memcontrol.c 144.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
130 131 132
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
133 134
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
135 136

	struct zone_reclaim_stat reclaim_stat;
137 138 139 140
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
141 142
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
143 144 145 146 147 148 149 150 151 152 153 154
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

175 176 177 178 179
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
180
/* For threshold */
181 182
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
183
	int current_threshold;
184 185 186 187 188
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
189 190 191 192 193 194 195 196 197 198 199 200

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
201 202 203 204 205
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
206

207 208
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
209

B
Balbir Singh 已提交
210 211 212 213 214 215 216
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
217 218 219
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
220 221 222 223 224 225 226
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
227 228 229 230
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
231 232 233 234
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
235
	struct mem_cgroup_lru_info info;
236
	/*
237
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
238
	 * reclaimed from.
239
	 */
K
KAMEZAWA Hiroyuki 已提交
240
	int last_scanned_child;
241 242 243
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
244 245
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
246
#endif
247 248 249 250
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
251 252 253 254

	bool		oom_lock;
	atomic_t	under_oom;

255
	atomic_t	refcnt;
256

257
	int	swappiness;
258 259
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
260

261 262 263
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

264 265 266 267
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
268
	struct mem_cgroup_thresholds thresholds;
269

270
	/* thresholds for mem+swap usage. RCU-protected */
271
	struct mem_cgroup_thresholds memsw_thresholds;
272

K
KAMEZAWA Hiroyuki 已提交
273 274
	/* For oom notifier event fd */
	struct list_head oom_notify;
275

276 277 278 279 280
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
281
	/*
282
	 * percpu counter.
283
	 */
284
	struct mem_cgroup_stat_cpu *stat;
285 286 287 288 289 290
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
291 292 293 294

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
295 296
};

297 298 299 300 301 302
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
303
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
304
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
305 306 307
	NR_MOVE_TYPE,
};

308 309
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
310
	spinlock_t	  lock; /* for from, to */
311 312 313
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
314
	unsigned long moved_charge;
315
	unsigned long moved_swap;
316 317 318
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
319
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
320 321
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
322

D
Daisuke Nishimura 已提交
323 324 325 326 327 328
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

329 330 331 332 333 334
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

335 336 337 338 339 340 341
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

342 343 344
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
345
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
346
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
347
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
348
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
349 350 351
	NR_CHARGE_TYPE,
};

352
/* for encoding cft->private value on file */
353 354 355
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
356 357 358
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
359 360
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
361

362 363 364 365 366 367 368
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
369 370
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
371

372 373
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
374 375 376 377 378

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#ifdef CONFIG_INET
#include <net/sock.h>
G
Glauber Costa 已提交
379
#include <net/ip.h>
G
Glauber Costa 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
	/* A socket spends its whole life in the same cgroup */
	if (sk->sk_cgrp) {
		WARN_ON(1);
		return;
	}
	if (static_branch(&memcg_socket_limit_enabled)) {
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
414 415 416 417 418 419 420 421 422

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
423 424 425
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

426
static void drain_all_stock_async(struct mem_cgroup *memcg);
427

428
static struct mem_cgroup_per_zone *
429
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
430
{
431
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
432 433
}

434
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
435
{
436
	return &memcg->css;
437 438
}

439
static struct mem_cgroup_per_zone *
440
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
441
{
442 443
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
444

445
	return mem_cgroup_zoneinfo(memcg, nid, zid);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
464
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
465
				struct mem_cgroup_per_zone *mz,
466 467
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
468 469 470 471 472 473 474 475
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

476 477 478
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
495 496 497
}

static void
498
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
499 500 501 502 503 504 505 506 507
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

508
static void
509
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
510 511 512 513
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
514
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
515 516 517 518
	spin_unlock(&mctz->lock);
}


519
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
520
{
521
	unsigned long long excess;
522 523
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
524 525
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
526 527 528
	mctz = soft_limit_tree_from_page(page);

	/*
529 530
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
531
	 */
532 533 534
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
535 536 537 538
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
539
		if (excess || mz->on_tree) {
540 541 542
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
543
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
544
			/*
545 546
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
547
			 */
548
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
549 550
			spin_unlock(&mctz->lock);
		}
551 552 553
	}
}

554
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
555 556 557 558 559 560 561
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
562
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
563
			mctz = soft_limit_tree_node_zone(node, zone);
564
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
565 566 567 568
		}
	}
}

569 570 571 572
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
573
	struct mem_cgroup_per_zone *mz;
574 575

retry:
576
	mz = NULL;
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
625
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
626
				 enum mem_cgroup_stat_index idx)
627
{
628
	long val = 0;
629 630
	int cpu;

631 632
	get_online_cpus();
	for_each_online_cpu(cpu)
633
		val += per_cpu(memcg->stat->count[idx], cpu);
634
#ifdef CONFIG_HOTPLUG_CPU
635 636 637
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
638 639
#endif
	put_online_cpus();
640 641 642
	return val;
}

643
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
644 645 646
					 bool charge)
{
	int val = (charge) ? 1 : -1;
647
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
648 649
}

650
void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
651
{
652
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
653 654
}

655
void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
656
{
657
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
658 659
}

660
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
661 662 663 664 665 666
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
667
		val += per_cpu(memcg->stat->events[idx], cpu);
668
#ifdef CONFIG_HOTPLUG_CPU
669 670 671
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
672 673 674 675
#endif
	return val;
}

676
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
677
					 bool file, int nr_pages)
678
{
679 680
	preempt_disable();

681
	if (file)
682 683
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
684
	else
685 686
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
687

688 689
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
690
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
691
	else {
692
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
693 694
		nr_pages = -nr_pages; /* for event */
	}
695

696
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
697

698
	preempt_enable();
699 700
}

701
unsigned long
702
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
703
			unsigned int lru_mask)
704 705
{
	struct mem_cgroup_per_zone *mz;
706 707 708
	enum lru_list l;
	unsigned long ret = 0;

709
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
710 711 712 713 714 715 716 717 718

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
719
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
720 721
			int nid, unsigned int lru_mask)
{
722 723 724
	u64 total = 0;
	int zid;

725
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
726 727
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
728

729 730
	return total;
}
731

732
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
733
			unsigned int lru_mask)
734
{
735
	int nid;
736 737
	u64 total = 0;

738
	for_each_node_state(nid, N_HIGH_MEMORY)
739
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
740
	return total;
741 742
}

743
static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
744 745 746
{
	unsigned long val, next;

747 748
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
749 750 751 752
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

753
static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
754
{
755
	unsigned long val, next;
756

757
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
758

759 760 761 762 763 764 765
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
766 767 768
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
769 770 771 772
	default:
		return;
	}

773
	__this_cpu_write(memcg->stat->targets[target], next);
774 775 776 777 778 779
}

/*
 * Check events in order.
 *
 */
780
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
781
{
782
	preempt_disable();
783
	/* threshold event is triggered in finer grain than soft limit */
784 785 786 787
	if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
		mem_cgroup_threshold(memcg);
		__mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(memcg,
788
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
789 790
			mem_cgroup_update_tree(memcg, page);
			__mem_cgroup_target_update(memcg,
791 792 793
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
794
		if (unlikely(__memcg_event_check(memcg,
795
			MEM_CGROUP_TARGET_NUMAINFO))) {
796 797
			atomic_inc(&memcg->numainfo_events);
			__mem_cgroup_target_update(memcg,
798
				MEM_CGROUP_TARGET_NUMAINFO);
799
		}
800
#endif
801
	}
802
	preempt_enable();
803 804
}

G
Glauber Costa 已提交
805
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
806 807 808 809 810 811
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

812
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
813
{
814 815 816 817 818 819 820 821
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

822 823 824 825
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

826
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
827
{
828
	struct mem_cgroup *memcg = NULL;
829 830 831

	if (!mm)
		return NULL;
832 833 834 835 836 837 838
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
839 840
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
841
			break;
842
	} while (!css_tryget(&memcg->css));
843
	rcu_read_unlock();
844
	return memcg;
845 846
}

K
KAMEZAWA Hiroyuki 已提交
847
/* The caller has to guarantee "mem" exists before calling this */
848
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
849
{
850 851 852
	struct cgroup_subsys_state *css;
	int found;

853
	if (!memcg) /* ROOT cgroup has the smallest ID */
854
		return root_mem_cgroup; /*css_put/get against root is ignored*/
855 856 857
	if (!memcg->use_hierarchy) {
		if (css_tryget(&memcg->css))
			return memcg;
858 859 860 861 862 863 864
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
865
	css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
866
	if (css && css_tryget(css))
867
		memcg = container_of(css, struct mem_cgroup, css);
868
	else
869
		memcg = NULL;
870
	rcu_read_unlock();
871
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
872 873 874 875 876 877 878 879 880
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
881 882
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
883
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
884

K
KAMEZAWA Hiroyuki 已提交
885
	css_put(&iter->css);
886 887
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
888
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
889

890 891 892
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
893 894
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
895
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
896 897 898

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
899
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
900
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
901
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
902
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
903
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
904
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
905

K
KAMEZAWA Hiroyuki 已提交
906
	return iter;
K
KAMEZAWA Hiroyuki 已提交
907
}
K
KAMEZAWA Hiroyuki 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

