memcontrol.c 141.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75 76
#else
#define do_swap_account		(0)
#endif


77 78 79 80 81 82 83 84
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
85
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
86
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
90 91 92
	MEM_CGROUP_STAT_NSTATS,
};

93 94 95 96
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
97 98
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
99 100
	MEM_CGROUP_EVENTS_NSTATS,
};
101 102 103 104 105 106 107 108 109
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
110
	MEM_CGROUP_TARGET_NUMAINFO,
111 112 113 114
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
115
#define NUMAINFO_EVENTS_TARGET	(1024)
116

117
struct mem_cgroup_stat_cpu {
118
	long count[MEM_CGROUP_STAT_NSTATS];
119
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120
	unsigned long targets[MEM_CGROUP_NTARGETS];
121 122
};

123 124 125 126
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
127 128 129
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
130 131
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
132 133

	struct zone_reclaim_stat reclaim_stat;
134 135 136 137
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
138 139
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
140 141 142 143 144 145 146 147 148 149 150 151
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

172 173 174 175 176
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
177
/* For threshold */
178 179
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
180
	int current_threshold;
181 182 183 184 185
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
186 187 188 189 190 191 192 193 194 195 196 197

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
198 199 200 201 202
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
203 204

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
205
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
206

B
Balbir Singh 已提交
207 208 209 210 211 212 213
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
214 215 216
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
217 218 219 220 221 222 223
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
224 225 226 227
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
228 229 230 231
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
232
	struct mem_cgroup_lru_info info;
233
	/*
234
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
235
	 * reclaimed from.
236
	 */
K
KAMEZAWA Hiroyuki 已提交
237
	int last_scanned_child;
238 239 240
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
241 242
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
243
#endif
244 245 246 247
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
248 249 250 251

	bool		oom_lock;
	atomic_t	under_oom;

252
	atomic_t	refcnt;
253

254
	int	swappiness;
255 256
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
257

258 259 260
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

261 262 263 264
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
265
	struct mem_cgroup_thresholds thresholds;
266

267
	/* thresholds for mem+swap usage. RCU-protected */
268
	struct mem_cgroup_thresholds memsw_thresholds;
269

K
KAMEZAWA Hiroyuki 已提交
270 271
	/* For oom notifier event fd */
	struct list_head oom_notify;
272

273 274 275 276 277
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
278
	/*
279
	 * percpu counter.
280
	 */
281
	struct mem_cgroup_stat_cpu *stat;
282 283 284 285 286 287
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
288 289
};

290 291 292 293 294 295
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
296
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
297
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
298 299 300
	NR_MOVE_TYPE,
};

301 302
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
303
	spinlock_t	  lock; /* for from, to */
304 305 306
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
307
	unsigned long moved_charge;
308
	unsigned long moved_swap;
309 310 311
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
312
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
313 314
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
315

D
Daisuke Nishimura 已提交
316 317 318 319 320 321
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

322 323 324 325 326 327
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

328 329 330 331 332 333 334
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

335 336 337
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
338
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
339
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
340
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
341
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
342 343 344
	NR_CHARGE_TYPE,
};

345 346 347
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
348
#define _OOM_TYPE		(2)
349 350 351
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
352 353
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
354

355 356 357 358 359 360 361
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
362 363
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
364

365 366
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
367
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
368
static void drain_all_stock_async(struct mem_cgroup *mem);
369

370 371 372 373 374 375
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

376 377 378 379 380
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

381
static struct mem_cgroup_per_zone *
382
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
383
{
384 385
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
406
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
407
				struct mem_cgroup_per_zone *mz,
408 409
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
410 411 412 413 414 415 416 417
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

418 419 420
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
437 438 439 440 441 442 443 444 445 446 447 448 449
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

450 451 452 453 454 455
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
456
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
457 458 459 460 461 462
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
463
	unsigned long long excess;
464 465
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
466 467
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
468 469 470
	mctz = soft_limit_tree_from_page(page);

	/*
471 472
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
473
	 */
474 475
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
476
		excess = res_counter_soft_limit_excess(&mem->res);
477 478 479 480
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
481
		if (excess || mz->on_tree) {
482 483 484 485 486
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
487 488
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
489
			 */
490
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
491 492
			spin_unlock(&mctz->lock);
		}
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

511 512 513 514
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
515
	struct mem_cgroup_per_zone *mz;
516 517

retry:
518
	mz = NULL;
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
567 568
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
569
{
570
	long val = 0;
571 572
	int cpu;

573 574
	get_online_cpus();
	for_each_online_cpu(cpu)
575
		val += per_cpu(mem->stat->count[idx], cpu);
576 577 578 579 580 581
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
582 583 584
	return val;
}

585 586 587 588
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
589
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
590 591
}

592 593 594 595 596 597 598 599 600 601
void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
}

void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

618
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
619
					 bool file, int nr_pages)
620
{
621 622
	preempt_disable();

623 624
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
625
	else
626
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
627

628 629
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
630
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
631
	else {
632
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
633 634
		nr_pages = -nr_pages; /* for event */
	}
635

636
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
637

638
	preempt_enable();
639 640
}

641 642 643
unsigned long
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
			unsigned int lru_mask)
644 645
{
	struct mem_cgroup_per_zone *mz;
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	enum lru_list l;
	unsigned long ret = 0;

	mz = mem_cgroup_zoneinfo(mem, nid, zid);

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
			int nid, unsigned int lru_mask)
{
662 663 664
	u64 total = 0;
	int zid;

665 666 667
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);

668 669
	return total;
}
670 671 672

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
			unsigned int lru_mask)
673
{
674
	int nid;
675 676
	u64 total = 0;

677 678
	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
679
	return total;
680 681
}

682 683 684 685 686 687 688 689 690 691 692
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
693
{
694
	unsigned long val, next;
695

696
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
697

698 699 700 701 702 703 704
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
705 706 707
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
708 709 710 711 712
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
713 714 715 716 717 718 719 720 721
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
722
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
723
		mem_cgroup_threshold(mem);
724 725
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
726
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
727
			mem_cgroup_update_tree(mem, page);
728
			__mem_cgroup_target_update(mem,
729 730 731 732 733 734 735 736
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_NUMAINFO))) {
			atomic_inc(&mem->numainfo_events);
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_NUMAINFO);
737
		}
738
#endif
739 740 741
	}
}

742
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
743 744 745 746 747 748
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

749
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
750
{
751 752 753 754 755 756 757 758
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

759 760 761 762
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

763
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
764 765
{
	struct mem_cgroup *mem = NULL;
766 767 768

	if (!mm)
		return NULL;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
784 785
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
786
{
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
809 810 811 812 813 814 815 816 817
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
818 819
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
820
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
821

K
KAMEZAWA Hiroyuki 已提交
822
	css_put(&iter->css);
823 824
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
825
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
826

827 828 829
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
830 831
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
832
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
833 834 835

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
836
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
837
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
838
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
839
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
840
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
841
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
842

K
KAMEZAWA Hiroyuki 已提交
843
	return iter;
K
KAMEZAWA Hiroyuki 已提交
844
}
K
KAMEZAWA Hiroyuki 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

858 859 860
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
861

862 863 864 865 866
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
	struct mem_cgroup *mem;

	if (!mm)
		return;

	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!mem))
		goto out;

	switch (idx) {
	case PGMAJFAULT:
		mem_cgroup_pgmajfault(mem, 1);
		break;
	case PGFAULT:
		mem_cgroup_pgfault(mem, 1);
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
907

K
KAMEZAWA Hiroyuki 已提交
908 909 910 911
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
912

