memcontrol.c 141.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
B
Balbir Singh 已提交
53

54 55
#include <asm/uaccess.h>

56 57
#include <trace/events/vmscan.h>

58 59
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
60
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
61

62
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
63
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64
int do_swap_account __read_mostly;
65 66 67 68 69 70 71 72

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

73 74 75 76 77
#else
#define do_swap_account		(0)
#endif


78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109 110
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
111
	MEM_CGROUP_TARGET_NUMAINFO,
112 113 114 115
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
116
#define NUMAINFO_EVENTS_TARGET	(1024)
117

118
struct mem_cgroup_stat_cpu {
119
	long count[MEM_CGROUP_STAT_NSTATS];
120
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121
	unsigned long targets[MEM_CGROUP_NTARGETS];
122 123
};

124 125 126 127
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
128 129 130
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
131 132
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
133 134

	struct zone_reclaim_stat reclaim_stat;
135 136 137 138
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
139 140
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
141 142 143 144 145 146 147 148 149 150 151 152
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

173 174 175 176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
178
/* For threshold */
179 180
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
181
	int current_threshold;
182 183 184 185 186
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
187 188 189 190 191 192 193 194 195 196 197 198

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
199 200 201 202 203
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
204 205

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
206
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207

B
Balbir Singh 已提交
208 209 210 211 212 213 214
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
215 216 217
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
218 219 220 221 222 223 224
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
225 226 227 228
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
229 230 231 232
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
233
	struct mem_cgroup_lru_info info;
234
	/*
235
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
236
	 * reclaimed from.
237
	 */
K
KAMEZAWA Hiroyuki 已提交
238
	int last_scanned_child;
239 240 241
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
242 243
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
244
#endif
245 246 247 248
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
249
	atomic_t	oom_lock;
250
	atomic_t	refcnt;
251

252
	int	swappiness;
253 254
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
255

256 257 258
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

259 260 261 262
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
263
	struct mem_cgroup_thresholds thresholds;
264

265
	/* thresholds for mem+swap usage. RCU-protected */
266
	struct mem_cgroup_thresholds memsw_thresholds;
267

K
KAMEZAWA Hiroyuki 已提交
268 269 270
	/* For oom notifier event fd */
	struct list_head oom_notify;

271 272 273 274 275
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
276
	/*
277
	 * percpu counter.
278
	 */
279
	struct mem_cgroup_stat_cpu *stat;
280 281 282 283 284 285
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
286 287
};

288 289 290 291 292 293
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
294
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
295
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
296 297 298
	NR_MOVE_TYPE,
};

299 300
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
301
	spinlock_t	  lock; /* for from, to */
302 303 304
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
305
	unsigned long moved_charge;
306
	unsigned long moved_swap;
307 308 309
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
310
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
311 312
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
313

D
Daisuke Nishimura 已提交
314 315 316 317 318 319
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

320 321 322 323 324 325
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

326 327 328 329 330 331 332
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

333 334 335
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
336
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
337
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
338
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
339
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
340 341 342
	NR_CHARGE_TYPE,
};

343 344 345
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
346
#define _OOM_TYPE		(2)
347 348 349
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
350 351
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
352

353 354 355 356 357 358 359
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
360 361
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
362

363 364
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
365
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
366
static void drain_all_stock_async(struct mem_cgroup *mem);
367

368 369 370 371 372 373
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

374 375 376 377 378
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

379
static struct mem_cgroup_per_zone *
380
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
381
{
382 383
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
404
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
405
				struct mem_cgroup_per_zone *mz,
406 407
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
408 409 410 411 412 413 414 415
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

416 417 418
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
435 436 437 438 439 440 441 442 443 444 445 446 447
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

448 449 450 451 452 453
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
454
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
455 456 457 458 459 460
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
461
	unsigned long long excess;
462 463
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
464 465
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
466 467 468
	mctz = soft_limit_tree_from_page(page);

	/*
469 470
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
471
	 */
472 473
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
474
		excess = res_counter_soft_limit_excess(&mem->res);
475 476 477 478
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
479
		if (excess || mz->on_tree) {
480 481 482 483 484
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
485 486
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
487
			 */
488
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
489 490
			spin_unlock(&mctz->lock);
		}
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

509 510 511 512
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
513
	struct mem_cgroup_per_zone *mz;
514 515

retry:
516
	mz = NULL;
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
565 566
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
567
{
568
	long val = 0;
569 570
	int cpu;

571 572
	get_online_cpus();
	for_each_online_cpu(cpu)
573
		val += per_cpu(mem->stat->count[idx], cpu);
574 575 576 577 578 579
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
580 581 582
	return val;
}

583 584 585 586
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
587
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
588 589
}

590 591 592 593 594 595 596 597 598 599
void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
}

void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
}

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

616
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
617
					 bool file, int nr_pages)
618
{
619 620
	preempt_disable();

621 622
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
623
	else
624
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
625

626 627
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
628
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
629
	else {
630
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
631 632
		nr_pages = -nr_pages; /* for event */
	}
633

634
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
635

636
	preempt_enable();
637 638
}

639 640 641
unsigned long
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
			unsigned int lru_mask)
642 643
{
	struct mem_cgroup_per_zone *mz;
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
	enum lru_list l;
	unsigned long ret = 0;

	mz = mem_cgroup_zoneinfo(mem, nid, zid);

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
			int nid, unsigned int lru_mask)
{
660 661 662
	u64 total = 0;
	int zid;

663 664 665
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);

666 667
	return total;
}
668 669 670

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
			unsigned int lru_mask)
671
{
672
	int nid;
673 674
	u64 total = 0;

675 676
	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
677
	return total;
678 679
}

680 681 682 683 684 685 686 687 688 689 690
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
691
{
692
	unsigned long val, next;
693

694
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
695

696 697 698 699 700 701 702
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
703 704 705
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
706 707 708 709 710
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
711 712 713 714 715 716 717 718 719
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
720
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
721
		mem_cgroup_threshold(mem);
722 723
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
724
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
725
			mem_cgroup_update_tree(mem, page);
726
			__mem_cgroup_target_update(mem,
727 728 729 730 731 732 733 734
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_NUMAINFO))) {
			atomic_inc(&mem->numainfo_events);
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_NUMAINFO);
735
		}
736
#endif
737 738 739
	}
}

740
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
741 742 743 744 745 746
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

747
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
748
{
749 750 751 752 753 754 755 756
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

757 758 759 760
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

761
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
762 763
{
	struct mem_cgroup *mem = NULL;
764 765 766

	if (!mm)
		return NULL;
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
782 783
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
784
{
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
807 808 809 810 811 812 813 814 815
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
816 817
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
818
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
819

K
KAMEZAWA Hiroyuki 已提交
820
	css_put(&iter->css);
821 822
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
823
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
824

825 826 827
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
828 829
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
830
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
831 832 833

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
834
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
835
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
836
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
837
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
838
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
839
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
840

K
KAMEZAWA Hiroyuki 已提交
841
	return iter;
K
KAMEZAWA Hiroyuki 已提交
842
}
K
KAMEZAWA Hiroyuki 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

856 857 858
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
859

860 861 862 863 864
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
	struct mem_cgroup *mem;

	if (!mm)
		return;

	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!mem))
		goto out;

	switch (idx) {
	case PGMAJFAULT:
		mem_cgroup_pgmajfault(mem, 1);
		break;
	case PGFAULT:
		mem_cgroup_pgfault(mem, 1);
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
905

