memcontrol.c 182.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

131 132 133 134 135 136 137 138 139
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
140
	MEM_CGROUP_TARGET_NUMAINFO,
141 142
	MEM_CGROUP_NTARGETS,
};
143 144 145
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
146

147
struct mem_cgroup_stat_cpu {
148
	long count[MEM_CGROUP_STAT_NSTATS];
149
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
150
	unsigned long nr_page_events;
151
	unsigned long targets[MEM_CGROUP_NTARGETS];
152 153
};

154
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
155 156 157 158
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
159
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
160 161
	unsigned long last_dead_count;

162 163 164 165
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

166 167 168 169
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
170
	struct lruvec		lruvec;
171
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
172

173 174
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

175 176 177 178
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
179
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
180
						/* use container_of	   */
181 182 183 184 185 186 187
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
188
	struct mem_cgroup_per_node *nodeinfo[0];
189 190
};

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

211 212 213 214 215
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
216
/* For threshold */
217
struct mem_cgroup_threshold_ary {
218
	/* An array index points to threshold just below or equal to usage. */
219
	int current_threshold;
220 221 222 223 224
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
225 226 227 228 229 230 231 232 233 234 235 236

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
237 238 239 240 241
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
242

243 244
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
245

B
Balbir Singh 已提交
246 247 248 249 250 251 252
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
253 254 255
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
256 257 258 259 260 261 262
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
281 282
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
283 284 285 286
		 */
		struct work_struct work_freeing;
	};

287 288 289 290
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
291 292 293 294
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
295
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
296 297 298 299

	bool		oom_lock;
	atomic_t	under_oom;

300
	atomic_t	refcnt;
301

302
	int	swappiness;
303 304
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
305

306 307 308
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

309 310 311 312
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
313
	struct mem_cgroup_thresholds thresholds;
314

315
	/* thresholds for mem+swap usage. RCU-protected */
316
	struct mem_cgroup_thresholds memsw_thresholds;
317

K
KAMEZAWA Hiroyuki 已提交
318 319
	/* For oom notifier event fd */
	struct list_head oom_notify;
320

321 322 323 324 325
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
326 327 328 329
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
330 331
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
332
	/*
333
	 * percpu counter.
334
	 */
335
	struct mem_cgroup_stat_cpu __percpu *stat;
336 337 338 339 340 341
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
342

M
Michal Hocko 已提交
343
	atomic_t	dead_count;
M
Michal Hocko 已提交
344
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
345 346
	struct tcp_memcontrol tcp_mem;
#endif
347 348 349 350 351 352 353 354
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 *
	 * WARNING: This has to be the last element of the struct. Don't
	 * add new fields after this point.
	 */
	struct mem_cgroup_lru_info info;
B
Balbir Singh 已提交
370 371
};

372 373 374 375 376 377
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

378 379 380
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
381
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
382
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
383 384
};

385 386 387
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
388 389 390 391 392 393

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
394 395 396 397 398 399

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

400 401 402 403 404
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

405 406 407 408 409
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

410 411 412 413 414 415 416 417 418 419 420
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
421 422
#endif

423 424
/* Stuffs for move charges at task migration. */
/*
425 426
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
427 428
 */
enum move_type {
429
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
430
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
431 432 433
	NR_MOVE_TYPE,
};

434 435
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
436
	spinlock_t	  lock; /* for from, to */
437 438
	struct mem_cgroup *from;
	struct mem_cgroup *to;
439
	unsigned long immigrate_flags;
440
	unsigned long precharge;
441
	unsigned long moved_charge;
442
	unsigned long moved_swap;
443 444 445
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
446
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
447 448
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
449

D
Daisuke Nishimura 已提交
450 451
static bool move_anon(void)
{
452
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
453 454
}

455 456
static bool move_file(void)
{
457
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
458 459
}

460 461 462 463
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
464 465
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
466

467 468
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
469
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
470
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
471
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
472 473 474
	NR_CHARGE_TYPE,
};

475
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
476 477 478 479
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
480
	_KMEM,
G
Glauber Costa 已提交
481 482
};

483 484
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
485
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
486 487
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
488

489 490 491 492 493 494 495 496
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

497 498 499 500 501 502 503
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

504 505
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
506

507 508 509 510 511 512
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

513 514 515 516 517
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
518
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
519
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
520 521 522

void sock_update_memcg(struct sock *sk)
{
523
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
524
		struct mem_cgroup *memcg;
525
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
526 527 528

		BUG_ON(!sk->sk_prot->proto_cgroup);

529 530 531 532 533 534 535 536 537 538 539 540 541 542
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
543 544
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
545 546
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
547
			mem_cgroup_get(memcg);
548
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
549 550 551 552 553 554 555 556
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
557
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
558 559 560 561 562 563
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
564 565 566 567 568 569 570 571 572

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
573

574 575 576 577 578 579 580 581 582 583 584 585
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

586
#ifdef CONFIG_MEMCG_KMEM
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
605 606
int memcg_limited_groups_array_size;

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

622 623 624 625 626 627
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
628
struct static_key memcg_kmem_enabled_key;
629
EXPORT_SYMBOL(memcg_kmem_enabled_key);
630 631 632

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
633
	if (memcg_kmem_is_active(memcg)) {
634
		static_key_slow_dec(&memcg_kmem_enabled_key);
635 636
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
637 638 639 640 641
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
642 643 644 645 646 647 648 649 650 651 652 653 654
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

655
static void drain_all_stock_async(struct mem_cgroup *memcg);
656

657
static struct mem_cgroup_per_zone *
658
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
659
{
660
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
661
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
662 663
}

664
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
665
{
666
	return &memcg->css;
667 668
}

669
static struct mem_cgroup_per_zone *
670
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
671
{
672 673
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
674

675
	return mem_cgroup_zoneinfo(memcg, nid, zid);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
694
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
695
				struct mem_cgroup_per_zone *mz,
696 697
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
698 699 700 701 702 703 704 705
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

706 707 708
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
725 726 727
}

static void
728
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
729 730 731 732 733 734 735 736 737
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

738
static void
739
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
740 741 742 743
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
744
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
745 746 747 748
	spin_unlock(&mctz->lock);
}


749
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
750
{
751
	unsigned long long excess;
752 753
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
754 755
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
756 757 758
	mctz = soft_limit_tree_from_page(page);

	/*
759 760
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
761
	 */
762 763 764
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
765 766 767 768
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
769
		if (excess || mz->on_tree) {
770 771 772
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
773
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
774
			/*
775 776
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
777
			 */
778
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
779 780
			spin_unlock(&mctz->lock);
		}
781 782 783
	}
}

784
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
785 786 787 788 789
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
790
	for_each_node(node) {
791
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
792
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
793
			mctz = soft_limit_tree_node_zone(node, zone);
794
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
795 796 797 798
		}
	}
}

799 800 801 802
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
803
	struct mem_cgroup_per_zone *mz;
804 805

retry:
806
	mz = NULL;
807 808 809 810 811 812 813 814 815 816
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
817 818 819
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
855
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
856
				 enum mem_cgroup_stat_index idx)
857
{
858
	long val = 0;
859 860
	int cpu;

861 862
	get_online_cpus();
	for_each_online_cpu(cpu)
863
		val += per_cpu(memcg->stat->count[idx], cpu);
864
#ifdef CONFIG_HOTPLUG_CPU
865 866 867
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
868 869
#endif
	put_online_cpus();
870 871 872
	return val;
}

873
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
874 875 876
					 bool charge)
{
	int val = (charge) ? 1 : -1;
877
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
878 879
}

880
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
881 882 883 884 885 886
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
887
		val += per_cpu(memcg->stat->events[idx], cpu);
888
#ifdef CONFIG_HOTPLUG_CPU
889 890 891
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
892 893 894 895
#endif
	return val;
}

896
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
897
					 bool anon, int nr_pages)
898
{
899 900
	preempt_disable();

901 902 903 904 905 906
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
907
				nr_pages);
908
	else
909
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
910
				nr_pages);
911

912 913
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
914
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
915
	else {
916
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
917 918
		nr_pages = -nr_pages; /* for event */
	}
919

920
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
921

922
	preempt_enable();
923 924
}

925
unsigned long
926
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
927 928 929 930 931 932 933 934
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
935
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
936
			unsigned int lru_mask)
937 938
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
939
	enum lru_list lru;
940 941
	unsigned long ret = 0;

942
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
943

H
Hugh Dickins 已提交
944 945 946
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
947 948 949 950 951
	}
	return ret;
}

static unsigned long
952
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
953 954
			int nid, unsigned int lru_mask)
{
955 956 957
	u64 total = 0;
	int zid;

958
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
959 960
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
961

962 963
	return total;
}
964

965
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
966
			unsigned int lru_mask)
967
{
968
	int nid;
969 970
	u64 total = 0;

971
	for_each_node_state(nid, N_MEMORY)
972
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
973
	return total;
974 975
}

976 977
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
978 979 980
{
	unsigned long val, next;

981
	val = __this_cpu_read(memcg->stat->nr_page_events);
982
	next = __this_cpu_read(memcg->stat->targets[target]);
983
	/* from time_after() in jiffies.h */
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1000
	}
1001
	return false;
1002 1003 1004 1005 1006 1007
}

/*
 * Check events in order.
 *
 */
1008
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1009
{
1010
	preempt_disable();
1011
	/* threshold event is triggered in finer grain than soft limit */
1012 1013
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1014 1015
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1016 1017 1018 1019 1020 1021 1022 1023 1024

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1025
		mem_cgroup_threshold(memcg);
1026
		if (unlikely(do_softlimit))
1027
			mem_cgroup_update_tree(memcg, page);
1028
#if MAX_NUMNODES > 1
1029
		if (unlikely(do_numainfo))
1030
			atomic_inc(&memcg->numainfo_events);
1031
#endif
1032 1033
	} else
		preempt_enable();
1034 1035
}

G
Glauber Costa 已提交
1036
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1037
{
1038 1039
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1040 1041
}

1042
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043
{
1044 1045 1046 1047 1048 1049 1050 1051
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1052
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1053 1054
}

1055
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1056
{
1057
	struct mem_cgroup *memcg = NULL;
1058 1059 1060

	if (!mm)
		return NULL;
1061 1062 1063 1064 1065 1066 1067
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1068 1069
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1070
			break;
1071
	} while (!css_tryget(&memcg->css));
1072
	rcu_read_unlock();
1073
	return memcg;
1074 1075
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
		struct mem_cgroup *last_visited)
{
	struct cgroup *prev_cgroup, *next_cgroup;