921 922 923
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
924

925
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
926
{
927
	return (memcg == root_mem_cgroup);
928 929
}

930 931
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
932
	struct mem_cgroup *memcg;
933 934 935 936 937

	if (!mm)
		return;

	rcu_read_lock();
938 939
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
940 941 942 943
		goto out;

	switch (idx) {
	case PGMAJFAULT:
944
		mem_cgroup_pgmajfault(memcg, 1);
945 946
		break;
	case PGFAULT:
947
		mem_cgroup_pgfault(memcg, 1);
948 949 950 951 952 953 954 955 956
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
970

K
KAMEZAWA Hiroyuki 已提交
971 972 973 974
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
975

976
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
977 978 979
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
980
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
981
		return;
982
	VM_BUG_ON(!pc->mem_cgroup);
983 984 985 986
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
987
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
988 989
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
990 991 992
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
993
	list_del_init(&pc->lru);
994 995
}

K
KAMEZAWA Hiroyuki 已提交
996
void mem_cgroup_del_lru(struct page *page)
997
{
K
KAMEZAWA Hiroyuki 已提交
998 999
	mem_cgroup_del_lru_list(page, page_lru(page));
}
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
1023
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1024 1025 1026
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
1027 1028 1029 1030
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
1031

1032
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1033
		return;
1034

K
KAMEZAWA Hiroyuki 已提交
1035
	pc = lookup_page_cgroup(page);
1036
	/* unused or root page is not rotated. */
1037 1038 1039 1040 1041
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
1042
		return;
1043
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
1044
	list_move(&pc->lru, &mz->lists[lru]);
1045 1046
}

K
KAMEZAWA Hiroyuki 已提交
1047
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1048
{
K
KAMEZAWA Hiroyuki 已提交
1049 1050
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
1051

1052
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1053 1054
		return;
	pc = lookup_page_cgroup(page);
1055
	VM_BUG_ON(PageCgroupAcctLRU(pc));
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
K
KAMEZAWA Hiroyuki 已提交
1066
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
1067
		return;
1068 1069
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1070
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1071 1072
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1073 1074 1075
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1076 1077
	list_add(&pc->lru, &mz->lists[lru]);
}
1078

K
KAMEZAWA Hiroyuki 已提交
1079
/*
1080 1081 1082 1083
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1084
 */
1085
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1086
{
1087 1088 1089 1090
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1102 1103 1104 1105 1106 1107 1108 1109
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1110 1111
}

1112
static void mem_cgroup_lru_add_after_commit(struct page *page)
1113 1114 1115 1116
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
1127 1128 1129
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1130 1131
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1132
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1133 1134 1135 1136 1137
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1138 1139 1140
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1141
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1142 1143 1144
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1145 1146
}

1147
/*
1148
 * Checks whether given mem is same or in the root_mem_cgroup's
1149 1150
 * hierarchy subtree
 */
1151 1152
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1153
{
1154 1155 1156
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1157 1158 1159 1160 1161
	}

	return true;
}

1162
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1163 1164
{
	int ret;
1165
	struct mem_cgroup *curr = NULL;
1166
	struct task_struct *p;
1167

1168 1169 1170 1171 1172
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1173 1174
	if (!curr)
		return 0;
1175
	/*
1176
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1177
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1178 1179
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1180
	 */
1181
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1182
	css_put(&curr->css);
1183 1184 1185
	return ret;
}

1186
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1187
{
1188 1189 1190
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1191
	unsigned long inactive;
1192
	unsigned long active;
1193
	unsigned long gb;
1194

1195 1196 1197 1198
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1199

1200 1201 1202 1203 1204 1205
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1206
	return inactive * inactive_ratio < active;
1207 1208
}

1209
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1210 1211 1212
{
	unsigned long active;
	unsigned long inactive;
1213 1214
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1215

1216 1217 1218 1219
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1220 1221 1222 1223

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1224 1225 1226
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1227
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1244 1245
	if (!PageCgroupUsed(pc))
		return NULL;
1246 1247
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1248
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1249 1250 1251
	return &mz->reclaim_stat;
}

1252 1253 1254
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
1255 1256
					isolate_mode_t mode,
					struct zone *z,
1257
					struct mem_cgroup *mem_cont,
1258
					int active, int file)
1259 1260 1261 1262 1263 1264
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1265
	struct page_cgroup *pc, *tmp;
1266
	int nid = zone_to_nid(z);
1267 1268
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1269
	int lru = LRU_FILE * file + active;
1270
	int ret;
1271

1272
	BUG_ON(!mem_cont);
1273
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1274
	src = &mz->lists[lru];
1275

1276 1277
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1278
		if (scan >= nr_to_scan)
1279
			break;
K
KAMEZAWA Hiroyuki 已提交
1280

1281 1282
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1283

1284
		page = lookup_cgroup_page(pc);
1285

H
Hugh Dickins 已提交
1286
		if (unlikely(!PageLRU(page)))
1287 1288
			continue;

H
Hugh Dickins 已提交
1289
		scan++;
1290 1291 1292
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1293
			list_move(&page->lru, dst);
1294
			mem_cgroup_del_lru(page);
1295
			nr_taken += hpage_nr_pages(page);
1296 1297 1298 1299 1300 1301 1302
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1303 1304 1305 1306
		}
	}

	*scanned = scan;
1307 1308 1309 1310

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1311 1312 1313
	return nr_taken;
}

1314 1315 1316
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1317
/**
1318 1319
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1320
 *
1321
 * Returns the maximum amount of memory @mem can be charged with, in
1322
 * pages.
1323
 */
1324
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1325
{
1326 1327
	unsigned long long margin;

1328
	margin = res_counter_margin(&memcg->res);
1329
	if (do_swap_account)
1330
		margin = min(margin, res_counter_margin(&memcg->memsw));
1331
	return margin >> PAGE_SHIFT;
1332 1333
}

1334
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1335 1336 1337 1338 1339 1340 1341
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1342
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1343 1344
}

1345
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1346 1347
{
	int cpu;
1348 1349

	get_online_cpus();
1350
	spin_lock(&memcg->pcp_counter_lock);
1351
	for_each_online_cpu(cpu)
1352 1353 1354
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1355
	put_online_cpus();
1356 1357 1358 1359

	synchronize_rcu();
}

1360
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1361 1362 1363
{
	int cpu;

1364
	if (!memcg)
1365
		return;
1366
	get_online_cpus();
1367
	spin_lock(&memcg->pcp_counter_lock);
1368
	for_each_online_cpu(cpu)
1369 1370 1371
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1372
	put_online_cpus();
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1386
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1387 1388
{
	VM_BUG_ON(!rcu_read_lock_held());
1389
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1390
}
1391

1392
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1393
{
1394 1395
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1396
	bool ret = false;
1397 1398 1399 1400 1401 1402 1403 1404 1405
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1406

1407 1408
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1409 1410
unlock:
	spin_unlock(&mc.lock);
1411 1412 1413
	return ret;
}

1414
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1415 1416
{
	if (mc.moving_task && current != mc.moving_task) {
1417
		if (mem_cgroup_under_move(memcg)) {
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1430
/**
1431
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1450
	if (!memcg || !p)
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1497 1498 1499 1500
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1501
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1502 1503
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1504 1505
	struct mem_cgroup *iter;

1506
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1507
		num++;
1508 1509 1510
	return num;
}

D
David Rientjes 已提交
1511 1512 1513 1514 1515 1516 1517 1518
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1519 1520 1521
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1522 1523 1524 1525 1526 1527 1528 1529
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1530
/*
K
KAMEZAWA Hiroyuki 已提交
1531 1532 1533 1534 1535
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
1536
mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
K
KAMEZAWA Hiroyuki 已提交
1537 1538 1539 1540 1541
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

1542 1543 1544
	if (!root_memcg->use_hierarchy) {
		css_get(&root_memcg->css);
		ret = root_memcg;
K
KAMEZAWA Hiroyuki 已提交
1545 1546 1547 1548
	}

	while (!ret) {
		rcu_read_lock();
1549 1550
		nextid = root_memcg->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
K
KAMEZAWA Hiroyuki 已提交
1551 1552 1553 1554 1555 1556 1557 1558
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
1559
			root_memcg->last_scanned_child = 0;
K
KAMEZAWA Hiroyuki 已提交
1560
		} else
1561
			root_memcg->last_scanned_child = found;
K
KAMEZAWA Hiroyuki 已提交
1562 1563 1564 1565 1566
	}

	return ret;
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1577
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1578 1579
		int nid, bool noswap)
{
1580
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1581 1582 1583
		return true;
	if (noswap || !total_swap_pages)
		return false;
1584
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1585 1586 1587 1588
		return true;
	return false;

}
1589 1590 1591 1592 1593 1594 1595 1596
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1597
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1598 1599
{
	int nid;
1600 1601 1602 1603
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1604
	if (!atomic_read(&memcg->numainfo_events))
1605
		return;
1606
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1607 1608 1609
		return;

	/* make a nodemask where this memcg uses memory from */
1610
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1611 1612 1613

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1614 1615
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1616
	}
1617

1618 1619
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1634
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1635 1636 1637
{
	int node;