913
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
914 915 916
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
917
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
918
		return;
919
	VM_BUG_ON(!pc->mem_cgroup);
920 921 922 923
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
924
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
925 926
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
927 928 929
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
930
	list_del_init(&pc->lru);
931 932
}

K
KAMEZAWA Hiroyuki 已提交
933
void mem_cgroup_del_lru(struct page *page)
934
{
K
KAMEZAWA Hiroyuki 已提交
935 936
	mem_cgroup_del_lru_list(page, page_lru(page));
}
937

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
960
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
961 962 963
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
964 965 966 967
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
968

969
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
970
		return;
971

K
KAMEZAWA Hiroyuki 已提交
972
	pc = lookup_page_cgroup(page);
973
	/* unused or root page is not rotated. */
974 975 976 977 978
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
979
		return;
980
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
981
	list_move(&pc->lru, &mz->lists[lru]);
982 983
}

K
KAMEZAWA Hiroyuki 已提交
984
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
985
{
K
KAMEZAWA Hiroyuki 已提交
986 987
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
988

989
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
990 991
		return;
	pc = lookup_page_cgroup(page);
992
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
993
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
994
		return;
995 996
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
997
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
998 999
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1000 1001 1002
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1003 1004
	list_add(&pc->lru, &mz->lists[lru]);
}
1005

K
KAMEZAWA Hiroyuki 已提交
1006
/*
1007 1008 1009 1010
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1011
 */
1012
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1013
{
1014 1015 1016 1017
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1029 1030 1031 1032 1033 1034 1035 1036
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1037 1038
}

1039
static void mem_cgroup_lru_add_after_commit(struct page *page)
1040 1041 1042 1043 1044
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1045 1046 1047
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1048 1049
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1050
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1051 1052 1053 1054 1055
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1056 1057 1058
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1059
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1060 1061 1062
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1063 1064
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Checks whether given mem is same or in the root_mem's
 * hierarchy subtree
 */
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
		struct mem_cgroup *mem)
{
	if (root_mem != mem) {
		return (root_mem->use_hierarchy &&
			css_is_ancestor(&mem->css, &root_mem->css));
	}

	return true;
}

1080 1081 1082
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1083
	struct mem_cgroup *curr = NULL;
1084
	struct task_struct *p;
1085

1086 1087 1088 1089 1090
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1091 1092
	if (!curr)
		return 0;
1093 1094 1095 1096 1097 1098
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
1099
	ret = mem_cgroup_same_or_subtree(mem, curr);
1100
	css_put(&curr->css);
1101 1102 1103
	return ret;
}

1104
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1105 1106 1107
{
	unsigned long active;
	unsigned long inactive;
1108 1109
	unsigned long gb;
	unsigned long inactive_ratio;
1110

1111 1112
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1141 1142 1143 1144 1145
		return 1;

	return 0;
}

1146 1147 1148 1149 1150
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

1151 1152
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1153 1154 1155 1156

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1157 1158 1159
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1160
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1177 1178
	if (!PageCgroupUsed(pc))
		return NULL;
1179 1180
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1181
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1182 1183 1184
	return &mz->reclaim_stat;
}

1185 1186 1187 1188 1189
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1190
					int active, int file)
1191 1192 1193 1194 1195 1196
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1197
	struct page_cgroup *pc, *tmp;
1198
	int nid = zone_to_nid(z);
1199 1200
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1201
	int lru = LRU_FILE * file + active;
1202
	int ret;
1203

1204
	BUG_ON(!mem_cont);
1205
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1206
	src = &mz->lists[lru];
1207

1208 1209
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1210
		if (scan >= nr_to_scan)
1211
			break;
K
KAMEZAWA Hiroyuki 已提交
1212

1213 1214
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1215

1216
		page = lookup_cgroup_page(pc);
1217

H
Hugh Dickins 已提交
1218
		if (unlikely(!PageLRU(page)))
1219 1220
			continue;

H
Hugh Dickins 已提交
1221
		scan++;
1222 1223 1224
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1225
			list_move(&page->lru, dst);
1226
			mem_cgroup_del_lru(page);
1227
			nr_taken += hpage_nr_pages(page);
1228 1229 1230 1231 1232 1233 1234
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1235 1236 1237 1238
		}
	}

	*scanned = scan;
1239 1240 1241 1242

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1243 1244 1245
	return nr_taken;
}

1246 1247 1248
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1249
/**
1250 1251
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1252
 *
1253
 * Returns the maximum amount of memory @mem can be charged with, in
1254
 * pages.
1255
 */
1256
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1257
{
1258 1259 1260 1261 1262
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1263
	return margin >> PAGE_SHIFT;
1264 1265
}

1266
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1267 1268 1269 1270 1271 1272 1273
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1274
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1275 1276
}

1277 1278 1279
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1280 1281 1282 1283

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1284
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1285 1286 1287
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1298 1299 1300
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1301
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1302 1303 1304
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1323 1324 1325

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1326 1327
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1328
	bool ret = false;
1329 1330 1331 1332 1333 1334 1335 1336 1337
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1338 1339 1340

	ret = mem_cgroup_same_or_subtree(mem, from)
		|| mem_cgroup_same_or_subtree(mem, to);
1341 1342
unlock:
	spin_unlock(&mc.lock);
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1362
/**
1363
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1382
	if (!memcg || !p)
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1429 1430 1431 1432 1433 1434 1435
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1436 1437 1438 1439
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1440 1441 1442
	return num;
}

D
David Rientjes 已提交
1443 1444 1445 1446 1447 1448 1449 1450
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1451 1452 1453
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1454 1455 1456 1457 1458 1459 1460 1461
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1462
/*
K
KAMEZAWA Hiroyuki 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
		int nid, bool noswap)
{
1512
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1513 1514 1515
		return true;
	if (noswap || !total_swap_pages)
		return false;
1516
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1517 1518 1519 1520
		return true;
	return false;

}
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;
1532 1533 1534 1535 1536 1537 1538
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
	if (!atomic_read(&mem->numainfo_events))
		return;
	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1539 1540 1541 1542 1543 1544 1545
		return;

	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1546 1547
		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
			node_clear(nid, mem->scan_nodes);
1548
	}
1549 1550 1551

	atomic_set(&mem->numainfo_events, 0);
	atomic_set(&mem->numainfo_updating, 0);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(mem->scan_nodes)) {
		for (nid = first_node(mem->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, mem->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
		if (node_isset(nid, mem->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
			return true;
	}
	return false;
}

1624 1625 1626 1627 1628
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
1629 1630 1631 1632 1633

bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
}
1634 1635
#endif

K
KAMEZAWA Hiroyuki 已提交
1636 1637 1638 1639
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1640 1641
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1642 1643 1644
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1645 1646
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1647 1648
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1649
						struct zone *zone,
1650
						gfp_t gfp_mask,
1651 1652
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1653
{
K
KAMEZAWA Hiroyuki 已提交
1654 1655 1656
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1657 1658
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1659
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1660
	unsigned long excess;
1661
	unsigned long nr_scanned;
1662 1663

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1664

1665
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1666
	if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1667 1668
		noswap = true;

1669
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1670
		victim = mem_cgroup_select_victim(root_mem);
1671
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1672
			loop++;
1673 1674 1675 1676 1677 1678 1679
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1680
				drain_all_stock_async(root_mem);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1692
				 * We want to do more targeted reclaim.
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1704
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1705 1706
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1707 1708
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1709
		/* we use swappiness of local cgroup */
1710
		if (check_soft) {
1711
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1712 1713
				noswap, zone, &nr_scanned);
			*total_scanned += nr_scanned;
1714
		} else
1715
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1716
						noswap);
K
KAMEZAWA Hiroyuki 已提交
1717
		css_put(&victim->css);
1718 1719 1720 1721 1722 1723 1724
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1725
		total += ret;
1726
		if (check_soft) {
1727
			if (!res_counter_soft_limit_excess(&root_mem->res))
1728
				return total;
1729
		} else if (mem_cgroup_margin(root_mem))
1730
			return total;
1731
	}
K
KAMEZAWA Hiroyuki 已提交
1732
	return total;
1733 1734
}

