3947
		batch->memsw_nr_pages++;
3948 3949
	return;
direct_uncharge:
3950
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3951
	if (uncharge_memsw)
3952 3953 3954
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3955
}
3956

3957
/*
3958
 * uncharge if !page_mapped(page)
3959
 */
3960
static struct mem_cgroup *
3961 3962
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3963
{
3964
	struct mem_cgroup *memcg = NULL;
3965 3966
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3967
	bool anon;
3968

3969
	if (mem_cgroup_disabled())
3970
		return NULL;
3971

A
Andrea Arcangeli 已提交
3972
	if (PageTransHuge(page)) {
3973
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3974 3975
		VM_BUG_ON(!PageTransHuge(page));
	}
3976
	/*
3977
	 * Check if our page_cgroup is valid
3978
	 */
3979
	pc = lookup_page_cgroup(page);
3980
	if (unlikely(!PageCgroupUsed(pc)))
3981
		return NULL;
3982

3983
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3984

3985
	memcg = pc->mem_cgroup;
3986

K
KAMEZAWA Hiroyuki 已提交
3987 3988 3989
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3990 3991
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3992
	switch (ctype) {
3993
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3994 3995 3996 3997 3998
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3999 4000
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4001
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4002
		/* See mem_cgroup_prepare_migration() */
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4024
	}
K
KAMEZAWA Hiroyuki 已提交
4025

4026
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4027

4028
	ClearPageCgroupUsed(pc);
4029 4030 4031 4032 4033 4034
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4035

4036
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4037
	/*
4038
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4039
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4040
	 */
4041
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4042
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4043
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4044
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4045
	}
4046 4047 4048 4049 4050 4051
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4052
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4053

4054
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4055 4056 4057

unlock_out:
	unlock_page_cgroup(pc);
4058
	return NULL;
4059 4060
}

4061 4062
void mem_cgroup_uncharge_page(struct page *page)
{
4063 4064 4065
	/* early check. */
	if (page_mapped(page))
		return;
4066
	VM_BUG_ON(page->mapping && !PageAnon(page));
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4079 4080
	if (PageSwapCache(page))
		return;
4081
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4082 4083 4084 4085 4086
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4087
	VM_BUG_ON(page->mapping);
4088
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4089 4090
}

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4105 4106
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4127 4128 4129 4130 4131 4132
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4133
	memcg_oom_recover(batch->memcg);
4134 4135 4136 4137
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4138
#ifdef CONFIG_SWAP
4139
/*
4140
 * called after __delete_from_swap_cache() and drop "page" account.
4141 4142
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4143 4144
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4145 4146
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4147 4148 4149 4150 4151
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4152
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4153

K
KAMEZAWA Hiroyuki 已提交
4154 4155
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4156
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4157 4158
	 */
	if (do_swap_account && swapout && memcg)
4159
		swap_cgroup_record(ent, css_id(&memcg->css));
4160
}
4161
#endif
4162

A
Andrew Morton 已提交
4163
#ifdef CONFIG_MEMCG_SWAP
4164 4165 4166 4167 4168
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4169
{
4170
	struct mem_cgroup *memcg;
4171
	unsigned short id;
4172 4173 4174 4175

	if (!do_swap_account)
		return;

4176 4177 4178
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4179
	if (memcg) {
4180 4181 4182 4183
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4184
		if (!mem_cgroup_is_root(memcg))
4185
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4186
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4187
		css_put(&memcg->css);
4188
	}
4189
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4190
}
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4207
				struct mem_cgroup *from, struct mem_cgroup *to)
4208 4209 4210 4211 4212 4213 4214 4215
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4216
		mem_cgroup_swap_statistics(to, true);
4217
		/*
4218 4219 4220
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4221 4222 4223 4224 4225 4226
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4227
		 */
L
Li Zefan 已提交
4228
		css_get(&to->css);
4229 4230 4231 4232 4233 4234
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4235
				struct mem_cgroup *from, struct mem_cgroup *to)
4236 4237 4238
{
	return -EINVAL;
}
4239
#endif
K
KAMEZAWA Hiroyuki 已提交
4240

4241
/*
4242 4243
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4244
 */
4245 4246
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4247
{
4248
	struct mem_cgroup *memcg = NULL;
4249
	unsigned int nr_pages = 1;
4250
	struct page_cgroup *pc;
4251
	enum charge_type ctype;
4252

4253
	*memcgp = NULL;
4254

4255
	if (mem_cgroup_disabled())
4256
		return;
4257

4258 4259 4260
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4261 4262 4263
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4264 4265
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4297
	}
4298
	unlock_page_cgroup(pc);
4299 4300 4301 4302
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4303
	if (!memcg)
4304
		return;
4305

4306
	*memcgp = memcg;
4307 4308 4309 4310 4311 4312 4313
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4314
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4315
	else
4316
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4317 4318 4319 4320 4321
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4322
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4323
}
4324

4325
/* remove redundant charge if migration failed*/
4326
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4327
	struct page *oldpage, struct page *newpage, bool migration_ok)
4328
{
4329
	struct page *used, *unused;
4330
	struct page_cgroup *pc;
4331
	bool anon;
4332