1638 1639
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1640

1641
	node = next_node(node, memcg->scan_nodes);
1642
	if (node == MAX_NUMNODES)
1643
		node = first_node(memcg->scan_nodes);
1644 1645 1646 1647 1648 1649 1650 1651 1652
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1653
	memcg->last_scanned_node = node;
1654 1655 1656
	return node;
}

1657 1658 1659 1660 1661 1662
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1663
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1664 1665 1666 1667 1668 1669 1670
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1671 1672
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1673
		     nid < MAX_NUMNODES;
1674
		     nid = next_node(nid, memcg->scan_nodes)) {
1675

1676
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1677 1678 1679 1680 1681 1682 1683
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1684
		if (node_isset(nid, memcg->scan_nodes))
1685
			continue;
1686
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1687 1688 1689 1690 1691
			return true;
	}
	return false;
}

1692
#else
1693
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1694 1695 1696
{
	return 0;
}
1697

1698
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1699
{
1700
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1701
}
1702 1703
#endif

K
KAMEZAWA Hiroyuki 已提交
1704 1705 1706 1707
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1708
 *
1709
 * root_memcg is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1710
 *
1711
 * We give up and return to the caller when we visit root_memcg twice.
K
KAMEZAWA Hiroyuki 已提交
1712
 * (other groups can be removed while we're walking....)
1713 1714
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1715
 */
1716
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1717
						struct zone *zone,
1718
						gfp_t gfp_mask,
1719 1720
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1721
{
K
KAMEZAWA Hiroyuki 已提交
1722 1723 1724
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1725 1726
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1727
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1728
	unsigned long excess;
1729
	unsigned long nr_scanned;
1730

1731
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1732

1733
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1734
	if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1735 1736
		noswap = true;

1737
	while (1) {
1738 1739
		victim = mem_cgroup_select_victim(root_memcg);
		if (victim == root_memcg) {
K
KAMEZAWA Hiroyuki 已提交
1740
			loop++;
1741 1742 1743 1744 1745 1746 1747
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1748
				drain_all_stock_async(root_memcg);
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1760
				 * We want to do more targeted reclaim.
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1772
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1773 1774
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1775 1776
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1777
		/* we use swappiness of local cgroup */
1778
		if (check_soft) {
1779
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1780 1781
				noswap, zone, &nr_scanned);
			*total_scanned += nr_scanned;
1782
		} else
1783
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1784
						noswap);
K
KAMEZAWA Hiroyuki 已提交
1785
		css_put(&victim->css);
1786 1787 1788 1789 1790 1791 1792
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1793
		total += ret;
1794
		if (check_soft) {
1795
			if (!res_counter_soft_limit_excess(&root_memcg->res))
1796
				return total;
1797
		} else if (mem_cgroup_margin(root_memcg))
1798
			return total;
1799
	}
K
KAMEZAWA Hiroyuki 已提交
1800
	return total;
1801 1802
}

K
KAMEZAWA Hiroyuki 已提交
1803 1804 1805
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1806
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1807
 */
1808
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1809
{
1810 1811
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1812

1813
	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1814
		if (iter->oom_lock) {
1815 1816 1817 1818 1819 1820
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
			cond = false;
1821 1822
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1823
	}
K
KAMEZAWA Hiroyuki 已提交
1824

1825
	if (!failed)
1826
		return true;
1827 1828 1829 1830 1831 1832

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
1833
	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1834 1835 1836 1837 1838 1839
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
1840
	return false;
1841
}
1842

1843
/*
1844
 * Has to be called with memcg_oom_lock
1845
 */
1846
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1847
{
K
KAMEZAWA Hiroyuki 已提交
1848 1849
	struct mem_cgroup *iter;

1850
	for_each_mem_cgroup_tree(iter, memcg)
1851 1852 1853 1854
		iter->oom_lock = false;
	return 0;
}

1855
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1856 1857 1858
{
	struct mem_cgroup *iter;

1859
	for_each_mem_cgroup_tree(iter, memcg)
1860 1861 1862
		atomic_inc(&iter->under_oom);
}

1863
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1864 1865 1866
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1867 1868 1869 1870 1871
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1872
	for_each_mem_cgroup_tree(iter, memcg)
1873
		atomic_add_unless(&iter->under_oom, -1, 0);
1874 1875
}

1876
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1877 1878
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1879 1880 1881 1882 1883 1884 1885 1886
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1887 1888
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1889 1890 1891
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1892
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1893 1894 1895 1896 1897

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1898 1899
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1900 1901 1902 1903
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1904
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1905
{
1906 1907
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1908 1909
}

1910
static void memcg_oom_recover(struct mem_cgroup *memcg)
1911
{
1912 1913
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1914 1915
}

K
KAMEZAWA Hiroyuki 已提交
1916 1917 1918
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1919
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1920
{
K
KAMEZAWA Hiroyuki 已提交
1921
	struct oom_wait_info owait;
1922
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1923

1924
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1925 1926 1927 1928
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1929
	need_to_kill = true;
1930
	mem_cgroup_mark_under_oom(memcg);
1931

1932
	/* At first, try to OOM lock hierarchy under memcg.*/
1933
	spin_lock(&memcg_oom_lock);
1934
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1935 1936 1937 1938 1939
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1940
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1941
	if (!locked || memcg->oom_kill_disable)
1942 1943
		need_to_kill = false;
	if (locked)
1944
		mem_cgroup_oom_notify(memcg);
1945
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1946

1947 1948
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1949
		mem_cgroup_out_of_memory(memcg, mask);
1950
	} else {
K
KAMEZAWA Hiroyuki 已提交
1951
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1952
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1953
	}
1954
	spin_lock(&memcg_oom_lock);
1955
	if (locked)
1956 1957
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1958
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1959

1960
	mem_cgroup_unmark_under_oom(memcg);
1961

K
KAMEZAWA Hiroyuki 已提交
1962 1963 1964
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1965
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1966
	return true;
1967 1968
}

1969 1970 1971
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1991
 */
1992

1993 1994
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1995
{
1996
	struct mem_cgroup *memcg;
1997 1998
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1999
	unsigned long uninitialized_var(flags);
2000 2001 2002 2003

	if (unlikely(!pc))
		return;

2004
	rcu_read_lock();
2005 2006
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2007 2008
		goto out;
	/* pc->mem_cgroup is unstable ? */
2009
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
2010
		/* take a lock against to access pc->mem_cgroup */
2011
		move_lock_page_cgroup(pc, &flags);
2012
		need_unlock = true;
2013 2014
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
2015 2016
			goto out;
	}
2017 2018

	switch (idx) {
2019
	case MEMCG_NR_FILE_MAPPED:
2020 2021 2022
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
2023
			ClearPageCgroupFileMapped(pc);
2024
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2025 2026 2027
		break;
	default:
		BUG();
2028
	}
2029

2030
	this_cpu_add(memcg->stat->count[idx], val);
2031

2032 2033
out:
	if (unlikely(need_unlock))
2034
		move_unlock_page_cgroup(pc, &flags);
2035 2036
	rcu_read_unlock();
	return;
2037
}
2038
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2039

2040 2041 2042 2043
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2044
#define CHARGE_BATCH	32U
2045 2046
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2047
	unsigned int nr_pages;
2048
	struct work_struct work;
2049 2050
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2051 2052
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2053
static DEFINE_MUTEX(percpu_charge_mutex);
2054 2055

/*
2056
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2057 2058 2059 2060
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2061
static bool consume_stock(struct mem_cgroup *memcg)
2062 2063 2064 2065 2066
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2067
	if (memcg == stock->cached && stock->nr_pages)
2068
		stock->nr_pages--;
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2082 2083 2084 2085
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2086
		if (do_swap_account)
2087 2088
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2101
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2102 2103 2104 2105
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2106
 * This will be consumed by consume_stock() function, later.
2107
 */
2108
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2109 2110 2111
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2112
	if (stock->cached != memcg) { /* reset if necessary */
2113
		drain_stock(stock);
2114
		stock->cached = memcg;
2115
	}
2116
	stock->nr_pages += nr_pages;
2117 2118 2119 2120
	put_cpu_var(memcg_stock);
}

/*
2121
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2122 2123
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2124
 */
2125
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2126
{
2127
	int cpu, curcpu;
2128

2129 2130
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2131
	curcpu = get_cpu();
2132 2133
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2134
		struct mem_cgroup *memcg;
2135

2136 2137
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2138
			continue;
2139
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2140
			continue;
2141 2142 2143 2144 2145 2146
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2147
	}
2148
	put_cpu();
2149 2150 2151 2152 2153 2154

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2155
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2156 2157 2158
			flush_work(&stock->work);
	}
out:
2159
 	put_online_cpus();
2160 2161 2162 2163 2164 2165 2166 2167
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2168
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2169
{
2170 2171 2172 2173 2174
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2175
	drain_all_stock(root_memcg, false);
2176
	mutex_unlock(&percpu_charge_mutex);
2177 2178 2179
}

/* This is a synchronous drain interface. */
2180
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2181 2182
{
	/* called when force_empty is called */
2183
	mutex_lock(&percpu_charge_mutex);
2184
	drain_all_stock(root_memcg, true);
2185
	mutex_unlock(&percpu_charge_mutex);
2186 2187
}