K
KAMEZAWA Hiroyuki 已提交
906 907 908 909
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
910

911
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
912 913 914
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
915
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
916
		return;
917
	VM_BUG_ON(!pc->mem_cgroup);
918 919 920 921
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
922
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
923 924
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
925 926 927
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
928
	list_del_init(&pc->lru);
929 930
}

K
KAMEZAWA Hiroyuki 已提交
931
void mem_cgroup_del_lru(struct page *page)
932
{
K
KAMEZAWA Hiroyuki 已提交
933 934
	mem_cgroup_del_lru_list(page, page_lru(page));
}
935

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
958
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
959 960 961
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
962 963 964 965
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
966

967
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
968
		return;
969

K
KAMEZAWA Hiroyuki 已提交
970
	pc = lookup_page_cgroup(page);
971
	/* unused or root page is not rotated. */
972 973 974 975 976
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
977
		return;
978
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
979
	list_move(&pc->lru, &mz->lists[lru]);
980 981
}

K
KAMEZAWA Hiroyuki 已提交
982
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
983
{
K
KAMEZAWA Hiroyuki 已提交
984 985
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
986

987
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
988 989
		return;
	pc = lookup_page_cgroup(page);
990
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
991
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
992
		return;
993 994
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
995
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
996 997
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
998 999 1000
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1001 1002
	list_add(&pc->lru, &mz->lists[lru]);
}
1003

K
KAMEZAWA Hiroyuki 已提交
1004
/*
1005 1006 1007 1008
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1009
 */
1010
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1011
{
1012 1013 1014 1015
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1027 1028 1029 1030 1031 1032 1033 1034
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1035 1036
}

1037
static void mem_cgroup_lru_add_after_commit(struct page *page)
1038 1039 1040 1041 1042
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1043 1044 1045
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1046 1047
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1048
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1049 1050 1051 1052 1053
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1054 1055 1056
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1057
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1058 1059 1060
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1061 1062
}

1063 1064 1065
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1066
	struct mem_cgroup *curr = NULL;
1067
	struct task_struct *p;
1068

1069 1070 1071 1072 1073
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1074 1075
	if (!curr)
		return 0;
1076 1077 1078 1079 1080 1081 1082
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
1083 1084 1085 1086
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
1087 1088 1089
	return ret;
}

1090
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1091 1092 1093
{
	unsigned long active;
	unsigned long inactive;
1094 1095
	unsigned long gb;
	unsigned long inactive_ratio;
1096

1097 1098
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1127 1128 1129 1130 1131
		return 1;

	return 0;
}

1132 1133 1134 1135 1136
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

1137 1138
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1139 1140 1141 1142

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1143 1144 1145
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1146
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1163 1164
	if (!PageCgroupUsed(pc))
		return NULL;
1165 1166
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1167
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1168 1169 1170
	return &mz->reclaim_stat;
}

1171 1172 1173 1174 1175
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1176
					int active, int file)
1177 1178 1179 1180 1181 1182
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1183
	struct page_cgroup *pc, *tmp;
1184
	int nid = zone_to_nid(z);
1185 1186
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1187
	int lru = LRU_FILE * file + active;
1188
	int ret;
1189

1190
	BUG_ON(!mem_cont);
1191
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1192
	src = &mz->lists[lru];
1193

1194 1195
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1196
		if (scan >= nr_to_scan)
1197
			break;
K
KAMEZAWA Hiroyuki 已提交
1198

1199 1200
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1201

1202
		page = lookup_cgroup_page(pc);
1203

H
Hugh Dickins 已提交
1204
		if (unlikely(!PageLRU(page)))
1205 1206
			continue;

H
Hugh Dickins 已提交
1207
		scan++;
1208 1209 1210
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1211
			list_move(&page->lru, dst);
1212
			mem_cgroup_del_lru(page);
1213
			nr_taken += hpage_nr_pages(page);
1214 1215 1216 1217 1218 1219 1220
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1221 1222 1223 1224
		}
	}

	*scanned = scan;
1225 1226 1227 1228

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1229 1230 1231
	return nr_taken;
}

1232 1233 1234
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1235
/**
1236 1237
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1238
 *
1239
 * Returns the maximum amount of memory @mem can be charged with, in
1240
 * pages.
1241
 */
1242
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1243
{
1244 1245 1246 1247 1248
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1249
	return margin >> PAGE_SHIFT;
1250 1251
}

1252
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1253 1254 1255 1256 1257 1258 1259
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1260
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1261 1262
}

1263 1264 1265
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1266 1267 1268 1269

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1270
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1271 1272 1273
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1284 1285 1286
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1287
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1288 1289 1290
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1309 1310 1311

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1312 1313
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1314
	bool ret = false;
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1349
/**
1350
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1369
	if (!memcg || !p)
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1416 1417 1418 1419 1420 1421 1422
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1423 1424 1425 1426
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1427 1428 1429
	return num;
}

D
David Rientjes 已提交
1430 1431 1432 1433 1434 1435 1436 1437
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1438 1439 1440
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1441 1442 1443 1444 1445 1446 1447 1448
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1449
/*
K
KAMEZAWA Hiroyuki 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
		int nid, bool noswap)
{
1499
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1500 1501 1502
		return true;
	if (noswap || !total_swap_pages)
		return false;
1503
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1504 1505 1506 1507
		return true;
	return false;

}
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;
1519 1520 1521 1522 1523 1524 1525
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
	if (!atomic_read(&mem->numainfo_events))
		return;
	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1526 1527 1528 1529 1530 1531 1532
		return;

	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1533 1534
		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
			node_clear(nid, mem->scan_nodes);
1535
	}
1536 1537 1538

	atomic_set(&mem->numainfo_events, 0);
	atomic_set(&mem->numainfo_updating, 0);
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(mem->scan_nodes)) {
		for (nid = first_node(mem->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, mem->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
		if (node_isset(nid, mem->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
			return true;
	}
	return false;
}

1611 1612 1613 1614 1615
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
1616 1617 1618 1619 1620

bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
}
1621 1622
#endif

K
KAMEZAWA Hiroyuki 已提交
1623 1624 1625 1626
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1627 1628
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1629 1630 1631
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1632 1633
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1634 1635
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1636
						struct zone *zone,
1637
						gfp_t gfp_mask,
1638 1639
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1640
{
K
KAMEZAWA Hiroyuki 已提交
1641 1642 1643
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1644 1645
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1646
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1647
	unsigned long excess;
1648
	unsigned long nr_scanned;
1649 1650

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1651

1652
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1653
	if (!check_soft && root_mem->memsw_is_minimum)
1654 1655
		noswap = true;

1656
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1657
		victim = mem_cgroup_select_victim(root_mem);
1658
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1659
			loop++;
1660 1661 1662 1663 1664 1665 1666
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1667
				drain_all_stock_async(root_mem);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1679
				 * We want to do more targeted reclaim.
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1691
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1692 1693
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1694 1695
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1696
		/* we use swappiness of local cgroup */
1697
		if (check_soft) {
1698
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1699
				noswap, zone, &nr_scanned);
1700 1701
			*total_scanned += nr_scanned;
		} else
1702
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1703
						noswap);
K
KAMEZAWA Hiroyuki 已提交
1704
		css_put(&victim->css);
1705 1706 1707 1708 1709 1710 1711
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1712
		total += ret;
1713
		if (check_soft) {
1714
			if (!res_counter_soft_limit_excess(&root_mem->res))
1715
				return total;
1716
		} else if (mem_cgroup_margin(root_mem))
1717
			return total;
1718
	}
K
KAMEZAWA Hiroyuki 已提交
1719
	return total;
1720 1721
}

