memcontrol.c 143.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75
#else
76
#define do_swap_account		0
77 78 79
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97 98 99 100
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

101 102 103
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
104 105
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
106 107
	MEM_CGROUP_EVENTS_NSTATS,
};
108 109 110 111 112 113 114 115

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

116 117 118 119 120 121 122 123 124
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
125
	MEM_CGROUP_TARGET_NUMAINFO,
126 127
	MEM_CGROUP_NTARGETS,
};
128 129 130
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
131

132
struct mem_cgroup_stat_cpu {
133
	long count[MEM_CGROUP_STAT_NSTATS];
134
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135
	unsigned long nr_page_events;
136
	unsigned long targets[MEM_CGROUP_NTARGETS];
137 138
};

139 140 141 142 143 144 145
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

146 147 148 149
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
150
	struct lruvec		lruvec;
151
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
152

153 154
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

155 156 157 158
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
159
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
160
						/* use container_of	   */
161 162 163 164 165 166 167 168 169 170
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

191 192 193 194 195
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
196
/* For threshold */
197
struct mem_cgroup_threshold_ary {
198
	/* An array index points to threshold just below or equal to usage. */
199
	int current_threshold;
200 201 202 203 204
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
205 206 207 208 209 210 211 212 213 214 215 216

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
217 218 219 220 221
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
222

223 224
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225

B
Balbir Singh 已提交
226 227 228 229 230 231 232
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 234 235
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
236 237 238 239 240 241 242
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
261 262
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
263 264 265 266
		 */
		struct work_struct work_freeing;
	};

267 268 269 270
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
271
	struct mem_cgroup_lru_info info;
272 273 274
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
275 276
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
277
#endif
278 279 280 281
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
282 283 284 285

	bool		oom_lock;
	atomic_t	under_oom;

286
	atomic_t	refcnt;
287

288
	int	swappiness;
289 290
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
291

292 293 294
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

295 296 297 298
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
299
	struct mem_cgroup_thresholds thresholds;
300

301
	/* thresholds for mem+swap usage. RCU-protected */
302
	struct mem_cgroup_thresholds memsw_thresholds;
303

K
KAMEZAWA Hiroyuki 已提交
304 305
	/* For oom notifier event fd */
	struct list_head oom_notify;
306

307 308 309 310 311
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
312 313 314 315
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
316 317
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
318
	/*
319
	 * percpu counter.
320
	 */
321
	struct mem_cgroup_stat_cpu __percpu *stat;
322 323 324 325 326 327
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
328 329 330 331

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
332 333
};

334 335 336 337 338 339
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
340
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
341
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
342 343 344
	NR_MOVE_TYPE,
};

345 346
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
347
	spinlock_t	  lock; /* for from, to */
348 349 350
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
351
	unsigned long moved_charge;
352
	unsigned long moved_swap;
353 354 355
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
356
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 358
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
359

D
Daisuke Nishimura 已提交
360 361 362 363 364 365
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

366 367 368 369 370 371
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

372 373 374 375
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
376 377
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
378

379 380 381
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
382
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
383
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
384
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
385
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
386 387 388
	NR_CHARGE_TYPE,
};

389
/* for encoding cft->private value on file */
390 391 392
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
393 394
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
395
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
396 397
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
398

399 400 401 402 403 404 405 406
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

407 408
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
409 410 411 412

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
413
#include <net/ip.h>
G
Glauber Costa 已提交
414 415 416 417

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
418
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
419
		struct mem_cgroup *memcg;
420
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
421 422 423

		BUG_ON(!sk->sk_prot->proto_cgroup);

424 425 426 427 428 429 430 431 432 433 434 435 436 437
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
438 439
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
440 441
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
442
			mem_cgroup_get(memcg);
443
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
444 445 446 447 448 449 450 451
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
452
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
453 454 455 456 457 458
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
459

460
#ifdef CONFIG_INET
G
Glauber Costa 已提交
461 462 463 464 465 466 467 468
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
469 470 471
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

472 473 474 475 476 477 478 479 480 481 482 483 484
#if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

485
static void drain_all_stock_async(struct mem_cgroup *memcg);
486

487
static struct mem_cgroup_per_zone *
488
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
489
{
490
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
491 492
}

493
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
494
{
495
	return &memcg->css;
496 497
}

498
static struct mem_cgroup_per_zone *
499
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
500
{
501 502
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
503

504
	return mem_cgroup_zoneinfo(memcg, nid, zid);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
523
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
524
				struct mem_cgroup_per_zone *mz,
525 526
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
527 528 529 530 531 532 533 534
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

535 536 537
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
554 555 556
}

static void
557
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
558 559 560 561 562 563 564 565 566
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

567
static void
568
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
569 570 571 572
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
573
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
574 575 576 577
	spin_unlock(&mctz->lock);
}


578
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
579
{
580
	unsigned long long excess;
581 582
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
583 584
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
585 586 587
	mctz = soft_limit_tree_from_page(page);

	/*
588 589
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
590
	 */
591 592 593
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
594 595 596 597
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
598
		if (excess || mz->on_tree) {
599 600 601
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
602
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
603
			/*
604 605
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
606
			 */
607
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
608 609
			spin_unlock(&mctz->lock);
		}
610 611 612
	}
}

613
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
614 615 616 617 618
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
619
	for_each_node(node) {
620
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
621
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
622
			mctz = soft_limit_tree_node_zone(node, zone);
623
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
624 625 626 627
		}
	}
}

628 629 630 631
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
632
	struct mem_cgroup_per_zone *mz;
633 634

retry:
635
	mz = NULL;
636 637 638 639 640 641 642 643 644 645
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
646 647 648
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
684
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
685
				 enum mem_cgroup_stat_index idx)
686
{
687
	long val = 0;
688 689
	int cpu;

690 691
	get_online_cpus();
	for_each_online_cpu(cpu)
692
		val += per_cpu(memcg->stat->count[idx], cpu);
693
#ifdef CONFIG_HOTPLUG_CPU
694 695 696
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
697 698
#endif
	put_online_cpus();
699 700 701
	return val;
}

702
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
703 704 705
					 bool charge)
{
	int val = (charge) ? 1 : -1;
706
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
707 708
}

709
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
710 711 712 713 714 715
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
716
		val += per_cpu(memcg->stat->events[idx], cpu);
717
#ifdef CONFIG_HOTPLUG_CPU
718 719 720
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
721 722 723 724
#endif
	return val;
}

725
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
726
					 bool anon, int nr_pages)
727
{
728 729
	preempt_disable();

730 731 732 733 734 735
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
736
				nr_pages);
737
	else
738
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
739
				nr_pages);
740

741 742
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
743
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
744
	else {
745
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
746 747
		nr_pages = -nr_pages; /* for event */
	}
748

749
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
750

751
	preempt_enable();
752 753
}

754
unsigned long
755
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
756 757 758 759 760 761 762 763
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
764
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
765
			unsigned int lru_mask)
766 767
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
768
	enum lru_list lru;
769 770
	unsigned long ret = 0;

771
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
772

H
Hugh Dickins 已提交
773 774 775
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
776 777 778 779 780
	}
	return ret;
}

static unsigned long
781
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
782 783
			int nid, unsigned int lru_mask)
{
784 785 786
	u64 total = 0;
	int zid;

787
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
788 789
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
790

791 792
	return total;
}
793

794
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
795
			unsigned int lru_mask)
796
{
797
	int nid;
798 799
	u64 total = 0;

800
	for_each_node_state(nid, N_HIGH_MEMORY)
801
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
802
	return total;
803 804
}

805 806
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
807 808 809
{
	unsigned long val, next;

810
	val = __this_cpu_read(memcg->stat->nr_page_events);
811
	next = __this_cpu_read(memcg->stat->targets[target]);
812
	/* from time_after() in jiffies.h */
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
829
	}
830
	return false;
831 832 833 834 835 836
}

/*
 * Check events in order.
 *
 */
837
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
838
{
839
	preempt_disable();
840
	/* threshold event is triggered in finer grain than soft limit */
841 842
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
843 844
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
845 846 847 848 849 850 851 852 853

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

854
		mem_cgroup_threshold(memcg);
855
		if (unlikely(do_softlimit))
856
			mem_cgroup_update_tree(memcg, page);
857
#if MAX_NUMNODES > 1
858
		if (unlikely(do_numainfo))
859
			atomic_inc(&memcg->numainfo_events);
860
#endif
861 862
	} else
		preempt_enable();
863 864
}

G
Glauber Costa 已提交
865
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
866 867 868 869 870 871
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

872
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
873
{
874 875 876 877 878 879 880 881
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

882 883 884 885
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

886
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
887
{
888
	struct mem_cgroup *memcg = NULL;
889 890 891

	if (!mm)
		return NULL;
892 893 894 895 896 897 898
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
899 900
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
901
			break;
902
	} while (!css_tryget(&memcg->css));
903
	rcu_read_unlock();
904
	return memcg;
905 906
}

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
927
{
928 929
	struct mem_cgroup *memcg = NULL;
	int id = 0;
930

931 932 933
	if (mem_cgroup_disabled())
		return NULL;

934 935
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
936

937 938
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
939

940 941
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
942

943 944 945 946 947
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
948

949
	while (!memcg) {
950
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
951
		struct cgroup_subsys_state *css;
952

953 954 955 956 957 958 959 960 961 962 963
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
964