2188 2189 2190 2191
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2192
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2193 2194 2195
{
	int i;

2196
	spin_lock(&memcg->pcp_counter_lock);
2197
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2198
		long x = per_cpu(memcg->stat->count[i], cpu);
2199

2200 2201
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2202
	}
2203
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2204
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2205

2206 2207
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2208
	}
2209
	/* need to clear ON_MOVE value, works as a kind of lock. */
2210 2211
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2212 2213
}

2214
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2215 2216 2217
{
	int idx = MEM_CGROUP_ON_MOVE;

2218 2219 2220
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2221 2222 2223
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2224 2225 2226 2227 2228
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2229
	struct mem_cgroup *iter;
2230

2231 2232 2233 2234 2235 2236
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2237
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2238
		return NOTIFY_OK;
2239 2240 2241 2242

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2243 2244 2245 2246 2247
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2258
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2259
				unsigned int nr_pages, bool oom_check)
2260
{
2261
	unsigned long csize = nr_pages * PAGE_SIZE;
2262 2263 2264 2265 2266
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2267
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2268 2269 2270 2271

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2272
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2273 2274 2275
		if (likely(!ret))
			return CHARGE_OK;

2276
		res_counter_uncharge(&memcg->res, csize);
2277 2278 2279 2280
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2281
	/*
2282 2283
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2284 2285 2286 2287
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2288
	if (nr_pages == CHARGE_BATCH)
2289 2290 2291 2292 2293 2294
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2295
					      gfp_mask, flags, NULL);
2296
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2297
		return CHARGE_RETRY;
2298
	/*
2299 2300 2301 2302 2303 2304 2305
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2306
	 */
2307
	if (nr_pages == 1 && ret)
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2327 2328 2329
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2330
 */
2331
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2332
				   gfp_t gfp_mask,
2333
				   unsigned int nr_pages,
2334
				   struct mem_cgroup **ptr,
2335
				   bool oom)
2336
{
2337
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2338
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2339
	struct mem_cgroup *memcg = NULL;
2340
	int ret;
2341

K
KAMEZAWA Hiroyuki 已提交
2342 2343 2344 2345 2346 2347 2348 2349
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2350

2351
	/*
2352 2353
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2354 2355 2356
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2357
	if (!*ptr && !mm)
K
KAMEZAWA Hiroyuki 已提交
2358 2359
		goto bypass;
again:
2360 2361 2362 2363
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2364
			goto done;
2365
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2366
			goto done;
2367
		css_get(&memcg->css);
2368
	} else {
K
KAMEZAWA Hiroyuki 已提交
2369
		struct task_struct *p;
2370

K
KAMEZAWA Hiroyuki 已提交
2371 2372 2373
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2374
		 * Because we don't have task_lock(), "p" can exit.
2375
		 * In that case, "memcg" can point to root or p can be NULL with
2376 2377 2378 2379 2380 2381
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2382
		 */
2383 2384
		memcg = mem_cgroup_from_task(p);
		if (!memcg || mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2385 2386 2387
			rcu_read_unlock();
			goto done;
		}
2388
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2401
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2402 2403 2404 2405 2406
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2407

2408 2409
	do {
		bool oom_check;
2410

2411
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2412
		if (fatal_signal_pending(current)) {
2413
			css_put(&memcg->css);
2414
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2415
		}
2416

2417 2418 2419 2420
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2421
		}
2422

2423
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2424 2425 2426 2427
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2428
			batch = nr_pages;
2429 2430
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2431
			goto again;
2432
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2433
			css_put(&memcg->css);
2434 2435
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2436
			if (!oom) {
2437
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2438
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2439
			}
2440 2441 2442 2443
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2444
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2445
			goto bypass;
2446
		}
2447 2448
	} while (ret != CHARGE_OK);

2449
	if (batch > nr_pages)
2450 2451
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2452
done:
2453
	*ptr = memcg;
2454 2455
	return 0;
nomem:
2456
	*ptr = NULL;
2457
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2458
bypass:
2459
	*ptr = NULL;
K
KAMEZAWA Hiroyuki 已提交
2460
	return 0;
2461
}
2462

2463 2464 2465 2466 2467
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2468
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2469
				       unsigned int nr_pages)
2470
{
2471
	if (!mem_cgroup_is_root(memcg)) {
2472 2473
		unsigned long bytes = nr_pages * PAGE_SIZE;

2474
		res_counter_uncharge(&memcg->res, bytes);
2475
		if (do_swap_account)
2476
			res_counter_uncharge(&memcg->memsw, bytes);
2477
	}
2478 2479
}

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2499
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2500
{
2501
	struct mem_cgroup *memcg = NULL;
2502
	struct page_cgroup *pc;
2503
	unsigned short id;
2504 2505
	swp_entry_t ent;

2506 2507 2508
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2509
	lock_page_cgroup(pc);
2510
	if (PageCgroupUsed(pc)) {
2511 2512 2513
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2514
	} else if (PageSwapCache(page)) {
2515
		ent.val = page_private(page);
2516 2517
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
2518 2519 2520
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2521
		rcu_read_unlock();
2522
	}
2523
	unlock_page_cgroup(pc);
2524
	return memcg;
2525 2526
}

2527
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2528
				       struct page *page,
2529
				       unsigned int nr_pages,
2530
				       struct page_cgroup *pc,
2531
				       enum charge_type ctype)
2532
{
2533 2534 2535
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2536
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2537 2538 2539 2540 2541 2542
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2543
	pc->mem_cgroup = memcg;
2544 2545 2546 2547 2548 2549 2550
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2551
	smp_wmb();
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2565

2566
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2567
	unlock_page_cgroup(pc);
2568 2569 2570 2571 2572
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2573
	memcg_check_events(memcg, page);
2574
}
2575

2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2590 2591
	if (mem_cgroup_disabled())
		return;
2592
	/*
2593
	 * We have no races with charge/uncharge but will have races with
2594 2595 2596 2597 2598 2599
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2610
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2611 2612
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2613 2614 2615 2616 2617
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2618
/**
2619
 * mem_cgroup_move_account - move account of the page
2620
 * @page: the page
2621
 * @nr_pages: number of regular pages (>1 for huge pages)
2622 2623 2624
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2625
 * @uncharge: whether we should call uncharge and css_put against @from.
2626 2627
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2628
 * - page is not on LRU (isolate_page() is useful.)
2629
 * - compound_lock is held when nr_pages > 1
2630
 *
2631
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2632
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2633 2634
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2635
 */
2636 2637 2638 2639 2640 2641
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2642
{
2643 2644
	unsigned long flags;
	int ret;
2645

2646
	VM_BUG_ON(from == to);
2647
	VM_BUG_ON(PageLRU(page));
2648 2649 2650 2651 2652 2653 2654
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2655
	if (nr_pages > 1 && !PageTransHuge(page))
2656 2657 2658 2659 2660 2661 2662 2663 2664
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2665

2666
	if (PageCgroupFileMapped(pc)) {
2667 2668 2669 2670 2671
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2672
	}
2673
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2674 2675
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2676
		__mem_cgroup_cancel_charge(from, nr_pages);
2677

2678
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2679
	pc->mem_cgroup = to;
2680
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2681 2682 2683
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2684
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2685
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2686
	 * status here.
2687
	 */
2688 2689 2690
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2691
	unlock_page_cgroup(pc);
2692 2693 2694
	/*
	 * check events
	 */
2695 2696
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2697
out:
2698 2699 2700 2701 2702 2703 2704
	return ret;
}

/*
 * move charges to its parent.
 */

2705 2706
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2707 2708 2709 2710 2711 2712
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2713
	unsigned int nr_pages;
2714
	unsigned long uninitialized_var(flags);
2715 2716 2717 2718 2719 2720
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2721 2722 2723 2724 2725
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2726

2727
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2728

2729
	parent = mem_cgroup_from_cont(pcg);
2730
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2731
	if (ret || !parent)
2732
		goto put_back;
2733

2734
	if (nr_pages > 1)
2735 2736
		flags = compound_lock_irqsave(page);

2737
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2738
	if (ret)
2739
		__mem_cgroup_cancel_charge(parent, nr_pages);
2740

2741
	if (nr_pages > 1)
2742
		compound_unlock_irqrestore(page, flags);
2743
put_back:
K
KAMEZAWA Hiroyuki 已提交
2744
	putback_lru_page(page);
2745
put:
2746
	put_page(page);
2747
out:
2748 2749 2750
	return ret;
}

2751 2752 2753 2754 2755 2756 2757
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2758
				gfp_t gfp_mask, enum charge_type ctype)
2759
{
2760
	struct mem_cgroup *memcg = NULL;
2761
	unsigned int nr_pages = 1;
2762
	struct page_cgroup *pc;
2763
	bool oom = true;
2764
	int ret;
A
Andrea Arcangeli 已提交
2765

A
Andrea Arcangeli 已提交
2766
	if (PageTransHuge(page)) {
2767
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2768
		VM_BUG_ON(!PageTransHuge(page));
2769 2770 2771 2772 2773
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2774
	}
2775 2776

	pc = lookup_page_cgroup(page);
2777
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2778

