memcontrol.c 179.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/slab.h>
43
#include <linux/swap.h>
44
#include <linux/swapops.h>
45
#include <linux/spinlock.h>
46 47
#include <linux/eventfd.h>
#include <linux/sort.h>
48
#include <linux/fs.h>
49
#include <linux/seq_file.h>
50
#include <linux/vmalloc.h>
51
#include <linux/vmpressure.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
94 95 96 97 98
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_NSTATS,
};

102 103 104
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
105
	"rss_huge",
106 107 108 109
	"mapped_file",
	"swap",
};

110 111 112
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
113 114
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
115 116
	MEM_CGROUP_EVENTS_NSTATS,
};
117 118 119 120 121 122 123 124

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

125 126 127 128 129 130 131 132
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

133 134 135 136 137 138 139 140
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
141
	MEM_CGROUP_TARGET_SOFTLIMIT,
142
	MEM_CGROUP_TARGET_NUMAINFO,
143 144
	MEM_CGROUP_NTARGETS,
};
145 146 147
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
148

149
struct mem_cgroup_stat_cpu {
150
	long count[MEM_CGROUP_STAT_NSTATS];
151
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
152
	unsigned long nr_page_events;
153
	unsigned long targets[MEM_CGROUP_NTARGETS];
154 155
};

156
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
157 158 159 160
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
161
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
162 163
	unsigned long last_dead_count;

164 165 166 167
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

168 169 170 171
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
172
	struct lruvec		lruvec;
173
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
174

175 176
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

177
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
178
						/* use container_of	   */
179 180 181 182 183 184
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

185 186 187 188 189
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
190
/* For threshold */
191
struct mem_cgroup_threshold_ary {
192
	/* An array index points to threshold just below or equal to usage. */
193
	int current_threshold;
194 195 196 197 198
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
199 200 201 202 203 204 205 206 207 208 209 210

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
211 212 213 214 215
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
216

217 218
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
219

B
Balbir Singh 已提交
220 221 222 223 224 225 226
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
227 228 229
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
230 231 232 233 234 235 236
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
237

238 239 240
	/* vmpressure notifications */
	struct vmpressure vmpressure;

241 242 243 244
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
245

246 247 248 249
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
250 251 252 253
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
254
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
255 256 257 258

	bool		oom_lock;
	atomic_t	under_oom;

259
	int	swappiness;
260 261
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
262

263 264 265
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

266 267 268 269
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
270
	struct mem_cgroup_thresholds thresholds;
271

272
	/* thresholds for mem+swap usage. RCU-protected */
273
	struct mem_cgroup_thresholds memsw_thresholds;
274

K
KAMEZAWA Hiroyuki 已提交
275 276
	/* For oom notifier event fd */
	struct list_head oom_notify;
277

278 279 280 281
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
282
	unsigned long move_charge_at_immigrate;
283 284 285 286
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
287 288
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
289
	/*
290
	 * percpu counter.
291
	 */
292
	struct mem_cgroup_stat_cpu __percpu *stat;
293 294 295 296 297 298
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
299

M
Michal Hocko 已提交
300
	atomic_t	dead_count;
M
Michal Hocko 已提交
301
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
302 303
	struct tcp_memcontrol tcp_mem;
#endif
304 305 306 307 308 309 310 311
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
312 313 314 315 316 317 318

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
319 320 321 322 323 324 325 326
	/*
	 * Protects soft_contributed transitions.
	 * See mem_cgroup_update_soft_limit
	 */
	spinlock_t soft_lock;

	/*
	 * If true then this group has increased parents' children_in_excess
A
Andrew Morton 已提交
327
	 * when it got over the soft limit.
328 329 330 331 332 333 334
	 * When a group falls bellow the soft limit, parents' children_in_excess
	 * is decreased and soft_contributed changed to false.
	 */
	bool soft_contributed;

	/* Number of children that are in soft limit excess */
	atomic_t children_in_excess;
335

336 337
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
338 339
};

340 341 342 343 344 345
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

346 347 348
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
349
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
350
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
351 352
};

353 354 355
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
356 357 358 359 360 361

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
362 363 364 365 366 367

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

368 369 370 371 372
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

373 374 375 376 377
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

378 379
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
380 381 382 383 384
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
385 386 387 388 389 390 391 392 393
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
394 395
#endif

396 397
/* Stuffs for move charges at task migration. */
/*
398 399
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
400 401
 */
enum move_type {
402
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
403
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
404 405 406
	NR_MOVE_TYPE,
};

407 408
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
409
	spinlock_t	  lock; /* for from, to */
410 411
	struct mem_cgroup *from;
	struct mem_cgroup *to;
412
	unsigned long immigrate_flags;
413
	unsigned long precharge;
414
	unsigned long moved_charge;
415
	unsigned long moved_swap;
416 417 418
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
419
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
420 421
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
422

D
Daisuke Nishimura 已提交
423 424
static bool move_anon(void)
{
425
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
426 427
}

428 429
static bool move_file(void)
{
430
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
431 432
}

433 434 435 436
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
437
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
438

439 440
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
441
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
442
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
443
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
444 445 446
	NR_CHARGE_TYPE,
};

447
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
448 449 450 451
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
452
	_KMEM,
G
Glauber Costa 已提交
453 454
};

455 456
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
457
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
458 459
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
460

461 462 463 464 465 466 467 468
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

469 470 471 472 473 474 475
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

476 477
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
478
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
479 480
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

499 500 501 502 503
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
504
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
505
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
506 507 508

void sock_update_memcg(struct sock *sk)
{
509
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
510
		struct mem_cgroup *memcg;
511
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
512 513 514

		BUG_ON(!sk->sk_prot->proto_cgroup);

515 516 517 518 519 520 521 522 523 524
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
525
			css_get(&sk->sk_cgrp->memcg->css);
526 527 528
			return;
		}

G
Glauber Costa 已提交
529 530
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
531
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
532 533
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
534
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
535 536 537 538 539 540 541 542
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
543
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
544 545 546
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
547
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
548 549
	}
}
G
Glauber Costa 已提交
550 551 552 553 554 555 556 557 558

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
559

560 561 562 563 564 565 566 567 568 569 570 571
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

572
#ifdef CONFIG_MEMCG_KMEM
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
591 592
int memcg_limited_groups_array_size;

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

608 609 610 611 612 613
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
614
struct static_key memcg_kmem_enabled_key;
615
EXPORT_SYMBOL(memcg_kmem_enabled_key);
616 617 618

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
619
	if (memcg_kmem_is_active(memcg)) {
620
		static_key_slow_dec(&memcg_kmem_enabled_key);
621 622
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
623 624 625 626 627
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
628 629 630 631 632 633 634 635 636 637 638 639 640
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

641
static void drain_all_stock_async(struct mem_cgroup *memcg);
642

643
static struct mem_cgroup_per_zone *
644
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
645
{
646
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
647
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
648 649
}

650
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
651
{
652
	return &memcg->css;
653 654
}

655
static struct mem_cgroup_per_zone *
656
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
657
{
658 659
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
660

661
	return mem_cgroup_zoneinfo(memcg, nid, zid);
662 663
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
683
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
684
				 enum mem_cgroup_stat_index idx)
685
{
686
	long val = 0;
687 688
	int cpu;

689 690
	get_online_cpus();
	for_each_online_cpu(cpu)
691
		val += per_cpu(memcg->stat->count[idx], cpu);
692
#ifdef CONFIG_HOTPLUG_CPU
693 694 695
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
696 697
#endif
	put_online_cpus();
698 699 700
	return val;
}

701
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
702 703 704
					 bool charge)
{
	int val = (charge) ? 1 : -1;
705
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
706 707
}

708
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
709 710 711 712 713 714
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
715
		val += per_cpu(memcg->stat->events[idx], cpu);
716
#ifdef CONFIG_HOTPLUG_CPU
717 718 719
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
720 721 722 723
#endif
	return val;
}

724
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
725
					 struct page *page,
726
					 bool anon, int nr_pages)
727
{
728 729
	preempt_disable();

730 731 732 733 734 735
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
736
				nr_pages);
737
	else
738
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
739
				nr_pages);
740

741 742 743 744
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

745 746
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
747
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
748
	else {
749
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
750 751
		nr_pages = -nr_pages; /* for event */
	}
752

753
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
754

755
	preempt_enable();
756 757
}

758
unsigned long
759
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
760 761 762 763 764 765 766 767
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
768
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
769
			unsigned int lru_mask)
770 771
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
772
	enum lru_list lru;
773 774
	unsigned long ret = 0;

775
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
776

H
Hugh Dickins 已提交
777 778 779
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
780 781 782 783 784
	}
	return ret;
}

static unsigned long
785
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
786 787
			int nid, unsigned int lru_mask)
{
788 789 790
	u64 total = 0;
	int zid;

791
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
792 793
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
794

795 796
	return total;
}
797

798
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
799
			unsigned int lru_mask)
800
{
801
	int nid;
802 803
	u64 total = 0;

804
	for_each_node_state(nid, N_MEMORY)
805
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
806
	return total;
807 808
}

809 810
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
811 812 813
{
	unsigned long val, next;

814
	val = __this_cpu_read(memcg->stat->nr_page_events);
815
	next = __this_cpu_read(memcg->stat->targets[target]);
816
	/* from time_after() in jiffies.h */
817 818 819 820 821
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
822 823 824
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
825 826 827 828 829 830 831 832
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
833
	}
834
	return false;
835 836
}

837
/*
A
Andrew Morton 已提交
838
 * Called from rate-limited memcg_check_events when enough
839
 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
A
Andrew Morton 已提交
840
 * that all the parents up the hierarchy will be notified that this group
841 842
 * is in excess or that it is not in excess anymore. mmecg->soft_contributed
 * makes the transition a single action whenever the state flips from one to
A
Andrew Morton 已提交
843
 * the other.
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
 */
static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
{
	unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
	struct mem_cgroup *parent = memcg;
	int delta = 0;

	spin_lock(&memcg->soft_lock);
	if (excess) {
		if (!memcg->soft_contributed) {
			delta = 1;
			memcg->soft_contributed = true;
		}
	} else {
		if (memcg->soft_contributed) {
			delta = -1;
			memcg->soft_contributed = false;
		}
	}

	/*
	 * Necessary to update all ancestors when hierarchy is used
	 * because their event counter is not touched.
867 868 869 870
	 * We track children even outside the hierarchy for the root
	 * cgroup because tree walk starting at root should visit
	 * all cgroups and we want to prevent from pointless tree
	 * walk if no children is below the limit.
871 872 873
	 */
	while (delta && (parent = parent_mem_cgroup(parent)))
		atomic_add(delta, &parent->children_in_excess);
874 875
	if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
		atomic_add(delta, &root_mem_cgroup->children_in_excess);
876 877 878
	spin_unlock(&memcg->soft_lock);
}