K
KAMEZAWA Hiroyuki 已提交
1735 1736 1737
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1738
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1739 1740 1741
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
1742 1743
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1744

1745
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1746
		if (iter->oom_lock) {
1747 1748 1749 1750 1751 1752
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
			cond = false;
1753 1754
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1755
	}
K
KAMEZAWA Hiroyuki 已提交
1756

1757
	if (!failed)
1758
		return true;
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
1772
	return false;
1773
}
1774

1775
/*
1776
 * Has to be called with memcg_oom_lock
1777
 */
K
KAMEZAWA Hiroyuki 已提交
1778
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1779
{
K
KAMEZAWA Hiroyuki 已提交
1780 1781
	struct mem_cgroup *iter;

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	for_each_mem_cgroup_tree(iter, mem)
		iter->oom_lock = false;
	return 0;
}

static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		atomic_inc(&iter->under_oom);
}

static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1799 1800 1801 1802 1803
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1804
	for_each_mem_cgroup_tree(iter, mem)
1805
		atomic_add_unless(&iter->under_oom, -1, 0);
1806 1807
}

1808
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1809 1810
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1811 1812 1813 1814 1815 1816 1817 1818
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1819 1820
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
			  *oom_wait_mem;
K
KAMEZAWA Hiroyuki 已提交
1821 1822 1823
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1824
	oom_wait_mem = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1825 1826 1827 1828 1829

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1830 1831
	if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
			&& !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
K
KAMEZAWA Hiroyuki 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1842 1843
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1844
	if (mem && atomic_read(&mem->under_oom))
1845 1846 1847
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1848 1849 1850 1851
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1852
{
K
KAMEZAWA Hiroyuki 已提交
1853
	struct oom_wait_info owait;
1854
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1855

K
KAMEZAWA Hiroyuki 已提交
1856 1857 1858 1859 1860
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1861
	need_to_kill = true;
1862 1863
	mem_cgroup_mark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1864
	/* At first, try to OOM lock hierarchy under mem.*/
1865
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1866 1867 1868 1869 1870 1871
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1872 1873 1874 1875
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1876
		mem_cgroup_oom_notify(mem);
1877
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1878

1879 1880
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1881
		mem_cgroup_out_of_memory(mem, mask);
1882
	} else {
K
KAMEZAWA Hiroyuki 已提交
1883
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1884
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1885
	}
1886
	spin_lock(&memcg_oom_lock);
1887 1888
	if (locked)
		mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1889
	memcg_wakeup_oom(mem);
1890
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1891

1892 1893
	mem_cgroup_unmark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1894 1895 1896 1897 1898
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1899 1900
}

1901 1902 1903
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1923
 */
1924

1925 1926
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1927 1928
{
	struct mem_cgroup *mem;
1929 1930
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1931
	unsigned long uninitialized_var(flags);
1932 1933 1934 1935

	if (unlikely(!pc))
		return;

1936
	rcu_read_lock();
1937
	mem = pc->mem_cgroup;
1938 1939 1940
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1941
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1942
		/* take a lock against to access pc->mem_cgroup */
1943
		move_lock_page_cgroup(pc, &flags);
1944 1945 1946 1947 1948
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1949 1950

	switch (idx) {
1951
	case MEMCG_NR_FILE_MAPPED:
1952 1953 1954
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1955
			ClearPageCgroupFileMapped(pc);
1956
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1957 1958 1959
		break;
	default:
		BUG();
1960
	}
1961

1962 1963
	this_cpu_add(mem->stat->count[idx], val);

1964 1965
out:
	if (unlikely(need_unlock))
1966
		move_unlock_page_cgroup(pc, &flags);
1967 1968
	rcu_read_unlock();
	return;
1969
}
1970
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1971

1972 1973 1974 1975
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1976
#define CHARGE_BATCH	32U
1977 1978
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1979
	unsigned int nr_pages;
1980
	struct work_struct work;
1981 1982
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1983 1984
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1985
static DEFINE_MUTEX(percpu_charge_mutex);
1986 1987

/*
1988
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1999 2000
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2014 2015 2016 2017
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2018
		if (do_swap_account)
2019 2020
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2033
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2034 2035 2036 2037
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2038
 * This will be consumed by consume_stock() function, later.
2039
 */
2040
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2041 2042 2043 2044 2045 2046 2047
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
2048
	stock->nr_pages += nr_pages;
2049 2050 2051 2052
	put_cpu_var(memcg_stock);
}

/*
2053 2054 2055
 * Drains all per-CPU charge caches for given root_mem resp. subtree
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2056
 */
2057
static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2058
{
2059
	int cpu, curcpu;
2060

2061 2062
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2063
	curcpu = get_cpu();
2064 2065
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2066 2067 2068
		struct mem_cgroup *mem;

		mem = stock->cached;
2069
		if (!mem || !stock->nr_pages)
2070
			continue;
2071 2072
		if (!mem_cgroup_same_or_subtree(root_mem, mem))
			continue;
2073 2074 2075 2076 2077 2078
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2079
	}
2080
	put_cpu();
2081 2082 2083 2084 2085 2086

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2087
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2088 2089 2090
			flush_work(&stock->work);
	}
out:
2091
 	put_online_cpus();
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(struct mem_cgroup *root_mem)
{
2102 2103 2104 2105 2106
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2107
	drain_all_stock(root_mem, false);
2108
	mutex_unlock(&percpu_charge_mutex);
2109 2110 2111
}

/* This is a synchronous drain interface. */
2112
static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2113 2114
{
	/* called when force_empty is called */
2115
	mutex_lock(&percpu_charge_mutex);
2116
	drain_all_stock(root_mem, true);
2117
	mutex_unlock(&percpu_charge_mutex);
2118 2119
}

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2130
		long x = per_cpu(mem->stat->count[i], cpu);
2131 2132 2133 2134

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
2135 2136 2137 2138 2139 2140
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2152 2153 2154 2155
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2156 2157 2158 2159 2160
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2161
	struct mem_cgroup *iter;
2162

2163 2164 2165 2166 2167 2168
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2169
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2170
		return NOTIFY_OK;
2171 2172 2173 2174

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2175 2176 2177 2178 2179
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2190 2191
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
2192
{
2193
	unsigned long csize = nr_pages * PAGE_SIZE;
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2208
		res_counter_uncharge(&mem->res, csize);
2209 2210 2211 2212
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2213
	/*
2214 2215
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2216 2217 2218 2219
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2220
	if (nr_pages == CHARGE_BATCH)
2221 2222 2223 2224 2225 2226
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2227
					      gfp_mask, flags, NULL);
2228
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2229
		return CHARGE_RETRY;
2230
	/*
2231 2232 2233 2234 2235 2236 2237
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2238
	 */
2239
	if (nr_pages == 1 && ret)
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2259 2260 2261
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2262
 */
2263
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2264
				   gfp_t gfp_mask,
2265 2266 2267
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2268
{
2269
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2270 2271 2272
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2273

K
KAMEZAWA Hiroyuki 已提交
2274 2275 2276 2277 2278 2279 2280 2281
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2282

2283
	/*
2284 2285
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2286 2287 2288
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2289 2290 2291 2292
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2293
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2294 2295 2296
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2297
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2298
			goto done;
2299 2300
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2301
		struct task_struct *p;
2302