2779 2780
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
	if (ret || !memcg)
2781 2782
		return ret;

2783
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2784 2785 2786
	return 0;
}

2787 2788
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2789
{
2790
	if (mem_cgroup_disabled())
2791
		return 0;
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2803
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2804
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2805 2806
}

D
Daisuke Nishimura 已提交
2807 2808 2809 2810
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2811
static void
2812
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2813 2814 2815 2816 2817 2818 2819 2820 2821
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
2822
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2823 2824 2825 2826
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2827 2828
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2829
{
2830
	struct mem_cgroup *memcg = NULL;
2831 2832
	int ret;

2833
	if (mem_cgroup_disabled())
2834
		return 0;
2835 2836
	if (PageCompound(page))
		return 0;
2837

2838
	if (unlikely(!mm))
2839
		mm = &init_mm;
2840

2841
	if (page_is_file_cache(page)) {
2842 2843
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
		if (ret || !memcg)
2844
			return ret;
2845

2846 2847 2848 2849 2850
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
2851
		__mem_cgroup_commit_charge_lrucare(page, memcg,
2852 2853 2854
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2855 2856
	/* shmem */
	if (PageSwapCache(page)) {
2857
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2858
		if (!ret)
2859
			__mem_cgroup_commit_charge_swapin(page, memcg,
D
Daisuke Nishimura 已提交
2860 2861 2862
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2863
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2864 2865

	return ret;
2866 2867
}

2868 2869 2870
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2871
 * struct page_cgroup is acquired. This refcnt will be consumed by
2872 2873
 * "commit()" or removed by "cancel()"
 */
2874 2875 2876 2877
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
2878
	struct mem_cgroup *memcg;
2879
	int ret;
2880

2881 2882
	*ptr = NULL;

2883
	if (mem_cgroup_disabled())
2884 2885 2886 2887 2888 2889
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2890 2891 2892
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2893 2894
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2895
		goto charge_cur_mm;
2896 2897
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2898
		goto charge_cur_mm;
2899
	*ptr = memcg;
2900
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2901
	css_put(&memcg->css);
2902
	return ret;
2903 2904 2905
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2906
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2907 2908
}

D
Daisuke Nishimura 已提交
2909 2910 2911
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2912
{
2913
	if (mem_cgroup_disabled())
2914 2915 2916
		return;
	if (!ptr)
		return;
2917
	cgroup_exclude_rmdir(&ptr->css);
2918 2919

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2920 2921 2922
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2923 2924 2925
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2926
	 */
2927
	if (do_swap_account && PageSwapCache(page)) {
2928
		swp_entry_t ent = {.val = page_private(page)};
2929
		unsigned short id;
2930
		struct mem_cgroup *memcg;
2931 2932 2933 2934

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2935
		if (memcg) {
2936 2937 2938 2939
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2940
			if (!mem_cgroup_is_root(memcg))
2941
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2942
			mem_cgroup_swap_statistics(memcg, false);
2943 2944
			mem_cgroup_put(memcg);
		}
2945
		rcu_read_unlock();
2946
	}
2947 2948 2949 2950 2951 2952
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2953 2954
}

D
Daisuke Nishimura 已提交
2955 2956 2957 2958 2959 2960
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2961
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2962
{
2963
	if (mem_cgroup_disabled())
2964
		return;
2965
	if (!memcg)
2966
		return;
2967
	__mem_cgroup_cancel_charge(memcg, 1);
2968 2969
}

2970
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2971 2972
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2973 2974 2975
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2976

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2988
		batch->memcg = memcg;
2989 2990
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2991
	 * In those cases, all pages freed continuously can be expected to be in
2992 2993 2994 2995 2996 2997 2998 2999
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3000
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3001 3002
		goto direct_uncharge;

3003 3004 3005 3006 3007
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3008
	if (batch->memcg != memcg)
3009 3010
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3011
	batch->nr_pages++;
3012
	if (uncharge_memsw)
3013
		batch->memsw_nr_pages++;
3014 3015
	return;
direct_uncharge:
3016
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3017
	if (uncharge_memsw)
3018 3019 3020
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3021 3022
	return;
}
3023

3024
/*
3025
 * uncharge if !page_mapped(page)
3026
 */
3027
static struct mem_cgroup *
3028
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3029
{
3030
	struct mem_cgroup *memcg = NULL;
3031 3032
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3033

3034
	if (mem_cgroup_disabled())
3035
		return NULL;
3036

K
KAMEZAWA Hiroyuki 已提交
3037
	if (PageSwapCache(page))
3038
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
3039

A
Andrea Arcangeli 已提交
3040
	if (PageTransHuge(page)) {
3041
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3042 3043
		VM_BUG_ON(!PageTransHuge(page));
	}
3044
	/*
3045
	 * Check if our page_cgroup is valid
3046
	 */
3047 3048
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3049
		return NULL;
3050

3051
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3052

3053
	memcg = pc->mem_cgroup;
3054

K
KAMEZAWA Hiroyuki 已提交
3055 3056 3057 3058 3059
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3060
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3061 3062
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3074
	}
K
KAMEZAWA Hiroyuki 已提交
3075

3076
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3077

3078
	ClearPageCgroupUsed(pc);
3079 3080 3081 3082 3083 3084
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3085

3086
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3087
	/*
3088
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3089 3090
	 * will never be freed.
	 */
3091
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3092
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3093 3094
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3095
	}
3096 3097
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3098

3099
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3100 3101 3102

unlock_out:
	unlock_page_cgroup(pc);
3103
	return NULL;
3104 3105
}

3106 3107
void mem_cgroup_uncharge_page(struct page *page)
{
3108 3109 3110 3111 3112
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3113 3114 3115 3116 3117 3118
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3119
	VM_BUG_ON(page->mapping);
3120 3121 3122
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3137 3138
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3159 3160 3161 3162 3163 3164
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3165
	memcg_oom_recover(batch->memcg);
3166 3167 3168 3169
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3170
#ifdef CONFIG_SWAP
3171
/*
3172
 * called after __delete_from_swap_cache() and drop "page" account.
3173 3174
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3175 3176
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3177 3178
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3179 3180 3181 3182 3183 3184
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3185

K
KAMEZAWA Hiroyuki 已提交
3186 3187 3188 3189 3190
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3191
		swap_cgroup_record(ent, css_id(&memcg->css));
3192
}
3193
#endif
3194 3195 3196 3197 3198 3199 3200

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3201
{
3202
	struct mem_cgroup *memcg;
3203
	unsigned short id;
3204 3205 3206 3207

	if (!do_swap_account)
		return;

3208 3209 3210
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3211
	if (memcg) {
3212 3213 3214 3215
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3216
		if (!mem_cgroup_is_root(memcg))
3217
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3218
		mem_cgroup_swap_statistics(memcg, false);
3219 3220
		mem_cgroup_put(memcg);
	}
3221
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3222
}
3223 3224 3225 3226 3227 3228

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3229
 * @need_fixup: whether we should fixup res_counters and refcounts.
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3240
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3241 3242 3243 3244 3245 3246 3247 3248
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3249
		mem_cgroup_swap_statistics(to, true);
3250
		/*
3251 3252 3253 3254 3255 3256
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3257 3258
		 */
		mem_cgroup_get(to);
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3270 3271 3272 3273 3274 3275
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3276
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3277 3278 3279
{
	return -EINVAL;
}
3280
#endif
K
KAMEZAWA Hiroyuki 已提交
3281

3282
/*
3283 3284
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3285
 */
3286
int mem_cgroup_prepare_migration(struct page *page,
3287
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3288
{
3289
	struct mem_cgroup *memcg = NULL;
3290
	struct page_cgroup *pc;
3291
	enum charge_type ctype;
3292
	int ret = 0;
3293

3294 3295
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3296
	VM_BUG_ON(PageTransHuge(page));
3297
	if (mem_cgroup_disabled())
3298 3299
		return 0;

3300 3301 3302
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3303 3304
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3336
	}
3337
	unlock_page_cgroup(pc);
3338 3339 3340 3341
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3342
	if (!memcg)
3343
		return 0;
3344

3345
	*ptr = memcg;
3346
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3347
	css_put(&memcg->css);/* drop extra refcnt */
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3359
	}
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3373
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3374
	return ret;
3375
}
3376

3377
/* remove redundant charge if migration failed*/
3378
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3379
	struct page *oldpage, struct page *newpage, bool migration_ok)
3380
{
3381
	struct page *used, *unused;
3382 3383
	struct page_cgroup *pc;

3384
	if (!memcg)
3385
		return;
3386
	/* blocks rmdir() */
3387
	cgroup_exclude_rmdir(&memcg->css);
3388
	if (!migration_ok) {
3389 3390
		used = oldpage;
		unused = newpage;
3391
	} else {
3392
		used = newpage;
3393 3394
		unused = oldpage;
	}
3395
	/*
3396 3397 3398
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3399
	 */
3400 3401 3402 3403
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3404

3405 3406
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3407
	/*
3408 3409 3410 3411 3412 3413
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3414
	 */
3415 3416
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3417
	/*
3418 3419
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3420 3421 3422
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3423
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3424
}
3425