4333
	if (!memcg)
4334
		return;
4335

4336
	if (!migration_ok) {
4337 4338
		used = oldpage;
		unused = newpage;
4339
	} else {
4340
		used = newpage;
4341 4342
		unused = oldpage;
	}
4343
	anon = PageAnon(used);
4344 4345 4346 4347
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4348
	css_put(&memcg->css);
4349
	/*
4350 4351 4352
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4353
	 */
4354 4355 4356 4357 4358
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4359
	/*
4360 4361 4362 4363 4364 4365
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4366
	 */
4367
	if (anon)
4368
		mem_cgroup_uncharge_page(used);
4369
}
4370

4371 4372 4373 4374 4375 4376 4377 4378
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4379
	struct mem_cgroup *memcg = NULL;
4380 4381 4382 4383 4384 4385 4386 4387 4388
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4389 4390
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4391
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4392 4393
		ClearPageCgroupUsed(pc);
	}
4394 4395
	unlock_page_cgroup(pc);

4396 4397 4398 4399 4400 4401
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4402 4403 4404 4405 4406
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4407
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4408 4409
}

4410 4411 4412 4413 4414 4415
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4416 4417 4418 4419 4420
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4440 4441
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4442 4443 4444 4445
	}
}
#endif

4446
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4447
				unsigned long long val)
4448
{
4449
	int retry_count;
4450
	u64 memswlimit, memlimit;
4451
	int ret = 0;
4452 4453
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4454
	int enlarge;
4455 4456 4457 4458 4459 4460 4461 4462 4463

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4464

4465
	enlarge = 0;
4466
	while (retry_count) {
4467 4468 4469 4470
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4471 4472 4473
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4474
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4475 4476 4477 4478 4479 4480
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4481 4482
			break;
		}
4483 4484 4485 4486 4487

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4488
		ret = res_counter_set_limit(&memcg->res, val);
4489 4490 4491 4492 4493 4494
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4495 4496 4497 4498 4499
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4500 4501
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4502 4503
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4504
		if (curusage >= oldusage)
4505 4506 4507
			retry_count--;
		else
			oldusage = curusage;
4508
	}
4509 4510
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4511

4512 4513 4514
	return ret;
}

L
Li Zefan 已提交
4515 4516
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4517
{
4518
	int retry_count;
4519
	u64 memlimit, memswlimit, oldusage, curusage;
4520 4521
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4522
	int enlarge = 0;
4523

4524
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4525
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4526
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4527 4528 4529 4530 4531 4532 4533 4534
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4535
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4536 4537 4538 4539 4540 4541 4542 4543
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4544 4545 4546
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4547
		ret = res_counter_set_limit(&memcg->memsw, val);
4548 4549 4550 4551 4552 4553
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4554 4555 4556 4557 4558
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4559 4560 4561
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4562
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4563
		/* Usage is reduced ? */
4564
		if (curusage >= oldusage)
4565
			retry_count--;
4566 4567
		else
			oldusage = curusage;
4568
	}
4569 4570
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4571 4572 4573
	return ret;
}

4574 4575 4576 4577 4578 4579 4580
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4581
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4582 4583
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4584
 */
4585
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4586
				int node, int zid, enum lru_list lru)
4587
{
4588
	struct lruvec *lruvec;
4589
	unsigned long flags;
4590
	struct list_head *list;
4591 4592
	struct page *busy;
	struct zone *zone;
4593

K
KAMEZAWA Hiroyuki 已提交
4594
	zone = &NODE_DATA(node)->node_zones[zid];
4595 4596
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4597

4598
	busy = NULL;
4599
	do {
4600
		struct page_cgroup *pc;
4601 4602
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4603
		spin_lock_irqsave(&zone->lru_lock, flags);
4604
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4605
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4606
			break;
4607
		}
4608 4609 4610
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4611
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4612
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4613 4614
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4615
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4616

4617
		pc = lookup_page_cgroup(page);
4618

4619
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4620
			/* found lock contention or "pc" is obsolete. */
4621
			busy = page;
4622 4623 4624
			cond_resched();
		} else
			busy = NULL;
4625
	} while (!list_empty(list));
4626 4627 4628
}

/*
4629 4630
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4631
 * This enables deleting this mem_cgroup.
4632 4633
 *
 * Caller is responsible for holding css reference on the memcg.
4634
 */
4635
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4636
{
4637
	int node, zid;
4638
	u64 usage;
4639

4640
	do {
4641 4642
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4643 4644
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4645
		for_each_node_state(node, N_MEMORY) {
4646
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4647 4648
				enum lru_list lru;
				for_each_lru(lru) {
4649
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4650
							node, zid, lru);
4651
				}
4652
			}
4653
		}
4654 4655
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4656
		cond_resched();
4657

4658
		/*
4659 4660 4661 4662 4663
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4664 4665 4666 4667 4668 4669
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4670 4671 4672
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4673 4674
}