879 880 881 882
/*
 * Check events in order.
 *
 */
883
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
884
{
885
	preempt_disable();
886
	/* threshold event is triggered in finer grain than soft limit */
887 888
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
889
		bool do_softlimit;
890
		bool do_numainfo __maybe_unused;
891

892 893
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
894 895 896 897 898 899
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

900
		mem_cgroup_threshold(memcg);
901 902
		if (unlikely(do_softlimit))
			mem_cgroup_update_soft_limit(memcg);
903
#if MAX_NUMNODES > 1
904
		if (unlikely(do_numainfo))
905
			atomic_inc(&memcg->numainfo_events);
906
#endif
907 908
	} else
		preempt_enable();
909 910
}

911
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
912
{
913 914 915 916 917 918 919 920
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

921
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
922 923
}

924
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
925
{
926
	struct mem_cgroup *memcg = NULL;
927 928 929

	if (!mm)
		return NULL;
930 931 932 933 934 935 936
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
937 938
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
939
			break;
940
	} while (!css_tryget(&memcg->css));
941
	rcu_read_unlock();
942
	return memcg;
943 944
}

945 946 947 948 949 950 951 952 953
static enum mem_cgroup_filter_t
mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
		mem_cgroup_iter_filter cond)
{
	if (!cond)
		return VISIT;
	return cond(memcg, root);
}

954 955 956 957 958 959 960
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
961
		struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
962
{
963
	struct cgroup_subsys_state *prev_css, *next_css;
964

965
	prev_css = last_visited ? &last_visited->css : NULL;
966
skip_node:
967
	next_css = css_next_descendant_pre(prev_css, &root->css);
968 969 970 971 972 973 974 975

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
976 977 978
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

979 980
		switch (mem_cgroup_filter(mem, root, cond)) {
		case SKIP:
981
			prev_css = next_css;
982
			goto skip_node;
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
		case SKIP_TREE:
			if (mem == root)
				return NULL;
			/*
			 * css_rightmost_descendant is not an optimal way to
			 * skip through a subtree (especially for imbalanced
			 * trees leaning to right) but that's what we have right
			 * now. More effective solution would be traversing
			 * right-up for first non-NULL without calling
			 * css_next_descendant_pre afterwards.
			 */
			prev_css = css_rightmost_descendant(next_css);
			goto skip_node;
		case VISIT:
			if (css_tryget(&mem->css))
				return mem;
			else {
				prev_css = next_css;
				goto skip_node;
			}
			break;
1004 1005 1006 1007 1008 1009
		}
	}

	return NULL;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1062 1063 1064 1065 1066
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1067
 * @cond: filter for visited nodes, NULL for no filter
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1080
struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1081
				   struct mem_cgroup *prev,
1082 1083
				   struct mem_cgroup_reclaim_cookie *reclaim,
				   mem_cgroup_iter_filter cond)
K
KAMEZAWA Hiroyuki 已提交
1084
{
1085
	struct mem_cgroup *memcg = NULL;
1086
	struct mem_cgroup *last_visited = NULL;
1087

1088 1089 1090 1091
	if (mem_cgroup_disabled()) {
		/* first call must return non-NULL, second return NULL */
		return (struct mem_cgroup *)(unsigned long)!prev;
	}
1092

1093 1094
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1095

1096
	if (prev && !reclaim)
1097
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1098

1099 1100
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1101
			goto out_css_put;
1102 1103 1104
		if (mem_cgroup_filter(root, root, cond) == VISIT)
			return root;
		return NULL;
1105
	}
K
KAMEZAWA Hiroyuki 已提交
1106

1107
	rcu_read_lock();
1108
	while (!memcg) {
1109
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1110
		int uninitialized_var(seq);
1111

1112 1113 1114 1115 1116 1117 1118
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1119
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1120
				iter->last_visited = NULL;
1121 1122
				goto out_unlock;
			}
M
Michal Hocko 已提交
1123

1124
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1125
		}
K
KAMEZAWA Hiroyuki 已提交
1126

1127
		memcg = __mem_cgroup_iter_next(root, last_visited, cond);
K
KAMEZAWA Hiroyuki 已提交
1128

1129
		if (reclaim) {
1130
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1131

M
Michal Hocko 已提交
1132
			if (!memcg)
1133 1134 1135 1136
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1137

1138 1139 1140 1141 1142
		/*
		 * We have finished the whole tree walk or no group has been
		 * visited because filter told us to skip the root node.
		 */
		if (!memcg && (prev || (cond && !last_visited)))
1143
			goto out_unlock;
1144
	}
1145 1146
out_unlock:
	rcu_read_unlock();
1147 1148 1149 1150
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1151
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1152
}
K
KAMEZAWA Hiroyuki 已提交
1153

1154 1155 1156 1157 1158 1159 1160
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1161 1162 1163 1164 1165 1166
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1167

1168 1169 1170 1171 1172 1173
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1174
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1175
	     iter != NULL;				\
1176
	     iter = mem_cgroup_iter(root, iter, NULL))
1177

1178
#define for_each_mem_cgroup(iter)			\
1179
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1180
	     iter != NULL;				\
1181
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1182

1183
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1184
{
1185
	struct mem_cgroup *memcg;
1186 1187

	rcu_read_lock();
1188 1189
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1190 1191 1192 1193
		goto out;

	switch (idx) {
	case PGFAULT:
1194 1195 1196 1197
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1198 1199 1200 1201 1202 1203 1204
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1205
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1206

1207 1208 1209
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1210
 * @memcg: memcg of the wanted lruvec
1211 1212 1213 1214 1215 1216 1217 1218 1219
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1220
	struct lruvec *lruvec;
1221

1222 1223 1224 1225
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1226 1227

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1238 1239
}

K
KAMEZAWA Hiroyuki 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1253

1254
/**
1255
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1256
 * @page: the page
1257
 * @zone: zone of the page
1258
 */
1259
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1260 1261
{
	struct mem_cgroup_per_zone *mz;
1262 1263
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1264
	struct lruvec *lruvec;
1265

1266 1267 1268 1269
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1270

K
KAMEZAWA Hiroyuki 已提交
1271
	pc = lookup_page_cgroup(page);
1272
	memcg = pc->mem_cgroup;
1273 1274

	/*
1275
	 * Surreptitiously switch any uncharged offlist page to root:
1276 1277 1278 1279 1280 1281 1282
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1283
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1284 1285
		pc->mem_cgroup = memcg = root_mem_cgroup;

1286
	mz = page_cgroup_zoneinfo(memcg, page);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1297
}
1298

1299
/**
1300 1301 1302 1303
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1304
 *
1305 1306
 * This function must be called when a page is added to or removed from an
 * lru list.
1307
 */
1308 1309
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1310 1311
{
	struct mem_cgroup_per_zone *mz;
1312
	unsigned long *lru_size;
1313 1314 1315 1316

	if (mem_cgroup_disabled())
		return;

1317 1318 1319 1320
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1321
}
1322

1323
/*
1324
 * Checks whether given mem is same or in the root_mem_cgroup's
1325 1326
 * hierarchy subtree
 */
1327 1328
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1329
{
1330 1331
	if (root_memcg == memcg)
		return true;
1332
	if (!root_memcg->use_hierarchy || !memcg)
1333
		return false;
1334 1335 1336 1337 1338 1339 1340 1341
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1342
	rcu_read_lock();
1343
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1344 1345
	rcu_read_unlock();
	return ret;
1346 1347
}

1348 1349
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1350
{
1351
	struct mem_cgroup *curr = NULL;
1352
	struct task_struct *p;
1353
	bool ret;
1354

1355
	p = find_lock_task_mm(task);
1356 1357 1358 1359 1360 1361 1362 1363 1364
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1365
		rcu_read_lock();
1366 1367 1368
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1369
		rcu_read_unlock();
1370
	}
1371
	if (!curr)
1372
		return false;
1373
	/*
1374
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1375
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1376 1377
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1378
	 */
1379
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1380
	css_put(&curr->css);
1381 1382 1383
	return ret;
}

1384
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1385
{
1386
	unsigned long inactive_ratio;
1387
	unsigned long inactive;
1388
	unsigned long active;
1389
	unsigned long gb;
1390

1391 1392
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1393

1394 1395 1396 1397 1398 1399
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1400
	return inactive * inactive_ratio < active;
1401 1402
}

1403 1404 1405
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1406
/**
1407
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1408
 * @memcg: the memory cgroup
1409
 *
1410
 * Returns the maximum amount of memory @mem can be charged with, in
1411
 * pages.
1412
 */
1413
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1414
{
1415 1416
	unsigned long long margin;

1417
	margin = res_counter_margin(&memcg->res);
1418
	if (do_swap_account)
1419
		margin = min(margin, res_counter_margin(&memcg->memsw));
1420
	return margin >> PAGE_SHIFT;
1421 1422
}

1423
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1424 1425
{
	/* root ? */
T
Tejun Heo 已提交
1426
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1427 1428
		return vm_swappiness;

1429
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1430 1431
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1446 1447 1448 1449

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1450
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1451
{
1452
	atomic_inc(&memcg_moving);
1453
	atomic_inc(&memcg->moving_account);
1454 1455 1456
	synchronize_rcu();
}

1457
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1458
{
1459 1460 1461 1462
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1463 1464
	if (memcg) {
		atomic_dec(&memcg_moving);
1465
		atomic_dec(&memcg->moving_account);
1466
	}
1467
}
1468

1469 1470 1471
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1472 1473
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1474 1475 1476 1477 1478 1479 1480
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1481
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1482 1483
{
	VM_BUG_ON(!rcu_read_lock_held());
1484
	return atomic_read(&memcg->moving_account) > 0;
1485
}
1486

1487
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1488
{
1489 1490
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1491
	bool ret = false;
1492 1493 1494 1495 1496 1497 1498 1499 1500
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1501

1502 1503
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1504 1505
unlock:
	spin_unlock(&mc.lock);
1506 1507 1508
	return ret;
}

1509
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1510 1511
{
	if (mc.moving_task && current != mc.moving_task) {
1512
		if (mem_cgroup_under_move(memcg)) {
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1525 1526 1527 1528
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1529
 * see mem_cgroup_stolen(), too.
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1543
#define K(x) ((x) << (PAGE_SHIFT-10))
1544
/**
1545
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1563 1564
	struct mem_cgroup *iter;
	unsigned int i;
1565

1566
	if (!p)
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1585
	pr_info("Task in %s killed", memcg_name);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1598
	pr_cont(" as a result of limit of %s\n", memcg_name);
1599 1600
done:

1601
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1602 1603 1604
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1605
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1606 1607 1608
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1609
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1610 1611 1612
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1637 1638
}

1639 1640 1641 1642
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1643
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1644 1645
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1646 1647
	struct mem_cgroup *iter;

1648
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1649
		num++;
1650 1651 1652
	return num;
}

D
David Rientjes 已提交
1653 1654 1655
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1656
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1657 1658 1659
{
	u64 limit;

1660 1661
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1662
	/*
1663
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1664
	 */
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1679 1680
}