K
KAMEZAWA Hiroyuki 已提交
2303 2304 2305
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2306 2307 2308 2309 2310 2311 2312 2313
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2314 2315
		 */
		mem = mem_cgroup_from_task(p);
2316
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2317 2318 2319
			rcu_read_unlock();
			goto done;
		}
2320
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2339

2340 2341
	do {
		bool oom_check;
2342

2343
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2344 2345
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2346
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2347
		}
2348

2349 2350 2351 2352
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2353
		}
2354

2355
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2356 2357 2358 2359
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2360
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2361 2362 2363
			css_put(&mem->css);
			mem = NULL;
			goto again;
2364
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2365
			css_put(&mem->css);
2366 2367
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2368 2369
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2370
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2371
			}
2372 2373 2374 2375
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2376
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2377
			goto bypass;
2378
		}
2379 2380
	} while (ret != CHARGE_OK);

2381 2382
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2383
	css_put(&mem->css);
2384
done:
K
KAMEZAWA Hiroyuki 已提交
2385
	*memcg = mem;
2386 2387
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2388
	*memcg = NULL;
2389
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2390 2391 2392
bypass:
	*memcg = NULL;
	return 0;
2393
}
2394

2395 2396 2397 2398 2399
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2400
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2401
				       unsigned int nr_pages)
2402 2403
{
	if (!mem_cgroup_is_root(mem)) {
2404 2405 2406
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2407
		if (do_swap_account)
2408
			res_counter_uncharge(&mem->memsw, bytes);
2409
	}
2410 2411
}

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2431
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2432
{
2433
	struct mem_cgroup *mem = NULL;
2434
	struct page_cgroup *pc;
2435
	unsigned short id;
2436 2437
	swp_entry_t ent;

2438 2439 2440
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2441
	lock_page_cgroup(pc);
2442
	if (PageCgroupUsed(pc)) {
2443
		mem = pc->mem_cgroup;
2444 2445
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2446
	} else if (PageSwapCache(page)) {
2447
		ent.val = page_private(page);
2448 2449 2450 2451 2452 2453
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2454
	}
2455
	unlock_page_cgroup(pc);
2456 2457 2458
	return mem;
}

2459
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2460
				       struct page *page,
2461
				       unsigned int nr_pages,
2462
				       struct page_cgroup *pc,
2463
				       enum charge_type ctype)
2464
{
2465 2466 2467
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2468
		__mem_cgroup_cancel_charge(mem, nr_pages);
2469 2470 2471 2472 2473 2474
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2475
	pc->mem_cgroup = mem;
2476 2477 2478 2479 2480 2481 2482
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2483
	smp_wmb();
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2497

2498
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2499
	unlock_page_cgroup(pc);
2500 2501 2502 2503 2504
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2505
	memcg_check_events(mem, page);
2506
}
2507

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2522 2523
	if (mem_cgroup_disabled())
		return;
2524
	/*
2525
	 * We have no races with charge/uncharge but will have races with
2526 2527 2528 2529 2530 2531
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2542
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2543 2544
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2545 2546 2547 2548 2549
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2550
/**
2551
 * mem_cgroup_move_account - move account of the page
2552
 * @page: the page
2553
 * @nr_pages: number of regular pages (>1 for huge pages)
2554 2555 2556
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2557
 * @uncharge: whether we should call uncharge and css_put against @from.
2558 2559
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2560
 * - page is not on LRU (isolate_page() is useful.)
2561
 * - compound_lock is held when nr_pages > 1
2562
 *
2563
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2564
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2565 2566
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2567
 */
2568 2569 2570 2571 2572 2573
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2574
{
2575 2576
	unsigned long flags;
	int ret;
2577

2578
	VM_BUG_ON(from == to);
2579
	VM_BUG_ON(PageLRU(page));
2580 2581 2582 2583 2584 2585 2586
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2587
	if (nr_pages > 1 && !PageTransHuge(page))
2588 2589 2590 2591 2592 2593 2594 2595 2596
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2597

2598
	if (PageCgroupFileMapped(pc)) {
2599 2600 2601 2602 2603
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2604
	}
2605
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2606 2607
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2608
		__mem_cgroup_cancel_charge(from, nr_pages);
2609

2610
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2611
	pc->mem_cgroup = to;
2612
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2613 2614 2615
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2616
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2617
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2618
	 * status here.
2619
	 */
2620 2621 2622
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2623
	unlock_page_cgroup(pc);
2624 2625 2626
	/*
	 * check events
	 */
2627 2628
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2629
out:
2630 2631 2632 2633 2634 2635 2636
	return ret;
}

/*
 * move charges to its parent.
 */

2637 2638
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2639 2640 2641 2642 2643 2644
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2645
	unsigned int nr_pages;
2646
	unsigned long uninitialized_var(flags);
2647 2648 2649 2650 2651 2652
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2653 2654 2655 2656 2657
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2658

2659
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2660

2661
	parent = mem_cgroup_from_cont(pcg);
2662
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2663
	if (ret || !parent)
2664
		goto put_back;
2665

2666
	if (nr_pages > 1)
2667 2668
		flags = compound_lock_irqsave(page);

2669
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2670
	if (ret)
2671
		__mem_cgroup_cancel_charge(parent, nr_pages);
2672

2673
	if (nr_pages > 1)
2674
		compound_unlock_irqrestore(page, flags);
2675
put_back:
K
KAMEZAWA Hiroyuki 已提交
2676
	putback_lru_page(page);
2677
put:
2678
	put_page(page);
2679
out:
2680 2681 2682
	return ret;
}

2683 2684 2685 2686 2687 2688 2689
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2690
				gfp_t gfp_mask, enum charge_type ctype)
2691
{
2692
	struct mem_cgroup *mem = NULL;
2693
	unsigned int nr_pages = 1;
2694
	struct page_cgroup *pc;
2695
	bool oom = true;
2696
	int ret;
A
Andrea Arcangeli 已提交
2697

A
Andrea Arcangeli 已提交
2698
	if (PageTransHuge(page)) {
2699
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2700
		VM_BUG_ON(!PageTransHuge(page));
2701 2702 2703 2704 2705
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2706
	}
2707 2708

	pc = lookup_page_cgroup(page);
2709
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2710

2711
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2712
	if (ret || !mem)
2713 2714
		return ret;

2715
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2716 2717 2718
	return 0;
}

2719 2720
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2721
{
2722
	if (mem_cgroup_disabled())
2723
		return 0;
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2735
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2736
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2737 2738
}

D
Daisuke Nishimura 已提交
2739 2740 2741 2742
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2759 2760
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2761
{
2762
	struct mem_cgroup *mem = NULL;
2763 2764
	int ret;

2765
	if (mem_cgroup_disabled())
2766
		return 0;
2767 2768
	if (PageCompound(page))
		return 0;
2769

2770
	if (unlikely(!mm))
2771
		mm = &init_mm;
2772

2773 2774 2775 2776
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2777

2778 2779 2780 2781 2782 2783 2784 2785 2786
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2787 2788 2789 2790 2791 2792 2793 2794
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2795
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2796 2797

	return ret;
2798 2799
}

2800 2801 2802
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2803
 * struct page_cgroup is acquired. This refcnt will be consumed by
2804 2805
 * "commit()" or removed by "cancel()"
 */
2806 2807 2808 2809 2810
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2811
	int ret;
2812

2813 2814
	*ptr = NULL;