4675 4676 4677 4678 4679 4680 4681
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4682
	struct cgroup_subsys_state *pos;
4683 4684

	/* bounce at first found */
4685
	css_for_each_child(pos, &memcg->css)
4686 4687 4688 4689 4690
		return true;
	return false;
}

/*
4691 4692
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4693 4694 4695 4696 4697 4698 4699 4700 4701
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4712

4713
	/* returns EBUSY if there is a task or if we come here twice. */
4714 4715 4716
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4717 4718
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4719
	/* try to free all pages in this cgroup */
4720
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4721
		int progress;
4722

4723 4724 4725
		if (signal_pending(current))
			return -EINTR;

4726
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4727
						false);
4728
		if (!progress) {
4729
			nr_retries--;
4730
			/* maybe some writeback is necessary */
4731
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4732
		}
4733 4734

	}
K
KAMEZAWA Hiroyuki 已提交
4735
	lru_add_drain();
4736 4737 4738
	mem_cgroup_reparent_charges(memcg);

	return 0;
4739 4740
}

4741 4742
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4743
{
4744
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4745

4746 4747
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4748
	return mem_cgroup_force_empty(memcg);
4749 4750
}

4751 4752
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4753
{
4754
	return mem_cgroup_from_css(css)->use_hierarchy;
4755 4756
}

4757 4758
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4759 4760
{
	int retval = 0;
4761
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4762
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4763

4764
	mutex_lock(&memcg_create_mutex);
4765 4766 4767 4768

	if (memcg->use_hierarchy == val)
		goto out;

4769
	/*
4770
	 * If parent's use_hierarchy is set, we can't make any modifications
4771 4772 4773 4774 4775 4776
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4777
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4778
				(val == 1 || val == 0)) {
4779
		if (!__memcg_has_children(memcg))
4780
			memcg->use_hierarchy = val;
4781 4782 4783 4784
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4785 4786

out:
4787
	mutex_unlock(&memcg_create_mutex);
4788 4789 4790 4791

	return retval;
}

4792

4793
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4794
					       enum mem_cgroup_stat_index idx)
4795
{
K
KAMEZAWA Hiroyuki 已提交
4796
	struct mem_cgroup *iter;
4797
	long val = 0;
4798

4799
	/* Per-cpu values can be negative, use a signed accumulator */
4800
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4801 4802 4803 4804 4805
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4806 4807
}

4808
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4809
{
K
KAMEZAWA Hiroyuki 已提交
4810
	u64 val;
4811

4812
	if (!mem_cgroup_is_root(memcg)) {
4813
		if (!swap)
4814
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4815
		else
4816
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4817 4818
	}

4819 4820 4821 4822
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4823 4824
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4825

K
KAMEZAWA Hiroyuki 已提交
4826
	if (swap)
4827
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4828 4829 4830 4831

	return val << PAGE_SHIFT;
}

4832 4833 4834
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4835
{
4836
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4837
	char str[64];
4838
	u64 val;
G
Glauber Costa 已提交
4839 4840
	int name, len;
	enum res_type type;
4841 4842 4843

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4844

4845 4846
	switch (type) {
	case _MEM:
4847
		if (name == RES_USAGE)
4848
			val = mem_cgroup_usage(memcg, false);
4849
		else
4850
			val = res_counter_read_u64(&memcg->res, name);
4851 4852
		break;
	case _MEMSWAP:
4853
		if (name == RES_USAGE)
4854
			val = mem_cgroup_usage(memcg, true);
4855
		else
4856
			val = res_counter_read_u64(&memcg->memsw, name);
4857
		break;
4858 4859 4860
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4861 4862 4863
	default:
		BUG();
	}
4864 4865 4866

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4867
}
4868

4869
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4870 4871 4872
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4873
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4886
	mutex_lock(&memcg_create_mutex);
4887
	mutex_lock(&set_limit_mutex);
4888
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
4889
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4890 4891 4892 4893 4894 4895
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4896 4897
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
4898
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
4899 4900
			goto out;
		}
4901 4902 4903 4904 4905 4906
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
4907 4908 4909 4910
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
4911
	mutex_unlock(&memcg_create_mutex);
4912 4913 4914 4915
#endif
	return ret;
}

4916
#ifdef CONFIG_MEMCG_KMEM
4917
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4918
{
4919
	int ret = 0;
4920 4921
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
4922 4923
		goto out;

4924
	memcg->kmem_account_flags = parent->kmem_account_flags;
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
4935 4936 4937 4938
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
4939 4940 4941
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
4942 4943 4944 4945
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
4946
	memcg_stop_kmem_account();
4947
	ret = memcg_update_cache_sizes(memcg);
4948
	memcg_resume_kmem_account();
4949 4950 4951
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
4952
}
4953
#endif /* CONFIG_MEMCG_KMEM */
4954

4955 4956 4957 4958
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4959
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4960
			    const char *buffer)
B
Balbir Singh 已提交
4961
{
4962
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
4963 4964
	enum res_type type;
	int name;
4965 4966 4967
	unsigned long long val;
	int ret;