1681 1682
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1683 1684 1685 1686 1687 1688 1689
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1690
	/*
1691 1692 1693
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1694
	 */
1695
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1696 1697 1698 1699 1700
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1701 1702
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1703
		struct css_task_iter it;
1704 1705
		struct task_struct *task;

1706 1707
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1720
				css_task_iter_end(&it);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1737
		css_task_iter_end(&it);
1738 1739 1740 1741 1742 1743 1744 1745 1746
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1783
#if MAX_NUMNODES > 1
1784 1785
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1786
 * @memcg: the target memcg
1787 1788 1789 1790 1791 1792 1793
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1794
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1795 1796
		int nid, bool noswap)
{
1797
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1798 1799 1800
		return true;
	if (noswap || !total_swap_pages)
		return false;
1801
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1802 1803 1804 1805
		return true;
	return false;

}
1806 1807 1808 1809 1810 1811 1812

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1813
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1814 1815
{
	int nid;
1816 1817 1818 1819
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1820
	if (!atomic_read(&memcg->numainfo_events))
1821
		return;
1822
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1823 1824 1825
		return;

	/* make a nodemask where this memcg uses memory from */
1826
	memcg->scan_nodes = node_states[N_MEMORY];
1827

1828
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1829

1830 1831
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1832
	}
1833

1834 1835
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1850
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1851 1852 1853
{
	int node;

1854 1855
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1856

1857
	node = next_node(node, memcg->scan_nodes);
1858
	if (node == MAX_NUMNODES)
1859
		node = first_node(memcg->scan_nodes);
1860 1861 1862 1863 1864 1865 1866 1867 1868
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1869
	memcg->last_scanned_node = node;
1870 1871 1872 1873
	return node;
}

#else
1874
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1875 1876 1877
{
	return 0;
}
1878

1879 1880
#endif

1881
/*
1882 1883
 * A group is eligible for the soft limit reclaim under the given root
 * hierarchy if
A
Andrew Morton 已提交
1884 1885
 *	a) it is over its soft limit
 *	b) any parent up the hierarchy is over its soft limit
1886 1887 1888
 *
 * If the given group doesn't have any children over the limit then it
 * doesn't make any sense to iterate its subtree.
1889
 */
1890 1891
enum mem_cgroup_filter_t
mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1892
		struct mem_cgroup *root)
1893
{
1894 1895 1896 1897 1898
	struct mem_cgroup *parent;

	if (!memcg)
		memcg = root_mem_cgroup;
	parent = memcg;
1899 1900

	if (res_counter_soft_limit_excess(&memcg->res))
1901
		return VISIT;
1902 1903

	/*
1904 1905
	 * If any parent up to the root in the hierarchy is over its soft limit
	 * then we have to obey and reclaim from this group as well.
1906
	 */
A
Andrew Morton 已提交
1907
	while ((parent = parent_mem_cgroup(parent))) {
1908
		if (res_counter_soft_limit_excess(&parent->res))
1909
			return VISIT;
1910 1911
		if (parent == root)
			break;
1912
	}
1913

1914 1915
	if (!atomic_read(&memcg->children_in_excess))
		return SKIP_TREE;
1916
	return SKIP;
1917 1918
}

1919 1920
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1921 1922 1923 1924
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1925
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1926
{
1927
	struct mem_cgroup *iter, *failed = NULL;
1928

1929 1930
	spin_lock(&memcg_oom_lock);

1931
	for_each_mem_cgroup_tree(iter, memcg) {
1932
		if (iter->oom_lock) {
1933 1934 1935 1936 1937
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1938 1939
			mem_cgroup_iter_break(memcg, iter);
			break;
1940 1941
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1942
	}
K
KAMEZAWA Hiroyuki 已提交
1943

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1955 1956
		}
	}
1957 1958 1959 1960

	spin_unlock(&memcg_oom_lock);

	return !failed;
1961
}
1962

1963
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1964
{
K
KAMEZAWA Hiroyuki 已提交
1965 1966
	struct mem_cgroup *iter;

1967
	spin_lock(&memcg_oom_lock);
1968
	for_each_mem_cgroup_tree(iter, memcg)
1969
		iter->oom_lock = false;
1970
	spin_unlock(&memcg_oom_lock);
1971 1972
}

1973
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1974 1975 1976
{
	struct mem_cgroup *iter;

1977
	for_each_mem_cgroup_tree(iter, memcg)
1978 1979 1980
		atomic_inc(&iter->under_oom);
}

1981
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1982 1983 1984
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1985 1986 1987 1988 1989
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1990
	for_each_mem_cgroup_tree(iter, memcg)
1991
		atomic_add_unless(&iter->under_oom, -1, 0);
1992 1993
}

K
KAMEZAWA Hiroyuki 已提交
1994 1995
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1996
struct oom_wait_info {
1997
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1998 1999 2000 2001 2002 2003
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2004 2005
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2006 2007 2008
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2009
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2010 2011

	/*
2012
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2013 2014
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2015 2016
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2017 2018 2019 2020
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2021
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2022
{
2023 2024
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2025 2026
}

2027
static void memcg_oom_recover(struct mem_cgroup *memcg)
2028
{
2029 2030
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2031 2032
}

K
KAMEZAWA Hiroyuki 已提交
2033 2034 2035
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2036 2037
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2038
{
K
KAMEZAWA Hiroyuki 已提交
2039
	struct oom_wait_info owait;
2040
	bool locked;
K
KAMEZAWA Hiroyuki 已提交
2041

2042
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2043 2044 2045 2046
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2047

K
KAMEZAWA Hiroyuki 已提交
2048
	/*
2049 2050 2051 2052 2053 2054
	 * As with any blocking lock, a contender needs to start
	 * listening for wakeups before attempting the trylock,
	 * otherwise it can miss the wakeup from the unlock and sleep
	 * indefinitely.  This is just open-coded because our locking
	 * is so particular to memcg hierarchies.
	 *
K
KAMEZAWA Hiroyuki 已提交
2055 2056 2057 2058
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2059
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2060 2061 2062 2063
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

2064
	if (locked)
2065
		mem_cgroup_oom_notify(memcg);
K
KAMEZAWA Hiroyuki 已提交
2066

2067 2068
	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
2069
		finish_wait(&memcg_oom_waitq, &owait.wait);
2070
		mem_cgroup_out_of_memory(memcg, mask, order);
2071
	} else {
K
KAMEZAWA Hiroyuki 已提交
2072
		schedule();
2073
		mem_cgroup_unmark_under_oom(memcg);
K
KAMEZAWA Hiroyuki 已提交
2074
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2075 2076
	}

2077 2078 2079 2080 2081 2082 2083 2084 2085
	if (locked) {
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2086

K
KAMEZAWA Hiroyuki 已提交
2087 2088 2089
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2090
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2091
	return true;
2092 2093
}

2094 2095 2096
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2114 2115
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2116
 */
2117

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2131
	 * need to take move_lock_mem_cgroup(). Because we already hold
2132
	 * rcu_read_lock(), any calls to move_account will be delayed until
2133
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2134
	 */
2135
	if (!mem_cgroup_stolen(memcg))
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2153
	 * should take move_lock_mem_cgroup().
2154 2155 2156 2157
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2158 2159
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2160
{
2161
	struct mem_cgroup *memcg;
2162
	struct page_cgroup *pc = lookup_page_cgroup(page);
2163
	unsigned long uninitialized_var(flags);
2164

2165
	if (mem_cgroup_disabled())
2166
		return;
2167

2168 2169
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2170
		return;
2171 2172

	switch (idx) {
2173 2174
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2175 2176 2177
		break;
	default:
		BUG();
2178
	}
2179

2180
	this_cpu_add(memcg->stat->count[idx], val);
2181
}
2182

2183 2184 2185 2186
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2187
#define CHARGE_BATCH	32U
2188 2189
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2190
	unsigned int nr_pages;
2191
	struct work_struct work;
2192
	unsigned long flags;
2193
#define FLUSHING_CACHED_CHARGE	0
2194 2195
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2196
static DEFINE_MUTEX(percpu_charge_mutex);
2197

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2208
 */
2209
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2210 2211 2212 2213
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2214 2215 2216
	if (nr_pages > CHARGE_BATCH)
		return false;

2217
	stock = &get_cpu_var(memcg_stock);
2218 2219
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2233 2234 2235 2236
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2237
		if (do_swap_account)
2238 2239
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2252
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2253 2254
}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2266 2267
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2268
 * This will be consumed by consume_stock() function, later.
2269
 */
2270
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2271 2272 2273
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2274
	if (stock->cached != memcg) { /* reset if necessary */
2275
		drain_stock(stock);
2276
		stock->cached = memcg;
2277
	}
2278
	stock->nr_pages += nr_pages;
2279 2280 2281 2282
	put_cpu_var(memcg_stock);
}

/*
2283
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2284 2285
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2286
 */
2287
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2288
{
2289
	int cpu, curcpu;
2290

2291 2292
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2293
	curcpu = get_cpu();
2294 2295
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2296
		struct mem_cgroup *memcg;
2297

2298 2299
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2300
			continue;
2301
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2302
			continue;
2303 2304 2305 2306 2307 2308
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2309
	}
2310
	put_cpu();
2311 2312 2313 2314 2315 2316

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2317
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2318 2319 2320
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2321
	put_online_cpus();
2322 2323 2324 2325 2326 2327 2328 2329
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2330
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2331
{
2332 2333 2334 2335 2336
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2337
	drain_all_stock(root_memcg, false);
2338
	mutex_unlock(&percpu_charge_mutex);
2339 2340 2341
}

/* This is a synchronous drain interface. */
2342
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2343 2344
{
	/* called when force_empty is called */
2345
	mutex_lock(&percpu_charge_mutex);
2346
	drain_all_stock(root_memcg, true);
2347
	mutex_unlock(&percpu_charge_mutex);
2348 2349
}

2350 2351 2352 2353
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2354
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2355 2356 2357
{
	int i;

2358
	spin_lock(&memcg->pcp_counter_lock);
2359
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2360
		long x = per_cpu(memcg->stat->count[i], cpu);
2361

2362 2363
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2364
	}
2365
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2366
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2367

2368 2369
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2370
	}
2371
	spin_unlock(&memcg->pcp_counter_lock);
2372 2373
}

2374
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2375 2376 2377 2378 2379
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2380
	struct mem_cgroup *iter;
2381

2382
	if (action == CPU_ONLINE)
2383 2384
		return NOTIFY_OK;

2385
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2386
		return NOTIFY_OK;
2387

2388
	for_each_mem_cgroup(iter)
2389 2390
		mem_cgroup_drain_pcp_counter(iter, cpu);

2391 2392 2393 2394 2395
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2406
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2407 2408
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2409
{
2410
	unsigned long csize = nr_pages * PAGE_SIZE;
2411 2412 2413 2414 2415
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2416
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2417 2418 2419 2420