	/*
	 * Root is not visited by cgroup iterators so it needs an
	 * explicit visit.
	 */
	if (!last_visited)
		return root;

	prev_cgroup = (last_visited == root) ? NULL
		: last_visited->css.cgroup;
skip_node:
	next_cgroup = cgroup_next_descendant_pre(
			prev_cgroup, root->css.cgroup);

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
	if (next_cgroup) {
		struct mem_cgroup *mem = mem_cgroup_from_cont(
				next_cgroup);
		if (css_tryget(&mem->css))
			return mem;
		else {
			prev_cgroup = next_cgroup;
			goto skip_node;
		}
	}

	return NULL;
}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1141
{
1142
	struct mem_cgroup *memcg = NULL;
1143
	struct mem_cgroup *last_visited = NULL;
M
Michal Hocko 已提交
1144
	unsigned long uninitialized_var(dead_count);
1145

1146 1147 1148
	if (mem_cgroup_disabled())
		return NULL;

1149 1150
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1151

1152
	if (prev && !reclaim)
1153
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1154

1155 1156
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1157
			goto out_css_put;
1158 1159
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1160

1161
	rcu_read_lock();
1162
	while (!memcg) {
1163
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1164

1165 1166 1167 1168 1169 1170 1171
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1172 1173
			last_visited = iter->last_visited;
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1174
				iter->last_visited = NULL;
1175 1176
				goto out_unlock;
			}
M
Michal Hocko 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

			/*
			 * If the dead_count mismatches, a destruction
			 * has happened or is happening concurrently.
			 * If the dead_count matches, a destruction
			 * might still happen concurrently, but since
			 * we checked under RCU, that destruction
			 * won't free the object until we release the
			 * RCU reader lock.  Thus, the dead_count
			 * check verifies the pointer is still valid,
			 * css_tryget() verifies the cgroup pointed to
			 * is alive.
			 */
			dead_count = atomic_read(&root->dead_count);
			smp_rmb();
			last_visited = iter->last_visited;
			if (last_visited) {
				if ((dead_count != iter->last_dead_count) ||
					!css_tryget(&last_visited->css)) {
					last_visited = NULL;
				}
			}
1199
		}
K
KAMEZAWA Hiroyuki 已提交
1200

1201
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1202

1203
		if (reclaim) {
1204 1205 1206
			if (last_visited)
				css_put(&last_visited->css);

M
Michal Hocko 已提交
1207
			iter->last_visited = memcg;
M
Michal Hocko 已提交
1208 1209
			smp_wmb();
			iter->last_dead_count = dead_count;
1210

M
Michal Hocko 已提交
1211
			if (!memcg)
1212 1213 1214 1215
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1216

M
Michal Hocko 已提交
1217
		if (prev && !memcg)
1218
			goto out_unlock;
1219
	}
1220 1221
out_unlock:
	rcu_read_unlock();
1222 1223 1224 1225
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1226
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1227
}
K
KAMEZAWA Hiroyuki 已提交
1228

1229 1230 1231 1232 1233 1234 1235
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1236 1237 1238 1239 1240 1241
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1242

1243 1244 1245 1246 1247 1248
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1249
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1250
	     iter != NULL;				\
1251
	     iter = mem_cgroup_iter(root, iter, NULL))
1252

1253
#define for_each_mem_cgroup(iter)			\
1254
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1255
	     iter != NULL;				\
1256
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1257

1258
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1259
{
1260
	struct mem_cgroup *memcg;
1261 1262

	rcu_read_lock();
1263 1264
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1265 1266 1267 1268
		goto out;

	switch (idx) {
	case PGFAULT:
1269 1270 1271 1272
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1273 1274 1275 1276 1277 1278 1279
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1280
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1281

1282 1283 1284
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1285
 * @memcg: memcg of the wanted lruvec
1286 1287 1288 1289 1290 1291 1292 1293 1294
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1295
	struct lruvec *lruvec;
1296

1297 1298 1299 1300
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1301 1302

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1313 1314
}

K
KAMEZAWA Hiroyuki 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1328

1329
/**
1330
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1331
 * @page: the page
1332
 * @zone: zone of the page
1333
 */
1334
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1335 1336
{
	struct mem_cgroup_per_zone *mz;
1337 1338
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1339
	struct lruvec *lruvec;
1340

1341 1342 1343 1344
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1345

K
KAMEZAWA Hiroyuki 已提交
1346
	pc = lookup_page_cgroup(page);
1347
	memcg = pc->mem_cgroup;
1348 1349

	/*
1350
	 * Surreptitiously switch any uncharged offlist page to root:
1351 1352 1353 1354 1355 1356 1357
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1358
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1359 1360
		pc->mem_cgroup = memcg = root_mem_cgroup;

1361
	mz = page_cgroup_zoneinfo(memcg, page);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1372
}
1373

1374
/**
1375 1376 1377 1378
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1379
 *
1380 1381
 * This function must be called when a page is added to or removed from an
 * lru list.
1382
 */
1383 1384
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1385 1386
{
	struct mem_cgroup_per_zone *mz;
1387
	unsigned long *lru_size;
1388 1389 1390 1391

	if (mem_cgroup_disabled())
		return;

1392 1393 1394 1395
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1396
}
1397

1398
/*
1399
 * Checks whether given mem is same or in the root_mem_cgroup's
1400 1401
 * hierarchy subtree
 */
1402 1403
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1404
{
1405 1406
	if (root_memcg == memcg)
		return true;
1407
	if (!root_memcg->use_hierarchy || !memcg)
1408
		return false;
1409 1410 1411 1412 1413 1414 1415 1416
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1417
	rcu_read_lock();
1418
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1419 1420
	rcu_read_unlock();
	return ret;
1421 1422
}

1423
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1424 1425
{
	int ret;
1426
	struct mem_cgroup *curr = NULL;
1427
	struct task_struct *p;
1428

1429
	p = find_lock_task_mm(task);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1445 1446
	if (!curr)
		return 0;
1447
	/*
1448
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1449
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1450 1451
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1452
	 */
1453
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1454
	css_put(&curr->css);
1455 1456 1457
	return ret;
}

1458
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1459
{
1460
	unsigned long inactive_ratio;
1461
	unsigned long inactive;
1462
	unsigned long active;
1463
	unsigned long gb;
1464

1465 1466
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1467

1468 1469 1470 1471 1472 1473
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1474
	return inactive * inactive_ratio < active;
1475 1476
}

1477 1478 1479
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1480
/**
1481
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1482
 * @memcg: the memory cgroup
1483
 *
1484
 * Returns the maximum amount of memory @mem can be charged with, in
1485
 * pages.
1486
 */
1487
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1488
{
1489 1490
	unsigned long long margin;

1491
	margin = res_counter_margin(&memcg->res);
1492
	if (do_swap_account)
1493
		margin = min(margin, res_counter_margin(&memcg->memsw));
1494
	return margin >> PAGE_SHIFT;
1495 1496
}

1497
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1498 1499 1500 1501 1502 1503 1504
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1505
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1506 1507
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1522 1523 1524 1525

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1526
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1527
{
1528
	atomic_inc(&memcg_moving);
1529
	atomic_inc(&memcg->moving_account);
1530 1531 1532
	synchronize_rcu();
}

1533
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1534
{
1535 1536 1537 1538
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1539 1540
	if (memcg) {
		atomic_dec(&memcg_moving);
1541
		atomic_dec(&memcg->moving_account);
1542
	}
1543
}
1544

1545 1546 1547
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1548 1549
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1550 1551 1552 1553 1554 1555 1556
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1557
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1558 1559
{
	VM_BUG_ON(!rcu_read_lock_held());
1560
	return atomic_read(&memcg->moving_account) > 0;
1561
}
1562

1563
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1564
{
1565 1566
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1567
	bool ret = false;
1568 1569 1570 1571 1572 1573 1574 1575 1576
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1577

1578 1579
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1580 1581
unlock:
	spin_unlock(&mc.lock);
1582 1583 1584
	return ret;
}

1585
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1586 1587
{
	if (mc.moving_task && current != mc.moving_task) {
1588
		if (mem_cgroup_under_move(memcg)) {
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1601 1602 1603 1604
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1605
 * see mem_cgroup_stolen(), too.
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1619
#define K(x) ((x) << (PAGE_SHIFT-10))
1620
/**
1621
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1639 1640
	struct mem_cgroup *iter;
	unsigned int i;
1641

1642
	if (!p)
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1661
	pr_info("Task in %s killed", memcg_name);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1674
	pr_cont(" as a result of limit of %s\n", memcg_name);
1675 1676
done:

1677
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1678 1679 1680
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1681
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1682 1683 1684
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1685
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1686 1687 1688
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1713 1714
}

1715 1716 1717 1718
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1719
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1720 1721
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1722 1723
	struct mem_cgroup *iter;

1724
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1725
		num++;
1726 1727 1728
	return num;
}

D
David Rientjes 已提交
1729 1730 1731
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1732
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1733 1734 1735
{
	u64 limit;

1736 1737
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1738
	/*
1739
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1740
	 */
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1755 1756
}

1757 1758
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1759 1760 1761 1762 1763 1764 1765
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1860 1861
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1862
 * @memcg: the target memcg
1863 1864 1865 1866 1867 1868 1869
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1870
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1871 1872
		int nid, bool noswap)
{
1873
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1874 1875 1876
		return true;
	if (noswap || !total_swap_pages)
		return false;
1877
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1878 1879 1880 1881
		return true;
	return false;

}
1882 1883 1884 1885 1886 1887 1888 1889
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1890
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1891 1892
{
	int nid;
1893 1894 1895 1896
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1897
	if (!atomic_read(&memcg->numainfo_events))
1898
		return;
1899
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1900 1901 1902
		return;

	/* make a nodemask where this memcg uses memory from */
1903
	memcg->scan_nodes = node_states[N_MEMORY];
1904

1905
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1906

1907 1908
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1909
	}
1910

1911 1912
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1927
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1928 1929 1930
{
	int node;

1931 1932
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1933

1934
	node = next_node(node, memcg->scan_nodes);
1935
	if (node == MAX_NUMNODES)
1936
		node = first_node(memcg->scan_nodes);
1937 1938 1939 1940 1941 1942 1943 1944 1945
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1946
	memcg->last_scanned_node = node;
1947 1948 1949
	return node;
}

1950 1951 1952 1953 1954 1955
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1956
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1957 1958 1959 1960 1961 1962 1963
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1964 1965
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1966
		     nid < MAX_NUMNODES;
1967
		     nid = next_node(nid, memcg->scan_nodes)) {
1968

