memcontrol.c 158.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130 131
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147 148 149 150 151 152
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

153 154 155 156
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
157
	struct lruvec		lruvec;
158
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
159

160 161
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

162 163 164 165
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
166
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
167
						/* use container_of	   */
168 169 170 171 172 173 174 175 176 177
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

198 199 200 201 202
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
203
/* For threshold */
204
struct mem_cgroup_threshold_ary {
205
	/* An array index points to threshold just below or equal to usage. */
206
	int current_threshold;
207 208 209 210 211
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
212 213 214 215 216 217 218 219 220 221 222 223

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
224 225 226 227 228
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
229

230 231
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
232

B
Balbir Singh 已提交
233 234 235 236 237 238 239
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 241 242
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
243 244 245 246 247 248 249
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
268 269
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
270 271 272 273
		 */
		struct work_struct work_freeing;
	};

274 275 276 277
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
278 279 280 281
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
282
	struct mem_cgroup_lru_info info;
283 284 285
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
286 287
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
288
#endif
289 290 291 292
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
293
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
294 295 296 297

	bool		oom_lock;
	atomic_t	under_oom;

298
	atomic_t	refcnt;
299

300
	int	swappiness;
301 302
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
303

304 305 306
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

307 308 309 310
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
311
	struct mem_cgroup_thresholds thresholds;
312

313
	/* thresholds for mem+swap usage. RCU-protected */
314
	struct mem_cgroup_thresholds memsw_thresholds;
315

K
KAMEZAWA Hiroyuki 已提交
316 317
	/* For oom notifier event fd */
	struct list_head oom_notify;
318

319 320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
324 325 326 327
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
328 329
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
330
	/*
331
	 * percpu counter.
332
	 */
333
	struct mem_cgroup_stat_cpu __percpu *stat;
334 335 336 337 338 339
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
340

M
Michal Hocko 已提交
341
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
342 343
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
344 345
};

346 347 348
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
349
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
350
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
351 352
};

353 354 355
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
356 357 358 359 360 361

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
362 363 364 365 366 367

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

368 369 370 371 372
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

373 374 375 376 377 378 379 380 381 382 383
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
384 385
#endif

386 387 388 389 390 391
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
392
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
393
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
394 395 396
	NR_MOVE_TYPE,
};

397 398
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
399
	spinlock_t	  lock; /* for from, to */
400 401 402
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
403
	unsigned long moved_charge;
404
	unsigned long moved_swap;
405 406 407
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
408
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
409 410
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
411

D
Daisuke Nishimura 已提交
412 413 414 415 416 417
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

418 419 420 421 422 423
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

424 425 426 427
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
428 429
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
430

431 432
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
433
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
434
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
435
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
436 437 438
	NR_CHARGE_TYPE,
};

439
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
440 441 442 443
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
444
	_KMEM,
G
Glauber Costa 已提交
445 446
};

447 448
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
449
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
450 451
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
452

453 454 455 456 457 458 459 460
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

461 462
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
463

464 465 466 467 468 469
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

470 471 472 473 474
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
475
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
476
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
477 478 479

void sock_update_memcg(struct sock *sk)
{
480
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
481
		struct mem_cgroup *memcg;
482
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
483 484 485

		BUG_ON(!sk->sk_prot->proto_cgroup);

486 487 488 489 490 491 492 493 494 495 496 497 498 499
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
500 501
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
502 503
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
504
			mem_cgroup_get(memcg);
505
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
506 507 508 509 510 511 512 513
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
514
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
515 516 517 518 519 520
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
521 522 523 524 525 526 527 528 529

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
530

531 532 533 534 535 536 537 538 539 540 541 542
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

543 544 545 546 547 548 549
#ifdef CONFIG_MEMCG_KMEM
struct static_key memcg_kmem_enabled_key;

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
	if (memcg_kmem_is_active(memcg))
		static_key_slow_dec(&memcg_kmem_enabled_key);
550 551 552 553 554
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
555 556 557 558 559 560 561 562 563 564 565 566 567
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

568
static void drain_all_stock_async(struct mem_cgroup *memcg);
569

570
static struct mem_cgroup_per_zone *
571
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
572
{
573
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
574 575
}

576
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
577
{
578
	return &memcg->css;
579 580
}

581
static struct mem_cgroup_per_zone *
582
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
583
{
584 585
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
586

587
	return mem_cgroup_zoneinfo(memcg, nid, zid);
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
606
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
607
				struct mem_cgroup_per_zone *mz,
608 609
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
610 611 612 613 614 615 616 617
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