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2421
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2422 2423 2424
		if (likely(!ret))
			return CHARGE_OK;

2425
		res_counter_uncharge(&memcg->res, csize);
2426 2427 2428 2429
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2430 2431 2432 2433
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2434
	if (nr_pages > min_pages)
2435 2436 2437 2438 2439
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2440 2441 2442
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2443
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2444
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2445
		return CHARGE_RETRY;
2446
	/*
2447 2448 2449 2450 2451 2452 2453
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2454
	 */
2455
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
2466
	if (!oom_check || !current->memcg_oom.may_oom)
2467 2468
		return CHARGE_NOMEM;
	/* check OOM */
2469
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2470 2471 2472 2473 2474
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2475
/*
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2495
 */
2496
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2497
				   gfp_t gfp_mask,
2498
				   unsigned int nr_pages,
2499
				   struct mem_cgroup **ptr,
2500
				   bool oom)
2501
{
2502
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2503
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2504
	struct mem_cgroup *memcg = NULL;
2505
	int ret;
2506

K
KAMEZAWA Hiroyuki 已提交
2507 2508 2509 2510 2511 2512 2513 2514
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2515

2516
	/*
2517 2518
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2519
	 * thread group leader migrates. It's possible that mm is not
2520
	 * set, if so charge the root memcg (happens for pagecache usage).
2521
	 */
2522
	if (!*ptr && !mm)
2523
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2524
again:
2525 2526 2527
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2528
			goto done;
2529
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2530
			goto done;
2531
		css_get(&memcg->css);
2532
	} else {
K
KAMEZAWA Hiroyuki 已提交
2533
		struct task_struct *p;
2534

K
KAMEZAWA Hiroyuki 已提交
2535 2536 2537
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2538
		 * Because we don't have task_lock(), "p" can exit.
2539
		 * In that case, "memcg" can point to root or p can be NULL with
2540 2541 2542 2543 2544 2545
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2546
		 */
2547
		memcg = mem_cgroup_from_task(p);
2548 2549 2550
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2551 2552 2553
			rcu_read_unlock();
			goto done;
		}
2554
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2567
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2568 2569 2570 2571 2572
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2573

2574 2575
	do {
		bool oom_check;
2576

2577
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2578
		if (fatal_signal_pending(current)) {
2579
			css_put(&memcg->css);
2580
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2581
		}
2582

2583 2584 2585 2586
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2587
		}
2588

2589 2590
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2591 2592 2593 2594
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2595
			batch = nr_pages;
2596 2597
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2598
			goto again;
2599
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2600
			css_put(&memcg->css);
2601 2602
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2603
			if (!oom) {
2604
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2605
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2606
			}
2607 2608 2609 2610
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2611
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2612
			goto bypass;
2613
		}
2614 2615
	} while (ret != CHARGE_OK);

2616
	if (batch > nr_pages)
2617 2618
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2619
done:
2620
	*ptr = memcg;
2621 2622
	return 0;
nomem:
2623
	*ptr = NULL;
2624
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2625
bypass:
2626 2627
	*ptr = root_mem_cgroup;
	return -EINTR;
2628
}
2629

2630 2631 2632 2633 2634
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2635
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2636
				       unsigned int nr_pages)
2637
{
2638
	if (!mem_cgroup_is_root(memcg)) {
2639 2640
		unsigned long bytes = nr_pages * PAGE_SIZE;

2641
		res_counter_uncharge(&memcg->res, bytes);
2642
		if (do_swap_account)
2643
			res_counter_uncharge(&memcg->memsw, bytes);
2644
	}
2645 2646
}

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2665 2666
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2667 2668 2669
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2681
	return mem_cgroup_from_css(css);
2682 2683
}

2684
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2685
{
2686
	struct mem_cgroup *memcg = NULL;
2687
	struct page_cgroup *pc;
2688
	unsigned short id;
2689 2690
	swp_entry_t ent;

2691 2692 2693
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2694
	lock_page_cgroup(pc);
2695
	if (PageCgroupUsed(pc)) {
2696 2697 2698
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2699
	} else if (PageSwapCache(page)) {
2700
		ent.val = page_private(page);
2701
		id = lookup_swap_cgroup_id(ent);
2702
		rcu_read_lock();
2703 2704 2705
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2706
		rcu_read_unlock();
2707
	}
2708
	unlock_page_cgroup(pc);
2709
	return memcg;
2710 2711
}

2712
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2713
				       struct page *page,
2714
				       unsigned int nr_pages,
2715 2716
				       enum charge_type ctype,
				       bool lrucare)
2717
{
2718
	struct page_cgroup *pc = lookup_page_cgroup(page);
2719
	struct zone *uninitialized_var(zone);
2720
	struct lruvec *lruvec;
2721
	bool was_on_lru = false;
2722
	bool anon;
2723

2724
	lock_page_cgroup(pc);
2725
	VM_BUG_ON(PageCgroupUsed(pc));
2726 2727 2728 2729
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2730 2731 2732 2733 2734 2735 2736 2737 2738

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2739
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2740
			ClearPageLRU(page);
2741
			del_page_from_lru_list(page, lruvec, page_lru(page));
2742 2743 2744 2745
			was_on_lru = true;
		}
	}

2746
	pc->mem_cgroup = memcg;
2747 2748 2749 2750 2751 2752
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2753
	 */
K
KAMEZAWA Hiroyuki 已提交
2754
	smp_wmb();
2755
	SetPageCgroupUsed(pc);
2756

2757 2758
	if (lrucare) {
		if (was_on_lru) {
2759
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2760 2761
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2762
			add_page_to_lru_list(page, lruvec, page_lru(page));
2763 2764 2765 2766
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2767
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2768 2769 2770 2771
		anon = true;
	else
		anon = false;

2772
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2773
	unlock_page_cgroup(pc);
2774

2775
	/*
2776
	 * "charge_statistics" updated event counter.
2777
	 */
2778
	memcg_check_events(memcg, page);
2779
}
2780

2781 2782
static DEFINE_MUTEX(set_limit_mutex);

2783 2784 2785 2786 2787 2788 2789
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2803
#ifdef CONFIG_SLABINFO
2804 2805
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2806
{
2807
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2877 2878 2879 2880 2881

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2882 2883 2884 2885 2886 2887 2888 2889
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2890
	if (memcg_kmem_test_and_clear_dead(memcg))
2891
		css_put(&memcg->css);
2892 2893
}

2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

2977 2978
static void kmem_cache_destroy_work_func(struct work_struct *w);

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
2990
		size += offsetof(struct memcg_cache_params, memcg_caches);
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3030 3031
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3032
{
3033
	size_t size;
3034 3035 3036 3037

	if (!memcg_kmem_enabled())
		return 0;

3038 3039
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3040
		size += memcg_limited_groups_array_size * sizeof(void *);
3041 3042
	} else
		size = sizeof(struct memcg_cache_params);
3043

3044 3045 3046 3047
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3048
	if (memcg) {
3049
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3050
		s->memcg_params->root_cache = root_cache;
3051 3052
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3053 3054 3055
	} else
		s->memcg_params->is_root_cache = true;

3056 3057 3058 3059 3060
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3085
	css_put(&memcg->css);
3086
out:
3087 3088 3089
	kfree(s->memcg_params);
}

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3121 3122 3123 3124 3125 3126 3127 3128 3129
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3151 3152 3153 3154 3155 3156 3157 3158
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3179 3180 3181 3182 3183 3184 3185
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3186 3187 3188 3189 3190 3191 3192 3193 3194
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3195

3196 3197 3198
/*
 * Called with memcg_cache_mutex held
 */
3199 3200 3201 3202
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3203
	static char *tmp_name = NULL;
3204

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3223

3224
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3225
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3226

3227 3228 3229
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3245 3246
	if (new_cachep) {
		css_put(&memcg->css);
3247
		goto out;
3248
	}
3249 3250 3251 3252

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3253
		css_put(&memcg->css);
3254 3255 3256
		goto out;
	}

G
Glauber Costa 已提交
3257
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3309
		cancel_work_sync(&c->memcg_params->destroy);
3310 3311 3312 3313 3314
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3315 3316 3317 3318 3319 3320
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3350 3351
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3352 3353 3354 3355
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3356 3357
	if (cw == NULL) {
		css_put(&memcg->css);
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3408 3409 3410
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3411 3412 3413 3414
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3415
		goto out;
3416 3417 3418 3419 3420 3421 3422 3423

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3424 3425 3426
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3427 3428
	}

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3456 3457 3458
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3495 3496 3497
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3582 3583 3584 3585
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3586 3587
#endif /* CONFIG_MEMCG_KMEM */

3588 3589
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3590
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3591 3592
/*
 * Because tail pages are not marked as "used", set it. We're under
3593 3594 3595
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3596
 */
3597
void mem_cgroup_split_huge_fixup(struct page *head)
3598 3599
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3600
	struct page_cgroup *pc;
3601
	struct mem_cgroup *memcg;
3602
	int i;
3603

3604 3605
	if (mem_cgroup_disabled())
		return;
3606 3607

	memcg = head_pc->mem_cgroup;
3608 3609
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3610
		pc->mem_cgroup = memcg;
3611 3612 3613
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3614 3615
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3616
}
3617
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3618

3619
/**
3620
 * mem_cgroup_move_account - move account of the page
3621
 * @page: the page
3622
 * @nr_pages: number of regular pages (>1 for huge pages)
3623 3624 3625 3626 3627
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3628
 * - page is not on LRU (isolate_page() is useful.)
3629
 * - compound_lock is held when nr_pages > 1
3630
 *
3631 3632
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3633
 */
3634 3635 3636 3637
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3638
				   struct mem_cgroup *to)
3639
{
3640 3641
	unsigned long flags;
	int ret;
3642
	bool anon = PageAnon(page);
3643

3644
	VM_BUG_ON(from == to);
3645
	VM_BUG_ON(PageLRU(page));
3646 3647 3648 3649 3650 3651 3652
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3653
	if (nr_pages > 1 && !PageTransHuge(page))
3654 3655 3656 3657 3658 3659 3660 3661
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3662
	move_lock_mem_cgroup(from, &flags);
3663

3664
	if (!anon && page_mapped(page)) {
3665 3666 3667 3668 3669
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3670
	}
3671
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3672

3673
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3674
	pc->mem_cgroup = to;
3675
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3676
	move_unlock_mem_cgroup(from, &flags);
3677 3678
	ret = 0;
unlock:
3679
	unlock_page_cgroup(pc);
3680 3681 3682
	/*
	 * check events
	 */
3683 3684
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3685
out:
3686 3687 3688
	return ret;
}

3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3709
 */
3710 3711
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3712
				  struct mem_cgroup *child)
3713 3714
{
	struct mem_cgroup *parent;
3715
	unsigned int nr_pages;
3716
	unsigned long uninitialized_var(flags);
3717 3718
	int ret;

3719
	VM_BUG_ON(mem_cgroup_is_root(child));
3720

3721 3722 3723 3724 3725
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3726