2815
	if (mem_cgroup_disabled())
2816 2817 2818 2819 2820 2821
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2822 2823 2824
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2825 2826
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2827
		goto charge_cur_mm;
2828
	mem = try_get_mem_cgroup_from_page(page);
2829 2830
	if (!mem)
		goto charge_cur_mm;
2831
	*ptr = mem;
2832
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2833 2834
	css_put(&mem->css);
	return ret;
2835 2836 2837
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2838
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2839 2840
}

D
Daisuke Nishimura 已提交
2841 2842 2843
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2844
{
2845
	if (mem_cgroup_disabled())
2846 2847 2848
		return;
	if (!ptr)
		return;
2849
	cgroup_exclude_rmdir(&ptr->css);
2850 2851

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2852 2853 2854
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2855 2856 2857
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2858
	 */
2859
	if (do_swap_account && PageSwapCache(page)) {
2860
		swp_entry_t ent = {.val = page_private(page)};
2861
		unsigned short id;
2862
		struct mem_cgroup *memcg;
2863 2864 2865 2866

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2867
		if (memcg) {
2868 2869 2870 2871
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2872
			if (!mem_cgroup_is_root(memcg))
2873
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2874
			mem_cgroup_swap_statistics(memcg, false);
2875 2876
			mem_cgroup_put(memcg);
		}
2877
		rcu_read_unlock();
2878
	}
2879 2880 2881 2882 2883 2884
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2885 2886
}

D
Daisuke Nishimura 已提交
2887 2888 2889 2890 2891 2892
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2893 2894
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2895
	if (mem_cgroup_disabled())
2896 2897 2898
		return;
	if (!mem)
		return;
2899
	__mem_cgroup_cancel_charge(mem, 1);
2900 2901
}

2902 2903 2904
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2905 2906 2907
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2908

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2921 2922
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2923
	 * In those cases, all pages freed continuously can be expected to be in
2924 2925 2926 2927 2928 2929 2930 2931
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2932
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2933 2934
		goto direct_uncharge;

2935 2936 2937 2938 2939 2940 2941 2942
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2943
	batch->nr_pages++;
2944
	if (uncharge_memsw)
2945
		batch->memsw_nr_pages++;
2946 2947
	return;
direct_uncharge:
2948
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2949
	if (uncharge_memsw)
2950
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2951 2952
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2953 2954
	return;
}
2955

2956
/*
2957
 * uncharge if !page_mapped(page)
2958
 */
2959
static struct mem_cgroup *
2960
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2961
{
2962
	struct mem_cgroup *mem = NULL;
2963 2964
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2965

2966
	if (mem_cgroup_disabled())
2967
		return NULL;
2968

K
KAMEZAWA Hiroyuki 已提交
2969
	if (PageSwapCache(page))
2970
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2971

A
Andrea Arcangeli 已提交
2972
	if (PageTransHuge(page)) {
2973
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2974 2975
		VM_BUG_ON(!PageTransHuge(page));
	}
2976
	/*
2977
	 * Check if our page_cgroup is valid
2978
	 */
2979 2980
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2981
		return NULL;
2982

2983
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2984

2985 2986
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2987 2988 2989 2990 2991
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2992
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2993 2994
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3006
	}
K
KAMEZAWA Hiroyuki 已提交
3007

3008
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3009

3010
	ClearPageCgroupUsed(pc);
3011 3012 3013 3014 3015 3016
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3017

3018
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3019 3020 3021 3022
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
3023
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
3024 3025 3026 3027 3028
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
3029
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3030

3031
	return mem;
K
KAMEZAWA Hiroyuki 已提交
3032 3033 3034

unlock_out:
	unlock_page_cgroup(pc);
3035
	return NULL;
3036 3037
}

3038 3039
void mem_cgroup_uncharge_page(struct page *page)
{
3040 3041 3042 3043 3044
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3045 3046 3047 3048 3049 3050
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3051
	VM_BUG_ON(page->mapping);
3052 3053 3054
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3069 3070
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3091 3092 3093 3094 3095 3096
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3097
	memcg_oom_recover(batch->memcg);
3098 3099 3100 3101
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3102
#ifdef CONFIG_SWAP
3103
/*
3104
 * called after __delete_from_swap_cache() and drop "page" account.
3105 3106
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3107 3108
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3109 3110
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3111 3112 3113 3114 3115 3116
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3117

K
KAMEZAWA Hiroyuki 已提交
3118 3119 3120 3121 3122
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3123
		swap_cgroup_record(ent, css_id(&memcg->css));
3124
}
3125
#endif
3126 3127 3128 3129 3130 3131 3132

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3133
{
3134
	struct mem_cgroup *memcg;
3135
	unsigned short id;
3136 3137 3138 3139

	if (!do_swap_account)
		return;

3140 3141 3142
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3143
	if (memcg) {
3144 3145 3146 3147
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3148
		if (!mem_cgroup_is_root(memcg))
3149
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3150
		mem_cgroup_swap_statistics(memcg, false);
3151 3152
		mem_cgroup_put(memcg);
	}
3153
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3154
}
3155 3156 3157 3158 3159 3160

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3161
 * @need_fixup: whether we should fixup res_counters and refcounts.
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3172
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3173 3174 3175 3176 3177 3178 3179 3180
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3181
		mem_cgroup_swap_statistics(to, true);
3182
		/*
3183 3184 3185 3186 3187 3188
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3189 3190
		 */
		mem_cgroup_get(to);
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3202 3203 3204 3205 3206 3207
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3208
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3209 3210 3211
{
	return -EINVAL;
}
3212
#endif
K
KAMEZAWA Hiroyuki 已提交
3213

3214
/*
3215 3216
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3217
 */
3218
int mem_cgroup_prepare_migration(struct page *page,
3219
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3220
{
3221
	struct mem_cgroup *mem = NULL;
3222
	struct page_cgroup *pc;
3223
	enum charge_type ctype;
3224
	int ret = 0;
3225

3226 3227
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3228
	VM_BUG_ON(PageTransHuge(page));
3229
	if (mem_cgroup_disabled())
3230 3231
		return 0;

3232 3233 3234
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3235 3236
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3268
	}
3269
	unlock_page_cgroup(pc);
3270 3271 3272 3273 3274 3275
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3276

A
Andrea Arcangeli 已提交
3277
	*ptr = mem;
3278
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3291
	}
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3305
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3306
	return ret;
3307
}
3308

3309
/* remove redundant charge if migration failed*/
3310
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3311
	struct page *oldpage, struct page *newpage, bool migration_ok)
3312
{
3313
	struct page *used, *unused;
3314 3315 3316 3317
	struct page_cgroup *pc;

	if (!mem)
		return;
3318
	/* blocks rmdir() */
3319
	cgroup_exclude_rmdir(&mem->css);
3320
	if (!migration_ok) {
3321 3322
		used = oldpage;
		unused = newpage;
3323
	} else {
3324
		used = newpage;
3325 3326
		unused = oldpage;
	}
3327
	/*
3328 3329 3330
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3331
	 */
3332 3333 3334 3335
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3336

3337 3338
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3339
	/*
3340 3341 3342 3343 3344 3345
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3346
	 */
3347 3348
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3349
	/*
3350 3351
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3352 3353 3354 3355
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3356
}
3357

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3404 3405
static DEFINE_MUTEX(set_limit_mutex);

3406
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3407
				unsigned long long val)
3408
{
3409
	int retry_count;
3410
	u64 memswlimit, memlimit;
3411
	int ret = 0;
3412 3413
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3414
	int enlarge;
3415 3416 3417 3418 3419 3420 3421 3422 3423

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3424

3425
	enlarge = 0;
3426
	while (retry_count) {
3427 3428 3429 3430
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3441 3442
			break;
		}
3443 3444 3445 3446 3447