618 619 620
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
637 638 639
}

static void
640
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
641 642 643 644 645 646 647 648 649
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

650
static void
651
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
652 653 654 655
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
656
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
657 658 659 660
	spin_unlock(&mctz->lock);
}


661
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
662
{
663
	unsigned long long excess;
664 665
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
666 667
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
668 669 670
	mctz = soft_limit_tree_from_page(page);

	/*
671 672
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
673
	 */
674 675 676
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
677 678 679 680
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
681
		if (excess || mz->on_tree) {
682 683 684
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
685
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
686
			/*
687 688
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
689
			 */
690
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
691 692
			spin_unlock(&mctz->lock);
		}
693 694 695
	}
}

696
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
697 698 699 700 701
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
702
	for_each_node(node) {
703
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
704
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
705
			mctz = soft_limit_tree_node_zone(node, zone);
706
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
707 708 709 710
		}
	}
}

711 712 713 714
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
715
	struct mem_cgroup_per_zone *mz;
716 717

retry:
718
	mz = NULL;
719 720 721 722 723 724 725 726 727 728
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
729 730 731
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
767
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
768
				 enum mem_cgroup_stat_index idx)
769
{
770
	long val = 0;
771 772
	int cpu;

773 774
	get_online_cpus();
	for_each_online_cpu(cpu)
775
		val += per_cpu(memcg->stat->count[idx], cpu);
776
#ifdef CONFIG_HOTPLUG_CPU
777 778 779
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
780 781
#endif
	put_online_cpus();
782 783 784
	return val;
}

785
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
786 787 788
					 bool charge)
{
	int val = (charge) ? 1 : -1;
789
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
790 791
}

792
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
793 794 795 796 797 798
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
799
		val += per_cpu(memcg->stat->events[idx], cpu);
800
#ifdef CONFIG_HOTPLUG_CPU
801 802 803
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
804 805 806 807
#endif
	return val;
}

808
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
809
					 bool anon, int nr_pages)
810
{
811 812
	preempt_disable();

813 814 815 816 817 818
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
819
				nr_pages);
820
	else
821
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
822
				nr_pages);
823

824 825
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
826
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
827
	else {
828
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
829 830
		nr_pages = -nr_pages; /* for event */
	}
831

832
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
833

834
	preempt_enable();
835 836
}

837
unsigned long
838
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
839 840 841 842 843 844 845 846
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
847
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
848
			unsigned int lru_mask)
849 850
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
851
	enum lru_list lru;
852 853
	unsigned long ret = 0;

854
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
855

H
Hugh Dickins 已提交
856 857 858
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
859 860 861 862 863
	}
	return ret;
}

static unsigned long
864
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
865 866
			int nid, unsigned int lru_mask)
{
867 868 869
	u64 total = 0;
	int zid;

870
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
871 872
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
873

874 875
	return total;
}
876

877
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
878
			unsigned int lru_mask)
879
{
880
	int nid;
881 882
	u64 total = 0;

883
	for_each_node_state(nid, N_MEMORY)
884
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
885
	return total;
886 887
}

888 889
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
890 891 892
{
	unsigned long val, next;

893
	val = __this_cpu_read(memcg->stat->nr_page_events);
894
	next = __this_cpu_read(memcg->stat->targets[target]);
895
	/* from time_after() in jiffies.h */
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
912
	}
913
	return false;
914 915 916 917 918 919
}

/*
 * Check events in order.
 *
 */
920
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
921
{
922
	preempt_disable();
923
	/* threshold event is triggered in finer grain than soft limit */
924 925
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
926 927
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
928 929 930 931 932 933 934 935 936

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

937
		mem_cgroup_threshold(memcg);
938
		if (unlikely(do_softlimit))
939
			mem_cgroup_update_tree(memcg, page);
940
#if MAX_NUMNODES > 1
941
		if (unlikely(do_numainfo))
942
			atomic_inc(&memcg->numainfo_events);
943
#endif
944 945
	} else
		preempt_enable();
946 947
}

G
Glauber Costa 已提交
948
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
949
{
950 951
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
952 953
}

954
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
955
{
956 957 958 959 960 961 962 963
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

964
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
965 966
}

967
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
968
{
969
	struct mem_cgroup *memcg = NULL;
970 971 972

	if (!mm)
		return NULL;
973 974 975 976 977 978 979
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
980 981
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
982
			break;
983
	} while (!css_tryget(&memcg->css));
984
	rcu_read_unlock();
985
	return memcg;
986 987
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1008
{
1009 1010
	struct mem_cgroup *memcg = NULL;
	int id = 0;
1011