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3472 3473
static DEFINE_MUTEX(set_limit_mutex);

3474
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3475
				unsigned long long val)
3476
{
3477
	int retry_count;
3478
	u64 memswlimit, memlimit;
3479
	int ret = 0;
3480 3481
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3482
	int enlarge;
3483 3484 3485 3486 3487 3488 3489 3490 3491

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3492

3493
	enlarge = 0;
3494
	while (retry_count) {
3495 3496 3497 3498
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3499 3500 3501
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3502
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3503 3504 3505 3506 3507 3508
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3509 3510
			break;
		}
3511 3512 3513 3514 3515

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3516
		ret = res_counter_set_limit(&memcg->res, val);
3517 3518 3519 3520 3521 3522
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3523 3524 3525 3526 3527
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3528
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3529 3530
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3531 3532 3533 3534 3535 3536
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3537
	}
3538 3539
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3540

3541 3542 3543
	return ret;
}

L
Li Zefan 已提交
3544 3545
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3546
{
3547
	int retry_count;
3548
	u64 memlimit, memswlimit, oldusage, curusage;
3549 3550
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3551
	int enlarge = 0;
3552

3553 3554 3555
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3556 3557 3558 3559 3560 3561 3562 3563
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3564
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3565 3566 3567 3568 3569 3570 3571 3572
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3573 3574 3575
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3576
		ret = res_counter_set_limit(&memcg->memsw, val);
3577 3578 3579 3580 3581 3582
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3583 3584 3585 3586 3587
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3588
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3589
						MEM_CGROUP_RECLAIM_NOSWAP |
3590 3591
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3592
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3593
		/* Usage is reduced ? */
3594
		if (curusage >= oldusage)
3595
			retry_count--;
3596 3597
		else
			oldusage = curusage;
3598
	}
3599 3600
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3601 3602 3603
	return ret;
}

3604
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3605 3606
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3607 3608 3609 3610 3611 3612
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3613
	unsigned long long excess;
3614
	unsigned long nr_scanned;
3615 3616 3617 3618

	if (order > 0)
		return 0;

3619
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3633
		nr_scanned = 0;
3634 3635
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3636 3637
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3638
		nr_reclaimed += reclaimed;
3639
		*total_scanned += nr_scanned;
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3662
				if (next_mz == mz)
3663
					css_put(&next_mz->mem->css);
3664
				else /* next_mz == NULL or other memcg */
3665 3666 3667 3668
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3669
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3670 3671 3672 3673 3674 3675 3676 3677
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3678 3679
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3698 3699 3700 3701
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3702
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3703
				int node, int zid, enum lru_list lru)
3704
{
K
KAMEZAWA Hiroyuki 已提交
3705 3706
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3707
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3708
	unsigned long flags, loop;
3709
	struct list_head *list;
3710
	int ret = 0;
3711

K
KAMEZAWA Hiroyuki 已提交
3712
	zone = &NODE_DATA(node)->node_zones[zid];
3713
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3714
	list = &mz->lists[lru];
3715

3716 3717 3718 3719 3720
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3721 3722
		struct page *page;

3723
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3724
		spin_lock_irqsave(&zone->lru_lock, flags);
3725
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3726
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3727
			break;
3728 3729 3730 3731
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3732
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3733
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3734 3735
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3736
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3737

3738
		page = lookup_cgroup_page(pc);
3739

3740
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3741
		if (ret == -ENOMEM)
3742
			break;
3743 3744 3745 3746 3747 3748 3749

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3750
	}
K
KAMEZAWA Hiroyuki 已提交
3751

3752 3753 3754
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3755 3756 3757 3758 3759 3760
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3761
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3762
{
3763 3764 3765
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3766
	struct cgroup *cgrp = memcg->css.cgroup;
3767

3768
	css_get(&memcg->css);
3769 3770

	shrink = 0;
3771 3772 3773
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3774
move_account:
3775
	do {
3776
		ret = -EBUSY;
3777 3778 3779 3780
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3781
			goto out;
3782 3783
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3784
		drain_all_stock_sync(memcg);
3785
		ret = 0;
3786
		mem_cgroup_start_move(memcg);
3787
		for_each_node_state(node, N_HIGH_MEMORY) {
3788
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3789
				enum lru_list l;
3790
				for_each_lru(l) {
3791
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3792
							node, zid, l);
3793 3794 3795
					if (ret)
						break;
				}
3796
			}
3797 3798 3799
			if (ret)
				break;
		}
3800 3801
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3802 3803 3804
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3805
		cond_resched();
3806
	/* "ret" should also be checked to ensure all lists are empty. */
3807
	} while (memcg->res.usage > 0 || ret);
3808
out:
3809
	css_put(&memcg->css);
3810
	return ret;
3811 3812

try_to_free:
3813 3814
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3815 3816 3817
		ret = -EBUSY;
		goto out;
	}
3818 3819
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3820 3821
	/* try to free all pages in this cgroup */
	shrink = 1;
3822
	while (nr_retries && memcg->res.usage > 0) {
3823
		int progress;
3824 3825 3826 3827 3828

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3829
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3830
						false);
3831
		if (!progress) {
3832
			nr_retries--;
3833
			/* maybe some writeback is necessary */
3834
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3835
		}
3836 3837

	}
K
KAMEZAWA Hiroyuki 已提交
3838
	lru_add_drain();
3839
	/* try move_account...there may be some *locked* pages. */
3840
	goto move_account;
3841 3842
}

3843 3844 3845 3846 3847 3848
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3849 3850 3851 3852 3853 3854 3855 3856 3857
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3858
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3859
	struct cgroup *parent = cont->parent;
3860
	struct mem_cgroup *parent_memcg = NULL;
3861 3862

	if (parent)
3863
		parent_memcg = mem_cgroup_from_cont(parent);
3864 3865 3866

	cgroup_lock();
	/*
3867
	 * If parent's use_hierarchy is set, we can't make any modifications
3868 3869 3870 3871 3872 3873
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3874
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3875 3876
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3877
			memcg->use_hierarchy = val;
3878 3879 3880 3881 3882 3883 3884 3885 3886
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3887

3888
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3889
					       enum mem_cgroup_stat_index idx)
3890
{
K
KAMEZAWA Hiroyuki 已提交
3891
	struct mem_cgroup *iter;
3892
	long val = 0;
3893

3894
	/* Per-cpu values can be negative, use a signed accumulator */
3895
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3896 3897 3898 3899 3900
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3901 3902
}

3903
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3904
{
K
KAMEZAWA Hiroyuki 已提交
3905
	u64 val;
3906

3907
	if (!mem_cgroup_is_root(memcg)) {
3908
		if (!swap)
3909
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3910
		else
3911
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3912 3913
	}

3914 3915
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3916

K
KAMEZAWA Hiroyuki 已提交
3917
	if (swap)
3918
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3919 3920 3921 3922

	return val << PAGE_SHIFT;
}

3923
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3924
{
3925
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3926
	u64 val;
3927 3928 3929 3930 3931 3932
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3933
		if (name == RES_USAGE)
3934
			val = mem_cgroup_usage(memcg, false);
3935
		else
3936
			val = res_counter_read_u64(&memcg->res, name);
3937 3938
		break;
	case _MEMSWAP:
3939
		if (name == RES_USAGE)
3940
			val = mem_cgroup_usage(memcg, true);
3941
		else
3942
			val = res_counter_read_u64(&memcg->memsw, name);
3943 3944 3945 3946 3947 3948
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3949
}
3950 3951 3952 3953
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3954 3955
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3956
{
3957
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3958
	int type, name;
3959 3960 3961
	unsigned long long val;
	int ret;

3962 3963 3964
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3965
	case RES_LIMIT:
3966 3967 3968 3969
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3970 3971
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3972 3973 3974
		if (ret)
			break;
		if (type == _MEM)
3975
			ret = mem_cgroup_resize_limit(memcg, val);
3976 3977
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3978
		break;
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3993 3994 3995 3996 3997
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3998 3999
}

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4028
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4029
{
4030
	struct mem_cgroup *memcg;
4031
	int type, name;
4032

4033
	memcg = mem_cgroup_from_cont(cont);
4034 4035 4036
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4037
	case RES_MAX_USAGE:
4038
		if (type == _MEM)
4039
			res_counter_reset_max(&memcg->res);
4040
		else
4041
			res_counter_reset_max(&memcg->memsw);
4042 4043
		break;
	case RES_FAILCNT:
4044
		if (type == _MEM)
4045
			res_counter_reset_failcnt(&memcg->res);
4046
		else
4047
			res_counter_reset_failcnt(&memcg->memsw);
4048 4049
		break;
	}
4050

4051
	return 0;
4052 4053
}

4054 4055 4056 4057 4058 4059
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4060
#ifdef CONFIG_MMU
4061 4062 4063
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4064
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4065 4066 4067 4068 4069 4070 4071 4072 4073

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4074
	memcg->move_charge_at_immigrate = val;
4075 4076 4077 4078
	cgroup_unlock();

	return 0;
}
4079 4080 4081 4082 4083 4084 4085
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4086