965 966 967 968 969 970 971 972
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
973 974
		rcu_read_unlock();

975 976 977 978 979 980 981
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
982 983 984 985 986

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
987
}
K
KAMEZAWA Hiroyuki 已提交
988

989 990 991 992 993 994 995
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
996 997 998 999 1000 1001
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1002

1003 1004 1005 1006 1007 1008
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1009
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1010
	     iter != NULL;				\
1011
	     iter = mem_cgroup_iter(root, iter, NULL))
1012

1013
#define for_each_mem_cgroup(iter)			\
1014
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1015
	     iter != NULL;				\
1016
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1017

1018
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1019
{
1020
	return (memcg == root_mem_cgroup);
1021 1022
}

1023 1024
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
1025
	struct mem_cgroup *memcg;
1026 1027 1028 1029 1030

	if (!mm)
		return;

	rcu_read_lock();
1031 1032
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1033 1034 1035 1036
		goto out;

	switch (idx) {
	case PGFAULT:
1037 1038 1039 1040
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1041 1042 1043 1044 1045 1046 1047 1048 1049
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1050 1051 1052
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1053
 * @memcg: memcg of the wanted lruvec
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1084

1085
/**
1086
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1087
 * @page: the page
1088
 * @zone: zone of the page
1089
 */
1090
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1091 1092
{
	struct mem_cgroup_per_zone *mz;
1093 1094
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1095

1096
	if (mem_cgroup_disabled())
1097 1098
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1099
	pc = lookup_page_cgroup(page);
1100
	memcg = pc->mem_cgroup;
1101 1102

	/*
1103
	 * Surreptitiously switch any uncharged offlist page to root:
1104 1105 1106 1107 1108 1109 1110
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1111
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1112 1113
		pc->mem_cgroup = memcg = root_mem_cgroup;

1114 1115
	mz = page_cgroup_zoneinfo(memcg, page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1116
}
1117

1118
/**
1119 1120 1121 1122
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1123
 *
1124 1125
 * This function must be called when a page is added to or removed from an
 * lru list.
1126
 */
1127 1128
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1129 1130
{
	struct mem_cgroup_per_zone *mz;
1131
	unsigned long *lru_size;
1132 1133 1134 1135

	if (mem_cgroup_disabled())
		return;

1136 1137 1138 1139
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1140
}
1141

1142
/*
1143
 * Checks whether given mem is same or in the root_mem_cgroup's
1144 1145
 * hierarchy subtree
 */
1146 1147
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1148
{
1149 1150
	if (root_memcg == memcg)
		return true;
1151
	if (!root_memcg->use_hierarchy || !memcg)
1152
		return false;
1153 1154 1155 1156 1157 1158 1159 1160
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1161
	rcu_read_lock();
1162
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1163 1164
	rcu_read_unlock();
	return ret;
1165 1166
}

1167
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1168 1169
{
	int ret;
1170
	struct mem_cgroup *curr = NULL;
1171
	struct task_struct *p;
1172

1173
	p = find_lock_task_mm(task);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1189 1190
	if (!curr)
		return 0;
1191
	/*
1192
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1193
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1194 1195
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1196
	 */
1197
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1198
	css_put(&curr->css);
1199 1200 1201
	return ret;
}

1202
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1203
{
1204
	unsigned long inactive_ratio;
1205
	unsigned long inactive;
1206
	unsigned long active;
1207
	unsigned long gb;
1208

1209 1210
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1211

1212 1213 1214 1215 1216 1217
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1218
	return inactive * inactive_ratio < active;
1219 1220
}

1221
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1222 1223 1224 1225
{
	unsigned long active;
	unsigned long inactive;

1226 1227
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1228 1229 1230 1231

	return (active > inactive);
}

1232 1233 1234
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1235
/**
1236 1237
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1238
 *
1239
 * Returns the maximum amount of memory @mem can be charged with, in
1240
 * pages.
1241
 */
1242
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1243
{
1244 1245
	unsigned long long margin;

1246
	margin = res_counter_margin(&memcg->res);
1247
	if (do_swap_account)
1248
		margin = min(margin, res_counter_margin(&memcg->memsw));
1249
	return margin >> PAGE_SHIFT;
1250 1251
}

1252
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1253 1254 1255 1256 1257 1258 1259
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1260
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1261 1262
}

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1277 1278 1279 1280

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1281
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1282
{
1283
	atomic_inc(&memcg_moving);
1284
	atomic_inc(&memcg->moving_account);
1285 1286 1287
	synchronize_rcu();
}

1288
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1289
{
1290 1291 1292 1293
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1294 1295
	if (memcg) {
		atomic_dec(&memcg_moving);
1296
		atomic_dec(&memcg->moving_account);
1297
	}
1298
}
1299

1300 1301 1302
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1303 1304
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1305 1306 1307 1308 1309 1310 1311
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1312
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1313 1314
{
	VM_BUG_ON(!rcu_read_lock_held());
1315
	return atomic_read(&memcg->moving_account) > 0;
1316
}
1317

1318
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1319
{
1320 1321
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1322
	bool ret = false;
1323 1324 1325 1326 1327 1328 1329 1330 1331
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1332

1333 1334
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1335 1336
unlock:
	spin_unlock(&mc.lock);
1337 1338 1339
	return ret;
}

1340
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1341 1342
{
	if (mc.moving_task && current != mc.moving_task) {
1343
		if (mem_cgroup_under_move(memcg)) {
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1356 1357 1358 1359
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1360
 * see mem_cgroup_stolen(), too.
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1374
/**
1375
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1394
	if (!memcg || !p)
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1440 1441 1442 1443
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1444
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1445 1446
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1447 1448
	struct mem_cgroup *iter;

1449
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1450
		num++;
1451 1452 1453
	return num;
}

D
David Rientjes 已提交
1454 1455 1456 1457 1458 1459 1460 1461
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1462 1463 1464
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1465 1466 1467 1468 1469 1470 1471 1472
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1519
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1520 1521
		int nid, bool noswap)
{
1522
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1523 1524 1525
		return true;
	if (noswap || !total_swap_pages)
		return false;
1526
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1527 1528 1529 1530
		return true;
	return false;

}
1531 1532 1533 1534 1535 1536 1537 1538
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1539
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1540 1541
{
	int nid;
1542 1543 1544 1545
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1546
	if (!atomic_read(&memcg->numainfo_events))
1547
		return;
1548
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1549 1550 1551
		return;

	/* make a nodemask where this memcg uses memory from */
1552
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1553 1554 1555

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1556 1557
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1558
	}
1559

1560 1561
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1576
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1577 1578 1579
{
	int node;

1580 1581
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1582

1583
	node = next_node(node, memcg->scan_nodes);
1584
	if (node == MAX_NUMNODES)
1585
		node = first_node(memcg->scan_nodes);
1586 1587 1588 1589 1590 1591 1592 1593 1594
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1595
	memcg->last_scanned_node = node;
1596 1597 1598
	return node;
}

1599 1600 1601 1602 1603 1604
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1605
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1606 1607 1608 1609 1610 1611 1612
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1613 1614
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1615
		     nid < MAX_NUMNODES;
1616
		     nid = next_node(nid, memcg->scan_nodes)) {
1617

1618
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1619 1620 1621 1622 1623 1624 1625
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1626
		if (node_isset(nid, memcg->scan_nodes))
1627
			continue;
1628
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1629 1630 1631 1632 1633
			return true;
	}
	return false;
}

1634
#else
1635
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1636 1637 1638
{
	return 0;
}
1639

1640
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1641
{
1642
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1643
}
1644 1645
#endif

1646 1647 1648 1649
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1650
{
1651
	struct mem_cgroup *victim = NULL;
1652
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1653
	int loop = 0;
1654
	unsigned long excess;
1655
	unsigned long nr_scanned;
1656 1657 1658 1659
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1660

1661
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1662

1663
	while (1) {
1664
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1665
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1666
			loop++;
1667 1668 1669 1670 1671 1672
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1673
				if (!total)
1674 1675
					break;
				/*
L
Lucas De Marchi 已提交
1676
				 * We want to do more targeted reclaim.
1677 1678 1679 1680 1681
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1682
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1683 1684
					break;
			}
1685
			continue;
1686
		}
1687
		if (!mem_cgroup_reclaimable(victim, false))
1688
			continue;
1689 1690 1691 1692
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1693
			break;
1694
	}
1695
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1696
	return total;
1697 1698
}

K
KAMEZAWA Hiroyuki 已提交
1699 1700 1701
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1702
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1703
 */
1704
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1705
{
1706
	struct mem_cgroup *iter, *failed = NULL;
1707

1708
	for_each_mem_cgroup_tree(iter, memcg) {
1709
		if (iter->oom_lock) {
1710 1711 1712 1713 1714
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1715 1716
			mem_cgroup_iter_break(memcg, iter);
			break;
1717 1718
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1719
	}
K
KAMEZAWA Hiroyuki 已提交
1720

1721
	if (!failed)
1722
		return true;
1723 1724 1725 1726 1727

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1728
	for_each_mem_cgroup_tree(iter, memcg) {
1729
		if (iter == failed) {
1730 1731
			mem_cgroup_iter_break(memcg, iter);
			break;
1732 1733 1734
		}
		iter->oom_lock = false;
	}
1735
	return false;
1736
}
1737