K
KAMEZAWA Hiroyuki 已提交
1722 1723 1724 1725 1726 1727
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1728 1729
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1730

K
KAMEZAWA Hiroyuki 已提交
1731 1732 1733 1734
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1735 1736 1737 1738

	if (lock_count == 1)
		return true;
	return false;
1739
}
1740

K
KAMEZAWA Hiroyuki 已提交
1741
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1742
{
K
KAMEZAWA Hiroyuki 已提交
1743 1744
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1745 1746 1747 1748 1749
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1750 1751
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1752 1753 1754
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1755 1756 1757 1758

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1795 1796
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1797
	if (mem && atomic_read(&mem->oom_lock))
1798 1799 1800
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1801 1802 1803 1804
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1805
{
K
KAMEZAWA Hiroyuki 已提交
1806
	struct oom_wait_info owait;
1807
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1808

K
KAMEZAWA Hiroyuki 已提交
1809 1810 1811 1812 1813
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1814
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1815 1816 1817 1818 1819 1820 1821 1822
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1823 1824 1825 1826
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1827
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1828 1829
	mutex_unlock(&memcg_oom_mutex);

1830 1831
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1832
		mem_cgroup_out_of_memory(mem, mask);
1833
	} else {
K
KAMEZAWA Hiroyuki 已提交
1834
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1835
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1836 1837 1838
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1839
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1840 1841 1842 1843 1844 1845 1846
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1847 1848
}

1849 1850 1851
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1871
 */
1872

1873 1874
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1875 1876
{
	struct mem_cgroup *mem;
1877 1878
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1879
	unsigned long uninitialized_var(flags);
1880 1881 1882 1883

	if (unlikely(!pc))
		return;

1884
	rcu_read_lock();
1885
	mem = pc->mem_cgroup;
1886 1887 1888
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1889
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1890
		/* take a lock against to access pc->mem_cgroup */
1891
		move_lock_page_cgroup(pc, &flags);
1892 1893 1894 1895 1896
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1897 1898

	switch (idx) {
1899
	case MEMCG_NR_FILE_MAPPED:
1900 1901 1902
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1903
			ClearPageCgroupFileMapped(pc);
1904
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1905 1906 1907
		break;
	default:
		BUG();
1908
	}
1909

1910 1911
	this_cpu_add(mem->stat->count[idx], val);

1912 1913
out:
	if (unlikely(need_unlock))
1914
		move_unlock_page_cgroup(pc, &flags);
1915 1916
	rcu_read_unlock();
	return;
1917
}
1918
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1919

1920 1921 1922 1923
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1924
#define CHARGE_BATCH	32U
1925 1926
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1927
	unsigned int nr_pages;
1928
	struct work_struct work;
1929 1930
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1931 1932
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1933
static DEFINE_MUTEX(percpu_charge_mutex);
1934 1935

/*
1936
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1947 1948
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1962 1963 1964 1965
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1966
		if (do_swap_account)
1967 1968
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
1981
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1982 1983 1984 1985
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1986
 * This will be consumed by consume_stock() function, later.
1987
 */
1988
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
1989 1990 1991 1992 1993 1994 1995
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
1996
	stock->nr_pages += nr_pages;
1997 1998 1999 2000 2001 2002 2003 2004 2005
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2006
static void drain_all_stock_async(struct mem_cgroup *root_mem)
2007
{
2008 2009 2010
	int cpu, curcpu;
	/*
	 * If someone calls draining, avoid adding more kworker runs.
2011
	 */
2012
	if (!mutex_trylock(&percpu_charge_mutex))
2013 2014 2015
		return;
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2016 2017 2018 2019 2020 2021 2022
	/*
	 * Get a hint for avoiding draining charges on the current cpu,
	 * which must be exhausted by our charging.  It is not required that
	 * this be a precise check, so we use raw_smp_processor_id() instead of
	 * getcpu()/putcpu().
	 */
	curcpu = raw_smp_processor_id();
2023 2024
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
		struct mem_cgroup *mem;

		if (cpu == curcpu)
			continue;

		mem = stock->cached;
		if (!mem)
			continue;
		if (mem != root_mem) {
			if (!root_mem->use_hierarchy)
				continue;
			/* check whether "mem" is under tree of "root_mem" */
			if (!css_is_ancestor(&mem->css, &root_mem->css))
				continue;
		}
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
			schedule_work_on(cpu, &stock->work);
2042 2043
	}
 	put_online_cpus();
2044
	mutex_unlock(&percpu_charge_mutex);
2045 2046 2047 2048 2049 2050 2051
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
2052
	mutex_lock(&percpu_charge_mutex);
2053
	schedule_on_each_cpu(drain_local_stock);
2054
	mutex_unlock(&percpu_charge_mutex);
2055 2056
}

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2067
		long x = per_cpu(mem->stat->count[i], cpu);
2068 2069 2070 2071

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
2072 2073 2074 2075 2076 2077
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2089 2090 2091 2092
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2093 2094 2095 2096 2097
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2098
	struct mem_cgroup *iter;
2099

2100 2101 2102 2103 2104 2105
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2106
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2107
		return NOTIFY_OK;
2108 2109 2110 2111

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2112 2113 2114 2115 2116
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2127 2128
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
2129
{
2130
	unsigned long csize = nr_pages * PAGE_SIZE;
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2145
		res_counter_uncharge(&mem->res, csize);
2146 2147 2148 2149
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2150
	/*
2151 2152
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2153 2154 2155 2156
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2157
	if (nr_pages == CHARGE_BATCH)
2158 2159 2160 2161 2162 2163
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2164
					      gfp_mask, flags, NULL);
2165
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2166
		return CHARGE_RETRY;
2167
	/*
2168 2169 2170 2171 2172 2173 2174
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2175
	 */
2176
	if (nr_pages == 1 && ret)
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2196 2197 2198
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2199
 */
2200
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2201
				   gfp_t gfp_mask,
2202 2203 2204
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2205
{
2206
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2207 2208 2209
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2210

K
KAMEZAWA Hiroyuki 已提交
2211 2212 2213 2214 2215 2216 2217 2218
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2219

2220
	/*
2221 2222
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2223 2224 2225
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2226 2227 2228 2229
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2230
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2231 2232 2233
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2234
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2235
			goto done;
2236 2237
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2238
		struct task_struct *p;
2239

K
KAMEZAWA Hiroyuki 已提交
2240 2241 2242
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2243 2244 2245 2246 2247 2248 2249 2250
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2251 2252
		 */
		mem = mem_cgroup_from_task(p);
2253
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2254 2255 2256
			rcu_read_unlock();
			goto done;
		}
2257
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2276

2277 2278
	do {
		bool oom_check;
2279

2280
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2281 2282
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2283
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2284
		}
2285

2286 2287 2288 2289
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2290
		}
2291

2292
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2293 2294 2295 2296
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2297
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2298 2299 2300
			css_put(&mem->css);
			mem = NULL;
			goto again;
2301
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2302
			css_put(&mem->css);
2303 2304
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2305 2306
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2307
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2308
			}
2309 2310 2311 2312
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2313
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2314
			goto bypass;
2315
		}
2316 2317
	} while (ret != CHARGE_OK);