1969
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1970 1971 1972 1973 1974 1975
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1976
	for_each_node_state(nid, N_MEMORY) {
1977
		if (node_isset(nid, memcg->scan_nodes))
1978
			continue;
1979
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1980 1981 1982 1983 1984
			return true;
	}
	return false;
}

1985
#else
1986
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1987 1988 1989
{
	return 0;
}
1990

1991
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1992
{
1993
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1994
}
1995 1996
#endif

1997 1998 1999 2000
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
2001
{
2002
	struct mem_cgroup *victim = NULL;
2003
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
2004
	int loop = 0;
2005
	unsigned long excess;
2006
	unsigned long nr_scanned;
2007 2008 2009 2010
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
2011

2012
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
2013

2014
	while (1) {
2015
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2016
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
2017
			loop++;
2018 2019 2020 2021 2022 2023
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
2024
				if (!total)
2025 2026
					break;
				/*
L
Lucas De Marchi 已提交
2027
				 * We want to do more targeted reclaim.
2028 2029 2030 2031 2032
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
2033
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2034 2035
					break;
			}
2036
			continue;
2037
		}
2038
		if (!mem_cgroup_reclaimable(victim, false))
2039
			continue;
2040 2041 2042 2043
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
2044
			break;
2045
	}
2046
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
2047
	return total;
2048 2049
}

K
KAMEZAWA Hiroyuki 已提交
2050 2051 2052
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2053
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2054
 */
2055
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2056
{
2057
	struct mem_cgroup *iter, *failed = NULL;
2058

2059
	for_each_mem_cgroup_tree(iter, memcg) {
2060
		if (iter->oom_lock) {
2061 2062 2063 2064 2065
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2066 2067
			mem_cgroup_iter_break(memcg, iter);
			break;
2068 2069
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2070
	}
K
KAMEZAWA Hiroyuki 已提交
2071

2072
	if (!failed)
2073
		return true;
2074 2075 2076 2077 2078

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2079
	for_each_mem_cgroup_tree(iter, memcg) {
2080
		if (iter == failed) {
2081 2082
			mem_cgroup_iter_break(memcg, iter);
			break;
2083 2084 2085
		}
		iter->oom_lock = false;
	}
2086
	return false;
2087
}
2088

2089
/*
2090
 * Has to be called with memcg_oom_lock
2091
 */
2092
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2093
{
K
KAMEZAWA Hiroyuki 已提交
2094 2095
	struct mem_cgroup *iter;

2096
	for_each_mem_cgroup_tree(iter, memcg)
2097 2098 2099 2100
		iter->oom_lock = false;
	return 0;
}

2101
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2102 2103 2104
{
	struct mem_cgroup *iter;

2105
	for_each_mem_cgroup_tree(iter, memcg)
2106 2107 2108
		atomic_inc(&iter->under_oom);
}

2109
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2110 2111 2112
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2113 2114 2115 2116 2117
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2118
	for_each_mem_cgroup_tree(iter, memcg)
2119
		atomic_add_unless(&iter->under_oom, -1, 0);
2120 2121
}

2122
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2123 2124
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2125
struct oom_wait_info {
2126
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2127 2128 2129 2130 2131 2132
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2133 2134
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2135 2136 2137
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2138
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2139 2140

	/*
2141
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2142 2143
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2144 2145
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2146 2147 2148 2149
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2150
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2151
{
2152 2153
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2154 2155
}

2156
static void memcg_oom_recover(struct mem_cgroup *memcg)
2157
{
2158 2159
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2160 2161
}

K
KAMEZAWA Hiroyuki 已提交
2162 2163 2164
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2165 2166
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2167
{
K
KAMEZAWA Hiroyuki 已提交
2168
	struct oom_wait_info owait;
2169
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2170

2171
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2172 2173 2174 2175
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2176
	need_to_kill = true;
2177
	mem_cgroup_mark_under_oom(memcg);
2178

2179
	/* At first, try to OOM lock hierarchy under memcg.*/
2180
	spin_lock(&memcg_oom_lock);
2181
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2182 2183 2184 2185 2186
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2187
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2188
	if (!locked || memcg->oom_kill_disable)
2189 2190
		need_to_kill = false;
	if (locked)
2191
		mem_cgroup_oom_notify(memcg);
2192
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2193

2194 2195
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2196
		mem_cgroup_out_of_memory(memcg, mask, order);
2197
	} else {
K
KAMEZAWA Hiroyuki 已提交
2198
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2199
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2200
	}
2201
	spin_lock(&memcg_oom_lock);
2202
	if (locked)
2203 2204
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2205
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2206

2207
	mem_cgroup_unmark_under_oom(memcg);
2208

K
KAMEZAWA Hiroyuki 已提交
2209 2210 2211
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2212
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2213
	return true;
2214 2215
}

2216 2217 2218
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2236 2237
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2238
 */
2239

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2253
	 * need to take move_lock_mem_cgroup(). Because we already hold
2254
	 * rcu_read_lock(), any calls to move_account will be delayed until
2255
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2256
	 */
2257
	if (!mem_cgroup_stolen(memcg))
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2275
	 * should take move_lock_mem_cgroup().
2276 2277 2278 2279
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2280 2281
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2282
{
2283
	struct mem_cgroup *memcg;
2284
	struct page_cgroup *pc = lookup_page_cgroup(page);
2285
	unsigned long uninitialized_var(flags);
2286

2287
	if (mem_cgroup_disabled())
2288
		return;
2289

2290 2291
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2292
		return;
2293 2294

	switch (idx) {
2295 2296
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2297 2298 2299
		break;
	default:
		BUG();
2300
	}
2301

2302
	this_cpu_add(memcg->stat->count[idx], val);
2303
}
2304

2305 2306 2307 2308
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2309
#define CHARGE_BATCH	32U
2310 2311
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2312
	unsigned int nr_pages;
2313
	struct work_struct work;
2314
	unsigned long flags;
2315
#define FLUSHING_CACHED_CHARGE	0
2316 2317
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2318
static DEFINE_MUTEX(percpu_charge_mutex);
2319

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2330
 */
2331
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2332 2333 2334 2335
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2336 2337 2338
	if (nr_pages > CHARGE_BATCH)
		return false;

2339
	stock = &get_cpu_var(memcg_stock);
2340 2341
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2355 2356 2357 2358
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2359
		if (do_swap_account)
2360 2361
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2374
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2375 2376
}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2388 2389
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2390
 * This will be consumed by consume_stock() function, later.
2391
 */
2392
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2393 2394 2395
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2396
	if (stock->cached != memcg) { /* reset if necessary */
2397
		drain_stock(stock);
2398
		stock->cached = memcg;
2399
	}
2400
	stock->nr_pages += nr_pages;
2401 2402 2403 2404
	put_cpu_var(memcg_stock);
}

/*
2405
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2406 2407
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2408
 */
2409
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2410
{
2411
	int cpu, curcpu;
2412

2413 2414
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2415
	curcpu = get_cpu();
2416 2417
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2418
		struct mem_cgroup *memcg;
2419

2420 2421
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2422
			continue;
2423
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2424
			continue;
2425 2426 2427 2428 2429 2430
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2431
	}
2432
	put_cpu();
2433 2434 2435 2436 2437 2438

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2439
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2440 2441 2442
			flush_work(&stock->work);
	}
out:
2443
 	put_online_cpus();
2444 2445 2446 2447 2448 2449 2450 2451
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2452
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2453
{
2454 2455 2456 2457 2458
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2459
	drain_all_stock(root_memcg, false);
2460
	mutex_unlock(&percpu_charge_mutex);
2461 2462 2463
}

/* This is a synchronous drain interface. */
2464
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2465 2466
{
	/* called when force_empty is called */
2467
	mutex_lock(&percpu_charge_mutex);
2468
	drain_all_stock(root_memcg, true);
2469
	mutex_unlock(&percpu_charge_mutex);
2470 2471
}

2472 2473 2474 2475
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2476
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2477 2478 2479
{
	int i;

2480
	spin_lock(&memcg->pcp_counter_lock);
2481
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2482
		long x = per_cpu(memcg->stat->count[i], cpu);
2483

2484 2485
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2486
	}
2487
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2488
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2489

2490 2491
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2492
	}
2493
	spin_unlock(&memcg->pcp_counter_lock);
2494 2495 2496
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2497 2498 2499 2500 2501
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2502
	struct mem_cgroup *iter;
2503

2504
	if (action == CPU_ONLINE)
2505 2506
		return NOTIFY_OK;

2507
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2508
		return NOTIFY_OK;
2509

2510
	for_each_mem_cgroup(iter)
2511 2512
		mem_cgroup_drain_pcp_counter(iter, cpu);

2513 2514 2515 2516 2517
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2528
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2529 2530
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2531
{
2532
	unsigned long csize = nr_pages * PAGE_SIZE;
2533 2534 2535 2536 2537
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2538
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2539 2540 2541 2542

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2543
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2544 2545 2546
		if (likely(!ret))
			return CHARGE_OK;

2547
		res_counter_uncharge(&memcg->res, csize);
2548 2549 2550 2551
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2552 2553 2554 2555
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2556
	if (nr_pages > min_pages)
2557 2558 2559 2560 2561
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2562 2563 2564
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2565
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2566
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2567
		return CHARGE_RETRY;
2568
	/*
2569 2570 2571 2572 2573 2574 2575
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2576
	 */
2577
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2591
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2592 2593 2594 2595 2596
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2597
/*
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2617
 */
2618
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2619
				   gfp_t gfp_mask,
2620
				   unsigned int nr_pages,
2621
				   struct mem_cgroup **ptr,
2622
				   bool oom)
2623
{
2624
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2625
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2626
	struct mem_cgroup *memcg = NULL;
2627
	int ret;
2628

K
KAMEZAWA Hiroyuki 已提交
2629 2630 2631 2632 2633 2634 2635 2636
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2637

2638
	/*
2639 2640
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2641
	 * thread group leader migrates. It's possible that mm is not
2642
	 * set, if so charge the root memcg (happens for pagecache usage).
2643
	 */
2644
	if (!*ptr && !mm)
2645
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2646
again:
2647 2648 2649
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2650
			goto done;
2651
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2652
			goto done;
2653
		css_get(&memcg->css);
2654
	} else {
K
KAMEZAWA Hiroyuki 已提交
2655
		struct task_struct *p;
2656