1738
/*
1739
 * Has to be called with memcg_oom_lock
1740
 */
1741
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1742
{
K
KAMEZAWA Hiroyuki 已提交
1743 1744
	struct mem_cgroup *iter;

1745
	for_each_mem_cgroup_tree(iter, memcg)
1746 1747 1748 1749
		iter->oom_lock = false;
	return 0;
}

1750
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1751 1752 1753
{
	struct mem_cgroup *iter;

1754
	for_each_mem_cgroup_tree(iter, memcg)
1755 1756 1757
		atomic_inc(&iter->under_oom);
}

1758
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1759 1760 1761
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1762 1763 1764 1765 1766
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1767
	for_each_mem_cgroup_tree(iter, memcg)
1768
		atomic_add_unless(&iter->under_oom, -1, 0);
1769 1770
}

1771
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1772 1773
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1774
struct oom_wait_info {
1775
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1776 1777 1778 1779 1780 1781
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1782 1783
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1784 1785 1786
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1787
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1788 1789

	/*
1790
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1791 1792
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1793 1794
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1795 1796 1797 1798
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1799
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1800
{
1801 1802
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1803 1804
}

1805
static void memcg_oom_recover(struct mem_cgroup *memcg)
1806
{
1807 1808
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1809 1810
}

K
KAMEZAWA Hiroyuki 已提交
1811 1812 1813
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1814 1815
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1816
{
K
KAMEZAWA Hiroyuki 已提交
1817
	struct oom_wait_info owait;
1818
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1819

1820
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1821 1822 1823 1824
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1825
	need_to_kill = true;
1826
	mem_cgroup_mark_under_oom(memcg);
1827

1828
	/* At first, try to OOM lock hierarchy under memcg.*/
1829
	spin_lock(&memcg_oom_lock);
1830
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1831 1832 1833 1834 1835
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1836
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1837
	if (!locked || memcg->oom_kill_disable)
1838 1839
		need_to_kill = false;
	if (locked)
1840
		mem_cgroup_oom_notify(memcg);
1841
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1842

1843 1844
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1845
		mem_cgroup_out_of_memory(memcg, mask, order);
1846
	} else {
K
KAMEZAWA Hiroyuki 已提交
1847
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1848
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1849
	}
1850
	spin_lock(&memcg_oom_lock);
1851
	if (locked)
1852 1853
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1854
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1855

1856
	mem_cgroup_unmark_under_oom(memcg);
1857

K
KAMEZAWA Hiroyuki 已提交
1858 1859 1860
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1861
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1862
	return true;
1863 1864
}

1865 1866 1867
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1885 1886
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1887
 */
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
	 * need to take move_lock_page_cgroup(). Because we already hold
	 * rcu_read_lock(), any calls to move_account will be delayed until
1904
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1905
	 */
1906
	if (!mem_cgroup_stolen(memcg))
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
	 * should take move_lock_page_cgroup().
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1929 1930
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1931
{
1932
	struct mem_cgroup *memcg;
1933
	struct page_cgroup *pc = lookup_page_cgroup(page);
1934
	unsigned long uninitialized_var(flags);
1935

1936
	if (mem_cgroup_disabled())
1937
		return;
1938

1939 1940
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1941
		return;
1942 1943

	switch (idx) {
1944 1945
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1946 1947 1948
		break;
	default:
		BUG();
1949
	}
1950

1951
	this_cpu_add(memcg->stat->count[idx], val);
1952
}
1953

1954 1955 1956 1957
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1958
#define CHARGE_BATCH	32U
1959 1960
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1961
	unsigned int nr_pages;
1962
	struct work_struct work;
1963
	unsigned long flags;
1964
#define FLUSHING_CACHED_CHARGE	0
1965 1966
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1967
static DEFINE_MUTEX(percpu_charge_mutex);
1968 1969

/*
1970
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1971 1972 1973 1974
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
1975
static bool consume_stock(struct mem_cgroup *memcg)
1976 1977 1978 1979 1980
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1981
	if (memcg == stock->cached && stock->nr_pages)
1982
		stock->nr_pages--;
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1996 1997 1998 1999
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2000
		if (do_swap_account)
2001 2002
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2015
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2016 2017 2018 2019
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2020
 * This will be consumed by consume_stock() function, later.
2021
 */
2022
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2023 2024 2025
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2026
	if (stock->cached != memcg) { /* reset if necessary */
2027
		drain_stock(stock);
2028
		stock->cached = memcg;
2029
	}
2030
	stock->nr_pages += nr_pages;
2031 2032 2033 2034
	put_cpu_var(memcg_stock);
}

/*
2035
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2036 2037
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2038
 */
2039
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2040
{
2041
	int cpu, curcpu;
2042

2043 2044
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2045
	curcpu = get_cpu();
2046 2047
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2048
		struct mem_cgroup *memcg;
2049

2050 2051
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2052
			continue;
2053
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2054
			continue;
2055 2056 2057 2058 2059 2060
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2061
	}
2062
	put_cpu();
2063 2064 2065 2066 2067 2068

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2069
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2070 2071 2072
			flush_work(&stock->work);
	}
out:
2073
 	put_online_cpus();
2074 2075 2076 2077 2078 2079 2080 2081
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2082
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2083
{
2084 2085 2086 2087 2088
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2089
	drain_all_stock(root_memcg, false);
2090
	mutex_unlock(&percpu_charge_mutex);
2091 2092 2093
}

/* This is a synchronous drain interface. */
2094
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2095 2096
{
	/* called when force_empty is called */
2097
	mutex_lock(&percpu_charge_mutex);
2098
	drain_all_stock(root_memcg, true);
2099
	mutex_unlock(&percpu_charge_mutex);
2100 2101
}

2102 2103 2104 2105
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2106
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2107 2108 2109
{
	int i;

2110
	spin_lock(&memcg->pcp_counter_lock);
2111
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2112
		long x = per_cpu(memcg->stat->count[i], cpu);
2113

2114 2115
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2116
	}
2117
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2118
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2119

2120 2121
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2122
	}
2123
	spin_unlock(&memcg->pcp_counter_lock);
2124 2125 2126
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2127 2128 2129 2130 2131
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2132
	struct mem_cgroup *iter;
2133

2134
	if (action == CPU_ONLINE)
2135 2136
		return NOTIFY_OK;

2137
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2138
		return NOTIFY_OK;
2139

2140
	for_each_mem_cgroup(iter)
2141 2142
		mem_cgroup_drain_pcp_counter(iter, cpu);

2143 2144 2145 2146 2147
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2158
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2159
				unsigned int nr_pages, bool oom_check)
2160
{
2161
	unsigned long csize = nr_pages * PAGE_SIZE;
2162 2163 2164 2165 2166
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2167
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2168 2169 2170 2171

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2172
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2173 2174 2175
		if (likely(!ret))
			return CHARGE_OK;

2176
		res_counter_uncharge(&memcg->res, csize);
2177 2178 2179 2180
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2181
	/*
2182 2183
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2184 2185 2186 2187
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2188
	if (nr_pages == CHARGE_BATCH)
2189 2190 2191 2192 2193
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2194
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2195
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2196
		return CHARGE_RETRY;
2197
	/*
2198 2199 2200 2201 2202 2203 2204
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2205
	 */
2206
	if (nr_pages == 1 && ret)
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2220
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2221 2222 2223 2224 2225
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2226
/*
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2246
 */
2247
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2248
				   gfp_t gfp_mask,
2249
				   unsigned int nr_pages,
2250
				   struct mem_cgroup **ptr,
2251
				   bool oom)
2252
{
2253
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2254
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2255
	struct mem_cgroup *memcg = NULL;
2256
	int ret;
2257

K
KAMEZAWA Hiroyuki 已提交
2258 2259 2260 2261 2262 2263 2264 2265
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2266

2267
	/*
2268 2269
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2270 2271 2272
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2273
	if (!*ptr && !mm)
2274
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2275
again:
2276 2277 2278 2279
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2280
			goto done;
2281
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2282
			goto done;
2283
		css_get(&memcg->css);
2284
	} else {
K
KAMEZAWA Hiroyuki 已提交
2285
		struct task_struct *p;
2286

K
KAMEZAWA Hiroyuki 已提交
2287 2288 2289
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2290
		 * Because we don't have task_lock(), "p" can exit.
2291
		 * In that case, "memcg" can point to root or p can be NULL with
2292 2293 2294 2295 2296 2297
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2298
		 */
2299
		memcg = mem_cgroup_from_task(p);
2300 2301 2302
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2303 2304 2305
			rcu_read_unlock();
			goto done;
		}
2306
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2319
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2320 2321 2322 2323 2324
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2325

2326 2327
	do {
		bool oom_check;
2328

2329
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2330
		if (fatal_signal_pending(current)) {
2331
			css_put(&memcg->css);
2332
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2333
		}
2334

2335 2336 2337 2338
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2339
		}
2340

2341
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2342 2343 2344 2345
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2346
			batch = nr_pages;
2347 2348
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2349
			goto again;
2350
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2351
			css_put(&memcg->css);
2352 2353
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2354
			if (!oom) {
2355
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2356
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2357
			}
2358 2359 2360 2361
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2362
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2363
			goto bypass;
2364
		}
2365 2366
	} while (ret != CHARGE_OK);