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3448
		ret = res_counter_set_limit(&memcg->res, val);
3449 3450 3451 3452 3453 3454
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3455 3456 3457 3458 3459
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3460
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3461 3462
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3463 3464 3465 3466 3467 3468
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3469
	}
3470 3471
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3472

3473 3474 3475
	return ret;
}

L
Li Zefan 已提交
3476 3477
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3478
{
3479
	int retry_count;
3480
	u64 memlimit, memswlimit, oldusage, curusage;
3481 3482
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3483
	int enlarge = 0;
3484

3485 3486 3487
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3505 3506 3507
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3508
		ret = res_counter_set_limit(&memcg->memsw, val);
3509 3510 3511 3512 3513 3514
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3515 3516 3517 3518 3519
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3520
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3521
						MEM_CGROUP_RECLAIM_NOSWAP |
3522 3523
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3524
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3525
		/* Usage is reduced ? */
3526
		if (curusage >= oldusage)
3527
			retry_count--;
3528 3529
		else
			oldusage = curusage;
3530
	}
3531 3532
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3533 3534 3535
	return ret;
}

3536
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3537 3538
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3539 3540 3541 3542 3543 3544
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3545
	unsigned long long excess;
3546
	unsigned long nr_scanned;
3547 3548 3549 3550

	if (order > 0)
		return 0;

3551
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3565
		nr_scanned = 0;
3566 3567
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3568 3569
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3570
		nr_reclaimed += reclaimed;
3571
		*total_scanned += nr_scanned;
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3594
				if (next_mz == mz)
3595
					css_put(&next_mz->mem->css);
3596
				else /* next_mz == NULL or other memcg */
3597 3598 3599 3600
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3601
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3602 3603 3604 3605 3606 3607 3608 3609
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3610 3611
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3630 3631 3632 3633
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3634
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3635
				int node, int zid, enum lru_list lru)
3636
{
K
KAMEZAWA Hiroyuki 已提交
3637 3638
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3639
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3640
	unsigned long flags, loop;
3641
	struct list_head *list;
3642
	int ret = 0;
3643

K
KAMEZAWA Hiroyuki 已提交
3644 3645
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3646
	list = &mz->lists[lru];
3647

3648 3649 3650 3651 3652
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3653 3654
		struct page *page;

3655
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3656
		spin_lock_irqsave(&zone->lru_lock, flags);
3657
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3658
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3659
			break;
3660 3661 3662 3663
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3664
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3665
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3666 3667
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3668
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3669

3670
		page = lookup_cgroup_page(pc);
3671 3672

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3673
		if (ret == -ENOMEM)
3674
			break;
3675 3676 3677 3678 3679 3680 3681

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3682
	}
K
KAMEZAWA Hiroyuki 已提交
3683

3684 3685 3686
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3687 3688 3689 3690 3691 3692
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3693
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3694
{
3695 3696 3697
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3698
	struct cgroup *cgrp = mem->css.cgroup;
3699

3700
	css_get(&mem->css);
3701 3702

	shrink = 0;
3703 3704 3705
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3706
move_account:
3707
	do {
3708
		ret = -EBUSY;
3709 3710 3711 3712
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3713
			goto out;
3714 3715
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3716
		drain_all_stock_sync(mem);
3717
		ret = 0;
3718
		mem_cgroup_start_move(mem);
3719
		for_each_node_state(node, N_HIGH_MEMORY) {
3720
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3721
				enum lru_list l;
3722 3723
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3724
							node, zid, l);
3725 3726 3727
					if (ret)
						break;
				}
3728
			}
3729 3730 3731
			if (ret)
				break;
		}
3732
		mem_cgroup_end_move(mem);
3733
		memcg_oom_recover(mem);
3734 3735 3736
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3737
		cond_resched();
3738 3739
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3740 3741 3742
out:
	css_put(&mem->css);
	return ret;
3743 3744

try_to_free:
3745 3746
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3747 3748 3749
		ret = -EBUSY;
		goto out;
	}
3750 3751
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3752 3753 3754 3755
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3756 3757 3758 3759 3760

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3761
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3762
						false);
3763
		if (!progress) {
3764
			nr_retries--;
3765
			/* maybe some writeback is necessary */
3766
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3767
		}
3768 3769

	}
K
KAMEZAWA Hiroyuki 已提交
3770
	lru_add_drain();
3771
	/* try move_account...there may be some *locked* pages. */
3772
	goto move_account;
3773 3774
}

3775 3776 3777 3778 3779 3780
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3799
	 * If parent's use_hierarchy is set, we can't make any modifications
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3819

3820 3821
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3822
{
K
KAMEZAWA Hiroyuki 已提交
3823
	struct mem_cgroup *iter;
3824
	long val = 0;
3825

3826
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3827 3828 3829 3830 3831 3832
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3833 3834
}

3835 3836
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3837
	u64 val;
3838 3839 3840 3841 3842 3843 3844 3845

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

3846 3847
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3848

K
KAMEZAWA Hiroyuki 已提交
3849
	if (swap)
3850
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3851 3852 3853 3854

	return val << PAGE_SHIFT;
}

3855
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3856
{
3857
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3858
	u64 val;
3859 3860 3861 3862 3863 3864
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3865 3866 3867
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3868
			val = res_counter_read_u64(&mem->res, name);
3869 3870
		break;
	case _MEMSWAP:
3871 3872 3873
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3874
			val = res_counter_read_u64(&mem->memsw, name);
3875 3876 3877 3878 3879 3880
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3881
}
3882 3883 3884 3885
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3886 3887
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3888
{
3889
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3890
	int type, name;
3891 3892 3893
	unsigned long long val;
	int ret;

3894 3895 3896
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3897
	case RES_LIMIT:
3898 3899 3900 3901
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3902 3903
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3904 3905 3906
		if (ret)
			break;
		if (type == _MEM)
3907
			ret = mem_cgroup_resize_limit(memcg, val);
3908 3909
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3910
		break;
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3925 3926 3927 3928 3929
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3930 3931
}

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3960
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3961 3962
{
	struct mem_cgroup *mem;
3963
	int type, name;
3964 3965

	mem = mem_cgroup_from_cont(cont);
3966 3967 3968
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3969
	case RES_MAX_USAGE:
3970 3971 3972 3973
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3974 3975
		break;
	case RES_FAILCNT:
3976 3977 3978 3979
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3980 3981
		break;
	}
3982

3983
	return 0;
3984 3985
}

3986 3987 3988 3989 3990 3991
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3992
#ifdef CONFIG_MMU
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
4011 4012 4013 4014 4015 4016 4017
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4018

K
KAMEZAWA Hiroyuki 已提交
4019 4020 4021 4022 4023

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4024
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4025 4026
	MCS_PGPGIN,
	MCS_PGPGOUT,
4027
	MCS_SWAP,
4028 4029
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4040 4041
};

K
KAMEZAWA Hiroyuki 已提交
4042 4043 4044 4045 4046 4047
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4048
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4049 4050
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4051
	{"swap", "total_swap"},
4052 4053
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4054 4055 4056 4057 4058 4059 4060 4061
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4062 4063
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4064 4065 4066 4067
{
	s64 val;

	/* per cpu stat */
4068
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4069
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4070
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4071
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4072
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4073
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4074
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4075
	s->stat[MCS_PGPGIN] += val;
4076
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4077
	s->stat[MCS_PGPGOUT] += val;
4078
	if (do_swap_account) {
4079
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4080 4081
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4082 4083 4084 4085
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
	s->stat[MCS_PGFAULT] += val;
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4086 4087

	/* per zone stat */
4088
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4089
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4090
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4091
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4092
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4093
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4094
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4095
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4096
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4097 4098 4099 4100 4101 4102
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
4103 4104 4105 4106
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4107 4108
}