K
KAMEZAWA Hiroyuki 已提交
2657 2658 2659
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2660
		 * Because we don't have task_lock(), "p" can exit.
2661
		 * In that case, "memcg" can point to root or p can be NULL with
2662 2663 2664 2665 2666 2667
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2668
		 */
2669
		memcg = mem_cgroup_from_task(p);
2670 2671 2672
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2673 2674 2675
			rcu_read_unlock();
			goto done;
		}
2676
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2689
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2690 2691 2692 2693 2694
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2695

2696 2697
	do {
		bool oom_check;
2698

2699
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2700
		if (fatal_signal_pending(current)) {
2701
			css_put(&memcg->css);
2702
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2703
		}
2704

2705 2706 2707 2708
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2709
		}
2710

2711 2712
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2713 2714 2715 2716
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2717
			batch = nr_pages;
2718 2719
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2720
			goto again;
2721
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2722
			css_put(&memcg->css);
2723 2724
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2725
			if (!oom) {
2726
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2727
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2728
			}
2729 2730 2731 2732
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2733
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2734
			goto bypass;
2735
		}
2736 2737
	} while (ret != CHARGE_OK);

2738
	if (batch > nr_pages)
2739 2740
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2741
done:
2742
	*ptr = memcg;
2743 2744
	return 0;
nomem:
2745
	*ptr = NULL;
2746
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2747
bypass:
2748 2749
	*ptr = root_mem_cgroup;
	return -EINTR;
2750
}
2751

2752 2753 2754 2755 2756
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2757
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2758
				       unsigned int nr_pages)
2759
{
2760
	if (!mem_cgroup_is_root(memcg)) {
2761 2762
		unsigned long bytes = nr_pages * PAGE_SIZE;

2763
		res_counter_uncharge(&memcg->res, bytes);
2764
		if (do_swap_account)
2765
			res_counter_uncharge(&memcg->memsw, bytes);
2766
	}
2767 2768
}

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2787 2788
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2789 2790 2791
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2803
	return mem_cgroup_from_css(css);
2804 2805
}

2806
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2807
{
2808
	struct mem_cgroup *memcg = NULL;
2809
	struct page_cgroup *pc;
2810
	unsigned short id;
2811 2812
	swp_entry_t ent;

2813 2814 2815
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2816
	lock_page_cgroup(pc);
2817
	if (PageCgroupUsed(pc)) {
2818 2819 2820
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2821
	} else if (PageSwapCache(page)) {
2822
		ent.val = page_private(page);
2823
		id = lookup_swap_cgroup_id(ent);
2824
		rcu_read_lock();
2825 2826 2827
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2828
		rcu_read_unlock();
2829
	}
2830
	unlock_page_cgroup(pc);
2831
	return memcg;
2832 2833
}

2834
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2835
				       struct page *page,
2836
				       unsigned int nr_pages,
2837 2838
				       enum charge_type ctype,
				       bool lrucare)
2839
{
2840
	struct page_cgroup *pc = lookup_page_cgroup(page);
2841
	struct zone *uninitialized_var(zone);
2842
	struct lruvec *lruvec;
2843
	bool was_on_lru = false;
2844
	bool anon;
2845

2846
	lock_page_cgroup(pc);
2847
	VM_BUG_ON(PageCgroupUsed(pc));
2848 2849 2850 2851
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2852 2853 2854 2855 2856 2857 2858 2859 2860

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2861
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2862
			ClearPageLRU(page);
2863
			del_page_from_lru_list(page, lruvec, page_lru(page));
2864 2865 2866 2867
			was_on_lru = true;
		}
	}

2868
	pc->mem_cgroup = memcg;
2869 2870 2871 2872 2873 2874 2875
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2876
	smp_wmb();
2877
	SetPageCgroupUsed(pc);
2878

2879 2880
	if (lrucare) {
		if (was_on_lru) {
2881
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2882 2883
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2884
			add_page_to_lru_list(page, lruvec, page_lru(page));
2885 2886 2887 2888
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2889
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2890 2891 2892 2893 2894
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2895
	unlock_page_cgroup(pc);
2896

2897 2898 2899 2900 2901
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2902
	memcg_check_events(memcg, page);
2903
}
2904

2905 2906
static DEFINE_MUTEX(set_limit_mutex);

2907 2908 2909 2910 2911 2912 2913
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3001 3002 3003 3004 3005 3006 3007

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
3008 3009
}

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3093 3094
static void kmem_cache_destroy_work_func(struct work_struct *w);

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

3114 3115
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3148 3149
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3150 3151 3152 3153 3154 3155
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3156 3157 3158
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3159 3160 3161 3162
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

3163 3164
	INIT_WORK(&s->memcg_params->destroy,
			kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3165
	if (memcg) {
3166
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3167
		s->memcg_params->root_cache = root_cache;
3168 3169 3170
	} else
		s->memcg_params->is_root_cache = true;

3171 3172 3173 3174 3175
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;
	mem_cgroup_put(memcg);

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

out:
3202 3203 3204
	kfree(s->memcg_params);
}

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3266 3267 3268 3269 3270 3271 3272 3273
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3294 3295 3296 3297 3298 3299 3300
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	char *name;
	struct dentry *dentry;

	rcu_read_lock();
	dentry = rcu_dereference(memcg->css.cgroup->dentry);
	rcu_read_unlock();

	BUG_ON(dentry == NULL);

	name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), dentry->d_name.name);

	return name;
}

static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	char *name;
	struct kmem_cache *new;

	name = memcg_cache_name(memcg, s);
	if (!name)
		return NULL;

	new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
G
Glauber Costa 已提交
3329
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3330

3331 3332 3333
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
	kfree(name);
	return new;
}

/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
G
Glauber Costa 已提交
3369
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3421
		cancel_work_sync(&c->memcg_params->destroy);
3422 3423 3424 3425 3426
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3427 3428 3429 3430 3431 3432
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 * Called with rcu_read_lock.
 */
3465 3466
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
	if (cw == NULL)
		return;

	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css)) {
		kfree(cw);
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3527 3528 3529
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
	rcu_read_unlock();

	if (!memcg_can_account_kmem(memcg))
		return cachep;

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
	if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
		/*
		 * If we are in a safe context (can wait, and not in interrupt
		 * context), we could be be predictable and return right away.
		 * This would guarantee that the allocation being performed
		 * already belongs in the new cache.
		 *
		 * However, there are some clashes that can arrive from locking.
		 * For instance, because we acquire the slab_mutex while doing
		 * kmem_cache_dup, this means no further allocation could happen
		 * with the slab_mutex held.
		 *
		 * Also, because cache creation issue get_online_cpus(), this
		 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
		 * that ends up reversed during cpu hotplug. (cpuset allocates
		 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
		 * better to defer everything.
		 */
		memcg_create_cache_enqueue(memcg, cachep);
		return cachep;
	}

	return cachep->memcg_params->memcg_caches[idx];
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3665 3666 3667 3668
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3669 3670
#endif /* CONFIG_MEMCG_KMEM */

3671 3672
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3673
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3674 3675
/*
 * Because tail pages are not marked as "used", set it. We're under
3676 3677 3678
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3679
 */
3680
void mem_cgroup_split_huge_fixup(struct page *head)
3681 3682
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3683 3684
	struct page_cgroup *pc;
	int i;
3685

3686 3687
	if (mem_cgroup_disabled())
		return;
3688 3689 3690 3691 3692 3693
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3694
}
3695
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3696

3697
/**
3698
 * mem_cgroup_move_account - move account of the page
3699
 * @page: the page
3700
 * @nr_pages: number of regular pages (>1 for huge pages)
3701 3702 3703 3704 3705
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3706
 * - page is not on LRU (isolate_page() is useful.)
3707
 * - compound_lock is held when nr_pages > 1
3708
 *
3709 3710
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3711
 */
3712 3713 3714 3715
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3716
				   struct mem_cgroup *to)
3717
{
3718 3719
	unsigned long flags;
	int ret;
3720
	bool anon = PageAnon(page);
3721

3722
	VM_BUG_ON(from == to);
3723
	VM_BUG_ON(PageLRU(page));
3724 3725 3726 3727 3728 3729 3730
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3731
	if (nr_pages > 1 && !PageTransHuge(page))
3732 3733 3734 3735 3736 3737 3738 3739
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3740
	move_lock_mem_cgroup(from, &flags);
3741

3742
	if (!anon && page_mapped(page)) {
3743 3744 3745 3746 3747
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3748
	}
3749
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3750

3751
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3752
	pc->mem_cgroup = to;
3753
	mem_cgroup_charge_statistics(to, anon, nr_pages);
3754
	move_unlock_mem_cgroup(from, &flags);
3755 3756
	ret = 0;
unlock:
3757
	unlock_page_cgroup(pc);
3758 3759 3760
	/*
	 * check events
	 */
3761 3762
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3763
out:
3764 3765 3766
	return ret;
}

3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3787
 */
3788 3789
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3790
				  struct mem_cgroup *child)
3791 3792
{
	struct mem_cgroup *parent;
3793
	unsigned int nr_pages;
3794
	unsigned long uninitialized_var(flags);
3795 3796
	int ret;

3797
	VM_BUG_ON(mem_cgroup_is_root(child));
3798

3799 3800 3801 3802 3803
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3804

3805
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3806

3807 3808 3809 3810 3811 3812
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3813

3814 3815
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3816
		flags = compound_lock_irqsave(page);
3817
	}
3818

3819
	ret = mem_cgroup_move_account(page, nr_pages,
3820
				pc, child, parent);
3821 3822
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3823

3824
	if (nr_pages > 1)
3825
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3826
	putback_lru_page(page);
3827
put:
3828
	put_page(page);
3829
out:
3830 3831 3832
	return ret;
}

3833 3834 3835 3836 3837 3838 3839
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3840
				gfp_t gfp_mask, enum charge_type ctype)
3841
{
3842
	struct mem_cgroup *memcg = NULL;
3843
	unsigned int nr_pages = 1;
3844
	bool oom = true;
3845
	int ret;
A
Andrea Arcangeli 已提交
3846

A
Andrea Arcangeli 已提交
3847
	if (PageTransHuge(page)) {
3848
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3849
		VM_BUG_ON(!PageTransHuge(page));
3850 3851 3852 3853 3854
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3855
	}
3856

3857
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3858
	if (ret == -ENOMEM)
3859
		return ret;
3860
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3861 3862 3863
	return 0;
}

3864 3865
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3866
{
3867
	if (mem_cgroup_disabled())
3868
		return 0;
3869 3870 3871
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3872
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3873
					MEM_CGROUP_CHARGE_TYPE_ANON);
3874 3875
}