1012 1013 1014
	if (mem_cgroup_disabled())
		return NULL;

1015 1016
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1017

1018 1019
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1020

1021 1022
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1023

1024 1025 1026 1027 1028
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1029

1030
	while (!memcg) {
1031
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1032
		struct cgroup_subsys_state *css;
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
1045

1046 1047 1048 1049
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
1050
				memcg = mem_cgroup_from_css(css);
1051 1052
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
1053 1054
		rcu_read_unlock();

1055 1056 1057 1058 1059 1060 1061
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1062 1063 1064 1065 1066

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1067
}
K
KAMEZAWA Hiroyuki 已提交
1068

1069 1070 1071 1072 1073 1074 1075
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1076 1077 1078 1079 1080 1081
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1082

1083 1084 1085 1086 1087 1088
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1089
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1090
	     iter != NULL;				\
1091
	     iter = mem_cgroup_iter(root, iter, NULL))
1092

1093
#define for_each_mem_cgroup(iter)			\
1094
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1095
	     iter != NULL;				\
1096
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1097

1098
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1099
{
1100
	struct mem_cgroup *memcg;
1101 1102

	rcu_read_lock();
1103 1104
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1105 1106 1107 1108
		goto out;

	switch (idx) {
	case PGFAULT:
1109 1110 1111 1112
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1113 1114 1115 1116 1117 1118 1119
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1120
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1121

1122 1123 1124
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1125
 * @memcg: memcg of the wanted lruvec
1126 1127 1128 1129 1130 1131 1132 1133 1134
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1135
	struct lruvec *lruvec;
1136

1137 1138 1139 1140
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1141 1142

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1153 1154
}

K
KAMEZAWA Hiroyuki 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1168

1169
/**
1170
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1171
 * @page: the page
1172
 * @zone: zone of the page
1173
 */
1174
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1175 1176
{
	struct mem_cgroup_per_zone *mz;
1177 1178
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1179
	struct lruvec *lruvec;
1180

1181 1182 1183 1184
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1185

K
KAMEZAWA Hiroyuki 已提交
1186
	pc = lookup_page_cgroup(page);
1187
	memcg = pc->mem_cgroup;
1188 1189

	/*
1190
	 * Surreptitiously switch any uncharged offlist page to root:
1191 1192 1193 1194 1195 1196 1197
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1198
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1199 1200
		pc->mem_cgroup = memcg = root_mem_cgroup;

1201
	mz = page_cgroup_zoneinfo(memcg, page);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1212
}
1213

1214
/**
1215 1216 1217 1218
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1219
 *
1220 1221
 * This function must be called when a page is added to or removed from an
 * lru list.
1222
 */
1223 1224
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1225 1226
{
	struct mem_cgroup_per_zone *mz;
1227
	unsigned long *lru_size;
1228 1229 1230 1231

	if (mem_cgroup_disabled())
		return;

1232 1233 1234 1235
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1236
}
1237

1238
/*
1239
 * Checks whether given mem is same or in the root_mem_cgroup's
1240 1241
 * hierarchy subtree
 */
1242 1243
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1244
{
1245 1246
	if (root_memcg == memcg)
		return true;
1247
	if (!root_memcg->use_hierarchy || !memcg)
1248
		return false;
1249 1250 1251 1252 1253 1254 1255 1256
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1257
	rcu_read_lock();
1258
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1259 1260
	rcu_read_unlock();
	return ret;
1261 1262
}

1263
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1264 1265
{
	int ret;
1266
	struct mem_cgroup *curr = NULL;
1267
	struct task_struct *p;
1268

1269
	p = find_lock_task_mm(task);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1285 1286
	if (!curr)
		return 0;
1287
	/*
1288
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1289
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1290 1291
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1292
	 */
1293
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1294
	css_put(&curr->css);
1295 1296 1297
	return ret;
}

1298
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1299
{
1300
	unsigned long inactive_ratio;
1301
	unsigned long inactive;
1302
	unsigned long active;
1303
	unsigned long gb;
1304

1305 1306
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1307

1308 1309 1310 1311 1312 1313
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1314
	return inactive * inactive_ratio < active;
1315 1316
}

1317
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1318 1319 1320 1321
{
	unsigned long active;
	unsigned long inactive;