4109 4110 4111 4112 4113 4114 4115 4116 4117
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4118
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4119 4120
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4121
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4122 4123 4124 4125
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4126
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4127 4128
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4129 4130
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4131 4132 4133 4134
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4135
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4136 4137
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4138 4139
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4140 4141 4142 4143
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4144
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4145 4146
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4147 4148
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4149 4150 4151 4152 4153 4154 4155
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4156 4157
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4158 4159
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4160
	struct mcs_total_stat mystat;
4161 4162
	int i;

K
KAMEZAWA Hiroyuki 已提交
4163 4164
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4165

4166

4167 4168 4169
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4170
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4171
	}
L
Lee Schermerhorn 已提交
4172

K
KAMEZAWA Hiroyuki 已提交
4173
	/* Hierarchical information */
4174 4175 4176 4177 4178 4179 4180
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4181

K
KAMEZAWA Hiroyuki 已提交
4182 4183
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4184 4185 4186
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4187
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4188
	}
K
KAMEZAWA Hiroyuki 已提交
4189

K
KOSAKI Motohiro 已提交
4190
#ifdef CONFIG_DEBUG_VM
4191
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4219 4220 4221
	return 0;
}

K
KOSAKI Motohiro 已提交
4222 4223 4224 4225
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4226
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4227 4228 4229 4230 4231 4232 4233
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4234

K
KOSAKI Motohiro 已提交
4235 4236 4237 4238 4239 4240 4241
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4242 4243 4244

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4245 4246
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4247 4248
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4249
		return -EINVAL;
4250
	}
K
KOSAKI Motohiro 已提交
4251 4252 4253

	memcg->swappiness = val;

4254 4255
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4256 4257 4258
	return 0;
}

4259 4260 4261 4262 4263 4264 4265 4266
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4267
		t = rcu_dereference(memcg->thresholds.primary);
4268
	else
4269
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4281
	i = t->current_threshold;
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4305
	t->current_threshold = i - 1;
4306 4307 4308 4309 4310 4311
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4312 4313 4314 4315 4316 4317 4318
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4329
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4340 4341 4342 4343
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4344 4345 4346 4347
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4348 4349
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4350 4351
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4352 4353
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4354
	int i, size, ret;
4355 4356 4357 4358 4359 4360

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4361

4362
	if (type == _MEM)
4363
		thresholds = &memcg->thresholds;
4364
	else if (type == _MEMSWAP)
4365
		thresholds = &memcg->memsw_thresholds;
4366 4367 4368 4369 4370 4371
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4372
	if (thresholds->primary)
4373 4374
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4375
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4376 4377

	/* Allocate memory for new array of thresholds */
4378
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4379
			GFP_KERNEL);
4380
	if (!new) {
4381 4382 4383
		ret = -ENOMEM;
		goto unlock;
	}
4384
	new->size = size;
4385 4386

	/* Copy thresholds (if any) to new array */
4387 4388
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4389
				sizeof(struct mem_cgroup_threshold));
4390 4391
	}

4392
	/* Add new threshold */
4393 4394
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4395 4396

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4397
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4398 4399 4400
			compare_thresholds, NULL);

	/* Find current threshold */
4401
	new->current_threshold = -1;
4402
	for (i = 0; i < size; i++) {
4403
		if (new->entries[i].threshold < usage) {
4404
			/*
4405 4406
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4407 4408
			 * it here.
			 */
4409
			++new->current_threshold;
4410 4411 4412
		}
	}

4413 4414 4415 4416 4417
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4418

4419
	/* To be sure that nobody uses thresholds */
4420 4421 4422 4423 4424 4425 4426 4427
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4428
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4429
	struct cftype *cft, struct eventfd_ctx *eventfd)
4430 4431
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4432 4433
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4434 4435
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4436
	int i, j, size;
4437 4438 4439

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4440
		thresholds = &memcg->thresholds;
4441
	else if (type == _MEMSWAP)
4442
		thresholds = &memcg->memsw_thresholds;
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4458 4459 4460
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4461 4462 4463
			size++;
	}

4464
	new = thresholds->spare;
4465

4466 4467
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4468 4469
		kfree(new);
		new = NULL;
4470
		goto swap_buffers;
4471 4472
	}

4473
	new->size = size;
4474 4475

	/* Copy thresholds and find current threshold */
4476 4477 4478
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4479 4480
			continue;

4481 4482
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4483
			/*
4484
			 * new->current_threshold will not be used
4485 4486 4487
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4488
			++new->current_threshold;
4489 4490 4491 4492
		}
		j++;
	}

4493
swap_buffers:
4494 4495 4496
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4497

4498
	/* To be sure that nobody uses thresholds */
4499 4500 4501 4502
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4503

K
KAMEZAWA Hiroyuki 已提交
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4516
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4517 4518 4519 4520 4521

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4522
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4523
		eventfd_signal(eventfd, 1);
4524
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4525 4526 4527 4528

	return 0;
}

4529
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4530 4531 4532 4533 4534 4535 4536 4537
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4538
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4539 4540 4541 4542 4543 4544 4545 4546

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4547
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4548 4549
}

4550 4551 4552 4553 4554 4555 4556
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

4557
	if (atomic_read(&mem->under_oom))
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4584 4585
	if (!val)
		memcg_oom_recover(mem);
4586 4587 4588 4589
	cgroup_unlock();
	return 0;
}

4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

B
Balbir Singh 已提交
4606 4607
static struct cftype mem_cgroup_files[] = {
	{
4608
		.name = "usage_in_bytes",
4609
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4610
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4611 4612
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4613
	},
4614 4615
	{
		.name = "max_usage_in_bytes",
4616
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4617
		.trigger = mem_cgroup_reset,
4618 4619
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4620
	{
4621
		.name = "limit_in_bytes",
4622
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4623
		.write_string = mem_cgroup_write,
4624
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4625
	},
4626 4627 4628 4629 4630 4631
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4632 4633
	{
		.name = "failcnt",
4634
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4635
		.trigger = mem_cgroup_reset,
4636
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4637
	},
4638 4639
	{
		.name = "stat",
4640
		.read_map = mem_control_stat_show,
4641
	},
4642 4643 4644 4645
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4646 4647 4648 4649 4650
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4651 4652 4653 4654 4655
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4656 4657 4658 4659 4660
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4661 4662
	{
		.name = "oom_control",
4663 4664
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4665 4666 4667 4668
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4669 4670 4671 4672
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4673
		.mode = S_IRUGO,
4674 4675
	},
#endif
B
Balbir Singh 已提交
4676 4677
};

4678 4679 4680 4681 4682 4683
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4684 4685
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4721 4722 4723
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4724
	struct mem_cgroup_per_zone *mz;
4725
	enum lru_list l;
4726
	int zone, tmp = node;
4727 4728 4729 4730 4731 4732 4733 4734
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4735 4736
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4737
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4738 4739
	if (!pn)
		return 1;
4740

4741
	mem->info.nodeinfo[node] = pn;
4742 4743
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4744 4745
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4746
		mz->usage_in_excess = 0;
4747 4748
		mz->on_tree = false;
		mz->mem = mem;
4749
	}
4750 4751 4752
	return 0;
}

4753 4754 4755 4756 4757
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4758 4759 4760
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4761
	int size = sizeof(struct mem_cgroup);
4762

4763
	/* Can be very big if MAX_NUMNODES is very big */
4764
	if (size < PAGE_SIZE)
4765
		mem = kzalloc(size, GFP_KERNEL);
4766
	else
4767
		mem = vzalloc(size);
4768

4769 4770 4771
	if (!mem)
		return NULL;