4968 4969
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4970

4971
	switch (name) {
4972
	case RES_LIMIT:
4973 4974 4975 4976
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4977 4978
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4979 4980 4981
		if (ret)
			break;
		if (type == _MEM)
4982
			ret = mem_cgroup_resize_limit(memcg, val);
4983
		else if (type == _MEMSWAP)
4984
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4985
		else if (type == _KMEM)
4986
			ret = memcg_update_kmem_limit(css, val);
4987 4988
		else
			return -EINVAL;
4989
		break;
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5004 5005 5006 5007 5008
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5009 5010
}

5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5021 5022
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5035
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5036
{
5037
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5038 5039
	int name;
	enum res_type type;
5040

5041 5042
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5043

5044
	switch (name) {
5045
	case RES_MAX_USAGE:
5046
		if (type == _MEM)
5047
			res_counter_reset_max(&memcg->res);
5048
		else if (type == _MEMSWAP)
5049
			res_counter_reset_max(&memcg->memsw);
5050 5051 5052 5053
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5054 5055
		break;
	case RES_FAILCNT:
5056
		if (type == _MEM)
5057
			res_counter_reset_failcnt(&memcg->res);
5058
		else if (type == _MEMSWAP)
5059
			res_counter_reset_failcnt(&memcg->memsw);
5060 5061 5062 5063
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5064 5065
		break;
	}
5066

5067
	return 0;
5068 5069
}

5070
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5071 5072
					struct cftype *cft)
{
5073
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5074 5075
}

5076
#ifdef CONFIG_MMU
5077
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5078 5079
					struct cftype *cft, u64 val)
{
5080
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5081 5082 5083

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5084

5085
	/*
5086 5087 5088 5089
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5090
	 */
5091
	memcg->move_charge_at_immigrate = val;
5092 5093
	return 0;
}
5094
#else
5095
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5096 5097 5098 5099 5100
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5101

5102
#ifdef CONFIG_NUMA
5103 5104
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5105 5106 5107 5108
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5109
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5110

5111
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5112
	seq_printf(m, "total=%lu", total_nr);
5113
	for_each_node_state(nid, N_MEMORY) {
5114
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5115 5116 5117 5118
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5119
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5120
	seq_printf(m, "file=%lu", file_nr);
5121
	for_each_node_state(nid, N_MEMORY) {
5122
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5123
				LRU_ALL_FILE);
5124 5125 5126 5127
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5128
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5129
	seq_printf(m, "anon=%lu", anon_nr);
5130
	for_each_node_state(nid, N_MEMORY) {
5131
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5132
				LRU_ALL_ANON);
5133 5134 5135 5136
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5137
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5138
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5139
	for_each_node_state(nid, N_MEMORY) {
5140
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5141
				BIT(LRU_UNEVICTABLE));
5142 5143 5144 5145 5146 5147 5148
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5149 5150 5151 5152 5153
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5154
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5155
				 struct seq_file *m)
5156
{
5157
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5158 5159
	struct mem_cgroup *mi;
	unsigned int i;
5160

5161
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5162
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5163
			continue;
5164 5165
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5166
	}
L
Lee Schermerhorn 已提交
5167

5168 5169 5170 5171 5172 5173 5174 5175
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5176
	/* Hierarchical information */
5177 5178
	{
		unsigned long long limit, memsw_limit;
5179
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5180
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5181
		if (do_swap_account)
5182 5183
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5184
	}
K
KOSAKI Motohiro 已提交
5185

5186 5187 5188
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5189
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5190
			continue;
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5211
	}
K
KAMEZAWA Hiroyuki 已提交
5212

K
KOSAKI Motohiro 已提交
5213 5214 5215 5216
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5217
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5218 5219 5220 5221 5222
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5223
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5224
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5225

5226 5227 5228 5229
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5230
			}
5231 5232 5233 5234
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5235 5236 5237
	}
#endif

5238 5239 5240
	return 0;
}

5241 5242
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5243
{
5244
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5245

5246
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5247 5248
}

5249 5250
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5251
{
5252
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5253
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5254

T
Tejun Heo 已提交
5255
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5256 5257
		return -EINVAL;

5258
	mutex_lock(&memcg_create_mutex);
5259

K
KOSAKI Motohiro 已提交
5260
	/* If under hierarchy, only empty-root can set this value */
5261
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5262
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5263
		return -EINVAL;
5264
	}
K
KOSAKI Motohiro 已提交
5265 5266 5267

	memcg->swappiness = val;

5268
	mutex_unlock(&memcg_create_mutex);
5269

K
KOSAKI Motohiro 已提交
5270 5271 5272
	return 0;
}

5273 5274 5275 5276 5277 5278 5279 5280
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5281
		t = rcu_dereference(memcg->thresholds.primary);
5282
	else
5283
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5284 5285 5286 5287 5288 5289 5290

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5291
	 * current_threshold points to threshold just below or equal to usage.
5292 5293 5294
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5295
	i = t->current_threshold;
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5319
	t->current_threshold = i - 1;
5320 5321 5322 5323 5324 5325
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5326 5327 5328 5329 5330 5331 5332
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5333 5334 5335 5336 5337 5338 5339
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5340 5341 5342 5343 5344 5345 5346
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5347 5348
}