2367
	if (batch > nr_pages)
2368 2369
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2370
done:
2371
	*ptr = memcg;
2372 2373
	return 0;
nomem:
2374
	*ptr = NULL;
2375
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2376
bypass:
2377 2378
	*ptr = root_mem_cgroup;
	return -EINTR;
2379
}
2380

2381 2382 2383 2384 2385
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2386
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2387
				       unsigned int nr_pages)
2388
{
2389
	if (!mem_cgroup_is_root(memcg)) {
2390 2391
		unsigned long bytes = nr_pages * PAGE_SIZE;

2392
		res_counter_uncharge(&memcg->res, bytes);
2393
		if (do_swap_account)
2394
			res_counter_uncharge(&memcg->memsw, bytes);
2395
	}
2396 2397
}

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2435
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2436
{
2437
	struct mem_cgroup *memcg = NULL;
2438
	struct page_cgroup *pc;
2439
	unsigned short id;
2440 2441
	swp_entry_t ent;

2442 2443 2444
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2445
	lock_page_cgroup(pc);
2446
	if (PageCgroupUsed(pc)) {
2447 2448 2449
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2450
	} else if (PageSwapCache(page)) {
2451
		ent.val = page_private(page);
2452
		id = lookup_swap_cgroup_id(ent);
2453
		rcu_read_lock();
2454 2455 2456
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2457
		rcu_read_unlock();
2458
	}
2459
	unlock_page_cgroup(pc);
2460
	return memcg;
2461 2462
}

2463
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2464
				       struct page *page,
2465
				       unsigned int nr_pages,
2466 2467
				       enum charge_type ctype,
				       bool lrucare)
2468
{
2469
	struct page_cgroup *pc = lookup_page_cgroup(page);
2470
	struct zone *uninitialized_var(zone);
2471
	struct lruvec *lruvec;
2472
	bool was_on_lru = false;
2473
	bool anon;
2474

2475 2476 2477
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2478
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2479 2480 2481 2482 2483 2484
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2485 2486 2487 2488 2489 2490 2491 2492 2493

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2494
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2495
			ClearPageLRU(page);
2496
			del_page_from_lru_list(page, lruvec, page_lru(page));
2497 2498 2499 2500
			was_on_lru = true;
		}
	}

2501
	pc->mem_cgroup = memcg;
2502 2503 2504 2505 2506 2507 2508
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2509
	smp_wmb();
2510
	SetPageCgroupUsed(pc);
2511

2512 2513
	if (lrucare) {
		if (was_on_lru) {
2514
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2515 2516
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2517
			add_page_to_lru_list(page, lruvec, page_lru(page));
2518 2519 2520 2521
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2522 2523 2524 2525 2526 2527
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2528
	unlock_page_cgroup(pc);
2529

2530 2531 2532 2533 2534
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2535
	memcg_check_events(memcg, page);
2536
}
2537

2538 2539
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2540
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2541 2542
/*
 * Because tail pages are not marked as "used", set it. We're under
2543 2544 2545
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2546
 */
2547
void mem_cgroup_split_huge_fixup(struct page *head)
2548 2549
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2550 2551
	struct page_cgroup *pc;
	int i;
2552

2553 2554
	if (mem_cgroup_disabled())
		return;
2555 2556 2557 2558 2559 2560
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2561
}
2562
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2563

2564
/**
2565
 * mem_cgroup_move_account - move account of the page
2566
 * @page: the page
2567
 * @nr_pages: number of regular pages (>1 for huge pages)
2568 2569 2570 2571 2572
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2573
 * - page is not on LRU (isolate_page() is useful.)
2574
 * - compound_lock is held when nr_pages > 1
2575
 *
2576 2577
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2578
 */
2579 2580 2581 2582
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2583
				   struct mem_cgroup *to)
2584
{
2585 2586
	unsigned long flags;
	int ret;
2587
	bool anon = PageAnon(page);
2588

2589
	VM_BUG_ON(from == to);
2590
	VM_BUG_ON(PageLRU(page));
2591 2592 2593 2594 2595 2596 2597
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2598
	if (nr_pages > 1 && !PageTransHuge(page))
2599 2600 2601 2602 2603 2604 2605 2606
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2607
	move_lock_mem_cgroup(from, &flags);
2608

2609
	if (!anon && page_mapped(page)) {
2610 2611 2612 2613 2614
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2615
	}
2616
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2617

2618
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2619
	pc->mem_cgroup = to;
2620
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2621 2622 2623
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2624
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2625
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2626
	 * status here.
2627
	 */
2628
	move_unlock_mem_cgroup(from, &flags);
2629 2630
	ret = 0;
unlock:
2631
	unlock_page_cgroup(pc);
2632 2633 2634
	/*
	 * check events
	 */
2635 2636
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2637
out:
2638 2639 2640 2641 2642 2643 2644
	return ret;
}

/*
 * move charges to its parent.
 */

2645 2646
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2647 2648 2649 2650
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct mem_cgroup *parent;
2651
	unsigned int nr_pages;
2652
	unsigned long uninitialized_var(flags);
2653 2654 2655
	int ret;

	/* Is ROOT ? */
2656
	if (mem_cgroup_is_root(child))
2657 2658
		return -EINVAL;

2659 2660 2661 2662 2663
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2664

2665
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2666

2667 2668 2669 2670 2671 2672
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2673

2674
	if (nr_pages > 1)
2675 2676
		flags = compound_lock_irqsave(page);

2677
	ret = mem_cgroup_move_account(page, nr_pages,
2678
				pc, child, parent);
2679 2680
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2681

2682
	if (nr_pages > 1)
2683
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2684
	putback_lru_page(page);
2685
put:
2686
	put_page(page);
2687
out:
2688 2689 2690
	return ret;
}

2691 2692 2693 2694 2695 2696 2697
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2698
				gfp_t gfp_mask, enum charge_type ctype)
2699
{
2700
	struct mem_cgroup *memcg = NULL;
2701
	unsigned int nr_pages = 1;
2702
	bool oom = true;
2703
	int ret;
A
Andrea Arcangeli 已提交
2704

A
Andrea Arcangeli 已提交
2705
	if (PageTransHuge(page)) {
2706
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2707
		VM_BUG_ON(!PageTransHuge(page));
2708 2709 2710 2711 2712
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2713
	}
2714

2715
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2716
	if (ret == -ENOMEM)
2717
		return ret;
2718
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2719 2720 2721
	return 0;
}

2722 2723
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2724
{
2725
	if (mem_cgroup_disabled())
2726
		return 0;
2727 2728 2729
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2730
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2731
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2732 2733
}

D
Daisuke Nishimura 已提交
2734 2735 2736 2737
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2738 2739
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2740
{
2741
	struct mem_cgroup *memcg = NULL;
2742
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2743 2744
	int ret;

2745
	if (mem_cgroup_disabled())
2746
		return 0;
2747 2748
	if (PageCompound(page))
		return 0;
2749

2750
	if (unlikely(!mm))
2751
		mm = &init_mm;
2752 2753
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2754

2755
	if (!PageSwapCache(page))
2756
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2757
	else { /* page is swapcache/shmem */
2758
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2759
		if (!ret)
2760 2761
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2762
	return ret;
2763 2764
}

2765 2766 2767
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2768
 * struct page_cgroup is acquired. This refcnt will be consumed by
2769 2770
 * "commit()" or removed by "cancel()"
 */
2771 2772
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2773
				 gfp_t mask, struct mem_cgroup **memcgp)
2774
{
2775
	struct mem_cgroup *memcg;
2776
	int ret;
2777

2778
	*memcgp = NULL;
2779

2780
	if (mem_cgroup_disabled())
2781 2782 2783 2784 2785 2786
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2787 2788 2789
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2790 2791
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2792
		goto charge_cur_mm;
2793 2794
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2795
		goto charge_cur_mm;
2796 2797
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2798
	css_put(&memcg->css);
2799 2800
	if (ret == -EINTR)
		ret = 0;
2801
	return ret;
2802 2803 2804
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2805 2806 2807 2808
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2809 2810
}

D
Daisuke Nishimura 已提交
2811
static void
2812
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2813
					enum charge_type ctype)
2814
{
2815
	if (mem_cgroup_disabled())
2816
		return;
2817
	if (!memcg)
2818
		return;
2819
	cgroup_exclude_rmdir(&memcg->css);
2820

2821
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2822 2823 2824
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2825 2826 2827
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2828
	 */
2829
	if (do_swap_account && PageSwapCache(page)) {
2830
		swp_entry_t ent = {.val = page_private(page)};
2831
		mem_cgroup_uncharge_swap(ent);
2832
	}
2833 2834 2835 2836 2837
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2838
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2839 2840
}

2841 2842
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2843
{
2844 2845
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2846 2847
}

2848
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2849
{
2850
	if (mem_cgroup_disabled())
2851
		return;
2852
	if (!memcg)
2853
		return;
2854
	__mem_cgroup_cancel_charge(memcg, 1);
2855 2856
}

2857
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2858 2859
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2860 2861 2862
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2863

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2875
		batch->memcg = memcg;
2876 2877
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2878
	 * In those cases, all pages freed continuously can be expected to be in
2879 2880 2881 2882 2883 2884 2885 2886
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2887
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2888 2889
		goto direct_uncharge;