3727
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3728

3729 3730 3731 3732 3733 3734
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3735

3736 3737
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3738
		flags = compound_lock_irqsave(page);
3739
	}
3740

3741
	ret = mem_cgroup_move_account(page, nr_pages,
3742
				pc, child, parent);
3743 3744
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3745

3746
	if (nr_pages > 1)
3747
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3748
	putback_lru_page(page);
3749
put:
3750
	put_page(page);
3751
out:
3752 3753 3754
	return ret;
}

3755 3756 3757 3758 3759 3760 3761
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3762
				gfp_t gfp_mask, enum charge_type ctype)
3763
{
3764
	struct mem_cgroup *memcg = NULL;
3765
	unsigned int nr_pages = 1;
3766
	bool oom = true;
3767
	int ret;
A
Andrea Arcangeli 已提交
3768

A
Andrea Arcangeli 已提交
3769
	if (PageTransHuge(page)) {
3770
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3771
		VM_BUG_ON(!PageTransHuge(page));
3772 3773 3774 3775 3776
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3777
	}
3778

3779
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3780
	if (ret == -ENOMEM)
3781
		return ret;
3782
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3783 3784 3785
	return 0;
}

3786 3787
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3788
{
3789
	if (mem_cgroup_disabled())
3790
		return 0;
3791 3792 3793
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3794
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3795
					MEM_CGROUP_CHARGE_TYPE_ANON);
3796 3797
}

3798 3799 3800
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3801
 * struct page_cgroup is acquired. This refcnt will be consumed by
3802 3803
 * "commit()" or removed by "cancel()"
 */
3804 3805 3806 3807
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3808
{
3809
	struct mem_cgroup *memcg;
3810
	struct page_cgroup *pc;
3811
	int ret;
3812

3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3823 3824
	if (!do_swap_account)
		goto charge_cur_mm;
3825 3826
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3827
		goto charge_cur_mm;
3828 3829
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3830
	css_put(&memcg->css);
3831 3832
	if (ret == -EINTR)
		ret = 0;
3833
	return ret;
3834
charge_cur_mm:
3835 3836 3837 3838
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3839 3840
}

3841 3842 3843 3844 3845 3846
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3861 3862 3863
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3864 3865 3866 3867 3868 3869 3870 3871 3872
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3873
static void
3874
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3875
					enum charge_type ctype)
3876
{
3877
	if (mem_cgroup_disabled())
3878
		return;
3879
	if (!memcg)
3880
		return;
3881

3882
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3883 3884 3885
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3886 3887 3888
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3889
	 */
3890
	if (do_swap_account && PageSwapCache(page)) {
3891
		swp_entry_t ent = {.val = page_private(page)};
3892
		mem_cgroup_uncharge_swap(ent);
3893
	}
3894 3895
}

3896 3897
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3898
{
3899
	__mem_cgroup_commit_charge_swapin(page, memcg,
3900
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3901 3902
}

3903 3904
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3905
{
3906 3907 3908 3909
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3910
	if (mem_cgroup_disabled())
3911 3912 3913 3914 3915 3916 3917
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3918 3919
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3920 3921 3922 3923
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3924 3925
}

3926
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3927 3928
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3929 3930 3931
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3932

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3944
		batch->memcg = memcg;
3945 3946
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3947
	 * In those cases, all pages freed continuously can be expected to be in
3948 3949 3950 3951 3952 3953 3954 3955
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3956
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3957 3958
		goto direct_uncharge;

3959 3960 3961 3962 3963
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3964
	if (batch->memcg != memcg)
3965 3966
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3967
	batch->nr_pages++;
3968
	if (uncharge_memsw)
3969
		batch->memsw_nr_pages++;
3970 3971
	return;
direct_uncharge:
3972
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3973
	if (uncharge_memsw)
3974 3975 3976
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3977
}
3978

3979
/*
3980
 * uncharge if !page_mapped(page)
3981
 */
3982
static struct mem_cgroup *
3983 3984
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3985
{
3986
	struct mem_cgroup *memcg = NULL;
3987 3988
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3989
	bool anon;
3990

3991
	if (mem_cgroup_disabled())
3992
		return NULL;
3993

A
Andrea Arcangeli 已提交
3994
	if (PageTransHuge(page)) {
3995
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3996 3997
		VM_BUG_ON(!PageTransHuge(page));
	}
3998
	/*
3999
	 * Check if our page_cgroup is valid
4000
	 */
4001
	pc = lookup_page_cgroup(page);
4002
	if (unlikely(!PageCgroupUsed(pc)))
4003
		return NULL;
4004

4005
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4006

4007
	memcg = pc->mem_cgroup;
4008

K
KAMEZAWA Hiroyuki 已提交
4009 4010 4011
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4012 4013
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4014
	switch (ctype) {
4015
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4016 4017 4018 4019 4020
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4021 4022
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4023
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4024
		/* See mem_cgroup_prepare_migration() */
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4046
	}
K
KAMEZAWA Hiroyuki 已提交
4047

4048
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4049

4050
	ClearPageCgroupUsed(pc);
4051 4052 4053 4054 4055 4056
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4057

4058
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4059
	/*
4060
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4061
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4062
	 */
4063
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4064
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4065
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4066
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4067
	}
4068 4069 4070 4071 4072 4073
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4074
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4075

4076
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4077 4078 4079

unlock_out:
	unlock_page_cgroup(pc);
4080
	return NULL;
4081 4082
}

4083 4084
void mem_cgroup_uncharge_page(struct page *page)
{
4085 4086 4087
	/* early check. */
	if (page_mapped(page))
		return;
4088
	VM_BUG_ON(page->mapping && !PageAnon(page));
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4101 4102
	if (PageSwapCache(page))
		return;
4103
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4104 4105 4106 4107 4108
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4109
	VM_BUG_ON(page->mapping);
4110
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4111 4112
}

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4127 4128
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4149 4150 4151 4152 4153 4154
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4155
	memcg_oom_recover(batch->memcg);
4156 4157 4158 4159
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4160
#ifdef CONFIG_SWAP
4161
/*
4162
 * called after __delete_from_swap_cache() and drop "page" account.
4163 4164
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4165 4166
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4167 4168
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4169 4170 4171 4172 4173
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4174
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4175

K
KAMEZAWA Hiroyuki 已提交
4176 4177
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4178
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4179 4180
	 */
	if (do_swap_account && swapout && memcg)
4181
		swap_cgroup_record(ent, css_id(&memcg->css));
4182
}
4183
#endif
4184

A
Andrew Morton 已提交
4185
#ifdef CONFIG_MEMCG_SWAP
4186 4187 4188 4189 4190
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4191
{
4192
	struct mem_cgroup *memcg;
4193
	unsigned short id;
4194 4195 4196 4197

	if (!do_swap_account)
		return;

4198 4199 4200
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4201
	if (memcg) {
4202 4203 4204 4205
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4206
		if (!mem_cgroup_is_root(memcg))
4207
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4208
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4209
		css_put(&memcg->css);
4210
	}
4211
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4212
}
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4229
				struct mem_cgroup *from, struct mem_cgroup *to)
4230 4231 4232 4233 4234 4235 4236 4237
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4238
		mem_cgroup_swap_statistics(to, true);
4239
		/*
4240 4241 4242
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4243 4244 4245 4246 4247 4248
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4249
		 */
L
Li Zefan 已提交
4250
		css_get(&to->css);
4251 4252 4253 4254 4255 4256
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4257
				struct mem_cgroup *from, struct mem_cgroup *to)
4258 4259 4260
{
	return -EINVAL;
}
4261
#endif
K
KAMEZAWA Hiroyuki 已提交
4262

4263
/*
4264 4265
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4266
 */
4267 4268
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4269
{
4270
	struct mem_cgroup *memcg = NULL;
4271
	unsigned int nr_pages = 1;
4272
	struct page_cgroup *pc;
4273
	enum charge_type ctype;
4274

4275
	*memcgp = NULL;
4276

4277
	if (mem_cgroup_disabled())
4278
		return;
4279

4280 4281 4282
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4283 4284 4285
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4286 4287
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4319
	}
4320
	unlock_page_cgroup(pc);
4321 4322 4323 4324
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4325
	if (!memcg)
4326
		return;
4327

4328
	*memcgp = memcg;
4329 4330 4331 4332 4333 4334 4335
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4336
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4337
	else
4338
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4339 4340 4341 4342 4343
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4344
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4345
}
4346

4347
/* remove redundant charge if migration failed*/
4348
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4349
	struct page *oldpage, struct page *newpage, bool migration_ok)
4350
{
4351
	struct page *used, *unused;
4352
	struct page_cgroup *pc;
4353
	bool anon;
4354

4355
	if (!memcg)
4356
		return;
4357

4358
	if (!migration_ok) {
4359 4360
		used = oldpage;
		unused = newpage;
4361
	} else {
4362
		used = newpage;
4363 4364
		unused = oldpage;
	}
4365
	anon = PageAnon(used);
4366 4367 4368 4369
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4370
	css_put(&memcg->css);
4371
	/*
4372 4373 4374
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4375
	 */
4376 4377 4378 4379 4380
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4381
	/*
4382 4383 4384 4385 4386 4387
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4388
	 */
4389
	if (anon)
4390
		mem_cgroup_uncharge_page(used);
4391
}
4392

4393 4394 4395 4396 4397 4398 4399 4400
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4401
	struct mem_cgroup *memcg = NULL;
4402 4403 4404 4405 4406 4407 4408 4409 4410
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4411 4412
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4413
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4414 4415
		ClearPageCgroupUsed(pc);
	}
4416 4417
	unlock_page_cgroup(pc);

4418 4419 4420 4421 4422 4423
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4424 4425 4426 4427 4428
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4429
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4430 4431
}

4432 4433 4434 4435 4436 4437
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4438 4439 4440 4441 4442
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4462 4463
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4464 4465 4466 4467
	}
}
#endif

4468
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4469
				unsigned long long val)
4470
{
4471
	int retry_count;
4472
	u64 memswlimit, memlimit;
4473
	int ret = 0;
4474 4475
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4476
	int enlarge;
4477 4478 4479 4480 4481 4482 4483 4484 4485

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4486

4487
	enlarge = 0;
4488
	while (retry_count) {
4489 4490 4491 4492
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4493 4494 4495
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4496
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4497 4498 4499 4500 4501 4502
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4503 4504
			break;
		}
4505 4506 4507 4508 4509

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4510
		ret = res_counter_set_limit(&memcg->res, val);
4511 4512 4513 4514 4515 4516
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4517 4518 4519 4520 4521
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4522 4523
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4524 4525
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4526
		if (curusage >= oldusage)
4527 4528 4529
			retry_count--;
		else
			oldusage = curusage;
4530
	}
4531 4532
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4533

4534 4535 4536
	return ret;
}

L
Li Zefan 已提交
4537 4538
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4539
{
4540
	int retry_count;
4541
	u64 memlimit, memswlimit, oldusage, curusage;
4542 4543
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4544
	int enlarge = 0;
4545