2318 2319
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2320
	css_put(&mem->css);
2321
done:
K
KAMEZAWA Hiroyuki 已提交
2322
	*memcg = mem;
2323 2324
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2325
	*memcg = NULL;
2326
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2327 2328 2329
bypass:
	*memcg = NULL;
	return 0;
2330
}
2331

2332 2333 2334 2335 2336
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2337
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2338
				       unsigned int nr_pages)
2339 2340
{
	if (!mem_cgroup_is_root(mem)) {
2341 2342 2343
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2344
		if (do_swap_account)
2345
			res_counter_uncharge(&mem->memsw, bytes);
2346
	}
2347 2348
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2368
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2369
{
2370
	struct mem_cgroup *mem = NULL;
2371
	struct page_cgroup *pc;
2372
	unsigned short id;
2373 2374
	swp_entry_t ent;

2375 2376 2377
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2378
	lock_page_cgroup(pc);
2379
	if (PageCgroupUsed(pc)) {
2380
		mem = pc->mem_cgroup;
2381 2382
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2383
	} else if (PageSwapCache(page)) {
2384
		ent.val = page_private(page);
2385 2386 2387 2388 2389 2390
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2391
	}
2392
	unlock_page_cgroup(pc);
2393 2394 2395
	return mem;
}

2396
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2397
				       struct page *page,
2398
				       unsigned int nr_pages,
2399
				       struct page_cgroup *pc,
2400
				       enum charge_type ctype)
2401
{
2402 2403 2404
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2405
		__mem_cgroup_cancel_charge(mem, nr_pages);
2406 2407 2408 2409 2410 2411
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2412
	pc->mem_cgroup = mem;
2413 2414 2415 2416 2417 2418 2419
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2420
	smp_wmb();
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2434

2435
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2436
	unlock_page_cgroup(pc);
2437 2438 2439 2440 2441
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2442
	memcg_check_events(mem, page);
2443
}
2444

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2459 2460
	if (mem_cgroup_disabled())
		return;
2461
	/*
2462
	 * We have no races with charge/uncharge but will have races with
2463 2464 2465 2466 2467 2468
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2479
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2480 2481
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2482 2483 2484 2485 2486
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2487
/**
2488
 * mem_cgroup_move_account - move account of the page
2489
 * @page: the page
2490
 * @nr_pages: number of regular pages (>1 for huge pages)
2491 2492 2493
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2494
 * @uncharge: whether we should call uncharge and css_put against @from.
2495 2496
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2497
 * - page is not on LRU (isolate_page() is useful.)
2498
 * - compound_lock is held when nr_pages > 1
2499
 *
2500
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2501
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2502 2503
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2504
 */
2505 2506 2507 2508 2509 2510
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2511
{
2512 2513
	unsigned long flags;
	int ret;
2514

2515
	VM_BUG_ON(from == to);
2516
	VM_BUG_ON(PageLRU(page));
2517 2518 2519 2520 2521 2522 2523
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2524
	if (nr_pages > 1 && !PageTransHuge(page))
2525 2526 2527 2528 2529 2530 2531 2532 2533
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2534

2535
	if (PageCgroupFileMapped(pc)) {
2536 2537 2538 2539 2540
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2541
	}
2542
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2543 2544
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2545
		__mem_cgroup_cancel_charge(from, nr_pages);
2546

2547
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2548
	pc->mem_cgroup = to;
2549
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2550 2551 2552
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2553
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2554
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2555
	 * status here.
2556
	 */
2557 2558 2559
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2560
	unlock_page_cgroup(pc);
2561 2562 2563
	/*
	 * check events
	 */
2564 2565
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2566
out:
2567 2568 2569 2570 2571 2572 2573
	return ret;
}

/*
 * move charges to its parent.
 */

2574 2575
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2576 2577 2578 2579 2580 2581
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2582
	unsigned int nr_pages;
2583
	unsigned long uninitialized_var(flags);
2584 2585 2586 2587 2588 2589
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2590 2591 2592 2593 2594
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2595

2596
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2597

2598
	parent = mem_cgroup_from_cont(pcg);
2599
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2600
	if (ret || !parent)
2601
		goto put_back;
2602

2603
	if (nr_pages > 1)
2604 2605
		flags = compound_lock_irqsave(page);

2606
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2607
	if (ret)
2608
		__mem_cgroup_cancel_charge(parent, nr_pages);
2609

2610
	if (nr_pages > 1)
2611
		compound_unlock_irqrestore(page, flags);
2612
put_back:
K
KAMEZAWA Hiroyuki 已提交
2613
	putback_lru_page(page);
2614
put:
2615
	put_page(page);
2616
out:
2617 2618 2619
	return ret;
}

2620 2621 2622 2623 2624 2625 2626
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2627
				gfp_t gfp_mask, enum charge_type ctype)
2628
{
2629
	struct mem_cgroup *mem = NULL;
2630
	unsigned int nr_pages = 1;
2631
	struct page_cgroup *pc;
2632
	bool oom = true;
2633
	int ret;
A
Andrea Arcangeli 已提交
2634

A
Andrea Arcangeli 已提交
2635
	if (PageTransHuge(page)) {
2636
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2637
		VM_BUG_ON(!PageTransHuge(page));
2638 2639 2640 2641 2642
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2643
	}
2644 2645

	pc = lookup_page_cgroup(page);
2646
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2647

2648
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2649
	if (ret || !mem)
2650 2651
		return ret;

2652
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2653 2654 2655
	return 0;
}

2656 2657
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2658
{
2659
	if (mem_cgroup_disabled())
2660
		return 0;
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2672
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2673
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2674 2675
}

D
Daisuke Nishimura 已提交
2676 2677 2678 2679
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2696 2697
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2698
{
2699
	struct mem_cgroup *mem = NULL;
2700 2701
	int ret;

2702
	if (mem_cgroup_disabled())
2703
		return 0;
2704 2705
	if (PageCompound(page))
		return 0;
2706 2707 2708 2709 2710 2711 2712 2713
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2714 2715
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2716 2717 2718 2719
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2720 2721 2722 2723 2724 2725
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2726 2727
			return 0;
		}
2728
		unlock_page_cgroup(pc);
2729 2730
	}

2731
	if (unlikely(!mm))
2732
		mm = &init_mm;
2733

2734 2735 2736 2737
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2738

2739 2740 2741 2742 2743 2744 2745 2746 2747
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2748 2749 2750 2751 2752 2753 2754 2755
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2756
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2757 2758

	return ret;
2759 2760
}

2761 2762 2763
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2764
 * struct page_cgroup is acquired. This refcnt will be consumed by
2765 2766
 * "commit()" or removed by "cancel()"
 */
2767 2768 2769 2770 2771
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2772
	int ret;
2773

2774 2775
	*ptr = NULL;

2776
	if (mem_cgroup_disabled())
2777 2778 2779 2780 2781 2782
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2783 2784 2785
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2786 2787
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2788
		goto charge_cur_mm;
2789
	mem = try_get_mem_cgroup_from_page(page);
2790 2791
	if (!mem)
		goto charge_cur_mm;
2792
	*ptr = mem;
2793
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2794 2795
	css_put(&mem->css);
	return ret;
2796 2797 2798
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2799
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2800 2801
}

D
Daisuke Nishimura 已提交
2802 2803 2804
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2805
{
2806
	if (mem_cgroup_disabled())
2807 2808 2809
		return;
	if (!ptr)
		return;
2810
	cgroup_exclude_rmdir(&ptr->css);
2811 2812