2890 2891 2892 2893 2894
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2895
	if (batch->memcg != memcg)
2896 2897
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2898
	batch->nr_pages++;
2899
	if (uncharge_memsw)
2900
		batch->memsw_nr_pages++;
2901 2902
	return;
direct_uncharge:
2903
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2904
	if (uncharge_memsw)
2905 2906 2907
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2908
}
2909

2910
/*
2911
 * uncharge if !page_mapped(page)
2912
 */
2913
static struct mem_cgroup *
2914
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2915
{
2916
	struct mem_cgroup *memcg = NULL;
2917 2918
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2919
	bool anon;
2920

2921
	if (mem_cgroup_disabled())
2922
		return NULL;
2923

K
KAMEZAWA Hiroyuki 已提交
2924
	if (PageSwapCache(page))
2925
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2926

A
Andrea Arcangeli 已提交
2927
	if (PageTransHuge(page)) {
2928
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2929 2930
		VM_BUG_ON(!PageTransHuge(page));
	}
2931
	/*
2932
	 * Check if our page_cgroup is valid
2933
	 */
2934
	pc = lookup_page_cgroup(page);
2935
	if (unlikely(!PageCgroupUsed(pc)))
2936
		return NULL;
2937

2938
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2939

2940
	memcg = pc->mem_cgroup;
2941

K
KAMEZAWA Hiroyuki 已提交
2942 2943 2944
	if (!PageCgroupUsed(pc))
		goto unlock_out;

2945 2946
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
2947 2948
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2949 2950 2951 2952 2953
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
2954 2955
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
2956
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2957 2958
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2970
	}
K
KAMEZAWA Hiroyuki 已提交
2971

2972
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2973

2974
	ClearPageCgroupUsed(pc);
2975 2976 2977 2978 2979 2980
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2981

2982
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2983
	/*
2984
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
2985 2986
	 * will never be freed.
	 */
2987
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
2988
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2989 2990
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
2991
	}
2992 2993
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2994

2995
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
2996 2997 2998

unlock_out:
	unlock_page_cgroup(pc);
2999
	return NULL;
3000 3001
}

3002 3003
void mem_cgroup_uncharge_page(struct page *page)
{
3004 3005 3006
	/* early check. */
	if (page_mapped(page))
		return;
3007
	VM_BUG_ON(page->mapping && !PageAnon(page));
3008 3009 3010 3011 3012 3013
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3014
	VM_BUG_ON(page->mapping);
3015 3016 3017
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3032 3033
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3054 3055 3056 3057 3058 3059
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3060
	memcg_oom_recover(batch->memcg);
3061 3062 3063 3064
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3065
#ifdef CONFIG_SWAP
3066
/*
3067
 * called after __delete_from_swap_cache() and drop "page" account.
3068 3069
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3070 3071
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3072 3073
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3074 3075 3076 3077 3078 3079
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3080

K
KAMEZAWA Hiroyuki 已提交
3081 3082 3083 3084 3085
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3086
		swap_cgroup_record(ent, css_id(&memcg->css));
3087
}
3088
#endif
3089 3090 3091 3092 3093 3094 3095

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3096
{
3097
	struct mem_cgroup *memcg;
3098
	unsigned short id;
3099 3100 3101 3102

	if (!do_swap_account)
		return;

3103 3104 3105
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3106
	if (memcg) {
3107 3108 3109 3110
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3111
		if (!mem_cgroup_is_root(memcg))
3112
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3113
		mem_cgroup_swap_statistics(memcg, false);
3114 3115
		mem_cgroup_put(memcg);
	}
3116
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3117
}
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3134
				struct mem_cgroup *from, struct mem_cgroup *to)
3135 3136 3137 3138 3139 3140 3141 3142
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3143
		mem_cgroup_swap_statistics(to, true);
3144
		/*
3145 3146 3147 3148 3149 3150
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3151 3152 3153 3154 3155 3156 3157 3158
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3159
				struct mem_cgroup *from, struct mem_cgroup *to)
3160 3161 3162
{
	return -EINVAL;
}
3163
#endif
K
KAMEZAWA Hiroyuki 已提交
3164

3165
/*
3166 3167
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3168
 */
3169
int mem_cgroup_prepare_migration(struct page *page,
3170
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3171
{
3172
	struct mem_cgroup *memcg = NULL;
3173
	struct page_cgroup *pc;
3174
	enum charge_type ctype;
3175
	int ret = 0;
3176

3177
	*memcgp = NULL;
3178

A
Andrea Arcangeli 已提交
3179
	VM_BUG_ON(PageTransHuge(page));
3180
	if (mem_cgroup_disabled())
3181 3182
		return 0;

3183 3184 3185
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3186 3187
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3219
	}
3220
	unlock_page_cgroup(pc);
3221 3222 3223 3224
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3225
	if (!memcg)
3226
		return 0;
3227

3228 3229
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3230
	css_put(&memcg->css);/* drop extra refcnt */
3231
	if (ret) {
3232 3233 3234 3235 3236 3237 3238 3239 3240
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3241
		/* we'll need to revisit this error code (we have -EINTR) */
3242
		return -ENOMEM;
3243
	}
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3256
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3257
	return ret;
3258
}
3259

3260
/* remove redundant charge if migration failed*/
3261
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3262
	struct page *oldpage, struct page *newpage, bool migration_ok)
3263
{
3264
	struct page *used, *unused;
3265
	struct page_cgroup *pc;
3266
	bool anon;
3267

3268
	if (!memcg)
3269
		return;
3270
	/* blocks rmdir() */
3271
	cgroup_exclude_rmdir(&memcg->css);
3272
	if (!migration_ok) {
3273 3274
		used = oldpage;
		unused = newpage;
3275
	} else {
3276
		used = newpage;
3277 3278
		unused = oldpage;
	}
3279
	/*
3280 3281 3282
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3283
	 */
3284 3285 3286 3287
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3288 3289 3290 3291
	anon = PageAnon(used);
	__mem_cgroup_uncharge_common(unused,
		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3292

3293
	/*
3294 3295 3296 3297 3298 3299
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3300
	 */
3301
	if (anon)
3302
		mem_cgroup_uncharge_page(used);
3303
	/*
3304 3305
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3306 3307 3308
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3309
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3310
}
3311

3312 3313 3314 3315 3316 3317 3318 3319
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3320
	struct mem_cgroup *memcg = NULL;
3321 3322 3323 3324 3325 3326 3327 3328 3329
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3330 3331 3332 3333 3334
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3335 3336
	unlock_page_cgroup(pc);

3337 3338 3339 3340 3341 3342 3343
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;

3344 3345 3346 3347 3348 3349 3350 3351
	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3352
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3353 3354
}

3355 3356 3357 3358 3359 3360
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3361 3362 3363 3364 3365
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3385
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3386 3387 3388 3389 3390
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3391 3392
static DEFINE_MUTEX(set_limit_mutex);

3393
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3394
				unsigned long long val)
3395
{
3396
	int retry_count;
3397
	u64 memswlimit, memlimit;
3398
	int ret = 0;
3399 3400
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3401
	int enlarge;
3402 3403 3404 3405 3406 3407 3408 3409 3410

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3411

3412
	enlarge = 0;
3413
	while (retry_count) {
3414 3415 3416 3417
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3418 3419 3420
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3421
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3422 3423 3424 3425 3426 3427
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3428 3429
			break;
		}
3430 3431 3432 3433 3434

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3435
		ret = res_counter_set_limit(&memcg->res, val);
3436 3437 3438 3439 3440 3441
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3442 3443 3444 3445 3446
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3447 3448
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3449 3450 3451 3452 3453 3454
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3455
	}
3456 3457
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3458

3459 3460 3461
	return ret;
}

L
Li Zefan 已提交
3462 3463
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3464
{
3465
	int retry_count;
3466
	u64 memlimit, memswlimit, oldusage, curusage;
3467 3468
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3469
	int enlarge = 0;
3470

3471 3472 3473
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3474 3475 3476 3477 3478 3479 3480 3481
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3482
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3483 3484 3485 3486 3487 3488 3489 3490
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3491 3492 3493
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3494
		ret = res_counter_set_limit(&memcg->memsw, val);
3495 3496 3497 3498 3499 3500
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3501 3502 3503 3504 3505
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3506 3507 3508
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3509
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3510
		/* Usage is reduced ? */
3511
		if (curusage >= oldusage)
3512
			retry_count--;
3513 3514
		else
			oldusage = curusage;
3515
	}
3516 3517
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3518 3519 3520
	return ret;
}

3521
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3522 3523
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3524 3525 3526 3527 3528 3529
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3530
	unsigned long long excess;
3531
	unsigned long nr_scanned;
3532 3533 3534 3535

	if (order > 0)
		return 0;

3536
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3550
		nr_scanned = 0;
3551
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3552
						    gfp_mask, &nr_scanned);
3553
		nr_reclaimed += reclaimed;
3554
		*total_scanned += nr_scanned;
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3577
				if (next_mz == mz)
3578
					css_put(&next_mz->memcg->css);
3579
				else /* next_mz == NULL or other memcg */
3580 3581 3582
					break;
			} while (1);
		}
3583 3584
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3585 3586 3587 3588 3589 3590 3591 3592
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3593
		/* If excess == 0, no tree ops */
3594
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3595
		spin_unlock(&mctz->lock);
3596
		css_put(&mz->memcg->css);
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3609
		css_put(&next_mz->memcg->css);
3610 3611 3612
	return nr_reclaimed;
}