4546
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4547
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4548
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4549 4550 4551 4552 4553 4554 4555 4556
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4557
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4558 4559 4560 4561 4562 4563 4564 4565
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4566 4567 4568
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4569
		ret = res_counter_set_limit(&memcg->memsw, val);
4570 4571 4572 4573 4574 4575
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4576 4577 4578 4579 4580
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4581 4582 4583
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4584
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4585
		/* Usage is reduced ? */
4586
		if (curusage >= oldusage)
4587
			retry_count--;
4588 4589
		else
			oldusage = curusage;
4590
	}
4591 4592
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4593 4594 4595
	return ret;
}

4596 4597 4598 4599 4600 4601 4602
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4603
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4604 4605
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4606
 */
4607
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4608
				int node, int zid, enum lru_list lru)
4609
{
4610
	struct lruvec *lruvec;
4611
	unsigned long flags;
4612
	struct list_head *list;
4613 4614
	struct page *busy;
	struct zone *zone;
4615

K
KAMEZAWA Hiroyuki 已提交
4616
	zone = &NODE_DATA(node)->node_zones[zid];
4617 4618
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4619

4620
	busy = NULL;
4621
	do {
4622
		struct page_cgroup *pc;
4623 4624
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4625
		spin_lock_irqsave(&zone->lru_lock, flags);
4626
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4627
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4628
			break;
4629
		}
4630 4631 4632
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4633
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4634
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4635 4636
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4637
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4638

4639
		pc = lookup_page_cgroup(page);
4640

4641
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4642
			/* found lock contention or "pc" is obsolete. */
4643
			busy = page;
4644 4645 4646
			cond_resched();
		} else
			busy = NULL;
4647
	} while (!list_empty(list));
4648 4649 4650
}

/*
4651 4652
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4653
 * This enables deleting this mem_cgroup.
4654 4655
 *
 * Caller is responsible for holding css reference on the memcg.
4656
 */
4657
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4658
{
4659
	int node, zid;
4660
	u64 usage;
4661

4662
	do {
4663 4664
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4665 4666
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4667
		for_each_node_state(node, N_MEMORY) {
4668
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4669 4670
				enum lru_list lru;
				for_each_lru(lru) {
4671
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4672
							node, zid, lru);
4673
				}
4674
			}
4675
		}
4676 4677
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4678
		cond_resched();
4679

4680
		/*
4681 4682 4683 4684 4685
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4686 4687 4688 4689 4690 4691
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4692 4693 4694
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4695 4696
}

4697 4698 4699 4700 4701 4702 4703
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4704
	struct cgroup_subsys_state *pos;
4705 4706

	/* bounce at first found */
4707
	css_for_each_child(pos, &memcg->css)
4708 4709 4710 4711 4712
		return true;
	return false;
}

/*
4713 4714
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4715 4716 4717 4718 4719 4720 4721 4722 4723
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4734

4735
	/* returns EBUSY if there is a task or if we come here twice. */
4736 4737 4738
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4739 4740
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4741
	/* try to free all pages in this cgroup */
4742
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4743
		int progress;
4744

4745 4746 4747
		if (signal_pending(current))
			return -EINTR;

4748
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4749
						false);
4750
		if (!progress) {
4751
			nr_retries--;
4752
			/* maybe some writeback is necessary */
4753
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4754
		}
4755 4756

	}
K
KAMEZAWA Hiroyuki 已提交
4757
	lru_add_drain();
4758 4759 4760
	mem_cgroup_reparent_charges(memcg);

	return 0;
4761 4762
}

4763 4764
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4765
{
4766
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4767

4768 4769
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4770
	return mem_cgroup_force_empty(memcg);
4771 4772
}

4773 4774
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4775
{
4776
	return mem_cgroup_from_css(css)->use_hierarchy;
4777 4778
}

4779 4780
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4781 4782
{
	int retval = 0;
4783
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4784
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4785

4786
	mutex_lock(&memcg_create_mutex);
4787 4788 4789 4790

	if (memcg->use_hierarchy == val)
		goto out;

4791
	/*
4792
	 * If parent's use_hierarchy is set, we can't make any modifications
4793 4794 4795 4796 4797 4798
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4799
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4800
				(val == 1 || val == 0)) {
4801
		if (!__memcg_has_children(memcg))
4802
			memcg->use_hierarchy = val;
4803 4804 4805 4806
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4807 4808

out:
4809
	mutex_unlock(&memcg_create_mutex);
4810 4811 4812 4813

	return retval;
}

4814

4815
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4816
					       enum mem_cgroup_stat_index idx)
4817
{
K
KAMEZAWA Hiroyuki 已提交
4818
	struct mem_cgroup *iter;
4819
	long val = 0;
4820

4821
	/* Per-cpu values can be negative, use a signed accumulator */
4822
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4823 4824 4825 4826 4827
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4828 4829
}

4830
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4831
{
K
KAMEZAWA Hiroyuki 已提交
4832
	u64 val;
4833

4834
	if (!mem_cgroup_is_root(memcg)) {
4835
		if (!swap)
4836
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4837
		else
4838
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4839 4840
	}

4841 4842 4843 4844
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4845 4846
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4847

K
KAMEZAWA Hiroyuki 已提交
4848
	if (swap)
4849
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4850 4851 4852 4853

	return val << PAGE_SHIFT;
}

4854 4855 4856
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4857
{
4858
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4859
	char str[64];
4860
	u64 val;
G
Glauber Costa 已提交
4861 4862
	int name, len;
	enum res_type type;
4863 4864 4865

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4866

4867 4868
	switch (type) {
	case _MEM:
4869
		if (name == RES_USAGE)
4870
			val = mem_cgroup_usage(memcg, false);
4871
		else
4872
			val = res_counter_read_u64(&memcg->res, name);
4873 4874
		break;
	case _MEMSWAP:
4875
		if (name == RES_USAGE)
4876
			val = mem_cgroup_usage(memcg, true);
4877
		else
4878
			val = res_counter_read_u64(&memcg->memsw, name);
4879
		break;
4880 4881 4882
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4883 4884 4885
	default:
		BUG();
	}
4886 4887 4888

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4889
}
4890

4891
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4892 4893 4894
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4895
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4908
	mutex_lock(&memcg_create_mutex);
4909 4910
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4911
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4912 4913 4914 4915 4916 4917
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4918 4919 4920 4921 4922
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
4923 4924 4925 4926 4927 4928
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
4929 4930 4931 4932
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
4933
	mutex_unlock(&memcg_create_mutex);
4934 4935 4936 4937
#endif
	return ret;
}

4938
#ifdef CONFIG_MEMCG_KMEM
4939
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4940
{
4941
	int ret = 0;
4942 4943
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
4944 4945
		goto out;

4946
	memcg->kmem_account_flags = parent->kmem_account_flags;
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
4957 4958 4959 4960
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
4961 4962 4963
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
4964 4965 4966 4967
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
4968
	memcg_stop_kmem_account();
4969
	ret = memcg_update_cache_sizes(memcg);
4970
	memcg_resume_kmem_account();
4971 4972 4973
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
4974
}
4975
#endif /* CONFIG_MEMCG_KMEM */
4976

4977 4978 4979 4980
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4981
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4982
			    const char *buffer)
B
Balbir Singh 已提交
4983
{
4984
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
4985 4986
	enum res_type type;
	int name;
4987 4988 4989
	unsigned long long val;
	int ret;

4990 4991
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4992

4993
	switch (name) {
4994
	case RES_LIMIT:
4995 4996 4997 4998
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4999 5000
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5001 5002 5003
		if (ret)
			break;
		if (type == _MEM)
5004
			ret = mem_cgroup_resize_limit(memcg, val);
5005
		else if (type == _MEMSWAP)
5006
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5007
		else if (type == _KMEM)
5008
			ret = memcg_update_kmem_limit(css, val);
5009 5010
		else
			return -EINVAL;
5011
		break;
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5026 5027 5028 5029 5030
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5031 5032
}

5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5043 5044
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5057
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5058
{
5059
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5060 5061
	int name;
	enum res_type type;
5062

5063 5064
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5065

5066
	switch (name) {
5067
	case RES_MAX_USAGE:
5068
		if (type == _MEM)
5069
			res_counter_reset_max(&memcg->res);
5070
		else if (type == _MEMSWAP)
5071
			res_counter_reset_max(&memcg->memsw);
5072 5073 5074 5075
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5076 5077
		break;
	case RES_FAILCNT:
5078
		if (type == _MEM)
5079
			res_counter_reset_failcnt(&memcg->res);
5080
		else if (type == _MEMSWAP)
5081
			res_counter_reset_failcnt(&memcg->memsw);
5082 5083 5084 5085
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5086 5087
		break;
	}
5088

5089
	return 0;
5090 5091
}

5092
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5093 5094
					struct cftype *cft)
{
5095
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5096 5097
}

5098
#ifdef CONFIG_MMU
5099
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5100 5101
					struct cftype *cft, u64 val)
{
5102
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5103 5104 5105

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5106

5107
	/*
5108 5109 5110 5111
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5112
	 */
5113
	memcg->move_charge_at_immigrate = val;
5114 5115
	return 0;
}
5116
#else
5117
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5118 5119 5120 5121 5122
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5123

5124
#ifdef CONFIG_NUMA
5125 5126
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5127 5128 5129 5130
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5131
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5132

5133
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5134
	seq_printf(m, "total=%lu", total_nr);
5135
	for_each_node_state(nid, N_MEMORY) {
5136
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5137 5138 5139 5140
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5141
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5142
	seq_printf(m, "file=%lu", file_nr);
5143
	for_each_node_state(nid, N_MEMORY) {
5144
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5145
				LRU_ALL_FILE);
5146 5147 5148 5149
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5150
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5151
	seq_printf(m, "anon=%lu", anon_nr);
5152
	for_each_node_state(nid, N_MEMORY) {
5153
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5154
				LRU_ALL_ANON);
5155 5156 5157 5158
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5159
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5160
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5161
	for_each_node_state(nid, N_MEMORY) {
5162
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5163
				BIT(LRU_UNEVICTABLE));
5164 5165 5166 5167 5168 5169 5170
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5171 5172 5173 5174 5175
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5176
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5177
				 struct seq_file *m)
5178
{
5179
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5180 5181
	struct mem_cgroup *mi;
	unsigned int i;
5182

5183
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5184
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5185
			continue;
5186 5187
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5188
	}
L
Lee Schermerhorn 已提交
5189

5190 5191 5192 5193 5194 5195 5196 5197
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5198
	/* Hierarchical information */
5199 5200
	{
		unsigned long long limit, memsw_limit;
5201
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5202
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5203
		if (do_swap_account)
5204 5205
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5206
	}
K
KOSAKI Motohiro 已提交
5207