3876 3877 3878
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3879
 * struct page_cgroup is acquired. This refcnt will be consumed by
3880 3881
 * "commit()" or removed by "cancel()"
 */
3882 3883 3884 3885
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3886
{
3887
	struct mem_cgroup *memcg;
3888
	struct page_cgroup *pc;
3889
	int ret;
3890

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3901 3902
	if (!do_swap_account)
		goto charge_cur_mm;
3903 3904
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3905
		goto charge_cur_mm;
3906 3907
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3908
	css_put(&memcg->css);
3909 3910
	if (ret == -EINTR)
		ret = 0;
3911
	return ret;
3912
charge_cur_mm:
3913 3914 3915 3916
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3917 3918
}

3919 3920 3921 3922 3923 3924
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3939 3940 3941
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3942 3943 3944 3945 3946 3947 3948 3949 3950
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3951
static void
3952
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3953
					enum charge_type ctype)
3954
{
3955
	if (mem_cgroup_disabled())
3956
		return;
3957
	if (!memcg)
3958
		return;
3959

3960
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3961 3962 3963
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3964 3965 3966
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3967
	 */
3968
	if (do_swap_account && PageSwapCache(page)) {
3969
		swp_entry_t ent = {.val = page_private(page)};
3970
		mem_cgroup_uncharge_swap(ent);
3971
	}
3972 3973
}

3974 3975
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3976
{
3977
	__mem_cgroup_commit_charge_swapin(page, memcg,
3978
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3979 3980
}

3981 3982
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3983
{
3984 3985 3986 3987
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3988
	if (mem_cgroup_disabled())
3989 3990 3991 3992 3993 3994 3995
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3996 3997
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3998 3999 4000 4001
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4002 4003
}

4004
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4005 4006
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4007 4008 4009
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4010

4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4022
		batch->memcg = memcg;
4023 4024
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4025
	 * In those cases, all pages freed continuously can be expected to be in
4026 4027 4028 4029 4030 4031 4032 4033
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4034
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4035 4036
		goto direct_uncharge;

4037 4038 4039 4040 4041
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4042
	if (batch->memcg != memcg)
4043 4044
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4045
	batch->nr_pages++;
4046
	if (uncharge_memsw)
4047
		batch->memsw_nr_pages++;
4048 4049
	return;
direct_uncharge:
4050
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4051
	if (uncharge_memsw)
4052 4053 4054
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4055
}
4056

4057
/*
4058
 * uncharge if !page_mapped(page)
4059
 */
4060
static struct mem_cgroup *
4061 4062
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4063
{
4064
	struct mem_cgroup *memcg = NULL;
4065 4066
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4067
	bool anon;
4068

4069
	if (mem_cgroup_disabled())
4070
		return NULL;
4071

4072
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
4073

A
Andrea Arcangeli 已提交
4074
	if (PageTransHuge(page)) {
4075
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4076 4077
		VM_BUG_ON(!PageTransHuge(page));
	}
4078
	/*
4079
	 * Check if our page_cgroup is valid
4080
	 */
4081
	pc = lookup_page_cgroup(page);
4082
	if (unlikely(!PageCgroupUsed(pc)))
4083
		return NULL;
4084

4085
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4086

4087
	memcg = pc->mem_cgroup;
4088

K
KAMEZAWA Hiroyuki 已提交
4089 4090 4091
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4092 4093
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4094
	switch (ctype) {
4095
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4096 4097 4098 4099 4100
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4101 4102
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4103
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4104
		/* See mem_cgroup_prepare_migration() */
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4126
	}
K
KAMEZAWA Hiroyuki 已提交
4127

4128
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4129

4130
	ClearPageCgroupUsed(pc);
4131 4132 4133 4134 4135 4136
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4137

4138
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4139
	/*
4140
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4141 4142
	 * will never be freed.
	 */
4143
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4144
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4145 4146
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4147
	}
4148 4149 4150 4151 4152 4153
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4154
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4155

4156
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4157 4158 4159

unlock_out:
	unlock_page_cgroup(pc);
4160
	return NULL;
4161 4162
}

4163 4164
void mem_cgroup_uncharge_page(struct page *page)
{
4165 4166 4167
	/* early check. */
	if (page_mapped(page))
		return;
4168
	VM_BUG_ON(page->mapping && !PageAnon(page));
4169 4170
	if (PageSwapCache(page))
		return;
4171
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4172 4173 4174 4175 4176
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4177
	VM_BUG_ON(page->mapping);
4178
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4179 4180
}

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4195 4196
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4217 4218 4219 4220 4221 4222
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4223
	memcg_oom_recover(batch->memcg);
4224 4225 4226 4227
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4228
#ifdef CONFIG_SWAP
4229
/*
4230
 * called after __delete_from_swap_cache() and drop "page" account.
4231 4232
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4233 4234
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4235 4236
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4237 4238 4239 4240 4241
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4242
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4243

K
KAMEZAWA Hiroyuki 已提交
4244 4245 4246 4247 4248
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4249
		swap_cgroup_record(ent, css_id(&memcg->css));
4250
}
4251
#endif
4252

A
Andrew Morton 已提交
4253
#ifdef CONFIG_MEMCG_SWAP
4254 4255 4256 4257 4258
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4259
{
4260
	struct mem_cgroup *memcg;
4261
	unsigned short id;
4262 4263 4264 4265

	if (!do_swap_account)
		return;

4266 4267 4268
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4269
	if (memcg) {
4270 4271 4272 4273
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4274
		if (!mem_cgroup_is_root(memcg))
4275
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4276
		mem_cgroup_swap_statistics(memcg, false);
4277 4278
		mem_cgroup_put(memcg);
	}
4279
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4280
}
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4297
				struct mem_cgroup *from, struct mem_cgroup *to)
4298 4299 4300 4301 4302 4303 4304 4305
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4306
		mem_cgroup_swap_statistics(to, true);
4307
		/*
4308 4309 4310 4311 4312 4313
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4314 4315 4316 4317 4318 4319 4320 4321
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4322
				struct mem_cgroup *from, struct mem_cgroup *to)
4323 4324 4325
{
	return -EINVAL;
}
4326
#endif
K
KAMEZAWA Hiroyuki 已提交
4327

4328
/*
4329 4330
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4331
 */
4332 4333
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4334
{
4335
	struct mem_cgroup *memcg = NULL;
4336
	unsigned int nr_pages = 1;
4337
	struct page_cgroup *pc;
4338
	enum charge_type ctype;
4339

4340
	*memcgp = NULL;
4341

4342
	if (mem_cgroup_disabled())
4343
		return;
4344

4345 4346 4347
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4348 4349 4350
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4351 4352
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4384
	}
4385
	unlock_page_cgroup(pc);
4386 4387 4388 4389
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4390
	if (!memcg)
4391
		return;
4392

4393
	*memcgp = memcg;
4394 4395 4396 4397 4398 4399 4400
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4401
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4402
	else
4403
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4404 4405 4406 4407 4408
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4409
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4410
}
4411

4412
/* remove redundant charge if migration failed*/
4413
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4414
	struct page *oldpage, struct page *newpage, bool migration_ok)
4415
{
4416
	struct page *used, *unused;
4417
	struct page_cgroup *pc;
4418
	bool anon;
4419

4420
	if (!memcg)
4421
		return;
4422

4423
	if (!migration_ok) {
4424 4425
		used = oldpage;
		unused = newpage;
4426
	} else {
4427
		used = newpage;
4428 4429
		unused = oldpage;
	}
4430
	anon = PageAnon(used);
4431 4432 4433 4434
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4435
	css_put(&memcg->css);
4436
	/*
4437 4438 4439
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4440
	 */
4441 4442 4443 4444 4445
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4446
	/*
4447 4448 4449 4450 4451 4452
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4453
	 */
4454
	if (anon)
4455
		mem_cgroup_uncharge_page(used);
4456
}
4457

4458 4459 4460 4461 4462 4463 4464 4465
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4466
	struct mem_cgroup *memcg = NULL;
4467 4468 4469 4470 4471 4472 4473 4474 4475
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4476 4477 4478 4479 4480
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
4481 4482
	unlock_page_cgroup(pc);

4483 4484 4485 4486 4487 4488
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4489 4490 4491 4492 4493
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4494
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4495 4496
}

4497 4498 4499 4500 4501 4502
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4503 4504 4505 4506 4507
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4527 4528
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4529 4530 4531 4532
	}
}
#endif

4533
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4534
				unsigned long long val)
4535
{
4536
	int retry_count;
4537
	u64 memswlimit, memlimit;
4538
	int ret = 0;
4539 4540
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4541
	int enlarge;
4542 4543 4544 4545 4546 4547 4548 4549 4550

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4551

4552
	enlarge = 0;
4553
	while (retry_count) {
4554 4555 4556 4557
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4558 4559 4560
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4561
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4562 4563 4564 4565 4566 4567
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4568 4569
			break;
		}
4570 4571 4572 4573 4574

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4575
		ret = res_counter_set_limit(&memcg->res, val);
4576 4577 4578 4579 4580 4581
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4582 4583 4584 4585 4586
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4587 4588
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4589 4590 4591 4592 4593 4594
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4595
	}
4596 4597
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4598

4599 4600 4601
	return ret;
}

L
Li Zefan 已提交
4602 4603
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4604
{
4605
	int retry_count;
4606
	u64 memlimit, memswlimit, oldusage, curusage;
4607 4608
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4609
	int enlarge = 0;
4610

4611 4612 4613
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4614 4615 4616 4617 4618 4619 4620 4621
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4622
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4623 4624 4625 4626 4627 4628 4629 4630
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4631 4632 4633
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4634
		ret = res_counter_set_limit(&memcg->memsw, val);
4635 4636 4637 4638 4639 4640
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4641 4642 4643 4644 4645
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4646 4647 4648
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4649
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4650
		/* Usage is reduced ? */
4651
		if (curusage >= oldusage)
4652
			retry_count--;
4653 4654
		else
			oldusage = curusage;
4655
	}
4656 4657
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4658 4659 4660
	return ret;
}

4661
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4662 4663
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4664 4665 4666 4667 4668 4669
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4670
	unsigned long long excess;
4671
	unsigned long nr_scanned;
4672 4673 4674 4675

	if (order > 0)
		return 0;