K
KAMEZAWA Hiroyuki 已提交
4087 4088 4089 4090 4091

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4092
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4093 4094
	MCS_PGPGIN,
	MCS_PGPGOUT,
4095
	MCS_SWAP,
4096 4097
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4108 4109
};

K
KAMEZAWA Hiroyuki 已提交
4110 4111 4112 4113 4114 4115
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4116
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4117 4118
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4119
	{"swap", "total_swap"},
4120 4121
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4122 4123 4124 4125 4126 4127 4128 4129
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4130
static void
4131
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4132 4133 4134 4135
{
	s64 val;

	/* per cpu stat */
4136
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4137
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4138
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4139
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4140
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4141
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4142
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4143
	s->stat[MCS_PGPGIN] += val;
4144
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4145
	s->stat[MCS_PGPGOUT] += val;
4146
	if (do_swap_account) {
4147
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4148 4149
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4150
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4151
	s->stat[MCS_PGFAULT] += val;
4152
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4153
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4154 4155

	/* per zone stat */
4156
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4157
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4158
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4159
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4160
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4161
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4162
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4163
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4164
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4165 4166 4167 4168
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4169
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4170
{
K
KAMEZAWA Hiroyuki 已提交
4171 4172
	struct mem_cgroup *iter;

4173
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4174
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4175 4176
}

4177 4178 4179 4180 4181 4182 4183 4184 4185
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4186
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4187 4188
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4189
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4190 4191 4192 4193
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4194
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4195 4196
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4197 4198
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4199 4200 4201 4202
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4203
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4204 4205
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4206 4207
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4208 4209 4210 4211
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4212
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4213 4214
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4215 4216
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4217 4218 4219 4220 4221 4222 4223
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4224 4225
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4226 4227
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4228
	struct mcs_total_stat mystat;
4229 4230
	int i;

K
KAMEZAWA Hiroyuki 已提交
4231 4232
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4233

4234

4235 4236 4237
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4238
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4239
	}
L
Lee Schermerhorn 已提交
4240

K
KAMEZAWA Hiroyuki 已提交
4241
	/* Hierarchical information */
4242 4243 4244 4245 4246 4247 4248
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4249

K
KAMEZAWA Hiroyuki 已提交
4250 4251
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4252 4253 4254
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4255
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4256
	}
K
KAMEZAWA Hiroyuki 已提交
4257

K
KOSAKI Motohiro 已提交
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4285 4286 4287
	return 0;
}

K
KOSAKI Motohiro 已提交
4288 4289 4290 4291
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4292
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4293 4294 4295 4296 4297 4298 4299
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4300

K
KOSAKI Motohiro 已提交
4301 4302 4303 4304 4305 4306 4307
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4308 4309 4310

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4311 4312
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4313 4314
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4315
		return -EINVAL;
4316
	}
K
KOSAKI Motohiro 已提交
4317 4318 4319

	memcg->swappiness = val;

4320 4321
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4322 4323 4324
	return 0;
}

4325 4326 4327 4328 4329 4330 4331 4332
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4333
		t = rcu_dereference(memcg->thresholds.primary);
4334
	else
4335
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4347
	i = t->current_threshold;
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4371
	t->current_threshold = i - 1;
4372 4373 4374 4375 4376 4377
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4378 4379 4380 4381 4382 4383 4384
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4395
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4396 4397 4398
{
	struct mem_cgroup_eventfd_list *ev;

4399
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4400 4401 4402 4403
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4404
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4405
{
K
KAMEZAWA Hiroyuki 已提交
4406 4407
	struct mem_cgroup *iter;

4408
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4409
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4410 4411 4412 4413
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4414 4415
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4416 4417
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4418 4419
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4420
	int i, size, ret;
4421 4422 4423 4424 4425 4426

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4427

4428
	if (type == _MEM)
4429
		thresholds = &memcg->thresholds;
4430
	else if (type == _MEMSWAP)
4431
		thresholds = &memcg->memsw_thresholds;
4432 4433 4434 4435 4436 4437
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4438
	if (thresholds->primary)
4439 4440
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4441
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4442 4443

	/* Allocate memory for new array of thresholds */
4444
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4445
			GFP_KERNEL);
4446
	if (!new) {
4447 4448 4449
		ret = -ENOMEM;
		goto unlock;
	}
4450
	new->size = size;
4451 4452

	/* Copy thresholds (if any) to new array */
4453 4454
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4455
				sizeof(struct mem_cgroup_threshold));
4456 4457
	}

4458
	/* Add new threshold */
4459 4460
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4461 4462

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4463
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4464 4465 4466
			compare_thresholds, NULL);

	/* Find current threshold */
4467
	new->current_threshold = -1;
4468
	for (i = 0; i < size; i++) {
4469
		if (new->entries[i].threshold < usage) {
4470
			/*
4471 4472
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4473 4474
			 * it here.
			 */
4475
			++new->current_threshold;
4476 4477 4478
		}
	}

4479 4480 4481 4482 4483
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4484

4485
	/* To be sure that nobody uses thresholds */
4486 4487 4488 4489 4490 4491 4492 4493
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4494
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4495
	struct cftype *cft, struct eventfd_ctx *eventfd)
4496 4497
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4498 4499
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4500 4501
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4502
	int i, j, size;
4503 4504 4505

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4506
		thresholds = &memcg->thresholds;
4507
	else if (type == _MEMSWAP)
4508
		thresholds = &memcg->memsw_thresholds;
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4524 4525 4526
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4527 4528 4529
			size++;
	}

4530
	new = thresholds->spare;
4531

4532 4533
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4534 4535
		kfree(new);
		new = NULL;
4536
		goto swap_buffers;
4537 4538
	}

4539
	new->size = size;
4540 4541

	/* Copy thresholds and find current threshold */
4542 4543 4544
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4545 4546
			continue;

4547 4548
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4549
			/*
4550
			 * new->current_threshold will not be used
4551 4552 4553
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4554
			++new->current_threshold;
4555 4556 4557 4558
		}
		j++;
	}

4559
swap_buffers:
4560 4561 4562
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4563

4564
	/* To be sure that nobody uses thresholds */
4565 4566 4567 4568
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4569

K
KAMEZAWA Hiroyuki 已提交
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4582
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4583 4584 4585 4586 4587

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4588
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4589
		eventfd_signal(eventfd, 1);
4590
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4591 4592 4593 4594

	return 0;
}

4595
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4596 4597
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4598
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4599 4600 4601 4602 4603
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4604
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4605

4606
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4607 4608 4609 4610 4611 4612
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4613
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4614 4615
}

4616 4617 4618
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4619
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4620

4621
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4622

4623
	if (atomic_read(&memcg->under_oom))
4624 4625 4626 4627 4628 4629 4630 4631 4632
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4633
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4645
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4646 4647 4648
		cgroup_unlock();
		return -EINVAL;
	}
4649
	memcg->oom_kill_disable = val;
4650
	if (!val)
4651
		memcg_oom_recover(memcg);
4652 4653 4654 4655
	cgroup_unlock();
	return 0;
}

4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4672 4673 4674
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4675 4676 4677 4678 4679 4680 4681
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4682
	return mem_cgroup_sockets_init(cont, ss);
4683 4684
};

G
Glauber Costa 已提交
4685 4686 4687 4688 4689
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4690 4691 4692 4693 4694
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4695 4696 4697 4698 4699

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4700 4701
#endif

B
Balbir Singh 已提交
4702 4703
static struct cftype mem_cgroup_files[] = {
	{
4704
		.name = "usage_in_bytes",
4705
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4706
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4707 4708
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4709
	},
4710 4711
	{
		.name = "max_usage_in_bytes",
4712
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4713
		.trigger = mem_cgroup_reset,
4714 4715
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4716
	{
4717
		.name = "limit_in_bytes",
4718
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4719
		.write_string = mem_cgroup_write,
4720
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4721
	},
4722 4723 4724 4725 4726 4727
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4728 4729
	{
		.name = "failcnt",
4730
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4731
		.trigger = mem_cgroup_reset,
4732
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4733
	},
4734 4735
	{
		.name = "stat",
4736
		.read_map = mem_control_stat_show,
4737
	},
4738 4739 4740 4741
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4742 4743 4744 4745 4746
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4747 4748 4749 4750 4751
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4752 4753 4754 4755 4756
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4757 4758
	{
		.name = "oom_control",
4759 4760
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4761 4762 4763 4764
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4765 4766 4767 4768
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4769
		.mode = S_IRUGO,
4770 4771
	},
#endif
B
Balbir Singh 已提交
4772 4773
};

4774 4775 4776 4777 4778 4779
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4780 4781
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4817
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4818 4819
{
	struct mem_cgroup_per_node *pn;
4820
	struct mem_cgroup_per_zone *mz;
4821
	enum lru_list l;
4822
	int zone, tmp = node;
4823 4824 4825 4826 4827 4828 4829 4830
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4831 4832
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4833
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4834 4835
	if (!pn)
		return 1;
4836 4837 4838

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4839 4840
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4841
		mz->usage_in_excess = 0;
4842
		mz->on_tree = false;
4843
		mz->mem = memcg;
4844
	}
4845
	memcg->info.nodeinfo[node] = pn;
4846 4847 4848
	return 0;
}

4849
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4850
{
4851
	kfree(memcg->info.nodeinfo[node]);
4852 4853
}