3613 3614 3615 3616
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3617
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3618
				int node, int zid, enum lru_list lru)
3619
{
K
KAMEZAWA Hiroyuki 已提交
3620 3621
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3622
	struct list_head *list;
3623 3624
	struct page *busy;
	struct zone *zone;
3625
	int ret = 0;
3626

K
KAMEZAWA Hiroyuki 已提交
3627
	zone = &NODE_DATA(node)->node_zones[zid];
3628
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3629
	list = &mz->lruvec.lists[lru];
3630

3631
	loop = mz->lru_size[lru];
3632 3633 3634 3635
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3636
		struct page_cgroup *pc;
3637 3638
		struct page *page;

3639
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3640
		spin_lock_irqsave(&zone->lru_lock, flags);
3641
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3642
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3643
			break;
3644
		}
3645 3646 3647
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3648
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3649
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3650 3651
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3652
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3653

3654
		pc = lookup_page_cgroup(page);
3655

3656
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3657
		if (ret == -ENOMEM || ret == -EINTR)
3658
			break;
3659 3660 3661

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3662
			busy = page;
3663 3664 3665
			cond_resched();
		} else
			busy = NULL;
3666
	}
K
KAMEZAWA Hiroyuki 已提交
3667

3668 3669 3670
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3671 3672 3673 3674 3675 3676
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3677
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3678
{
3679 3680 3681
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3682
	struct cgroup *cgrp = memcg->css.cgroup;
3683

3684
	css_get(&memcg->css);
3685 3686

	shrink = 0;
3687 3688 3689
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3690
move_account:
3691
	do {
3692
		ret = -EBUSY;
3693 3694 3695 3696
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3697
			goto out;
3698 3699
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3700
		drain_all_stock_sync(memcg);
3701
		ret = 0;
3702
		mem_cgroup_start_move(memcg);
3703
		for_each_node_state(node, N_HIGH_MEMORY) {
3704
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3705 3706
				enum lru_list lru;
				for_each_lru(lru) {
3707
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3708
							node, zid, lru);
3709 3710 3711
					if (ret)
						break;
				}
3712
			}
3713 3714 3715
			if (ret)
				break;
		}
3716 3717
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3718 3719 3720
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3721
		cond_resched();
3722
	/* "ret" should also be checked to ensure all lists are empty. */
3723
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3724
out:
3725
	css_put(&memcg->css);
3726
	return ret;
3727 3728

try_to_free:
3729 3730
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3731 3732 3733
		ret = -EBUSY;
		goto out;
	}
3734 3735
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3736 3737
	/* try to free all pages in this cgroup */
	shrink = 1;
3738
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3739
		int progress;
3740 3741 3742 3743 3744

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3745
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3746
						false);
3747
		if (!progress) {
3748
			nr_retries--;
3749
			/* maybe some writeback is necessary */
3750
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3751
		}
3752 3753

	}
K
KAMEZAWA Hiroyuki 已提交
3754
	lru_add_drain();
3755
	/* try move_account...there may be some *locked* pages. */
3756
	goto move_account;
3757 3758
}

3759
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3760 3761 3762 3763 3764
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3765 3766 3767 3768 3769 3770 3771 3772 3773
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3774
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3775
	struct cgroup *parent = cont->parent;
3776
	struct mem_cgroup *parent_memcg = NULL;
3777 3778

	if (parent)
3779
		parent_memcg = mem_cgroup_from_cont(parent);
3780 3781 3782

	cgroup_lock();
	/*
3783
	 * If parent's use_hierarchy is set, we can't make any modifications
3784 3785 3786 3787 3788 3789
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3790
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3791 3792
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3793
			memcg->use_hierarchy = val;
3794 3795 3796 3797 3798 3799 3800 3801 3802
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3803

3804
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3805
					       enum mem_cgroup_stat_index idx)
3806
{
K
KAMEZAWA Hiroyuki 已提交
3807
	struct mem_cgroup *iter;
3808
	long val = 0;
3809

3810
	/* Per-cpu values can be negative, use a signed accumulator */
3811
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3812 3813 3814 3815 3816
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3817 3818
}

3819
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3820
{
K
KAMEZAWA Hiroyuki 已提交
3821
	u64 val;
3822

3823
	if (!mem_cgroup_is_root(memcg)) {
3824
		if (!swap)
3825
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3826
		else
3827
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3828 3829
	}

3830 3831
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3832

K
KAMEZAWA Hiroyuki 已提交
3833
	if (swap)
3834
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3835 3836 3837 3838

	return val << PAGE_SHIFT;
}

3839 3840 3841
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3842
{
3843
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3844
	char str[64];
3845
	u64 val;
3846
	int type, name, len;
3847 3848 3849

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3850 3851 3852 3853

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3854 3855
	switch (type) {
	case _MEM:
3856
		if (name == RES_USAGE)
3857
			val = mem_cgroup_usage(memcg, false);
3858
		else
3859
			val = res_counter_read_u64(&memcg->res, name);
3860 3861
		break;
	case _MEMSWAP:
3862
		if (name == RES_USAGE)
3863
			val = mem_cgroup_usage(memcg, true);
3864
		else
3865
			val = res_counter_read_u64(&memcg->memsw, name);
3866 3867 3868 3869
		break;
	default:
		BUG();
	}
3870 3871 3872

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3873
}
3874 3875 3876 3877
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3878 3879
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3880
{
3881
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3882
	int type, name;
3883 3884 3885
	unsigned long long val;
	int ret;

3886 3887
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3888 3889 3890 3891

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3892
	switch (name) {
3893
	case RES_LIMIT:
3894 3895 3896 3897
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3898 3899
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3900 3901 3902
		if (ret)
			break;
		if (type == _MEM)
3903
			ret = mem_cgroup_resize_limit(memcg, val);
3904 3905
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3906
		break;
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3921 3922 3923 3924 3925
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3926 3927
}

3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

3955
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3956
{
3957
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3958
	int type, name;
3959

3960 3961
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
3962 3963 3964 3965

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3966
	switch (name) {
3967
	case RES_MAX_USAGE:
3968
		if (type == _MEM)
3969
			res_counter_reset_max(&memcg->res);
3970
		else
3971
			res_counter_reset_max(&memcg->memsw);
3972 3973
		break;
	case RES_FAILCNT:
3974
		if (type == _MEM)
3975
			res_counter_reset_failcnt(&memcg->res);
3976
		else
3977
			res_counter_reset_failcnt(&memcg->memsw);
3978 3979
		break;
	}
3980

3981
	return 0;
3982 3983
}

3984 3985 3986 3987 3988 3989
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3990
#ifdef CONFIG_MMU
3991 3992 3993
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
3994
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3995 3996 3997 3998 3999 4000 4001 4002 4003

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4004
	memcg->move_charge_at_immigrate = val;
4005 4006 4007 4008
	cgroup_unlock();

	return 0;
}
4009 4010 4011 4012 4013 4014 4015
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4016

4017
#ifdef CONFIG_NUMA
4018 4019
static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
				      struct seq_file *m)
4020 4021 4022 4023
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4024
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4025

4026
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4027 4028
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4029
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4030 4031 4032 4033
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4034
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4035 4036
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4037
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4038
				LRU_ALL_FILE);
4039 4040 4041 4042
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4043
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4044 4045
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4046
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4047
				LRU_ALL_ANON);
4048 4049 4050 4051
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4052
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4053 4054
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4055
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4056
				BIT(LRU_UNEVICTABLE));
4057 4058 4059 4060 4061 4062 4063
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4077
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4078
				 struct seq_file *m)
4079
{
4080
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4081 4082
	struct mem_cgroup *mi;
	unsigned int i;
4083

4084 4085
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4086
			continue;
4087 4088
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4089
	}
L
Lee Schermerhorn 已提交
4090

4091 4092 4093 4094 4095 4096 4097 4098
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4099
	/* Hierarchical information */
4100 4101
	{
		unsigned long long limit, memsw_limit;
4102
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4103
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4104
		if (do_swap_account)
4105 4106
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4107
	}
K
KOSAKI Motohiro 已提交
4108

4109 4110 4111 4112
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

		if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4113
			continue;
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4134
	}
K
KAMEZAWA Hiroyuki 已提交
4135

K
KOSAKI Motohiro 已提交
4136 4137 4138 4139
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4140
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4141 4142 4143 4144 4145
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4146
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4147
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4148

4149 4150 4151 4152
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4153
			}
4154 4155 4156 4157
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4158 4159 4160
	}
#endif

4161 4162 4163
	return 0;
}

K
KOSAKI Motohiro 已提交
4164 4165 4166 4167
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4168
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4169 4170 4171 4172 4173 4174 4175
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4176

K
KOSAKI Motohiro 已提交
4177 4178 4179 4180 4181 4182 4183
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4184 4185 4186

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4187 4188
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4189 4190
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4191
		return -EINVAL;
4192
	}
K
KOSAKI Motohiro 已提交
4193 4194 4195

	memcg->swappiness = val;

4196 4197
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4198 4199 4200
	return 0;
}

4201 4202 4203 4204 4205 4206 4207 4208
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4209
		t = rcu_dereference(memcg->thresholds.primary);
4210
	else
4211
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4212 4213 4214 4215 4216 4217 4218