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2813 2814 2815
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2816 2817 2818
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2819
	 */
2820
	if (do_swap_account && PageSwapCache(page)) {
2821
		swp_entry_t ent = {.val = page_private(page)};
2822
		unsigned short id;
2823
		struct mem_cgroup *memcg;
2824 2825 2826 2827

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2828
		if (memcg) {
2829 2830 2831 2832
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2833
			if (!mem_cgroup_is_root(memcg))
2834
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2835
			mem_cgroup_swap_statistics(memcg, false);
2836 2837
			mem_cgroup_put(memcg);
		}
2838
		rcu_read_unlock();
2839
	}
2840 2841 2842 2843 2844 2845
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2846 2847
}

D
Daisuke Nishimura 已提交
2848 2849 2850 2851 2852 2853
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2854 2855
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2856
	if (mem_cgroup_disabled())
2857 2858 2859
		return;
	if (!mem)
		return;
2860
	__mem_cgroup_cancel_charge(mem, 1);
2861 2862
}

2863 2864 2865
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2866 2867 2868
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2869

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2882 2883
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2884
	 * In those cases, all pages freed continuously can be expected to be in
2885 2886 2887 2888 2889 2890 2891 2892
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2893
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2894 2895
		goto direct_uncharge;

2896 2897 2898 2899 2900 2901 2902 2903
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2904
	batch->nr_pages++;
2905
	if (uncharge_memsw)
2906
		batch->memsw_nr_pages++;
2907 2908
	return;
direct_uncharge:
2909
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2910
	if (uncharge_memsw)
2911
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2912 2913
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2914 2915
	return;
}
2916

2917
/*
2918
 * uncharge if !page_mapped(page)
2919
 */
2920
static struct mem_cgroup *
2921
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2922
{
2923
	struct mem_cgroup *mem = NULL;
2924 2925
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2926

2927
	if (mem_cgroup_disabled())
2928
		return NULL;
2929

K
KAMEZAWA Hiroyuki 已提交
2930
	if (PageSwapCache(page))
2931
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2932

A
Andrea Arcangeli 已提交
2933
	if (PageTransHuge(page)) {
2934
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2935 2936
		VM_BUG_ON(!PageTransHuge(page));
	}
2937
	/*
2938
	 * Check if our page_cgroup is valid
2939
	 */
2940 2941
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2942
		return NULL;
2943

2944
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2945

2946 2947
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2948 2949 2950 2951 2952
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2953
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2954 2955
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2967
	}
K
KAMEZAWA Hiroyuki 已提交
2968

2969
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2970

2971
	ClearPageCgroupUsed(pc);
2972 2973 2974 2975 2976 2977
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2978

2979
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2980 2981 2982 2983
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2984
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2985 2986 2987 2988 2989
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
2990
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
2991

2992
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2993 2994 2995

unlock_out:
	unlock_page_cgroup(pc);
2996
	return NULL;
2997 2998
}

2999 3000
void mem_cgroup_uncharge_page(struct page *page)
{
3001 3002 3003 3004 3005
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3006 3007 3008 3009 3010 3011
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3012
	VM_BUG_ON(page->mapping);
3013 3014 3015
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3030 3031
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3052 3053 3054 3055 3056 3057
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3058
	memcg_oom_recover(batch->memcg);
3059 3060 3061 3062
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3063
#ifdef CONFIG_SWAP
3064
/*
3065
 * called after __delete_from_swap_cache() and drop "page" account.
3066 3067
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3068 3069
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3070 3071
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3072 3073 3074 3075 3076 3077
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3078

K
KAMEZAWA Hiroyuki 已提交
3079 3080 3081 3082 3083
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3084
		swap_cgroup_record(ent, css_id(&memcg->css));
3085
}
3086
#endif
3087 3088 3089 3090 3091 3092 3093

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3094
{
3095
	struct mem_cgroup *memcg;
3096
	unsigned short id;
3097 3098 3099 3100

	if (!do_swap_account)
		return;

3101 3102 3103
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3104
	if (memcg) {
3105 3106 3107 3108
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3109
		if (!mem_cgroup_is_root(memcg))
3110
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3111
		mem_cgroup_swap_statistics(memcg, false);
3112 3113
		mem_cgroup_put(memcg);
	}
3114
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3115
}
3116 3117 3118 3119 3120 3121

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3122
 * @need_fixup: whether we should fixup res_counters and refcounts.
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3133
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3134 3135 3136 3137 3138 3139 3140 3141
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3142
		mem_cgroup_swap_statistics(to, true);
3143
		/*
3144 3145 3146 3147 3148 3149
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3150 3151
		 */
		mem_cgroup_get(to);
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3163 3164 3165 3166 3167 3168
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3169
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3170 3171 3172
{
	return -EINVAL;
}
3173
#endif
K
KAMEZAWA Hiroyuki 已提交
3174

3175
/*
3176 3177
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3178
 */
3179
int mem_cgroup_prepare_migration(struct page *page,
3180
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3181
{
3182
	struct mem_cgroup *mem = NULL;
3183
	struct page_cgroup *pc;
3184
	enum charge_type ctype;
3185
	int ret = 0;
3186

3187 3188
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3189
	VM_BUG_ON(PageTransHuge(page));
3190
	if (mem_cgroup_disabled())
3191 3192
		return 0;

3193 3194 3195
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3196 3197
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3229
	}
3230
	unlock_page_cgroup(pc);
3231 3232 3233 3234 3235 3236
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3237

A
Andrea Arcangeli 已提交
3238
	*ptr = mem;
3239
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3252
	}
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3266
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3267
	return ret;
3268
}
3269

3270
/* remove redundant charge if migration failed*/
3271
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3272
	struct page *oldpage, struct page *newpage, bool migration_ok)
3273
{
3274
	struct page *used, *unused;
3275 3276 3277 3278
	struct page_cgroup *pc;

	if (!mem)
		return;
3279
	/* blocks rmdir() */
3280
	cgroup_exclude_rmdir(&mem->css);
3281
	if (!migration_ok) {
3282 3283
		used = oldpage;
		unused = newpage;
3284
	} else {
3285
		used = newpage;
3286 3287
		unused = oldpage;
	}
3288
	/*
3289 3290 3291
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3292
	 */
3293 3294 3295 3296
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3297

3298 3299
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3300
	/*
3301 3302 3303 3304 3305 3306
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3307
	 */
3308 3309
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3310
	/*
3311 3312
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3313 3314 3315 3316
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3317
}
3318

3319
/*
3320 3321 3322 3323 3324 3325
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3326
 */
3327
int mem_cgroup_shmem_charge_fallback(struct page *page,
3328 3329
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3330
{
3331
	struct mem_cgroup *mem;
3332
	int ret;
3333

3334
	if (mem_cgroup_disabled())
3335
		return 0;
3336

3337 3338 3339
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3340

3341
	return ret;
3342 3343
}

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3390 3391
static DEFINE_MUTEX(set_limit_mutex);

3392
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3393
				unsigned long long val)
3394
{
3395
	int retry_count;
3396
	u64 memswlimit, memlimit;
3397
	int ret = 0;
3398 3399
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3400
	int enlarge;
3401 3402 3403 3404 3405 3406 3407 3408 3409

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3410

3411
	enlarge = 0;
3412
	while (retry_count) {
3413 3414 3415 3416
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3427 3428
			break;
		}
3429 3430 3431 3432 3433