4676
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4690
		nr_scanned = 0;
4691
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4692
						    gfp_mask, &nr_scanned);
4693
		nr_reclaimed += reclaimed;
4694
		*total_scanned += nr_scanned;
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4717
				if (next_mz == mz)
4718
					css_put(&next_mz->memcg->css);
4719
				else /* next_mz == NULL or other memcg */
4720 4721 4722
					break;
			} while (1);
		}
4723 4724
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4725 4726 4727 4728 4729 4730 4731 4732
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4733
		/* If excess == 0, no tree ops */
4734
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4735
		spin_unlock(&mctz->lock);
4736
		css_put(&mz->memcg->css);
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4749
		css_put(&next_mz->memcg->css);
4750 4751 4752
	return nr_reclaimed;
}

4753 4754 4755 4756 4757 4758 4759
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4760
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4761 4762
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4763
 */
4764
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4765
				int node, int zid, enum lru_list lru)
4766
{
4767
	struct lruvec *lruvec;
4768
	unsigned long flags;
4769
	struct list_head *list;
4770 4771
	struct page *busy;
	struct zone *zone;
4772

K
KAMEZAWA Hiroyuki 已提交
4773
	zone = &NODE_DATA(node)->node_zones[zid];
4774 4775
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4776

4777
	busy = NULL;
4778
	do {
4779
		struct page_cgroup *pc;
4780 4781
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4782
		spin_lock_irqsave(&zone->lru_lock, flags);
4783
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4784
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4785
			break;
4786
		}
4787 4788 4789
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4790
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4791
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4792 4793
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4794
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4795

4796
		pc = lookup_page_cgroup(page);
4797

4798
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4799
			/* found lock contention or "pc" is obsolete. */
4800
			busy = page;
4801 4802 4803
			cond_resched();
		} else
			busy = NULL;
4804
	} while (!list_empty(list));
4805 4806 4807
}

/*
4808 4809
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4810
 * This enables deleting this mem_cgroup.
4811 4812
 *
 * Caller is responsible for holding css reference on the memcg.
4813
 */
4814
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4815
{
4816
	int node, zid;
4817
	u64 usage;
4818

4819
	do {
4820 4821
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4822 4823
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4824
		for_each_node_state(node, N_MEMORY) {
4825
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4826 4827
				enum lru_list lru;
				for_each_lru(lru) {
4828
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4829
							node, zid, lru);
4830
				}
4831
			}
4832
		}
4833 4834
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4835
		cond_resched();
4836

4837
		/*
4838 4839 4840 4841 4842
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4843 4844 4845 4846 4847 4848
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4849 4850 4851
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4852 4853
}

4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
	struct cgroup *pos;

	/* bounce at first found */
	cgroup_for_each_child(pos, memcg->css.cgroup)
		return true;
	return false;
}

/*
4870 4871
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4872 4873 4874 4875 4876 4877 4878 4879 4880
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4891

4892
	/* returns EBUSY if there is a task or if we come here twice. */
4893 4894 4895
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4896 4897
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4898
	/* try to free all pages in this cgroup */
4899
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4900
		int progress;
4901

4902 4903 4904
		if (signal_pending(current))
			return -EINTR;

4905
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4906
						false);
4907
		if (!progress) {
4908
			nr_retries--;
4909
			/* maybe some writeback is necessary */
4910
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4911
		}
4912 4913

	}
K
KAMEZAWA Hiroyuki 已提交
4914
	lru_add_drain();
4915 4916 4917
	mem_cgroup_reparent_charges(memcg);

	return 0;
4918 4919
}

4920
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4921
{
4922 4923 4924
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4925 4926
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4927 4928 4929 4930 4931
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4932 4933 4934
}


4935 4936 4937 4938 4939 4940 4941 4942 4943
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4944
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4945
	struct cgroup *parent = cont->parent;
4946
	struct mem_cgroup *parent_memcg = NULL;
4947 4948

	if (parent)
4949
		parent_memcg = mem_cgroup_from_cont(parent);
4950

4951
	mutex_lock(&memcg_create_mutex);
4952 4953 4954 4955

	if (memcg->use_hierarchy == val)
		goto out;

4956
	/*
4957
	 * If parent's use_hierarchy is set, we can't make any modifications
4958 4959 4960 4961 4962 4963
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4964
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4965
				(val == 1 || val == 0)) {
4966
		if (!__memcg_has_children(memcg))
4967
			memcg->use_hierarchy = val;
4968 4969 4970 4971
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4972 4973

out:
4974
	mutex_unlock(&memcg_create_mutex);
4975 4976 4977 4978

	return retval;
}

4979

4980
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4981
					       enum mem_cgroup_stat_index idx)
4982
{
K
KAMEZAWA Hiroyuki 已提交
4983
	struct mem_cgroup *iter;
4984
	long val = 0;
4985

4986
	/* Per-cpu values can be negative, use a signed accumulator */
4987
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4988 4989 4990 4991 4992
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4993 4994
}

4995
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4996
{
K
KAMEZAWA Hiroyuki 已提交
4997
	u64 val;
4998

4999
	if (!mem_cgroup_is_root(memcg)) {
5000
		if (!swap)
5001
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5002
		else
5003
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5004 5005
	}

5006 5007
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5008

K
KAMEZAWA Hiroyuki 已提交
5009
	if (swap)
5010
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5011 5012 5013 5014

	return val << PAGE_SHIFT;
}

5015 5016 5017
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5018
{
5019
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5020
	char str[64];
5021
	u64 val;
G
Glauber Costa 已提交
5022 5023
	int name, len;
	enum res_type type;
5024 5025 5026

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5027

5028 5029
	switch (type) {
	case _MEM:
5030
		if (name == RES_USAGE)
5031
			val = mem_cgroup_usage(memcg, false);
5032
		else
5033
			val = res_counter_read_u64(&memcg->res, name);
5034 5035
		break;
	case _MEMSWAP:
5036
		if (name == RES_USAGE)
5037
			val = mem_cgroup_usage(memcg, true);
5038
		else
5039
			val = res_counter_read_u64(&memcg->memsw, name);
5040
		break;
5041 5042 5043
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5044 5045 5046
	default:
		BUG();
	}
5047 5048 5049

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5050
}
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5069
	mutex_lock(&memcg_create_mutex);
5070 5071
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5072
		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5073 5074 5075 5076 5077 5078
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5079 5080 5081 5082 5083
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5084 5085 5086 5087 5088 5089 5090
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);

5091 5092 5093 5094 5095 5096 5097
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
5098 5099 5100 5101
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5102
	mutex_unlock(&memcg_create_mutex);
5103 5104 5105 5106
#endif
	return ret;
}

5107
#ifdef CONFIG_MEMCG_KMEM
5108
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5109
{
5110
	int ret = 0;
5111 5112
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5113 5114
		goto out;

5115
	memcg->kmem_account_flags = parent->kmem_account_flags;
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5143
}
5144
#endif /* CONFIG_MEMCG_KMEM */
5145

5146 5147 5148 5149
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5150 5151
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5152
{
5153
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5154 5155
	enum res_type type;
	int name;
5156 5157 5158
	unsigned long long val;
	int ret;

5159 5160
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5161

5162
	switch (name) {
5163
	case RES_LIMIT:
5164 5165 5166 5167
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5168 5169
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5170 5171 5172
		if (ret)
			break;
		if (type == _MEM)
5173
			ret = mem_cgroup_resize_limit(memcg, val);
5174
		else if (type == _MEMSWAP)
5175
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5176 5177 5178 5179
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5180
		break;
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5195 5196 5197 5198 5199
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5200 5201
}

5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5229
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5230
{
5231
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5232 5233
	int name;
	enum res_type type;
5234

5235 5236
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5237

5238
	switch (name) {
5239
	case RES_MAX_USAGE:
5240
		if (type == _MEM)
5241
			res_counter_reset_max(&memcg->res);
5242
		else if (type == _MEMSWAP)
5243
			res_counter_reset_max(&memcg->memsw);
5244 5245 5246 5247
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5248 5249
		break;
	case RES_FAILCNT:
5250
		if (type == _MEM)
5251
			res_counter_reset_failcnt(&memcg->res);
5252
		else if (type == _MEMSWAP)
5253
			res_counter_reset_failcnt(&memcg->memsw);
5254 5255 5256 5257
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5258 5259
		break;
	}
5260

5261
	return 0;
5262 5263
}

5264 5265 5266 5267 5268 5269
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5270
#ifdef CONFIG_MMU
5271 5272 5273
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5274
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5275 5276 5277

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5278

5279
	/*
5280 5281 5282 5283
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5284
	 */
5285
	memcg->move_charge_at_immigrate = val;
5286 5287
	return 0;
}
5288 5289 5290 5291 5292 5293 5294
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5295

5296
#ifdef CONFIG_NUMA
5297
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5298
				      struct seq_file *m)
5299 5300 5301 5302
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5303
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5304

5305
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5306
	seq_printf(m, "total=%lu", total_nr);
5307
	for_each_node_state(nid, N_MEMORY) {
5308
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5309 5310 5311 5312
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5313
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5314
	seq_printf(m, "file=%lu", file_nr);
5315
	for_each_node_state(nid, N_MEMORY) {
5316
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5317
				LRU_ALL_FILE);
5318 5319 5320 5321
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5322
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5323
	seq_printf(m, "anon=%lu", anon_nr);
5324
	for_each_node_state(nid, N_MEMORY) {
5325
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5326
				LRU_ALL_ANON);
5327 5328 5329 5330
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5331
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5332
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5333
	for_each_node_state(nid, N_MEMORY) {
5334
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5335
				BIT(LRU_UNEVICTABLE));
5336 5337 5338 5339 5340 5341 5342
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5343 5344 5345 5346 5347
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5348
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5349
				 struct seq_file *m)
5350
{
5351
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5352 5353
	struct mem_cgroup *mi;
	unsigned int i;
5354

5355
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5356
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5357
			continue;
5358 5359
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5360
	}
L
Lee Schermerhorn 已提交
5361

5362 5363 5364 5365 5366 5367 5368 5369
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5370
	/* Hierarchical information */
5371 5372
	{
		unsigned long long limit, memsw_limit;
5373
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5374
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5375
		if (do_swap_account)
5376 5377
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5378
	}
K
KOSAKI Motohiro 已提交
5379

5380 5381 5382
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5383
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5384
			continue;
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5405
	}
K
KAMEZAWA Hiroyuki 已提交
5406

K
KOSAKI Motohiro 已提交
5407 5408 5409 5410
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5411
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5412 5413 5414 5415 5416
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5417
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5418
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5419

5420 5421 5422 5423
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5424
			}
5425 5426 5427 5428
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5429 5430 5431
	}
#endif