5349
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5350 5351 5352
{
	struct mem_cgroup_eventfd_list *ev;

5353
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5354 5355 5356 5357
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5358
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5359
{
K
KAMEZAWA Hiroyuki 已提交
5360 5361
	struct mem_cgroup *iter;

5362
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5363
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5364 5365
}

5366
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5367
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5368
{
5369
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5370 5371
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5372
	enum res_type type = MEMFILE_TYPE(cft->private);
5373
	u64 threshold, usage;
5374
	int i, size, ret;
5375 5376 5377 5378 5379 5380

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5381

5382
	if (type == _MEM)
5383
		thresholds = &memcg->thresholds;
5384
	else if (type == _MEMSWAP)
5385
		thresholds = &memcg->memsw_thresholds;
5386 5387 5388 5389 5390 5391
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5392
	if (thresholds->primary)
5393 5394
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5395
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5396 5397

	/* Allocate memory for new array of thresholds */
5398
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5399
			GFP_KERNEL);
5400
	if (!new) {
5401 5402 5403
		ret = -ENOMEM;
		goto unlock;
	}
5404
	new->size = size;
5405 5406

	/* Copy thresholds (if any) to new array */
5407 5408
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5409
				sizeof(struct mem_cgroup_threshold));
5410 5411
	}

5412
	/* Add new threshold */
5413 5414
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5415 5416

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5417
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5418 5419 5420
			compare_thresholds, NULL);

	/* Find current threshold */
5421
	new->current_threshold = -1;
5422
	for (i = 0; i < size; i++) {
5423
		if (new->entries[i].threshold <= usage) {
5424
			/*
5425 5426
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5427 5428
			 * it here.
			 */
5429
			++new->current_threshold;
5430 5431
		} else
			break;
5432 5433
	}

5434 5435 5436 5437 5438
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5439

5440
	/* To be sure that nobody uses thresholds */
5441 5442 5443 5444 5445 5446 5447 5448
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5449
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5450
	struct cftype *cft, struct eventfd_ctx *eventfd)
5451
{
5452
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5453 5454
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5455
	enum res_type type = MEMFILE_TYPE(cft->private);
5456
	u64 usage;
5457
	int i, j, size;
5458 5459 5460

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5461
		thresholds = &memcg->thresholds;
5462
	else if (type == _MEMSWAP)
5463
		thresholds = &memcg->memsw_thresholds;
5464 5465 5466
	else
		BUG();

5467 5468 5469
	if (!thresholds->primary)
		goto unlock;

5470 5471 5472 5473 5474 5475
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5476 5477 5478
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5479 5480 5481
			size++;
	}

5482
	new = thresholds->spare;
5483

5484 5485
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5486 5487
		kfree(new);
		new = NULL;
5488
		goto swap_buffers;
5489 5490
	}

5491
	new->size = size;
5492 5493

	/* Copy thresholds and find current threshold */
5494 5495 5496
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5497 5498
			continue;

5499
		new->entries[j] = thresholds->primary->entries[i];
5500
		if (new->entries[j].threshold <= usage) {
5501
			/*
5502
			 * new->current_threshold will not be used
5503 5504 5505
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5506
			++new->current_threshold;
5507 5508 5509 5510
		}
		j++;
	}

5511
swap_buffers:
5512 5513
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5514 5515 5516 5517 5518 5519
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5520
	rcu_assign_pointer(thresholds->primary, new);
5521

5522
	/* To be sure that nobody uses thresholds */
5523
	synchronize_rcu();
5524
unlock:
5525 5526
	mutex_unlock(&memcg->thresholds_lock);
}
5527

5528
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5529 5530
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5531
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5532
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5533
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5534 5535 5536 5537 5538 5539

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5540
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5541 5542 5543 5544 5545

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5546
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5547
		eventfd_signal(eventfd, 1);
5548
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5549 5550 5551 5552

	return 0;
}

5553
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5554 5555
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5556
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5557
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5558
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5559 5560 5561

	BUG_ON(type != _OOM_TYPE);

5562
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5563

5564
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5565 5566 5567 5568 5569 5570
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5571
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5572 5573
}

5574
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5575 5576
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5577
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5578

5579
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5580

5581
	if (atomic_read(&memcg->under_oom))
5582 5583 5584 5585 5586 5587
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5588
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5589 5590
	struct cftype *cft, u64 val)
{
5591
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5592
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5593 5594

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5595
	if (!parent || !((val == 0) || (val == 1)))
5596 5597
		return -EINVAL;

5598
	mutex_lock(&memcg_create_mutex);
5599
	/* oom-kill-disable is a flag for subhierarchy. */
5600
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5601
		mutex_unlock(&memcg_create_mutex);
5602 5603
		return -EINVAL;
	}
5604
	memcg->oom_kill_disable = val;
5605
	if (!val)
5606
		memcg_oom_recover(memcg);
5607
	mutex_unlock(&memcg_create_mutex);
5608 5609 5610
	return 0;
}