5208 5209 5210
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5211
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5212
			continue;
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5233
	}
K
KAMEZAWA Hiroyuki 已提交
5234

K
KOSAKI Motohiro 已提交
5235 5236 5237 5238
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5239
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5240 5241 5242 5243 5244
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5245
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5246
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5247

5248 5249 5250 5251
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5252
			}
5253 5254 5255 5256
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5257 5258 5259
	}
#endif

5260 5261 5262
	return 0;
}

5263 5264
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5265
{
5266
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5267

5268
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5269 5270
}

5271 5272
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5273
{
5274
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5275
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5276

T
Tejun Heo 已提交
5277
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5278 5279
		return -EINVAL;

5280
	mutex_lock(&memcg_create_mutex);
5281

K
KOSAKI Motohiro 已提交
5282
	/* If under hierarchy, only empty-root can set this value */
5283
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5284
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5285
		return -EINVAL;
5286
	}
K
KOSAKI Motohiro 已提交
5287 5288 5289

	memcg->swappiness = val;

5290
	mutex_unlock(&memcg_create_mutex);
5291

K
KOSAKI Motohiro 已提交
5292 5293 5294
	return 0;
}

5295 5296 5297 5298 5299 5300 5301 5302
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5303
		t = rcu_dereference(memcg->thresholds.primary);
5304
	else
5305
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5306 5307 5308 5309 5310 5311 5312

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5313
	 * current_threshold points to threshold just below or equal to usage.
5314 5315 5316
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5317
	i = t->current_threshold;
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5341
	t->current_threshold = i - 1;
5342 5343 5344 5345 5346 5347
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5348 5349 5350 5351 5352 5353 5354
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5355 5356 5357 5358 5359 5360 5361
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5362 5363 5364 5365 5366 5367 5368
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5369 5370
}

5371
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5372 5373 5374
{
	struct mem_cgroup_eventfd_list *ev;

5375
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5376 5377 5378 5379
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5380
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5381
{
K
KAMEZAWA Hiroyuki 已提交
5382 5383
	struct mem_cgroup *iter;

5384
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5385
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5386 5387
}

5388
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5389
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5390
{
5391
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5392 5393
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5394
	enum res_type type = MEMFILE_TYPE(cft->private);
5395
	u64 threshold, usage;
5396
	int i, size, ret;
5397 5398 5399 5400 5401 5402

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5403

5404
	if (type == _MEM)
5405
		thresholds = &memcg->thresholds;
5406
	else if (type == _MEMSWAP)
5407
		thresholds = &memcg->memsw_thresholds;
5408 5409 5410 5411 5412 5413
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5414
	if (thresholds->primary)
5415 5416
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5417
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5418 5419

	/* Allocate memory for new array of thresholds */
5420
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5421
			GFP_KERNEL);
5422
	if (!new) {
5423 5424 5425
		ret = -ENOMEM;
		goto unlock;
	}
5426
	new->size = size;
5427 5428

	/* Copy thresholds (if any) to new array */
5429 5430
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5431
				sizeof(struct mem_cgroup_threshold));
5432 5433
	}

5434
	/* Add new threshold */
5435 5436
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5437 5438

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5439
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5440 5441 5442
			compare_thresholds, NULL);

	/* Find current threshold */
5443
	new->current_threshold = -1;
5444
	for (i = 0; i < size; i++) {
5445
		if (new->entries[i].threshold <= usage) {
5446
			/*
5447 5448
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5449 5450
			 * it here.
			 */
5451
			++new->current_threshold;
5452 5453
		} else
			break;
5454 5455
	}

5456 5457 5458 5459 5460
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5461

5462
	/* To be sure that nobody uses thresholds */
5463 5464 5465 5466 5467 5468 5469 5470
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5471
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5472
	struct cftype *cft, struct eventfd_ctx *eventfd)
5473
{
5474
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5475 5476
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5477
	enum res_type type = MEMFILE_TYPE(cft->private);
5478
	u64 usage;
5479
	int i, j, size;
5480 5481 5482

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5483
		thresholds = &memcg->thresholds;
5484
	else if (type == _MEMSWAP)
5485
		thresholds = &memcg->memsw_thresholds;
5486 5487 5488
	else
		BUG();

5489 5490 5491
	if (!thresholds->primary)
		goto unlock;

5492 5493 5494 5495 5496 5497
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5498 5499 5500
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5501 5502 5503
			size++;
	}

5504
	new = thresholds->spare;
5505

5506 5507
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5508 5509
		kfree(new);
		new = NULL;
5510
		goto swap_buffers;
5511 5512
	}

5513
	new->size = size;
5514 5515

	/* Copy thresholds and find current threshold */
5516 5517 5518
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5519 5520
			continue;

5521
		new->entries[j] = thresholds->primary->entries[i];
5522
		if (new->entries[j].threshold <= usage) {
5523
			/*
5524
			 * new->current_threshold will not be used
5525 5526 5527
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5528
			++new->current_threshold;
5529 5530 5531 5532
		}
		j++;
	}

5533
swap_buffers:
5534 5535
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5536 5537 5538 5539 5540 5541
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5542
	rcu_assign_pointer(thresholds->primary, new);
5543

5544
	/* To be sure that nobody uses thresholds */
5545
	synchronize_rcu();
5546
unlock:
5547 5548
	mutex_unlock(&memcg->thresholds_lock);
}
5549

5550
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5551 5552
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5553
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5554
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5555
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5556 5557 5558 5559 5560 5561

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5562
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5563 5564 5565 5566 5567

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5568
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5569
		eventfd_signal(eventfd, 1);
5570
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5571 5572 5573 5574

	return 0;
}

5575
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5576 5577
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5578
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5579
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5580
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5581 5582 5583

	BUG_ON(type != _OOM_TYPE);

5584
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5585

5586
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5587 5588 5589 5590 5591 5592
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5593
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5594 5595
}

5596
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5597 5598
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5599
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5600

5601
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5602

5603
	if (atomic_read(&memcg->under_oom))
5604 5605 5606 5607 5608 5609
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5610
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5611 5612
	struct cftype *cft, u64 val)
{
5613
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5614
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5615 5616

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5617
	if (!parent || !((val == 0) || (val == 1)))
5618 5619
		return -EINVAL;

5620
	mutex_lock(&memcg_create_mutex);
5621
	/* oom-kill-disable is a flag for subhierarchy. */
5622
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5623
		mutex_unlock(&memcg_create_mutex);
5624 5625
		return -EINVAL;
	}
5626
	memcg->oom_kill_disable = val;
5627
	if (!val)
5628
		memcg_oom_recover(memcg);
5629
	mutex_unlock(&memcg_create_mutex);
5630 5631 5632
	return 0;
}

A
Andrew Morton 已提交
5633
#ifdef CONFIG_MEMCG_KMEM
5634
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5635
{
5636 5637
	int ret;

5638
	memcg->kmemcg_id = -1;
5639 5640 5641
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5642

5643
	return mem_cgroup_sockets_init(memcg, ss);
5644
}
5645

5646
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5647
{
5648
	mem_cgroup_sockets_destroy(memcg);
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5675 5676 5677 5678 5679 5680 5681

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5682
		css_put(&memcg->css);
G
Glauber Costa 已提交
5683
}
5684
#else
5685
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5686 5687 5688
{
	return 0;
}
G
Glauber Costa 已提交
5689

5690 5691 5692 5693 5694
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5695 5696
{
}
5697 5698
#endif

B
Balbir Singh 已提交
5699 5700
static struct cftype mem_cgroup_files[] = {
	{
5701
		.name = "usage_in_bytes",
5702
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5703
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5704 5705
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5706
	},
5707 5708
	{
		.name = "max_usage_in_bytes",
5709
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5710
		.trigger = mem_cgroup_reset,
5711
		.read = mem_cgroup_read,
5712
	},
B
Balbir Singh 已提交
5713
	{
5714
		.name = "limit_in_bytes",
5715
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5716
		.write_string = mem_cgroup_write,
5717
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5718
	},
5719 5720 5721 5722
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5723
		.read = mem_cgroup_read,
5724
	},
B
Balbir Singh 已提交
5725 5726
	{
		.name = "failcnt",
5727
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5728
		.trigger = mem_cgroup_reset,
5729
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5730
	},
5731 5732
	{
		.name = "stat",
5733
		.read_seq_string = memcg_stat_show,
5734
	},
5735 5736 5737 5738
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5739 5740
	{
		.name = "use_hierarchy",
5741
		.flags = CFTYPE_INSANE,
5742 5743 5744
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5745 5746 5747 5748 5749
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5750 5751 5752 5753 5754
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5755 5756
	{
		.name = "oom_control",
5757 5758
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5759 5760 5761 5762
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5763 5764 5765 5766 5767
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5768 5769 5770
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5771
		.read_seq_string = memcg_numa_stat_show,
5772 5773
	},
#endif
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5798 5799 5800 5801 5802 5803
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5804
#endif
5805
	{ },	/* terminate */
5806
};
5807

5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5838
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5839 5840
{
	struct mem_cgroup_per_node *pn;
5841
	struct mem_cgroup_per_zone *mz;
5842
	int zone, tmp = node;
5843 5844 5845 5846 5847 5848 5849 5850
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5851 5852
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5853
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5854 5855
	if (!pn)
		return 1;
5856 5857 5858

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5859
		lruvec_init(&mz->lruvec);
5860
		mz->memcg = memcg;
5861
	}
5862
	memcg->nodeinfo[node] = pn;
5863 5864 5865
	return 0;
}

5866
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5867
{
5868
	kfree(memcg->nodeinfo[node]);
5869 5870
}

5871 5872
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5873
	struct mem_cgroup *memcg;
5874
	size_t size = memcg_size();
5875

5876
	/* Can be very big if nr_node_ids is very big */
5877
	if (size < PAGE_SIZE)
5878
		memcg = kzalloc(size, GFP_KERNEL);
5879
	else
5880
		memcg = vzalloc(size);
5881

5882
	if (!memcg)
5883 5884
		return NULL;

5885 5886
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5887
		goto out_free;
5888 5889
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5890 5891 5892

out_free:
	if (size < PAGE_SIZE)
5893
		kfree(memcg);
5894
	else
5895
		vfree(memcg);
5896
	return NULL;
5897 5898
}

5899
/*
5900 5901 5902 5903 5904 5905 5906 5907
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5908
 */
5909 5910

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5911
{
5912
	int node;
5913
	size_t size = memcg_size();
5914

5915 5916 5917 5918 5919 5920 5921
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5933
	disarm_static_keys(memcg);
5934 5935 5936 5937
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5938
}
5939

5940 5941 5942
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5943
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5944
{
5945
	if (!memcg->res.parent)
5946
		return NULL;
5947
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5948
}
G
Glauber Costa 已提交
5949
EXPORT_SYMBOL(parent_mem_cgroup);
5950

L
Li Zefan 已提交
5951
static struct cgroup_subsys_state * __ref
5952
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
5953
{
5954
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5955
	long error = -ENOMEM;
5956
	int node;
B
Balbir Singh 已提交
5957