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4219
	 * current_threshold points to threshold just below or equal to usage.
4220 4221 4222
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4223
	i = t->current_threshold;
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4247
	t->current_threshold = i - 1;
4248 4249 4250 4251 4252 4253
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4254 4255 4256 4257 4258 4259 4260
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4271
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4272 4273 4274
{
	struct mem_cgroup_eventfd_list *ev;

4275
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4276 4277 4278 4279
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4280
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4281
{
K
KAMEZAWA Hiroyuki 已提交
4282 4283
	struct mem_cgroup *iter;

4284
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4285
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4286 4287 4288 4289
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4290 4291
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4292 4293
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4294 4295
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4296
	int i, size, ret;
4297 4298 4299 4300 4301 4302

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4303

4304
	if (type == _MEM)
4305
		thresholds = &memcg->thresholds;
4306
	else if (type == _MEMSWAP)
4307
		thresholds = &memcg->memsw_thresholds;
4308 4309 4310 4311 4312 4313
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4314
	if (thresholds->primary)
4315 4316
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4317
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4318 4319

	/* Allocate memory for new array of thresholds */
4320
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4321
			GFP_KERNEL);
4322
	if (!new) {
4323 4324 4325
		ret = -ENOMEM;
		goto unlock;
	}
4326
	new->size = size;
4327 4328

	/* Copy thresholds (if any) to new array */
4329 4330
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4331
				sizeof(struct mem_cgroup_threshold));
4332 4333
	}

4334
	/* Add new threshold */
4335 4336
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4337 4338

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4339
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4340 4341 4342
			compare_thresholds, NULL);

	/* Find current threshold */
4343
	new->current_threshold = -1;
4344
	for (i = 0; i < size; i++) {
4345
		if (new->entries[i].threshold <= usage) {
4346
			/*
4347 4348
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4349 4350
			 * it here.
			 */
4351
			++new->current_threshold;
4352 4353
		} else
			break;
4354 4355
	}

4356 4357 4358 4359 4360
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4361

4362
	/* To be sure that nobody uses thresholds */
4363 4364 4365 4366 4367 4368 4369 4370
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4371
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4372
	struct cftype *cft, struct eventfd_ctx *eventfd)
4373 4374
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4375 4376
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4377 4378
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4379
	int i, j, size;
4380 4381 4382

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4383
		thresholds = &memcg->thresholds;
4384
	else if (type == _MEMSWAP)
4385
		thresholds = &memcg->memsw_thresholds;
4386 4387 4388
	else
		BUG();

4389 4390 4391
	if (!thresholds->primary)
		goto unlock;

4392 4393 4394 4395 4396 4397
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4398 4399 4400
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4401 4402 4403
			size++;
	}

4404
	new = thresholds->spare;
4405

4406 4407
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4408 4409
		kfree(new);
		new = NULL;
4410
		goto swap_buffers;
4411 4412
	}

4413
	new->size = size;
4414 4415

	/* Copy thresholds and find current threshold */
4416 4417 4418
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4419 4420
			continue;

4421
		new->entries[j] = thresholds->primary->entries[i];
4422
		if (new->entries[j].threshold <= usage) {
4423
			/*
4424
			 * new->current_threshold will not be used
4425 4426 4427
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4428
			++new->current_threshold;
4429 4430 4431 4432
		}
		j++;
	}

4433
swap_buffers:
4434 4435
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4436 4437 4438 4439 4440 4441
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4442
	rcu_assign_pointer(thresholds->primary, new);
4443

4444
	/* To be sure that nobody uses thresholds */
4445
	synchronize_rcu();
4446
unlock:
4447 4448
	mutex_unlock(&memcg->thresholds_lock);
}
4449

K
KAMEZAWA Hiroyuki 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4462
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4463 4464 4465 4466 4467

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4468
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4469
		eventfd_signal(eventfd, 1);
4470
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4471 4472 4473 4474

	return 0;
}

4475
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4476 4477
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4478
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4479 4480 4481 4482 4483
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4484
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4485

4486
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4487 4488 4489 4490 4491 4492
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4493
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4494 4495
}

4496 4497 4498
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4499
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4500

4501
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4502

4503
	if (atomic_read(&memcg->under_oom))
4504 4505 4506 4507 4508 4509 4510 4511 4512
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4513
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4525
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4526 4527 4528
		cgroup_unlock();
		return -EINVAL;
	}
4529
	memcg->oom_kill_disable = val;
4530
	if (!val)
4531
		memcg_oom_recover(memcg);
4532 4533 4534 4535
	cgroup_unlock();
	return 0;
}

4536
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4537
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4538
{
4539
	return mem_cgroup_sockets_init(memcg, ss);
4540 4541
};

4542
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4543
{
4544
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4545
}
4546
#else
4547
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4548 4549 4550
{
	return 0;
}
G
Glauber Costa 已提交
4551

4552
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4553 4554
{
}
4555 4556
#endif

B
Balbir Singh 已提交
4557 4558
static struct cftype mem_cgroup_files[] = {
	{
4559
		.name = "usage_in_bytes",
4560
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4561
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4562 4563
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4564
	},
4565 4566
	{
		.name = "max_usage_in_bytes",
4567
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4568
		.trigger = mem_cgroup_reset,
4569
		.read = mem_cgroup_read,
4570
	},
B
Balbir Singh 已提交
4571
	{
4572
		.name = "limit_in_bytes",
4573
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4574
		.write_string = mem_cgroup_write,
4575
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4576
	},
4577 4578 4579 4580
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4581
		.read = mem_cgroup_read,
4582
	},
B
Balbir Singh 已提交
4583 4584
	{
		.name = "failcnt",
4585
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4586
		.trigger = mem_cgroup_reset,
4587
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4588
	},
4589 4590
	{
		.name = "stat",
4591
		.read_seq_string = mem_control_stat_show,
4592
	},
4593 4594 4595 4596
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4597 4598 4599 4600 4601
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4602 4603 4604 4605 4606
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4607 4608 4609 4610 4611
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4612 4613
	{
		.name = "oom_control",
4614 4615
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4616 4617 4618 4619
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4620 4621 4622
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4623
		.read_seq_string = mem_control_numa_stat_show,
4624 4625
	},
#endif
4626 4627 4628 4629
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4630
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4631 4632
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4633 4634 4635 4636 4637
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4638
		.read = mem_cgroup_read,
4639 4640 4641 4642 4643
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4644
		.read = mem_cgroup_read,
4645 4646 4647 4648 4649
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4650
		.read = mem_cgroup_read,
4651 4652
	},
#endif
4653
	{ },	/* terminate */
4654
};
4655

4656
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4657 4658
{
	struct mem_cgroup_per_node *pn;
4659
	struct mem_cgroup_per_zone *mz;
4660
	int zone, tmp = node;
4661 4662 4663 4664 4665 4666 4667 4668
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4669 4670
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4671
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4672 4673
	if (!pn)
		return 1;
4674 4675 4676

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4677
		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4678
		mz->usage_in_excess = 0;
4679
		mz->on_tree = false;
4680
		mz->memcg = memcg;
4681
	}
4682
	memcg->info.nodeinfo[node] = pn;
4683 4684 4685
	return 0;
}

4686
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4687
{
4688
	kfree(memcg->info.nodeinfo[node]);
4689 4690
}

4691 4692
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4693
	struct mem_cgroup *memcg;
4694
	int size = sizeof(struct mem_cgroup);
4695

4696
	/* Can be very big if MAX_NUMNODES is very big */
4697
	if (size < PAGE_SIZE)
4698
		memcg = kzalloc(size, GFP_KERNEL);
4699
	else
4700
		memcg = vzalloc(size);
4701

4702
	if (!memcg)
4703 4704
		return NULL;

4705 4706
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4707
		goto out_free;
4708 4709
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4710 4711 4712

out_free:
	if (size < PAGE_SIZE)
4713
		kfree(memcg);
4714
	else
4715
		vfree(memcg);
4716
	return NULL;
4717 4718
}

4719
/*
4720
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4721 4722 4723
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
4724
static void free_work(struct work_struct *work)
4725 4726
{
	struct mem_cgroup *memcg;
4727
	int size = sizeof(struct mem_cgroup);
4728 4729

	memcg = container_of(work, struct mem_cgroup, work_freeing);
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
4742 4743 4744 4745
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
4746
}
4747 4748

static void free_rcu(struct rcu_head *rcu_head)
4749 4750 4751 4752
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4753
	INIT_WORK(&memcg->work_freeing, free_work);
4754 4755 4756
	schedule_work(&memcg->work_freeing);
}

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4768
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4769
{
K
KAMEZAWA Hiroyuki 已提交
4770 4771
	int node;

4772 4773
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4774

B
Bob Liu 已提交
4775
	for_each_node(node)
4776
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4777

4778
	free_percpu(memcg->stat);
4779
	call_rcu(&memcg->rcu_freeing, free_rcu);
4780 4781
}

4782
static void mem_cgroup_get(struct mem_cgroup *memcg)
4783
{
4784
	atomic_inc(&memcg->refcnt);
4785 4786
}

4787
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4788
{
4789 4790 4791
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4792 4793 4794
		if (parent)
			mem_cgroup_put(parent);
	}
4795 4796
}

4797
static void mem_cgroup_put(struct mem_cgroup *memcg)
4798
{
4799
	__mem_cgroup_put(memcg, 1);
4800 4801
}