A
Andrew Morton 已提交
5611
#ifdef CONFIG_MEMCG_KMEM
5612
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5613
{
5614 5615
	int ret;

5616
	memcg->kmemcg_id = -1;
5617 5618 5619
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5620

5621
	return mem_cgroup_sockets_init(memcg, ss);
5622
}
5623

5624
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5625
{
5626
	mem_cgroup_sockets_destroy(memcg);
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5653 5654 5655 5656 5657 5658 5659

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5660
		css_put(&memcg->css);
G
Glauber Costa 已提交
5661
}
5662
#else
5663
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5664 5665 5666
{
	return 0;
}
G
Glauber Costa 已提交
5667

5668 5669 5670 5671 5672
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5673 5674
{
}
5675 5676
#endif

B
Balbir Singh 已提交
5677 5678
static struct cftype mem_cgroup_files[] = {
	{
5679
		.name = "usage_in_bytes",
5680
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5681
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5682 5683
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5684
	},
5685 5686
	{
		.name = "max_usage_in_bytes",
5687
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5688
		.trigger = mem_cgroup_reset,
5689
		.read = mem_cgroup_read,
5690
	},
B
Balbir Singh 已提交
5691
	{
5692
		.name = "limit_in_bytes",
5693
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5694
		.write_string = mem_cgroup_write,
5695
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5696
	},
5697 5698 5699 5700
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5701
		.read = mem_cgroup_read,
5702
	},
B
Balbir Singh 已提交
5703 5704
	{
		.name = "failcnt",
5705
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5706
		.trigger = mem_cgroup_reset,
5707
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5708
	},
5709 5710
	{
		.name = "stat",
5711
		.read_seq_string = memcg_stat_show,
5712
	},
5713 5714 5715 5716
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5717 5718
	{
		.name = "use_hierarchy",
5719
		.flags = CFTYPE_INSANE,
5720 5721 5722
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5723 5724 5725 5726 5727
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5728 5729 5730 5731 5732
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5733 5734
	{
		.name = "oom_control",
5735 5736
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5737 5738 5739 5740
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5741 5742 5743 5744 5745
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5746 5747 5748
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5749
		.read_seq_string = memcg_numa_stat_show,
5750 5751
	},
#endif
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5776 5777 5778 5779 5780 5781
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5782
#endif
5783
	{ },	/* terminate */
5784
};
5785

5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5816
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5817 5818
{
	struct mem_cgroup_per_node *pn;
5819
	struct mem_cgroup_per_zone *mz;
5820
	int zone, tmp = node;
5821 5822 5823 5824 5825 5826 5827 5828
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5829 5830
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5831
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5832 5833
	if (!pn)
		return 1;
5834 5835 5836

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5837
		lruvec_init(&mz->lruvec);
5838
		mz->memcg = memcg;
5839
	}
5840
	memcg->nodeinfo[node] = pn;
5841 5842 5843
	return 0;
}

5844
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5845
{
5846
	kfree(memcg->nodeinfo[node]);
5847 5848
}

5849 5850
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5851
	struct mem_cgroup *memcg;
5852
	size_t size = memcg_size();
5853

5854
	/* Can be very big if nr_node_ids is very big */
5855
	if (size < PAGE_SIZE)
5856
		memcg = kzalloc(size, GFP_KERNEL);
5857
	else
5858
		memcg = vzalloc(size);
5859

5860
	if (!memcg)
5861 5862
		return NULL;

5863 5864
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5865
		goto out_free;
5866 5867
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5868 5869 5870

out_free:
	if (size < PAGE_SIZE)
5871
		kfree(memcg);
5872
	else
5873
		vfree(memcg);
5874
	return NULL;
5875 5876
}

5877
/*
5878 5879 5880 5881 5882 5883 5884 5885
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5886
 */
5887 5888

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5889
{
5890
	int node;
5891
	size_t size = memcg_size();
5892

5893 5894 5895 5896 5897 5898 5899
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5911
	disarm_static_keys(memcg);
5912 5913 5914 5915
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5916
}
5917

5918 5919 5920
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5921
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5922
{
5923
	if (!memcg->res.parent)
5924
		return NULL;
5925
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5926
}
G
Glauber Costa 已提交
5927
EXPORT_SYMBOL(parent_mem_cgroup);
5928

L
Li Zefan 已提交
5929
static struct cgroup_subsys_state * __ref
5930
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
5931
{
5932
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5933
	long error = -ENOMEM;
5934
	int node;
B
Balbir Singh 已提交
5935

5936 5937
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5938
		return ERR_PTR(error);
5939

B
Bob Liu 已提交
5940
	for_each_node(node)
5941
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5942
			goto free_out;
5943

5944
	/* root ? */
5945
	if (parent_css == NULL) {
5946
		root_mem_cgroup = memcg;
5947 5948 5949
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
5950
	}
5951

5952 5953 5954 5955 5956
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5957
	vmpressure_init(&memcg->vmpressure);
5958 5959 5960 5961 5962 5963 5964 5965 5966