5432 5433 5434
	return 0;
}

K
KOSAKI Motohiro 已提交
5435 5436 5437 5438
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5439
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5440 5441 5442 5443 5444 5445 5446
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5447

K
KOSAKI Motohiro 已提交
5448 5449 5450 5451 5452 5453 5454
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5455

5456
	mutex_lock(&memcg_create_mutex);
5457

K
KOSAKI Motohiro 已提交
5458
	/* If under hierarchy, only empty-root can set this value */
5459
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5460
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5461
		return -EINVAL;
5462
	}
K
KOSAKI Motohiro 已提交
5463 5464 5465

	memcg->swappiness = val;

5466
	mutex_unlock(&memcg_create_mutex);
5467

K
KOSAKI Motohiro 已提交
5468 5469 5470
	return 0;
}

5471 5472 5473 5474 5475 5476 5477 5478
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5479
		t = rcu_dereference(memcg->thresholds.primary);
5480
	else
5481
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5482 5483 5484 5485 5486 5487 5488

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5489
	 * current_threshold points to threshold just below or equal to usage.
5490 5491 5492
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5493
	i = t->current_threshold;
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5517
	t->current_threshold = i - 1;
5518 5519 5520 5521 5522 5523
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5524 5525 5526 5527 5528 5529 5530
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5541
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5542 5543 5544
{
	struct mem_cgroup_eventfd_list *ev;

5545
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5546 5547 5548 5549
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5550
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5551
{
K
KAMEZAWA Hiroyuki 已提交
5552 5553
	struct mem_cgroup *iter;

5554
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5555
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5556 5557 5558 5559
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5560 5561
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5562 5563
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5564
	enum res_type type = MEMFILE_TYPE(cft->private);
5565
	u64 threshold, usage;
5566
	int i, size, ret;
5567 5568 5569 5570 5571 5572

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5573

5574
	if (type == _MEM)
5575
		thresholds = &memcg->thresholds;
5576
	else if (type == _MEMSWAP)
5577
		thresholds = &memcg->memsw_thresholds;
5578 5579 5580 5581 5582 5583
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5584
	if (thresholds->primary)
5585 5586
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5587
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5588 5589

	/* Allocate memory for new array of thresholds */
5590
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5591
			GFP_KERNEL);
5592
	if (!new) {
5593 5594 5595
		ret = -ENOMEM;
		goto unlock;
	}
5596
	new->size = size;
5597 5598

	/* Copy thresholds (if any) to new array */
5599 5600
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5601
				sizeof(struct mem_cgroup_threshold));
5602 5603
	}

5604
	/* Add new threshold */
5605 5606
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5607 5608

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5609
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5610 5611 5612
			compare_thresholds, NULL);

	/* Find current threshold */
5613
	new->current_threshold = -1;
5614
	for (i = 0; i < size; i++) {
5615
		if (new->entries[i].threshold <= usage) {
5616
			/*
5617 5618
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5619 5620
			 * it here.
			 */
5621
			++new->current_threshold;
5622 5623
		} else
			break;
5624 5625
	}

5626 5627 5628 5629 5630
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5631

5632
	/* To be sure that nobody uses thresholds */
5633 5634 5635 5636 5637 5638 5639 5640
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5641
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5642
	struct cftype *cft, struct eventfd_ctx *eventfd)
5643 5644
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5645 5646
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5647
	enum res_type type = MEMFILE_TYPE(cft->private);
5648
	u64 usage;
5649
	int i, j, size;
5650 5651 5652

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5653
		thresholds = &memcg->thresholds;
5654
	else if (type == _MEMSWAP)
5655
		thresholds = &memcg->memsw_thresholds;
5656 5657 5658
	else
		BUG();

5659 5660 5661
	if (!thresholds->primary)
		goto unlock;

5662 5663 5664 5665 5666 5667
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5668 5669 5670
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5671 5672 5673
			size++;
	}

5674
	new = thresholds->spare;
5675

5676 5677
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5678 5679
		kfree(new);
		new = NULL;
5680
		goto swap_buffers;
5681 5682
	}

5683
	new->size = size;
5684 5685

	/* Copy thresholds and find current threshold */
5686 5687 5688
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5689 5690
			continue;

5691
		new->entries[j] = thresholds->primary->entries[i];
5692
		if (new->entries[j].threshold <= usage) {
5693
			/*
5694
			 * new->current_threshold will not be used
5695 5696 5697
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5698
			++new->current_threshold;
5699 5700 5701 5702
		}
		j++;
	}

5703
swap_buffers:
5704 5705
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5706 5707 5708 5709 5710 5711
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5712
	rcu_assign_pointer(thresholds->primary, new);
5713

5714
	/* To be sure that nobody uses thresholds */
5715
	synchronize_rcu();
5716
unlock:
5717 5718
	mutex_unlock(&memcg->thresholds_lock);
}
5719

K
KAMEZAWA Hiroyuki 已提交
5720 5721 5722 5723 5724
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5725
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5726 5727 5728 5729 5730 5731

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5732
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5733 5734 5735 5736 5737

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5738
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5739
		eventfd_signal(eventfd, 1);
5740
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5741 5742 5743 5744

	return 0;
}

5745
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5746 5747
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5748
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5749
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5750
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5751 5752 5753

	BUG_ON(type != _OOM_TYPE);

5754
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5755

5756
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5757 5758 5759 5760 5761 5762
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5763
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5764 5765
}

5766 5767 5768
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5769
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5770

5771
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5772

5773
	if (atomic_read(&memcg->under_oom))
5774 5775 5776 5777 5778 5779 5780 5781 5782
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5783
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5784 5785 5786 5787 5788 5789 5790 5791
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

5792
	mutex_lock(&memcg_create_mutex);
5793
	/* oom-kill-disable is a flag for subhierarchy. */
5794
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5795
		mutex_unlock(&memcg_create_mutex);
5796 5797
		return -EINVAL;
	}
5798
	memcg->oom_kill_disable = val;
5799
	if (!val)
5800
		memcg_oom_recover(memcg);
5801
	mutex_unlock(&memcg_create_mutex);
5802 5803 5804
	return 0;
}

A
Andrew Morton 已提交
5805
#ifdef CONFIG_MEMCG_KMEM
5806
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5807
{
5808 5809
	int ret;

5810
	memcg->kmemcg_id = -1;
5811 5812 5813
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5814

5815
	return mem_cgroup_sockets_init(memcg, ss);
5816 5817
};

5818
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5819
{
5820
	mem_cgroup_sockets_destroy(memcg);
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5835
}
5836
#else
5837
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5838 5839 5840
{
	return 0;
}
G
Glauber Costa 已提交
5841

5842
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5843 5844
{
}
5845 5846
#endif

B
Balbir Singh 已提交
5847 5848
static struct cftype mem_cgroup_files[] = {
	{
5849
		.name = "usage_in_bytes",
5850
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5851
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5852 5853
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5854
	},
5855 5856
	{
		.name = "max_usage_in_bytes",
5857
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5858
		.trigger = mem_cgroup_reset,
5859
		.read = mem_cgroup_read,
5860
	},
B
Balbir Singh 已提交
5861
	{
5862
		.name = "limit_in_bytes",
5863
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5864
		.write_string = mem_cgroup_write,
5865
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5866
	},
5867 5868 5869 5870
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5871
		.read = mem_cgroup_read,
5872
	},
B
Balbir Singh 已提交
5873 5874
	{
		.name = "failcnt",
5875
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5876
		.trigger = mem_cgroup_reset,
5877
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5878
	},
5879 5880
	{
		.name = "stat",
5881
		.read_seq_string = memcg_stat_show,
5882
	},
5883 5884 5885 5886
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5887 5888 5889 5890 5891
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5892 5893 5894 5895 5896
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5897 5898 5899 5900 5901
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5902 5903
	{
		.name = "oom_control",
5904 5905
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5906 5907 5908 5909
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5910 5911 5912
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5913
		.read_seq_string = memcg_numa_stat_show,
5914 5915
	},
#endif
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5940 5941 5942 5943 5944 5945
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5946
#endif
5947
	{ },	/* terminate */
5948
};
5949

5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5980
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5981 5982
{
	struct mem_cgroup_per_node *pn;
5983
	struct mem_cgroup_per_zone *mz;
5984
	int zone, tmp = node;
5985 5986 5987 5988 5989 5990 5991 5992
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5993 5994
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5995
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5996 5997
	if (!pn)
		return 1;
5998 5999 6000

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6001
		lruvec_init(&mz->lruvec);
6002
		mz->usage_in_excess = 0;
6003
		mz->on_tree = false;
6004
		mz->memcg = memcg;
6005
	}
6006
	memcg->info.nodeinfo[node] = pn;
6007 6008 6009
	return 0;
}

6010
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6011
{
6012
	kfree(memcg->info.nodeinfo[node]);
6013 6014
}

6015 6016
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6017
	struct mem_cgroup *memcg;
6018
	size_t size = memcg_size();
6019

6020
	/* Can be very big if nr_node_ids is very big */
6021
	if (size < PAGE_SIZE)
6022
		memcg = kzalloc(size, GFP_KERNEL);
6023
	else
6024
		memcg = vzalloc(size);
6025

6026
	if (!memcg)
6027 6028
		return NULL;

6029 6030
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6031
		goto out_free;
6032 6033
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6034 6035 6036

out_free:
	if (size < PAGE_SIZE)
6037
		kfree(memcg);
6038
	else
6039
		vfree(memcg);
6040
	return NULL;
6041 6042
}

6043
/*
6044 6045 6046 6047 6048 6049 6050 6051
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6052
 */
6053 6054

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6055
{
6056
	int node;
6057
	size_t size = memcg_size();
6058

6059 6060 6061 6062 6063 6064 6065 6066
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6078
	disarm_static_keys(memcg);
6079 6080 6081 6082
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6083
}
6084

6085

6086
/*
6087 6088 6089
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
6090
 */
6091
static void free_work(struct work_struct *work)
6092
{
6093
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6094

6095 6096 6097
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
6098

6099 6100 6101
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6102

6103 6104 6105
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
6106 6107
}

6108
static void mem_cgroup_get(struct mem_cgroup *memcg)
6109
{
6110
	atomic_inc(&memcg->refcnt);
6111 6112
}

6113
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6114
{
6115 6116
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6117
		call_rcu(&memcg->rcu_freeing, free_rcu);
6118 6119 6120
		if (parent)
			mem_cgroup_put(parent);
	}
6121 6122
}

6123
static void mem_cgroup_put(struct mem_cgroup *memcg)
6124
{
6125
	__mem_cgroup_put(memcg, 1);
6126 6127
}