4854 4855 4856
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4857
	int size = sizeof(struct mem_cgroup);
4858

4859
	/* Can be very big if MAX_NUMNODES is very big */
4860
	if (size < PAGE_SIZE)
4861
		mem = kzalloc(size, GFP_KERNEL);
4862
	else
4863
		mem = vzalloc(size);
4864

4865 4866 4867
	if (!mem)
		return NULL;

4868
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4869 4870
	if (!mem->stat)
		goto out_free;
4871
	spin_lock_init(&mem->pcp_counter_lock);
4872
	return mem;
4873 4874 4875 4876 4877 4878 4879

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4880 4881
}

4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4893
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4894
{
K
KAMEZAWA Hiroyuki 已提交
4895 4896
	int node;

4897 4898
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4899

K
KAMEZAWA Hiroyuki 已提交
4900
	for_each_node_state(node, N_POSSIBLE)
4901
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4902

4903
	free_percpu(memcg->stat);
4904
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4905
		kfree(memcg);
4906
	else
4907
		vfree(memcg);
4908 4909
}

4910
static void mem_cgroup_get(struct mem_cgroup *memcg)
4911
{
4912
	atomic_inc(&memcg->refcnt);
4913 4914
}

4915
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4916
{
4917 4918 4919
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4920 4921 4922
		if (parent)
			mem_cgroup_put(parent);
	}
4923 4924
}

4925
static void mem_cgroup_put(struct mem_cgroup *memcg)
4926
{
4927
	__mem_cgroup_put(memcg, 1);
4928 4929
}

4930 4931 4932
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4933
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4934
{
4935
	if (!memcg->res.parent)
4936
		return NULL;
4937
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4938
}
G
Glauber Costa 已提交
4939
EXPORT_SYMBOL(parent_mem_cgroup);
4940

4941 4942 4943
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4944
	if (!mem_cgroup_disabled() && really_do_swap_account)
4945 4946 4947 4948 4949 4950 4951 4952
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4978
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4979 4980
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4981
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4982
	long error = -ENOMEM;
4983
	int node;
B
Balbir Singh 已提交
4984

4985 4986
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4987
		return ERR_PTR(error);
4988

4989
	for_each_node_state(node, N_POSSIBLE)
4990
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4991
			goto free_out;
4992

4993
	/* root ? */
4994
	if (cont->parent == NULL) {
4995
		int cpu;
4996
		enable_swap_cgroup();
4997
		parent = NULL;
4998 4999
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5000
		root_mem_cgroup = memcg;
5001 5002 5003 5004 5005
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5006
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5007
	} else {
5008
		parent = mem_cgroup_from_cont(cont->parent);
5009 5010
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5011
	}
5012

5013
	if (parent && parent->use_hierarchy) {
5014 5015
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5016 5017 5018 5019 5020 5021 5022
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5023
	} else {
5024 5025
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5026
	}
5027 5028 5029
	memcg->last_scanned_child = 0;
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5030

K
KOSAKI Motohiro 已提交
5031
	if (parent)
5032 5033 5034 5035 5036
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
5037
free_out:
5038
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5039
	return ERR_PTR(error);
B
Balbir Singh 已提交
5040 5041
}

5042
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5043 5044
					struct cgroup *cont)
{
5045
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5046

5047
	return mem_cgroup_force_empty(memcg, false);
5048 5049
}

B
Balbir Singh 已提交
5050 5051 5052
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5053
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5054

G
Glauber Costa 已提交
5055 5056
	kmem_cgroup_destroy(ss, cont);

5057
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5058 5059 5060 5061 5062
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5063 5064 5065 5066 5067 5068 5069
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
5070 5071 5072 5073

	if (!ret)
		ret = register_kmem_files(cont, ss);

5074
	return ret;
B
Balbir Singh 已提交
5075 5076
}

5077
#ifdef CONFIG_MMU
5078
/* Handlers for move charge at task migration. */
5079 5080
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5081
{
5082 5083
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5084
	struct mem_cgroup *memcg = mc.to;
5085

5086
	if (mem_cgroup_is_root(memcg)) {
5087 5088 5089 5090 5091 5092 5093 5094
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5095
		 * "memcg" cannot be under rmdir() because we've already checked
5096 5097 5098 5099
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5100
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5101
			goto one_by_one;
5102
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5103
						PAGE_SIZE * count, &dummy)) {
5104
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5121 5122 5123
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
		if (ret || !memcg)
5124 5125 5126 5127
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5128 5129 5130 5131 5132 5133 5134 5135
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5136
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5137 5138 5139 5140 5141 5142
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5143 5144 5145
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5146 5147 5148 5149 5150
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5151
	swp_entry_t	ent;
5152 5153 5154 5155 5156
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5157
	MC_TARGET_SWAP,
5158 5159
};

D
Daisuke Nishimura 已提交
5160 5161
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5162
{
D
Daisuke Nishimura 已提交
5163
	struct page *page = vm_normal_page(vma, addr, ptent);
5164

D
Daisuke Nishimura 已提交
5165 5166 5167 5168 5169 5170
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5171 5172
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5191 5192
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5193
		return NULL;
5194
	}
D
Daisuke Nishimura 已提交
5195 5196 5197 5198 5199 5200
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5222 5223 5224 5225 5226 5227
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5228
		if (do_swap_account)
5229 5230
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5231
	}
5232
#endif
5233 5234 5235
	return page;
}

D
Daisuke Nishimura 已提交
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5248 5249
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5250 5251 5252

	if (!page && !ent.val)
		return 0;
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5268 5269
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5270 5271 5272 5273
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5286 5287
	split_huge_page_pmd(walk->mm, pmd);

5288 5289 5290 5291 5292 5293 5294
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5295 5296 5297
	return 0;
}

5298 5299 5300 5301 5302
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5303
	down_read(&mm->mmap_sem);
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5315
	up_read(&mm->mmap_sem);
5316 5317 5318 5319 5320 5321 5322 5323 5324

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5325 5326 5327 5328 5329
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5330 5331
}

5332 5333
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5334
{
5335 5336 5337
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5338
	/* we must uncharge all the leftover precharges from mc.to */
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5350
	}
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5385
	spin_lock(&mc.lock);
5386 5387
	mc.from = NULL;
	mc.to = NULL;
5388
	spin_unlock(&mc.lock);
5389
	mem_cgroup_end_move(from);
5390 5391
}

5392 5393
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5394
				struct task_struct *p)
5395 5396
{
	int ret = 0;
5397
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5398

5399
	if (memcg->move_charge_at_immigrate) {
5400 5401 5402
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5403
		VM_BUG_ON(from == memcg);
5404 5405 5406 5407 5408

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5409 5410 5411 5412
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5413
			VM_BUG_ON(mc.moved_charge);
5414
			VM_BUG_ON(mc.moved_swap);
5415
			mem_cgroup_start_move(from);
5416
			spin_lock(&mc.lock);
5417
			mc.from = from;
5418
			mc.to = memcg;
5419
			spin_unlock(&mc.lock);
5420
			/* We set mc.moving_task later */
5421 5422 5423 5424

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5425 5426
		}
		mmput(mm);
5427 5428 5429 5430 5431 5432
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5433
				struct task_struct *p)
5434
{
5435
	mem_cgroup_clear_mc();
5436 5437
}

5438 5439 5440
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5441
{
5442 5443 5444 5445 5446
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5447
	split_huge_page_pmd(walk->mm, pmd);
5448 5449 5450 5451 5452 5453 5454 5455
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5456
		swp_entry_t ent;
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5468 5469
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5470
				mc.precharge--;
5471 5472
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5473 5474 5475 5476 5477
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5478 5479
		case MC_TARGET_SWAP:
			ent = target.ent;
5480 5481
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5482
				mc.precharge--;
5483 5484 5485
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5486
			break;
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5501
		ret = mem_cgroup_do_precharge(1);
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5545
	up_read(&mm->mmap_sem);
5546 5547
}

B
Balbir Singh 已提交
5548 5549 5550
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5551
				struct task_struct *p)
B
Balbir Singh 已提交
5552
{
5553
	struct mm_struct *mm = get_task_mm(p);
5554 5555

	if (mm) {
5556 5557 5558
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5559 5560
		mmput(mm);
	}
5561 5562
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5563
}
5564 5565 5566
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5567
				struct task_struct *p)
5568 5569 5570 5571 5572
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5573
				struct task_struct *p)
5574 5575 5576 5577 5578
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5579
				struct task_struct *p)
5580 5581 5582
{
}
#endif
B
Balbir Singh 已提交
5583

B
Balbir Singh 已提交
5584 5585 5586 5587
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5588
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5589 5590
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5591 5592
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5593
	.attach = mem_cgroup_move_task,
5594
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5595
	.use_id = 1,
B
Balbir Singh 已提交
5596
};
5597 5598

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5599 5600 5601
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5602
	if (!strcmp(s, "1"))
5603
		really_do_swap_account = 1;
5604
	else if (!strcmp(s, "0"))
5605 5606 5607
		really_do_swap_account = 0;
	return 1;
}
5608
__setup("swapaccount=", enable_swap_account);
5609 5610

#endif