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
5967
mem_cgroup_css_online(struct cgroup_subsys_state *css)
5968
{
5969 5970
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
5971 5972
	int error = 0;

T
Tejun Heo 已提交
5973
	if (!parent)
5974 5975
		return 0;

5976
	mutex_lock(&memcg_create_mutex);
5977 5978 5979 5980 5981 5982

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5983 5984
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5985
		res_counter_init(&memcg->kmem, &parent->kmem);
5986

5987
		/*
5988 5989
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
5990
		 */
5991
	} else {
5992 5993
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5994
		res_counter_init(&memcg->kmem, NULL);
5995 5996 5997 5998 5999
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6000
		if (parent != root_mem_cgroup)
6001
			mem_cgroup_subsys.broken_hierarchy = true;
6002
	}
6003 6004

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6005
	mutex_unlock(&memcg_create_mutex);
6006
	return error;
B
Balbir Singh 已提交
6007 6008
}

M
Michal Hocko 已提交
6009 6010 6011 6012 6013 6014 6015 6016
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6017
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6018 6019 6020 6021 6022 6023

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6024
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6025 6026
}

6027
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6028
{
6029
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6030

6031 6032
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6033
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6034
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6035
	mem_cgroup_destroy_all_caches(memcg);
6036
	vmpressure_cleanup(&memcg->vmpressure);
6037 6038
}

6039
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6040
{
6041
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6042

6043
	memcg_destroy_kmem(memcg);
6044
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6045 6046
}

6047
#ifdef CONFIG_MMU
6048
/* Handlers for move charge at task migration. */
6049 6050
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6051
{
6052 6053
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6054
	struct mem_cgroup *memcg = mc.to;
6055

6056
	if (mem_cgroup_is_root(memcg)) {
6057 6058 6059 6060 6061 6062 6063 6064
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6065
		 * "memcg" cannot be under rmdir() because we've already checked
6066 6067 6068 6069
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6070
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6071
			goto one_by_one;
6072
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6073
						PAGE_SIZE * count, &dummy)) {
6074
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6091 6092
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6093
		if (ret)
6094
			/* mem_cgroup_clear_mc() will do uncharge later */
6095
			return ret;
6096 6097
		mc.precharge++;
	}
6098 6099 6100 6101
	return ret;
}

/**
6102
 * get_mctgt_type - get target type of moving charge
6103 6104 6105
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6106
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6107 6108 6109 6110 6111 6112
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6113 6114 6115
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6116 6117 6118 6119 6120
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6121
	swp_entry_t	ent;
6122 6123 6124
};

enum mc_target_type {
6125
	MC_TARGET_NONE = 0,
6126
	MC_TARGET_PAGE,
6127
	MC_TARGET_SWAP,
6128 6129
};

D
Daisuke Nishimura 已提交
6130 6131
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6132
{
D
Daisuke Nishimura 已提交
6133
	struct page *page = vm_normal_page(vma, addr, ptent);
6134

D
Daisuke Nishimura 已提交
6135 6136 6137 6138
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6139
		if (!move_anon())
D
Daisuke Nishimura 已提交
6140
			return NULL;
6141 6142
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6143 6144 6145 6146 6147 6148 6149
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6150
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6151 6152 6153 6154 6155 6156 6157 6158
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6159 6160 6161 6162
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6163
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6164 6165 6166 6167 6168
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6169 6170 6171 6172 6173 6174 6175
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6176

6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6196 6197 6198 6199 6200 6201
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6202
		if (do_swap_account)
6203
			*entry = swap;
6204
		page = find_get_page(swap_address_space(swap), swap.val);
6205
	}
6206
#endif
6207 6208 6209
	return page;
}

6210
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6211 6212 6213 6214
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6215
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6216 6217 6218 6219 6220 6221
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6222 6223
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6224 6225

	if (!page && !ent.val)
6226
		return ret;
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6242 6243
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6244
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6245 6246 6247
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6248 6249 6250 6251
	}
	return ret;
}

6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6287 6288 6289 6290 6291 6292 6293 6294
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6295 6296 6297 6298
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6299
		return 0;
6300
	}
6301

6302 6303
	if (pmd_trans_unstable(pmd))
		return 0;
6304 6305
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6306
		if (get_mctgt_type(vma, addr, *pte, NULL))
6307 6308 6309 6310
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6311 6312 6313
	return 0;
}

6314 6315 6316 6317 6318
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6319
	down_read(&mm->mmap_sem);
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6331
	up_read(&mm->mmap_sem);
6332 6333 6334 6335 6336 6337 6338 6339 6340

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6341 6342 6343 6344 6345
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6346 6347
}

6348 6349
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6350
{
6351 6352
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6353
	int i;
6354

6355
	/* we must uncharge all the leftover precharges from mc.to */
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6367
	}
6368 6369 6370 6371 6372 6373
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6374 6375 6376

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6377 6378 6379 6380 6381 6382 6383 6384 6385