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3434
		ret = res_counter_set_limit(&memcg->res, val);
3435 3436 3437 3438 3439 3440
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3441 3442 3443 3444 3445
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3446
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3447 3448
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3449 3450 3451 3452 3453 3454
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3455
	}
3456 3457
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3458

3459 3460 3461
	return ret;
}

L
Li Zefan 已提交
3462 3463
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3464
{
3465
	int retry_count;
3466
	u64 memlimit, memswlimit, oldusage, curusage;
3467 3468
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3469
	int enlarge = 0;
3470

3471 3472 3473
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3491 3492 3493
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3494
		ret = res_counter_set_limit(&memcg->memsw, val);
3495 3496 3497 3498 3499 3500
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3501 3502 3503 3504 3505
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3506
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3507
						MEM_CGROUP_RECLAIM_NOSWAP |
3508 3509
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3510
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3511
		/* Usage is reduced ? */
3512
		if (curusage >= oldusage)
3513
			retry_count--;
3514 3515
		else
			oldusage = curusage;
3516
	}
3517 3518
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3519 3520 3521
	return ret;
}

3522
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3523 3524
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3525 3526 3527 3528 3529 3530
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3531
	unsigned long long excess;
3532
	unsigned long nr_scanned;
3533 3534 3535 3536

	if (order > 0)
		return 0;

3537
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3551
		nr_scanned = 0;
3552 3553
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3554 3555
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3556
		nr_reclaimed += reclaimed;
3557
		*total_scanned += nr_scanned;
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3580
				if (next_mz == mz)
3581
					css_put(&next_mz->mem->css);
3582
				else /* next_mz == NULL or other memcg */
3583 3584 3585 3586
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3587
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3588 3589 3590 3591 3592 3593 3594 3595
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3596 3597
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3616 3617 3618 3619
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3620
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3621
				int node, int zid, enum lru_list lru)
3622
{
K
KAMEZAWA Hiroyuki 已提交
3623 3624
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3625
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3626
	unsigned long flags, loop;
3627
	struct list_head *list;
3628
	int ret = 0;
3629

K
KAMEZAWA Hiroyuki 已提交
3630 3631
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3632
	list = &mz->lists[lru];
3633

3634 3635 3636 3637 3638
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3639 3640
		struct page *page;

3641
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3642
		spin_lock_irqsave(&zone->lru_lock, flags);
3643
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3644
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3645
			break;
3646 3647 3648 3649
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3650
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3651
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3652 3653
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3654
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3655

3656
		page = lookup_cgroup_page(pc);
3657 3658

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3659
		if (ret == -ENOMEM)
3660
			break;
3661 3662 3663 3664 3665 3666 3667

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3668
	}
K
KAMEZAWA Hiroyuki 已提交
3669

3670 3671 3672
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3673 3674 3675 3676 3677 3678
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3679
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3680
{
3681 3682 3683
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3684
	struct cgroup *cgrp = mem->css.cgroup;
3685

3686
	css_get(&mem->css);
3687 3688

	shrink = 0;
3689 3690 3691
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3692
move_account:
3693
	do {
3694
		ret = -EBUSY;
3695 3696 3697 3698
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3699
			goto out;
3700 3701
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3702
		drain_all_stock_sync();
3703
		ret = 0;
3704
		mem_cgroup_start_move(mem);
3705
		for_each_node_state(node, N_HIGH_MEMORY) {
3706
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3707
				enum lru_list l;
3708 3709
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3710
							node, zid, l);
3711 3712 3713
					if (ret)
						break;
				}
3714
			}
3715 3716 3717
			if (ret)
				break;
		}
3718
		mem_cgroup_end_move(mem);
3719
		memcg_oom_recover(mem);
3720 3721 3722
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3723
		cond_resched();
3724 3725
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3726 3727 3728
out:
	css_put(&mem->css);
	return ret;
3729 3730

try_to_free:
3731 3732
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3733 3734 3735
		ret = -EBUSY;
		goto out;
	}
3736 3737
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3738 3739 3740 3741
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3742 3743 3744 3745 3746

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3747
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3748
						false);
3749
		if (!progress) {
3750
			nr_retries--;
3751
			/* maybe some writeback is necessary */
3752
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3753
		}
3754 3755

	}
K
KAMEZAWA Hiroyuki 已提交
3756
	lru_add_drain();
3757
	/* try move_account...there may be some *locked* pages. */
3758
	goto move_account;
3759 3760
}

3761 3762 3763 3764 3765 3766
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3785
	 * If parent's use_hierarchy is set, we can't make any modifications
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3805

3806 3807
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3808
{
K
KAMEZAWA Hiroyuki 已提交
3809
	struct mem_cgroup *iter;
3810
	long val = 0;
3811

3812
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3813 3814 3815 3816 3817 3818
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3819 3820
}

3821 3822
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3823
	u64 val;
3824 3825 3826 3827 3828 3829 3830 3831

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

3832 3833
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3834

K
KAMEZAWA Hiroyuki 已提交
3835
	if (swap)
3836
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3837 3838 3839 3840

	return val << PAGE_SHIFT;
}

3841
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3842
{
3843
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3844
	u64 val;
3845 3846 3847 3848 3849 3850
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3851 3852 3853
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3854
			val = res_counter_read_u64(&mem->res, name);
3855 3856
		break;
	case _MEMSWAP:
3857 3858 3859
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3860
			val = res_counter_read_u64(&mem->memsw, name);
3861 3862 3863 3864 3865 3866
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3867
}
3868 3869 3870 3871
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3872 3873
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3874
{
3875
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3876
	int type, name;
3877 3878 3879
	unsigned long long val;
	int ret;

3880 3881 3882
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3883
	case RES_LIMIT:
3884 3885 3886 3887
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3888 3889
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3890 3891 3892
		if (ret)
			break;
		if (type == _MEM)
3893
			ret = mem_cgroup_resize_limit(memcg, val);
3894 3895
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3896
		break;
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3911 3912 3913 3914 3915
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3916 3917
}

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3946
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3947 3948
{
	struct mem_cgroup *mem;
3949
	int type, name;
3950 3951

	mem = mem_cgroup_from_cont(cont);
3952 3953 3954
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3955
	case RES_MAX_USAGE:
3956 3957 3958 3959
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3960 3961
		break;
	case RES_FAILCNT:
3962 3963 3964 3965
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3966 3967
		break;
	}
3968

3969
	return 0;
3970 3971
}

3972 3973 3974 3975 3976 3977
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3978
#ifdef CONFIG_MMU
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3997 3998 3999 4000 4001 4002 4003
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4004

K
KAMEZAWA Hiroyuki 已提交
4005 4006 4007 4008 4009

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4010
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4011 4012
	MCS_PGPGIN,
	MCS_PGPGOUT,
4013
	MCS_SWAP,
4014 4015
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4026 4027
};

K
KAMEZAWA Hiroyuki 已提交
4028 4029 4030 4031 4032 4033
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4034
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4035 4036
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4037
	{"swap", "total_swap"},
4038 4039
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4040 4041 4042 4043 4044 4045 4046 4047
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4048 4049
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4050 4051 4052 4053
{
	s64 val;

	/* per cpu stat */
4054
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4055
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4056
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4057
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4058
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4059
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4060
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4061
	s->stat[MCS_PGPGIN] += val;
4062
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4063
	s->stat[MCS_PGPGOUT] += val;
4064
	if (do_swap_account) {
4065
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4066 4067
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4068 4069 4070 4071
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
	s->stat[MCS_PGFAULT] += val;
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4072 4073