4802 4803 4804
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4805
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4806
{
4807
	if (!memcg->res.parent)
4808
		return NULL;
4809
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4810
}
G
Glauber Costa 已提交
4811
EXPORT_SYMBOL(parent_mem_cgroup);
4812

4813 4814 4815
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4816
	if (!mem_cgroup_disabled() && really_do_swap_account)
4817 4818 4819 4820 4821 4822 4823 4824
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4825 4826 4827 4828 4829 4830
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4831
	for_each_node(node) {
4832 4833 4834 4835 4836
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4837
			goto err_cleanup;
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4848 4849

err_cleanup:
B
Bob Liu 已提交
4850
	for_each_node(node) {
4851 4852 4853 4854 4855 4856 4857
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4858 4859
}

L
Li Zefan 已提交
4860
static struct cgroup_subsys_state * __ref
4861
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4862
{
4863
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4864
	long error = -ENOMEM;
4865
	int node;
B
Balbir Singh 已提交
4866

4867 4868
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4869
		return ERR_PTR(error);
4870

B
Bob Liu 已提交
4871
	for_each_node(node)
4872
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4873
			goto free_out;
4874

4875
	/* root ? */
4876
	if (cont->parent == NULL) {
4877
		int cpu;
4878
		enable_swap_cgroup();
4879
		parent = NULL;
4880 4881
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4882
		root_mem_cgroup = memcg;
4883 4884 4885 4886 4887
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4888
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4889
	} else {
4890
		parent = mem_cgroup_from_cont(cont->parent);
4891 4892
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4893
	}
4894

4895
	if (parent && parent->use_hierarchy) {
4896 4897
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4898 4899 4900 4901 4902 4903 4904
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4905
	} else {
4906 4907
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4908
	}
4909 4910
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4911

K
KOSAKI Motohiro 已提交
4912
	if (parent)
4913 4914 4915 4916
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
4917
	spin_lock_init(&memcg->move_lock);
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
4929
	return &memcg->css;
4930
free_out:
4931
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4932
	return ERR_PTR(error);
B
Balbir Singh 已提交
4933 4934
}

4935
static int mem_cgroup_pre_destroy(struct cgroup *cont)
4936
{
4937
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4938

4939
	return mem_cgroup_force_empty(memcg, false);
4940 4941
}

4942
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
4943
{
4944
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4945

4946
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
4947

4948
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
4949 4950
}

4951
#ifdef CONFIG_MMU
4952
/* Handlers for move charge at task migration. */
4953 4954
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4955
{
4956 4957
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4958
	struct mem_cgroup *memcg = mc.to;
4959

4960
	if (mem_cgroup_is_root(memcg)) {
4961 4962 4963 4964 4965 4966 4967 4968
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
4969
		 * "memcg" cannot be under rmdir() because we've already checked
4970 4971 4972 4973
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
4974
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
4975
			goto one_by_one;
4976
		if (do_swap_account && res_counter_charge(&memcg->memsw,
4977
						PAGE_SIZE * count, &dummy)) {
4978
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4995 4996
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
4997
		if (ret)
4998
			/* mem_cgroup_clear_mc() will do uncharge later */
4999
			return ret;
5000 5001
		mc.precharge++;
	}
5002 5003 5004 5005
	return ret;
}

/**
5006
 * get_mctgt_type - get target type of moving charge
5007 5008 5009
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5010
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5011 5012 5013 5014 5015 5016
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5017 5018 5019
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5020 5021 5022 5023 5024
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5025
	swp_entry_t	ent;
5026 5027 5028
};

enum mc_target_type {
5029
	MC_TARGET_NONE = 0,
5030
	MC_TARGET_PAGE,
5031
	MC_TARGET_SWAP,
5032 5033
};

D
Daisuke Nishimura 已提交
5034 5035
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5036
{
D
Daisuke Nishimura 已提交
5037
	struct page *page = vm_normal_page(vma, addr, ptent);
5038

D
Daisuke Nishimura 已提交
5039 5040 5041 5042
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5043
		if (!move_anon())
D
Daisuke Nishimura 已提交
5044
			return NULL;
5045 5046
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5047 5048 5049 5050 5051 5052 5053
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5054
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5055 5056 5057 5058 5059 5060 5061 5062
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5063 5064 5065 5066 5067
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5068 5069 5070 5071 5072
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5073 5074 5075 5076 5077 5078 5079
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5080

5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5100 5101 5102 5103 5104 5105
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5106
		if (do_swap_account)
5107 5108
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5109
	}
5110
#endif
5111 5112 5113
	return page;
}

5114
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5115 5116 5117 5118
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5119
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5120 5121 5122 5123 5124 5125
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5126 5127
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5128 5129

	if (!page && !ent.val)
5130
		return ret;
5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5146 5147
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5148
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5149 5150 5151
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5152 5153 5154 5155
	}
	return ret;
}

5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5191 5192 5193 5194 5195 5196 5197 5198
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5199 5200 5201 5202
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5203
		return 0;
5204
	}
5205

5206 5207
	if (pmd_trans_unstable(pmd))
		return 0;
5208 5209
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5210
		if (get_mctgt_type(vma, addr, *pte, NULL))
5211 5212 5213 5214
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5215 5216 5217
	return 0;
}

5218 5219 5220 5221 5222
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5223
	down_read(&mm->mmap_sem);
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5235
	up_read(&mm->mmap_sem);
5236 5237 5238 5239 5240 5241 5242 5243 5244

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5245 5246 5247 5248 5249
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5250 5251
}

5252 5253
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5254
{
5255 5256 5257
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5258
	/* we must uncharge all the leftover precharges from mc.to */
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5270
	}
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5305
	spin_lock(&mc.lock);
5306 5307
	mc.from = NULL;
	mc.to = NULL;
5308
	spin_unlock(&mc.lock);
5309
	mem_cgroup_end_move(from);
5310 5311
}

5312 5313
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5314
{
5315
	struct task_struct *p = cgroup_taskset_first(tset);
5316
	int ret = 0;
5317
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5318

5319
	if (memcg->move_charge_at_immigrate) {
5320 5321 5322
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5323
		VM_BUG_ON(from == memcg);
5324 5325 5326 5327 5328

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5329 5330 5331 5332
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5333
			VM_BUG_ON(mc.moved_charge);
5334
			VM_BUG_ON(mc.moved_swap);
5335
			mem_cgroup_start_move(from);
5336
			spin_lock(&mc.lock);
5337
			mc.from = from;
5338
			mc.to = memcg;
5339
			spin_unlock(&mc.lock);
5340
			/* We set mc.moving_task later */
5341 5342 5343 5344

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5345 5346
		}
		mmput(mm);
5347 5348 5349 5350
	}
	return ret;
}

5351 5352
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5353
{
5354
	mem_cgroup_clear_mc();
5355 5356
}

5357 5358 5359
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5360
{
5361 5362 5363 5364
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5365 5366 5367 5368
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5369

5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5381
		if (mc.precharge < HPAGE_PMD_NR) {
5382 5383 5384 5385 5386 5387 5388 5389 5390
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5391
							pc, mc.from, mc.to)) {
5392 5393 5394 5395 5396 5397 5398 5399
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5400
		return 0;
5401 5402
	}

5403 5404
	if (pmd_trans_unstable(pmd))
		return 0;
5405 5406 5407 5408
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5409
		swp_entry_t ent;
5410 5411 5412 5413

		if (!mc.precharge)
			break;

5414
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5415 5416 5417 5418 5419
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5420
			if (!mem_cgroup_move_account(page, 1, pc,
5421
						     mc.from, mc.to)) {
5422
				mc.precharge--;
5423 5424
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5425 5426
			}
			putback_lru_page(page);
5427
put:			/* get_mctgt_type() gets the page */
5428 5429
			put_page(page);
			break;
5430 5431
		case MC_TARGET_SWAP:
			ent = target.ent;
5432
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5433
				mc.precharge--;
5434 5435 5436
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5437
			break;
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5452
		ret = mem_cgroup_do_precharge(1);
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5496
	up_read(&mm->mmap_sem);
5497 5498
}

5499 5500
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5501
{
5502
	struct task_struct *p = cgroup_taskset_first(tset);
5503
	struct mm_struct *mm = get_task_mm(p);
5504 5505

	if (mm) {
5506 5507
		if (mc.to)
			mem_cgroup_move_charge(mm);
5508 5509
		mmput(mm);
	}
5510 5511
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5512
}
5513
#else	/* !CONFIG_MMU */
5514 5515
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5516 5517 5518
{
	return 0;
}
5519 5520
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5521 5522
{
}
5523 5524
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5525 5526 5527
{
}
#endif
B
Balbir Singh 已提交
5528

B
Balbir Singh 已提交
5529 5530 5531 5532
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5533
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5534
	.destroy = mem_cgroup_destroy,
5535 5536
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5537
	.attach = mem_cgroup_move_task,
5538
	.base_cftypes = mem_cgroup_files,
5539
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5540
	.use_id = 1,
5541
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5542
};
5543 5544

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5545 5546 5547
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5548
	if (!strcmp(s, "1"))
5549
		really_do_swap_account = 1;
5550
	else if (!strcmp(s, "0"))
5551 5552 5553
		really_do_swap_account = 0;
	return 1;
}
5554
__setup("swapaccount=", enable_swap_account);
5555 5556

#endif