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6386
		/* we've already done css_get(mc.to) */
6387 6388
		mc.moved_swap = 0;
	}
6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6404
	spin_lock(&mc.lock);
6405 6406
	mc.from = NULL;
	mc.to = NULL;
6407
	spin_unlock(&mc.lock);
6408
	mem_cgroup_end_move(from);
6409 6410
}

6411
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6412
				 struct cgroup_taskset *tset)
6413
{
6414
	struct task_struct *p = cgroup_taskset_first(tset);
6415
	int ret = 0;
6416
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6417
	unsigned long move_charge_at_immigrate;
6418

6419 6420 6421 6422 6423 6424 6425
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6426 6427 6428
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6429
		VM_BUG_ON(from == memcg);
6430 6431 6432 6433 6434

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6435 6436 6437 6438
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6439
			VM_BUG_ON(mc.moved_charge);
6440
			VM_BUG_ON(mc.moved_swap);
6441
			mem_cgroup_start_move(from);
6442
			spin_lock(&mc.lock);
6443
			mc.from = from;
6444
			mc.to = memcg;
6445
			mc.immigrate_flags = move_charge_at_immigrate;
6446
			spin_unlock(&mc.lock);
6447
			/* We set mc.moving_task later */
6448 6449 6450 6451

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6452 6453
		}
		mmput(mm);
6454 6455 6456 6457
	}
	return ret;
}

6458
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6459
				     struct cgroup_taskset *tset)
6460
{
6461
	mem_cgroup_clear_mc();
6462 6463
}

6464 6465 6466
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6467
{
6468 6469 6470 6471
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6472 6473 6474 6475
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6476

6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6488
		if (mc.precharge < HPAGE_PMD_NR) {
6489 6490 6491 6492 6493 6494 6495 6496 6497
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6498
							pc, mc.from, mc.to)) {
6499 6500 6501 6502 6503 6504 6505 6506
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6507
		return 0;
6508 6509
	}

6510 6511
	if (pmd_trans_unstable(pmd))
		return 0;
6512 6513 6514 6515
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6516
		swp_entry_t ent;
6517 6518 6519 6520

		if (!mc.precharge)
			break;

6521
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6522 6523 6524 6525 6526
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6527
			if (!mem_cgroup_move_account(page, 1, pc,
6528
						     mc.from, mc.to)) {
6529
				mc.precharge--;
6530 6531
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6532 6533
			}
			putback_lru_page(page);
6534
put:			/* get_mctgt_type() gets the page */
6535 6536
			put_page(page);
			break;
6537 6538
		case MC_TARGET_SWAP:
			ent = target.ent;
6539
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6540
				mc.precharge--;
6541 6542 6543
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6544
			break;
6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6559
		ret = mem_cgroup_do_precharge(1);
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6603
	up_read(&mm->mmap_sem);
6604 6605
}

6606
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6607
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6608
{
6609
	struct task_struct *p = cgroup_taskset_first(tset);
6610
	struct mm_struct *mm = get_task_mm(p);
6611 6612

	if (mm) {
6613 6614
		if (mc.to)
			mem_cgroup_move_charge(mm);
6615 6616
		mmput(mm);
	}
6617 6618
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6619
}
6620
#else	/* !CONFIG_MMU */
6621
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6622
				 struct cgroup_taskset *tset)
6623 6624 6625
{
	return 0;
}
6626
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6627
				     struct cgroup_taskset *tset)
6628 6629
{
}
6630
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6631
				 struct cgroup_taskset *tset)
6632 6633 6634
{
}
#endif
B
Balbir Singh 已提交
6635

6636 6637 6638 6639
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6640
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6641 6642 6643 6644 6645 6646
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6647 6648
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6649 6650
}

B
Balbir Singh 已提交
6651 6652 6653
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6654
	.css_alloc = mem_cgroup_css_alloc,
6655
	.css_online = mem_cgroup_css_online,
6656 6657
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6658 6659
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6660
	.attach = mem_cgroup_move_task,
6661
	.bind = mem_cgroup_bind,
6662
	.base_cftypes = mem_cgroup_files,
6663
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6664
	.use_id = 1,
B
Balbir Singh 已提交
6665
};
6666

A
Andrew Morton 已提交
6667
#ifdef CONFIG_MEMCG_SWAP
6668 6669
static int __init enable_swap_account(char *s)
{
6670
	if (!strcmp(s, "1"))
6671
		really_do_swap_account = 1;
6672
	else if (!strcmp(s, "0"))
6673 6674 6675
		really_do_swap_account = 0;
	return 1;
}
6676
__setup("swapaccount=", enable_swap_account);
6677

6678 6679
static void __init memsw_file_init(void)
{
6680 6681 6682 6683 6684 6685 6686 6687 6688
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6689
}
6690

6691
#else
6692
static void __init enable_swap_cgroup(void)
6693 6694
{
}
6695
#endif
6696 6697

/*
6698 6699 6700 6701 6702 6703
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6704 6705 6706 6707
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6708
	enable_swap_cgroup();
6709
	memcg_stock_init();
6710 6711 6712
	return 0;
}
subsys_initcall(mem_cgroup_init);