4772
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4773 4774
	if (!mem->stat)
		goto out_free;
4775
	spin_lock_init(&mem->pcp_counter_lock);
4776
	return mem;
4777 4778 4779 4780 4781 4782 4783

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4784 4785
}

4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4797
static void __mem_cgroup_free(struct mem_cgroup *mem)
4798
{
K
KAMEZAWA Hiroyuki 已提交
4799 4800
	int node;

4801
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4802 4803
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4804 4805 4806
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4807 4808
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4809 4810 4811 4812 4813
		kfree(mem);
	else
		vfree(mem);
}

4814 4815 4816 4817 4818
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4819
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4820
{
4821
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4822
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4823
		__mem_cgroup_free(mem);
4824 4825 4826
		if (parent)
			mem_cgroup_put(parent);
	}
4827 4828
}

4829 4830 4831 4832 4833
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4834 4835 4836 4837 4838 4839 4840 4841 4842
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4843

4844 4845 4846
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4847
	if (!mem_cgroup_disabled() && really_do_swap_account)
4848 4849 4850 4851 4852 4853 4854 4855
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4881
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4882 4883
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4884
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4885
	long error = -ENOMEM;
4886
	int node;
B
Balbir Singh 已提交
4887

4888 4889
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4890
		return ERR_PTR(error);
4891

4892 4893 4894
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4895

4896
	/* root ? */
4897
	if (cont->parent == NULL) {
4898
		int cpu;
4899
		enable_swap_cgroup();
4900
		parent = NULL;
4901
		root_mem_cgroup = mem;
4902 4903
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4904 4905 4906 4907 4908
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4909
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4910
	} else {
4911
		parent = mem_cgroup_from_cont(cont->parent);
4912
		mem->use_hierarchy = parent->use_hierarchy;
4913
		mem->oom_kill_disable = parent->oom_kill_disable;
4914
	}
4915

4916 4917 4918
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4919 4920 4921 4922 4923 4924 4925
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4926 4927 4928 4929
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4930
	mem->last_scanned_child = 0;
4931
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
4932
	INIT_LIST_HEAD(&mem->oom_notify);
4933

K
KOSAKI Motohiro 已提交
4934
	if (parent)
4935
		mem->swappiness = mem_cgroup_swappiness(parent);
4936
	atomic_set(&mem->refcnt, 1);
4937
	mem->move_charge_at_immigrate = 0;
4938
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4939
	return &mem->css;
4940
free_out:
4941
	__mem_cgroup_free(mem);
4942
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4943
	return ERR_PTR(error);
B
Balbir Singh 已提交
4944 4945
}

4946
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4947 4948 4949
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4950 4951

	return mem_cgroup_force_empty(mem, false);
4952 4953
}

B
Balbir Singh 已提交
4954 4955 4956
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4957 4958 4959
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4960 4961 4962 4963 4964
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4965 4966 4967 4968 4969 4970 4971 4972
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4973 4974
}

4975
#ifdef CONFIG_MMU
4976
/* Handlers for move charge at task migration. */
4977 4978
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4979
{
4980 4981
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4982 4983
	struct mem_cgroup *mem = mc.to;

4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5019
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5020 5021 5022 5023 5024
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5025 5026 5027 5028 5029 5030 5031 5032
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5033
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5034 5035 5036 5037 5038 5039
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5040 5041 5042
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5043 5044 5045 5046 5047
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5048
	swp_entry_t	ent;
5049 5050 5051 5052 5053
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5054
	MC_TARGET_SWAP,
5055 5056
};

D
Daisuke Nishimura 已提交
5057 5058
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5059
{
D
Daisuke Nishimura 已提交
5060
	struct page *page = vm_normal_page(vma, addr, ptent);
5061

D
Daisuke Nishimura 已提交
5062 5063 5064 5065 5066 5067
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5068 5069
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5088 5089
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5090
		return NULL;
5091
	}
D
Daisuke Nishimura 已提交
5092 5093 5094 5095 5096 5097
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5119 5120 5121 5122 5123 5124
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5125
		if (do_swap_account)
5126 5127
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5128
	}
5129
#endif
5130 5131 5132
	return page;
}

D
Daisuke Nishimura 已提交
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5145 5146
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5147 5148 5149

	if (!page && !ent.val)
		return 0;
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5165 5166
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5167 5168 5169 5170
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5183 5184
	split_huge_page_pmd(walk->mm, pmd);

5185 5186 5187 5188 5189 5190 5191
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5192 5193 5194
	return 0;
}

5195 5196 5197 5198 5199
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5200
	down_read(&mm->mmap_sem);
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5212
	up_read(&mm->mmap_sem);
5213 5214 5215 5216 5217 5218 5219 5220 5221

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5222 5223 5224 5225 5226
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5227 5228
}

5229 5230
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5231
{
5232 5233 5234
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5235
	/* we must uncharge all the leftover precharges from mc.to */
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5247
	}
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5282
	spin_lock(&mc.lock);
5283 5284
	mc.from = NULL;
	mc.to = NULL;
5285
	spin_unlock(&mc.lock);
5286
	mem_cgroup_end_move(from);
5287 5288
}

5289 5290
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5291
				struct task_struct *p)
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5306 5307 5308 5309
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5310
			VM_BUG_ON(mc.moved_charge);
5311
			VM_BUG_ON(mc.moved_swap);
5312
			mem_cgroup_start_move(from);
5313
			spin_lock(&mc.lock);
5314 5315
			mc.from = from;
			mc.to = mem;
5316
			spin_unlock(&mc.lock);
5317
			/* We set mc.moving_task later */
5318 5319 5320 5321

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5322 5323
		}
		mmput(mm);
5324 5325 5326 5327 5328 5329
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5330
				struct task_struct *p)
5331
{
5332
	mem_cgroup_clear_mc();
5333 5334
}

5335 5336 5337
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5338
{
5339 5340 5341 5342 5343
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5344
	split_huge_page_pmd(walk->mm, pmd);
5345 5346 5347 5348 5349 5350 5351 5352
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5353
		swp_entry_t ent;
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5365 5366
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5367
				mc.precharge--;
5368 5369
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5370 5371 5372 5373 5374
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5375 5376
		case MC_TARGET_SWAP:
			ent = target.ent;
5377 5378
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5379
				mc.precharge--;
5380 5381 5382
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5383
			break;
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5398
		ret = mem_cgroup_do_precharge(1);
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5442
	up_read(&mm->mmap_sem);
5443 5444
}

B
Balbir Singh 已提交
5445 5446 5447
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5448
				struct task_struct *p)
B
Balbir Singh 已提交
5449
{
5450
	struct mm_struct *mm = get_task_mm(p);
5451 5452

	if (mm) {
5453 5454 5455
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5456 5457
		mmput(mm);
	}
5458 5459
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5460
}
5461 5462 5463
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5464
				struct task_struct *p)
5465 5466 5467 5468 5469
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5470
				struct task_struct *p)
5471 5472 5473 5474 5475
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5476
				struct task_struct *p)
5477 5478 5479
{
}
#endif
B
Balbir Singh 已提交
5480

B
Balbir Singh 已提交
5481 5482 5483 5484
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5485
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5486 5487
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5488 5489
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5490
	.attach = mem_cgroup_move_task,
5491
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5492
	.use_id = 1,
B
Balbir Singh 已提交
5493
};
5494 5495

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5496 5497 5498
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5499
	if (!strcmp(s, "1"))
5500
		really_do_swap_account = 1;
5501
	else if (!strcmp(s, "0"))
5502 5503 5504
		really_do_swap_account = 0;
	return 1;
}
5505
__setup("swapaccount=", enable_swap_account);
5506 5507

#endif