5958 5959
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5960
		return ERR_PTR(error);
5961

B
Bob Liu 已提交
5962
	for_each_node(node)
5963
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5964
			goto free_out;
5965

5966
	/* root ? */
5967
	if (parent_css == NULL) {
5968
		root_mem_cgroup = memcg;
5969 5970 5971
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
5972
	}
5973

5974 5975 5976 5977 5978
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5979
	vmpressure_init(&memcg->vmpressure);
5980
	spin_lock_init(&memcg->soft_lock);
5981 5982 5983 5984 5985 5986 5987 5988 5989

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
5990
mem_cgroup_css_online(struct cgroup_subsys_state *css)
5991
{
5992 5993
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
5994 5995
	int error = 0;

T
Tejun Heo 已提交
5996
	if (!parent)
5997 5998
		return 0;

5999
	mutex_lock(&memcg_create_mutex);
6000 6001 6002 6003 6004 6005

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6006 6007
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6008
		res_counter_init(&memcg->kmem, &parent->kmem);
6009

6010
		/*
6011 6012
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6013
		 */
6014
	} else {
6015 6016
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6017
		res_counter_init(&memcg->kmem, NULL);
6018 6019 6020 6021 6022
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6023
		if (parent != root_mem_cgroup)
6024
			mem_cgroup_subsys.broken_hierarchy = true;
6025
	}
6026 6027

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6028
	mutex_unlock(&memcg_create_mutex);
6029
	return error;
B
Balbir Singh 已提交
6030 6031
}

M
Michal Hocko 已提交
6032 6033 6034 6035 6036 6037 6038 6039
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6040
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6041 6042 6043 6044 6045 6046

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6047
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6048 6049
}

6050
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6051
{
6052
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6053

6054 6055
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6056
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6057
	mem_cgroup_reparent_charges(memcg);
6058 6059 6060
	if (memcg->soft_contributed) {
		while ((memcg = parent_mem_cgroup(memcg)))
			atomic_dec(&memcg->children_in_excess);
6061 6062 6063

		if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
			atomic_dec(&root_mem_cgroup->children_in_excess);
6064
	}
G
Glauber Costa 已提交
6065
	mem_cgroup_destroy_all_caches(memcg);
6066
	vmpressure_cleanup(&memcg->vmpressure);
6067 6068
}

6069
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6070
{
6071
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6072

6073
	memcg_destroy_kmem(memcg);
6074
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6075 6076
}

6077
#ifdef CONFIG_MMU
6078
/* Handlers for move charge at task migration. */
6079 6080
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6081
{
6082 6083
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6084
	struct mem_cgroup *memcg = mc.to;
6085

6086
	if (mem_cgroup_is_root(memcg)) {
6087 6088 6089 6090 6091 6092 6093 6094
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6095
		 * "memcg" cannot be under rmdir() because we've already checked
6096 6097 6098 6099
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6100
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6101
			goto one_by_one;
6102
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6103
						PAGE_SIZE * count, &dummy)) {
6104
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6121 6122
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6123
		if (ret)
6124
			/* mem_cgroup_clear_mc() will do uncharge later */
6125
			return ret;
6126 6127
		mc.precharge++;
	}
6128 6129 6130 6131
	return ret;
}

/**
6132
 * get_mctgt_type - get target type of moving charge
6133 6134 6135
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6136
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6137 6138 6139 6140 6141 6142
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6143 6144 6145
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6146 6147 6148 6149 6150
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6151
	swp_entry_t	ent;
6152 6153 6154
};

enum mc_target_type {
6155
	MC_TARGET_NONE = 0,
6156
	MC_TARGET_PAGE,
6157
	MC_TARGET_SWAP,
6158 6159
};

D
Daisuke Nishimura 已提交
6160 6161
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6162
{
D
Daisuke Nishimura 已提交
6163
	struct page *page = vm_normal_page(vma, addr, ptent);
6164

D
Daisuke Nishimura 已提交
6165 6166 6167 6168
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6169
		if (!move_anon())
D
Daisuke Nishimura 已提交
6170
			return NULL;
6171 6172
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6173 6174 6175 6176 6177 6178 6179
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6180
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6181 6182 6183 6184 6185 6186 6187 6188
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6189 6190 6191 6192
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6193
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6194 6195 6196 6197 6198
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6199 6200 6201 6202 6203 6204 6205
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6206

6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6226 6227 6228 6229 6230 6231
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6232
		if (do_swap_account)
6233
			*entry = swap;
6234
		page = find_get_page(swap_address_space(swap), swap.val);
6235
	}
6236
#endif
6237 6238 6239
	return page;
}

6240
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6241 6242 6243 6244
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6245
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6246 6247 6248 6249 6250 6251
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6252 6253
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6254 6255

	if (!page && !ent.val)
6256
		return ret;
6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6272 6273
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6274
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6275 6276 6277
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6278 6279 6280 6281
	}
	return ret;
}

6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6317 6318 6319 6320 6321 6322 6323 6324
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6325 6326 6327 6328
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6329
		return 0;
6330
	}
6331

6332 6333
	if (pmd_trans_unstable(pmd))
		return 0;
6334 6335
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6336
		if (get_mctgt_type(vma, addr, *pte, NULL))
6337 6338 6339 6340
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6341 6342 6343
	return 0;
}

6344 6345 6346 6347 6348
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6349
	down_read(&mm->mmap_sem);
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6361
	up_read(&mm->mmap_sem);
6362 6363 6364 6365 6366 6367 6368 6369 6370

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6371 6372 6373 6374 6375
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6376 6377
}

6378 6379
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6380
{
6381 6382
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6383
	int i;
6384

6385
	/* we must uncharge all the leftover precharges from mc.to */
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6397
	}
6398 6399 6400 6401 6402 6403
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6404 6405 6406

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6407 6408 6409 6410 6411 6412 6413 6414 6415

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6416
		/* we've already done css_get(mc.to) */
6417 6418
		mc.moved_swap = 0;
	}
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6434
	spin_lock(&mc.lock);
6435 6436
	mc.from = NULL;
	mc.to = NULL;
6437
	spin_unlock(&mc.lock);
6438
	mem_cgroup_end_move(from);
6439 6440
}

6441
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6442
				 struct cgroup_taskset *tset)
6443
{
6444
	struct task_struct *p = cgroup_taskset_first(tset);
6445
	int ret = 0;
6446
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6447
	unsigned long move_charge_at_immigrate;
6448

6449 6450 6451 6452 6453 6454 6455
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6456 6457 6458
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6459
		VM_BUG_ON(from == memcg);
6460 6461 6462 6463 6464

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6465 6466 6467 6468
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6469
			VM_BUG_ON(mc.moved_charge);
6470
			VM_BUG_ON(mc.moved_swap);
6471
			mem_cgroup_start_move(from);
6472
			spin_lock(&mc.lock);
6473
			mc.from = from;
6474
			mc.to = memcg;
6475
			mc.immigrate_flags = move_charge_at_immigrate;
6476
			spin_unlock(&mc.lock);
6477
			/* We set mc.moving_task later */
6478 6479 6480 6481

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6482 6483
		}
		mmput(mm);
6484 6485 6486 6487
	}
	return ret;
}

6488
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6489
				     struct cgroup_taskset *tset)
6490
{
6491
	mem_cgroup_clear_mc();
6492 6493
}

6494 6495 6496
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6497
{
6498 6499 6500 6501
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6502 6503 6504 6505
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6506

6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6518
		if (mc.precharge < HPAGE_PMD_NR) {
6519 6520 6521 6522 6523 6524 6525 6526 6527
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6528
							pc, mc.from, mc.to)) {
6529 6530 6531 6532 6533 6534 6535 6536
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6537
		return 0;
6538 6539
	}

6540 6541
	if (pmd_trans_unstable(pmd))
		return 0;
6542 6543 6544 6545
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6546
		swp_entry_t ent;
6547 6548 6549 6550

		if (!mc.precharge)
			break;

6551
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6552 6553 6554 6555 6556
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6557
			if (!mem_cgroup_move_account(page, 1, pc,
6558
						     mc.from, mc.to)) {
6559
				mc.precharge--;
6560 6561
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6562 6563
			}
			putback_lru_page(page);
6564
put:			/* get_mctgt_type() gets the page */
6565 6566
			put_page(page);
			break;
6567 6568
		case MC_TARGET_SWAP:
			ent = target.ent;
6569
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6570
				mc.precharge--;
6571 6572 6573
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6574
			break;
6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6589
		ret = mem_cgroup_do_precharge(1);
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6633
	up_read(&mm->mmap_sem);
6634 6635
}

6636
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6637
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6638
{
6639
	struct task_struct *p = cgroup_taskset_first(tset);
6640
	struct mm_struct *mm = get_task_mm(p);
6641 6642

	if (mm) {
6643 6644
		if (mc.to)
			mem_cgroup_move_charge(mm);
6645 6646
		mmput(mm);
	}
6647 6648
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6649
}
6650
#else	/* !CONFIG_MMU */
6651
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6652
				 struct cgroup_taskset *tset)
6653 6654 6655
{
	return 0;
}
6656
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6657
				     struct cgroup_taskset *tset)
6658 6659
{
}
6660
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6661
				 struct cgroup_taskset *tset)
6662 6663 6664
{
}
#endif
B
Balbir Singh 已提交
6665

6666 6667 6668 6669
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6670
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6671 6672 6673 6674 6675 6676
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6677 6678
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6679 6680
}

B
Balbir Singh 已提交
6681 6682 6683
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6684
	.css_alloc = mem_cgroup_css_alloc,
6685
	.css_online = mem_cgroup_css_online,
6686 6687
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6688 6689
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6690
	.attach = mem_cgroup_move_task,
6691
	.bind = mem_cgroup_bind,
6692
	.base_cftypes = mem_cgroup_files,
6693
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6694
	.use_id = 1,
B
Balbir Singh 已提交
6695
};
6696

A
Andrew Morton 已提交
6697
#ifdef CONFIG_MEMCG_SWAP
6698 6699
static int __init enable_swap_account(char *s)
{
6700
	if (!strcmp(s, "1"))
6701
		really_do_swap_account = 1;
6702
	else if (!strcmp(s, "0"))
6703 6704 6705
		really_do_swap_account = 0;
	return 1;
}
6706
__setup("swapaccount=", enable_swap_account);
6707

6708 6709
static void __init memsw_file_init(void)
{
6710 6711 6712 6713 6714 6715 6716 6717 6718
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6719
}
6720

6721
#else
6722
static void __init enable_swap_cgroup(void)
6723 6724
{
}
6725
#endif
6726 6727

/*
6728 6729 6730 6731 6732 6733
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6734 6735 6736 6737
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6738
	enable_swap_cgroup();
6739
	memcg_stock_init();
6740 6741 6742
	return 0;
}
subsys_initcall(mem_cgroup_init);