	/* per zone stat */
4074
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4075
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4076
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4077
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4078
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4079
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4080
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4081
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4082
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4083 4084 4085 4086 4087 4088
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
4089 4090 4091 4092
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4093 4094
}

4095 4096 4097 4098 4099 4100 4101 4102 4103
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4104
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4105 4106
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4107
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4108 4109 4110 4111
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4112
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4113 4114
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4115 4116
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4117 4118 4119 4120
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4121
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4122 4123
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4124 4125
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4126 4127 4128 4129
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4130
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4131 4132
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4133 4134
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4135 4136 4137 4138 4139 4140 4141
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4142 4143
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4144 4145
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4146
	struct mcs_total_stat mystat;
4147 4148
	int i;

K
KAMEZAWA Hiroyuki 已提交
4149 4150
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4151

4152

4153 4154 4155
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4156
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4157
	}
L
Lee Schermerhorn 已提交
4158

K
KAMEZAWA Hiroyuki 已提交
4159
	/* Hierarchical information */
4160 4161 4162 4163 4164 4165 4166
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4167

K
KAMEZAWA Hiroyuki 已提交
4168 4169
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4170 4171 4172
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4173
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4174
	}
K
KAMEZAWA Hiroyuki 已提交
4175

K
KOSAKI Motohiro 已提交
4176
#ifdef CONFIG_DEBUG_VM
4177
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4205 4206 4207
	return 0;
}

K
KOSAKI Motohiro 已提交
4208 4209 4210 4211
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4212
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4213 4214 4215 4216 4217 4218 4219
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4220

K
KOSAKI Motohiro 已提交
4221 4222 4223 4224 4225 4226 4227
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4228 4229 4230

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4231 4232
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4233 4234
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4235
		return -EINVAL;
4236
	}
K
KOSAKI Motohiro 已提交
4237 4238 4239

	memcg->swappiness = val;

4240 4241
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4242 4243 4244
	return 0;
}

4245 4246 4247 4248 4249 4250 4251 4252
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4253
		t = rcu_dereference(memcg->thresholds.primary);
4254
	else
4255
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4267
	i = t->current_threshold;
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4291
	t->current_threshold = i - 1;
4292 4293 4294 4295 4296 4297
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4298 4299 4300 4301 4302 4303 4304
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4315
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4326 4327 4328 4329
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4330 4331 4332 4333
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4334 4335
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4336 4337
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4338 4339
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4340
	int i, size, ret;
4341 4342 4343 4344 4345 4346

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4347

4348
	if (type == _MEM)
4349
		thresholds = &memcg->thresholds;
4350
	else if (type == _MEMSWAP)
4351
		thresholds = &memcg->memsw_thresholds;
4352 4353 4354 4355 4356 4357
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4358
	if (thresholds->primary)
4359 4360
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4361
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4362 4363

	/* Allocate memory for new array of thresholds */
4364
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4365
			GFP_KERNEL);
4366
	if (!new) {
4367 4368 4369
		ret = -ENOMEM;
		goto unlock;
	}
4370
	new->size = size;
4371 4372

	/* Copy thresholds (if any) to new array */
4373 4374
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4375
				sizeof(struct mem_cgroup_threshold));
4376 4377
	}

4378
	/* Add new threshold */
4379 4380
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4381 4382

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4383
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4384 4385 4386
			compare_thresholds, NULL);

	/* Find current threshold */
4387
	new->current_threshold = -1;
4388
	for (i = 0; i < size; i++) {
4389
		if (new->entries[i].threshold < usage) {
4390
			/*
4391 4392
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4393 4394
			 * it here.
			 */
4395
			++new->current_threshold;
4396 4397 4398
		}
	}

4399 4400 4401 4402 4403
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4404

4405
	/* To be sure that nobody uses thresholds */
4406 4407 4408 4409 4410 4411 4412 4413
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4414
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4415
	struct cftype *cft, struct eventfd_ctx *eventfd)
4416 4417
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4418 4419
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4420 4421
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4422
	int i, j, size;
4423 4424 4425

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4426
		thresholds = &memcg->thresholds;
4427
	else if (type == _MEMSWAP)
4428
		thresholds = &memcg->memsw_thresholds;
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4444 4445 4446
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4447 4448 4449
			size++;
	}

4450
	new = thresholds->spare;
4451

4452 4453
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4454 4455
		kfree(new);
		new = NULL;
4456
		goto swap_buffers;
4457 4458
	}

4459
	new->size = size;
4460 4461

	/* Copy thresholds and find current threshold */
4462 4463 4464
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4465 4466
			continue;

4467 4468
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4469
			/*
4470
			 * new->current_threshold will not be used
4471 4472 4473
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4474
			++new->current_threshold;
4475 4476 4477 4478
		}
		j++;
	}

4479
swap_buffers:
4480 4481 4482
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4483

4484
	/* To be sure that nobody uses thresholds */
4485 4486 4487 4488
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4489

K
KAMEZAWA Hiroyuki 已提交
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4515
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4570 4571
	if (!val)
		memcg_oom_recover(mem);
4572 4573 4574 4575
	cgroup_unlock();
	return 0;
}

4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

B
Balbir Singh 已提交
4592 4593
static struct cftype mem_cgroup_files[] = {
	{
4594
		.name = "usage_in_bytes",
4595
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4596
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4597 4598
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4599
	},
4600 4601
	{
		.name = "max_usage_in_bytes",
4602
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4603
		.trigger = mem_cgroup_reset,
4604 4605
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4606
	{
4607
		.name = "limit_in_bytes",
4608
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4609
		.write_string = mem_cgroup_write,
4610
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4611
	},
4612 4613 4614 4615 4616 4617
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4618 4619
	{
		.name = "failcnt",
4620
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4621
		.trigger = mem_cgroup_reset,
4622
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4623
	},
4624 4625
	{
		.name = "stat",
4626
		.read_map = mem_control_stat_show,
4627
	},
4628 4629 4630 4631
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4632 4633 4634 4635 4636
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4637 4638 4639 4640 4641
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4642 4643 4644 4645 4646
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4647 4648
	{
		.name = "oom_control",
4649 4650
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4651 4652 4653 4654
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4655 4656 4657 4658
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4659
		.mode = S_IRUGO,
4660 4661
	},
#endif
B
Balbir Singh 已提交
4662 4663
};

4664 4665 4666 4667 4668 4669
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4670 4671
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4707 4708 4709
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4710
	struct mem_cgroup_per_zone *mz;
4711
	enum lru_list l;
4712
	int zone, tmp = node;
4713 4714 4715 4716 4717 4718 4719 4720
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4721 4722
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4723
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4724 4725
	if (!pn)
		return 1;
4726

4727
	mem->info.nodeinfo[node] = pn;
4728 4729
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4730 4731
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4732
		mz->usage_in_excess = 0;
4733 4734
		mz->on_tree = false;
		mz->mem = mem;
4735
	}
4736 4737 4738
	return 0;
}

4739 4740 4741 4742 4743
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4744 4745 4746
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4747
	int size = sizeof(struct mem_cgroup);
4748

4749
	/* Can be very big if MAX_NUMNODES is very big */
4750
	if (size < PAGE_SIZE)
4751
		mem = kzalloc(size, GFP_KERNEL);
4752
	else
4753
		mem = vzalloc(size);
4754

4755 4756 4757
	if (!mem)
		return NULL;