6128 6129 6130
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6131
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6132
{
6133
	if (!memcg->res.parent)
6134
		return NULL;
6135
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6136
}
G
Glauber Costa 已提交
6137
EXPORT_SYMBOL(parent_mem_cgroup);
6138

6139
static void __init mem_cgroup_soft_limit_tree_init(void)
6140 6141 6142 6143 6144
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6145
	for_each_node(node) {
6146 6147 6148 6149
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6150
		BUG_ON(!rtpn);
6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6162
static struct cgroup_subsys_state * __ref
6163
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6164
{
6165
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6166
	long error = -ENOMEM;
6167
	int node;
B
Balbir Singh 已提交
6168

6169 6170
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6171
		return ERR_PTR(error);
6172

B
Bob Liu 已提交
6173
	for_each_node(node)
6174
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6175
			goto free_out;
6176

6177
	/* root ? */
6178
	if (cont->parent == NULL) {
6179
		root_mem_cgroup = memcg;
6180 6181 6182
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6183
	}
6184

6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
mem_cgroup_css_online(struct cgroup *cont)
{
	struct mem_cgroup *memcg, *parent;
	int error = 0;

	if (!cont->parent)
		return 0;

6208
	mutex_lock(&memcg_create_mutex);
6209 6210 6211 6212 6213 6214 6215 6216
	memcg = mem_cgroup_from_cont(cont);
	parent = mem_cgroup_from_cont(cont->parent);

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6217 6218
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6219
		res_counter_init(&memcg->kmem, &parent->kmem);
6220

6221 6222 6223 6224 6225 6226 6227
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6228
	} else {
6229 6230
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6231
		res_counter_init(&memcg->kmem, NULL);
6232 6233 6234 6235 6236
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6237
		if (parent != root_mem_cgroup)
6238
			mem_cgroup_subsys.broken_hierarchy = true;
6239
	}
6240 6241

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6242
	mutex_unlock(&memcg_create_mutex);
6243 6244 6245 6246 6247 6248 6249
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
6250 6251
		if (parent->use_hierarchy)
			mem_cgroup_put(parent);
6252
	}
6253
	return error;
B
Balbir Singh 已提交
6254 6255
}

M
Michal Hocko 已提交
6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
		atomic_inc(&parent->dead_count);

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
		atomic_inc(&root_mem_cgroup->dead_count);
}

6274
static void mem_cgroup_css_offline(struct cgroup *cont)
6275
{
6276
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6277

M
Michal Hocko 已提交
6278
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6279
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6280
	mem_cgroup_destroy_all_caches(memcg);
6281 6282
}

6283
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6284
{
6285
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6286

6287
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6288

6289
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6290 6291
}

6292
#ifdef CONFIG_MMU
6293
/* Handlers for move charge at task migration. */
6294 6295
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6296
{
6297 6298
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6299
	struct mem_cgroup *memcg = mc.to;
6300

6301
	if (mem_cgroup_is_root(memcg)) {
6302 6303 6304 6305 6306 6307 6308 6309
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6310
		 * "memcg" cannot be under rmdir() because we've already checked
6311 6312 6313 6314
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6315
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6316
			goto one_by_one;
6317
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6318
						PAGE_SIZE * count, &dummy)) {
6319
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6336 6337
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6338
		if (ret)
6339
			/* mem_cgroup_clear_mc() will do uncharge later */
6340
			return ret;
6341 6342
		mc.precharge++;
	}
6343 6344 6345 6346
	return ret;
}

/**
6347
 * get_mctgt_type - get target type of moving charge
6348 6349 6350
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6351
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6352 6353 6354 6355 6356 6357
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6358 6359 6360
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6361 6362 6363 6364 6365
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6366
	swp_entry_t	ent;
6367 6368 6369
};

enum mc_target_type {
6370
	MC_TARGET_NONE = 0,
6371
	MC_TARGET_PAGE,
6372
	MC_TARGET_SWAP,
6373 6374
};

D
Daisuke Nishimura 已提交
6375 6376
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6377
{
D
Daisuke Nishimura 已提交
6378
	struct page *page = vm_normal_page(vma, addr, ptent);
6379

D
Daisuke Nishimura 已提交
6380 6381 6382 6383
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6384
		if (!move_anon())
D
Daisuke Nishimura 已提交
6385
			return NULL;
6386 6387
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6388 6389 6390 6391 6392 6393 6394
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6395
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6396 6397 6398 6399 6400 6401 6402 6403
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6404 6405 6406 6407
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6408
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6409 6410 6411 6412 6413
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6414 6415 6416 6417 6418 6419 6420
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6421

6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6441 6442 6443 6444 6445 6446
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6447
		if (do_swap_account)
6448
			*entry = swap;
6449
		page = find_get_page(swap_address_space(swap), swap.val);
6450
	}
6451
#endif
6452 6453 6454
	return page;
}

6455
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6456 6457 6458 6459
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6460
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6461 6462 6463 6464 6465 6466
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6467 6468
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6469 6470

	if (!page && !ent.val)
6471
		return ret;
6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6487 6488
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6489
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6490 6491 6492
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6493 6494 6495 6496
	}
	return ret;
}

6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6532 6533 6534 6535 6536 6537 6538 6539
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6540 6541 6542 6543
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6544
		return 0;
6545
	}
6546

6547 6548
	if (pmd_trans_unstable(pmd))
		return 0;
6549 6550
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6551
		if (get_mctgt_type(vma, addr, *pte, NULL))
6552 6553 6554 6555
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6556 6557 6558
	return 0;
}

6559 6560 6561 6562 6563
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6564
	down_read(&mm->mmap_sem);
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6576
	up_read(&mm->mmap_sem);
6577 6578 6579 6580 6581 6582 6583 6584 6585

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6586 6587 6588 6589 6590
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6591 6592
}

6593 6594
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6595
{
6596 6597 6598
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6599
	/* we must uncharge all the leftover precharges from mc.to */
6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6611
	}
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6646
	spin_lock(&mc.lock);
6647 6648
	mc.from = NULL;
	mc.to = NULL;
6649
	spin_unlock(&mc.lock);
6650
	mem_cgroup_end_move(from);
6651 6652
}

6653 6654
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6655
{
6656
	struct task_struct *p = cgroup_taskset_first(tset);
6657
	int ret = 0;
6658
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6659
	unsigned long move_charge_at_immigrate;
6660

6661 6662 6663 6664 6665 6666 6667
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6668 6669 6670
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6671
		VM_BUG_ON(from == memcg);
6672 6673 6674 6675 6676

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6677 6678 6679 6680
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6681
			VM_BUG_ON(mc.moved_charge);
6682
			VM_BUG_ON(mc.moved_swap);
6683
			mem_cgroup_start_move(from);
6684
			spin_lock(&mc.lock);
6685
			mc.from = from;
6686
			mc.to = memcg;
6687
			mc.immigrate_flags = move_charge_at_immigrate;
6688
			spin_unlock(&mc.lock);
6689
			/* We set mc.moving_task later */
6690 6691 6692 6693

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6694 6695
		}
		mmput(mm);
6696 6697 6698 6699
	}
	return ret;
}

6700 6701
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6702
{
6703
	mem_cgroup_clear_mc();
6704 6705
}

6706 6707 6708
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6709
{
6710 6711 6712 6713
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6714 6715 6716 6717
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6718

6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6730
		if (mc.precharge < HPAGE_PMD_NR) {
6731 6732 6733 6734 6735 6736 6737 6738 6739
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6740
							pc, mc.from, mc.to)) {
6741 6742 6743 6744 6745 6746 6747 6748
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6749
		return 0;
6750 6751
	}

6752 6753
	if (pmd_trans_unstable(pmd))
		return 0;
6754 6755 6756 6757
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6758
		swp_entry_t ent;
6759 6760 6761 6762

		if (!mc.precharge)
			break;

6763
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6764 6765 6766 6767 6768
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6769
			if (!mem_cgroup_move_account(page, 1, pc,
6770
						     mc.from, mc.to)) {
6771
				mc.precharge--;
6772 6773
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6774 6775
			}
			putback_lru_page(page);
6776
put:			/* get_mctgt_type() gets the page */
6777 6778
			put_page(page);
			break;
6779 6780
		case MC_TARGET_SWAP:
			ent = target.ent;
6781
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6782
				mc.precharge--;
6783 6784 6785
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6786
			break;
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6801
		ret = mem_cgroup_do_precharge(1);
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6845
	up_read(&mm->mmap_sem);
6846 6847
}

6848 6849
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6850
{
6851
	struct task_struct *p = cgroup_taskset_first(tset);
6852
	struct mm_struct *mm = get_task_mm(p);
6853 6854

	if (mm) {
6855 6856
		if (mc.to)
			mem_cgroup_move_charge(mm);
6857 6858
		mmput(mm);
	}
6859 6860
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6861
}
6862
#else	/* !CONFIG_MMU */
6863 6864
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6865 6866 6867
{
	return 0;
}
6868 6869
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6870 6871
{
}
6872 6873
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6874 6875 6876
{
}
#endif
B
Balbir Singh 已提交
6877

B
Balbir Singh 已提交
6878 6879 6880
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6881
	.css_alloc = mem_cgroup_css_alloc,
6882
	.css_online = mem_cgroup_css_online,
6883 6884
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6885 6886
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6887
	.attach = mem_cgroup_move_task,
6888
	.base_cftypes = mem_cgroup_files,
6889
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6890
	.use_id = 1,
B
Balbir Singh 已提交
6891
};
6892

A
Andrew Morton 已提交
6893
#ifdef CONFIG_MEMCG_SWAP
6894 6895 6896
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6897
	if (!strcmp(s, "1"))
6898
		really_do_swap_account = 1;
6899
	else if (!strcmp(s, "0"))
6900 6901 6902
		really_do_swap_account = 0;
	return 1;
}
6903
__setup("swapaccount=", enable_swap_account);
6904

6905 6906
static void __init memsw_file_init(void)
{
6907 6908 6909 6910 6911 6912 6913 6914 6915
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6916
}
6917

6918
#else
6919
static void __init enable_swap_cgroup(void)
6920 6921
{
}
6922
#endif
6923 6924

/*
6925 6926 6927 6928 6929 6930
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6931 6932 6933 6934
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6935
	enable_swap_cgroup();
6936
	mem_cgroup_soft_limit_tree_init();
6937
	memcg_stock_init();
6938 6939 6940
	return 0;
}
subsys_initcall(mem_cgroup_init);