4758
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4759 4760
	if (!mem->stat)
		goto out_free;
4761
	spin_lock_init(&mem->pcp_counter_lock);
4762
	return mem;
4763 4764 4765 4766 4767 4768 4769

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4770 4771
}

4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4783
static void __mem_cgroup_free(struct mem_cgroup *mem)
4784
{
K
KAMEZAWA Hiroyuki 已提交
4785 4786
	int node;

4787
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4788 4789
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4790 4791 4792
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4793 4794
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4795 4796 4797 4798 4799
		kfree(mem);
	else
		vfree(mem);
}

4800 4801 4802 4803 4804
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4805
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4806
{
4807
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4808
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4809
		__mem_cgroup_free(mem);
4810 4811 4812
		if (parent)
			mem_cgroup_put(parent);
	}
4813 4814
}

4815 4816 4817 4818 4819
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4820 4821 4822 4823 4824 4825 4826 4827 4828
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4829

4830 4831 4832
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4833
	if (!mem_cgroup_disabled() && really_do_swap_account)
4834 4835 4836 4837 4838 4839 4840 4841
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4867
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4868 4869
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4870
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4871
	long error = -ENOMEM;
4872
	int node;
B
Balbir Singh 已提交
4873

4874 4875
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4876
		return ERR_PTR(error);
4877

4878 4879 4880
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4881

4882
	/* root ? */
4883
	if (cont->parent == NULL) {
4884
		int cpu;
4885
		enable_swap_cgroup();
4886
		parent = NULL;
4887
		root_mem_cgroup = mem;
4888 4889
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4890 4891 4892 4893 4894
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4895
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4896
	} else {
4897
		parent = mem_cgroup_from_cont(cont->parent);
4898
		mem->use_hierarchy = parent->use_hierarchy;
4899
		mem->oom_kill_disable = parent->oom_kill_disable;
4900
	}
4901

4902 4903 4904
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4905 4906 4907 4908 4909 4910 4911
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4912 4913 4914 4915
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4916
	mem->last_scanned_child = 0;
4917
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
4918
	INIT_LIST_HEAD(&mem->oom_notify);
4919

K
KOSAKI Motohiro 已提交
4920
	if (parent)
4921
		mem->swappiness = mem_cgroup_swappiness(parent);
4922
	atomic_set(&mem->refcnt, 1);
4923
	mem->move_charge_at_immigrate = 0;
4924
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4925
	return &mem->css;
4926
free_out:
4927
	__mem_cgroup_free(mem);
4928
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4929
	return ERR_PTR(error);
B
Balbir Singh 已提交
4930 4931
}

4932
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4933 4934 4935
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4936 4937

	return mem_cgroup_force_empty(mem, false);
4938 4939
}

B
Balbir Singh 已提交
4940 4941 4942
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4943 4944 4945
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4946 4947 4948 4949 4950
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4951 4952 4953 4954 4955 4956 4957 4958
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4959 4960
}

4961
#ifdef CONFIG_MMU
4962
/* Handlers for move charge at task migration. */
4963 4964
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4965
{
4966 4967
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4968 4969
	struct mem_cgroup *mem = mc.to;

4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5005
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5006 5007 5008 5009 5010
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5011 5012 5013 5014 5015 5016 5017 5018
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5019
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5020 5021 5022 5023 5024 5025
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5026 5027 5028
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5029 5030 5031 5032 5033
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5034
	swp_entry_t	ent;
5035 5036 5037 5038 5039
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5040
	MC_TARGET_SWAP,
5041 5042
};

D
Daisuke Nishimura 已提交
5043 5044
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5045
{
D
Daisuke Nishimura 已提交
5046
	struct page *page = vm_normal_page(vma, addr, ptent);
5047

D
Daisuke Nishimura 已提交
5048 5049 5050 5051 5052 5053
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5054 5055
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5074 5075
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5076
		return NULL;
5077
	}
D
Daisuke Nishimura 已提交
5078 5079 5080 5081 5082 5083
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5129 5130
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5131 5132 5133

	if (!page && !ent.val)
		return 0;
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5149 5150
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5151 5152 5153 5154
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5167 5168
	split_huge_page_pmd(walk->mm, pmd);

5169 5170 5171 5172 5173 5174 5175
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5176 5177 5178
	return 0;
}

5179 5180 5181 5182 5183
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5184
	down_read(&mm->mmap_sem);
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5196
	up_read(&mm->mmap_sem);
5197 5198 5199 5200 5201 5202 5203 5204 5205

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5206 5207 5208 5209 5210
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5211 5212
}

5213 5214
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5215
{
5216 5217 5218
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5219
	/* we must uncharge all the leftover precharges from mc.to */
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5231
	}
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5266
	spin_lock(&mc.lock);
5267 5268
	mc.from = NULL;
	mc.to = NULL;
5269
	spin_unlock(&mc.lock);
5270
	mem_cgroup_end_move(from);
5271 5272
}

5273 5274
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5275
				struct task_struct *p)
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5290 5291 5292 5293
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5294
			VM_BUG_ON(mc.moved_charge);
5295
			VM_BUG_ON(mc.moved_swap);
5296
			mem_cgroup_start_move(from);
5297
			spin_lock(&mc.lock);
5298 5299
			mc.from = from;
			mc.to = mem;
5300
			spin_unlock(&mc.lock);
5301
			/* We set mc.moving_task later */
5302 5303 5304 5305

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5306 5307
		}
		mmput(mm);
5308 5309 5310 5311 5312 5313
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5314
				struct task_struct *p)
5315
{
5316
	mem_cgroup_clear_mc();
5317 5318
}

5319 5320 5321
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5322
{
5323 5324 5325 5326 5327
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5328
	split_huge_page_pmd(walk->mm, pmd);
5329 5330 5331 5332 5333 5334 5335 5336
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5337
		swp_entry_t ent;
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5349 5350
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5351
				mc.precharge--;
5352 5353
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5354 5355 5356 5357 5358
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5359 5360
		case MC_TARGET_SWAP:
			ent = target.ent;
5361 5362
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5363
				mc.precharge--;
5364 5365 5366
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5367
			break;
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5382
		ret = mem_cgroup_do_precharge(1);
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5426
	up_read(&mm->mmap_sem);
5427 5428
}

B
Balbir Singh 已提交
5429 5430 5431
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5432
				struct task_struct *p)
B
Balbir Singh 已提交
5433
{
5434
	struct mm_struct *mm = get_task_mm(p);
5435 5436

	if (mm) {
5437 5438 5439
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5440 5441
		mmput(mm);
	}
5442 5443
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5444
}
5445 5446 5447
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5448
				struct task_struct *p)
5449 5450 5451 5452 5453
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5454
				struct task_struct *p)
5455 5456 5457 5458 5459
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5460
				struct task_struct *p)
5461 5462 5463
{
}
#endif
B
Balbir Singh 已提交
5464

B
Balbir Singh 已提交
5465 5466 5467 5468
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5469
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5470 5471
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5472 5473
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5474
	.attach = mem_cgroup_move_task,
5475
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5476
	.use_id = 1,
B
Balbir Singh 已提交
5477
};
5478 5479

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5480 5481 5482
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5483
	if (!strcmp(s, "1"))
5484
		really_do_swap_account = 1;
5485
	else if (!strcmp(s, "0"))
5486 5487 5488
		really_do_swap_account = 0;
	return 1;
}
5489
__setup("swapaccount=", enable_swap_account);
5490 5491

#endif