1322 1323
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1324 1325 1326 1327

	return (active > inactive);
}

1328 1329 1330
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1331
/**
1332
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1333
 * @memcg: the memory cgroup
1334
 *
1335
 * Returns the maximum amount of memory @mem can be charged with, in
1336
 * pages.
1337
 */
1338
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1339
{
1340 1341
	unsigned long long margin;

1342
	margin = res_counter_margin(&memcg->res);
1343
	if (do_swap_account)
1344
		margin = min(margin, res_counter_margin(&memcg->memsw));
1345
	return margin >> PAGE_SHIFT;
1346 1347
}

1348
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1349 1350 1351 1352 1353 1354 1355
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1356
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1357 1358
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1373 1374 1375 1376

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1377
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1378
{
1379
	atomic_inc(&memcg_moving);
1380
	atomic_inc(&memcg->moving_account);
1381 1382 1383
	synchronize_rcu();
}

1384
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1385
{
1386 1387 1388 1389
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1390 1391
	if (memcg) {
		atomic_dec(&memcg_moving);
1392
		atomic_dec(&memcg->moving_account);
1393
	}
1394
}
1395

1396 1397 1398
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1399 1400
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1401 1402 1403 1404 1405 1406 1407
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1408
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1409 1410
{
	VM_BUG_ON(!rcu_read_lock_held());
1411
	return atomic_read(&memcg->moving_account) > 0;
1412
}
1413

1414
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1415
{
1416 1417
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1418
	bool ret = false;
1419 1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1428

1429 1430
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1431 1432
unlock:
	spin_unlock(&mc.lock);
1433 1434 1435
	return ret;
}

1436
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1437 1438
{
	if (mc.moving_task && current != mc.moving_task) {
1439
		if (mem_cgroup_under_move(memcg)) {
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1452 1453 1454 1455
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1456
 * see mem_cgroup_stolen(), too.
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1470
/**
1471
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1490
	if (!memcg || !p)
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1534 1535 1536 1537
	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1538 1539
}

1540 1541 1542 1543
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1544
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1545 1546
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1547 1548
	struct mem_cgroup *iter;

1549
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1550
		num++;
1551 1552 1553
	return num;
}

D
David Rientjes 已提交
1554 1555 1556
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1557
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1558 1559 1560
{
	u64 limit;

1561 1562
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1563
	/*
1564
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1565
	 */
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1580 1581
}

1582 1583
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1584 1585 1586 1587 1588 1589 1590
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1685 1686
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1687
 * @memcg: the target memcg
1688 1689 1690 1691 1692 1693 1694
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1695
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1696 1697
		int nid, bool noswap)
{
1698
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1699 1700 1701
		return true;
	if (noswap || !total_swap_pages)
		return false;
1702
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1703 1704 1705 1706
		return true;
	return false;

}
1707 1708 1709 1710 1711 1712 1713 1714
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1715
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1716 1717
{
	int nid;
1718 1719 1720 1721
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1722
	if (!atomic_read(&memcg->numainfo_events))
1723
		return;
1724
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1725 1726 1727
		return;

	/* make a nodemask where this memcg uses memory from */
1728
	memcg->scan_nodes = node_states[N_MEMORY];
1729

1730
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1731

1732 1733
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1734
	}
1735

1736 1737
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1752
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1753 1754 1755
{
	int node;

1756 1757
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1758

1759
	node = next_node(node, memcg->scan_nodes);
1760
	if (node == MAX_NUMNODES)
1761
		node = first_node(memcg->scan_nodes);
1762 1763 1764 1765 1766 1767 1768 1769 1770
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1771
	memcg->last_scanned_node = node;
1772 1773 1774
	return node;
}

1775 1776 1777 1778 1779 1780
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1781
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1782 1783 1784 1785 1786 1787 1788
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1789 1790
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1791
		     nid < MAX_NUMNODES;
1792
		     nid = next_node(nid, memcg->scan_nodes)) {
1793

1794
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1795 1796 1797 1798 1799 1800
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1801
	for_each_node_state(nid, N_MEMORY) {
1802
		if (node_isset(nid, memcg->scan_nodes))
1803
			continue;
1804
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1805 1806 1807 1808 1809
			return true;
	}
	return false;
}

1810
#else
1811
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1812 1813 1814
{
	return 0;
}
1815

1816
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1817
{
1818
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1819
}
1820 1821
#endif

1822 1823 1824 1825
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1826
{
1827
	struct mem_cgroup *victim = NULL;
1828
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1829
	int loop = 0;
1830
	unsigned long excess;
1831
	unsigned long nr_scanned;
1832 1833 1834 1835
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1836

1837
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1838

1839
	while (1) {
1840
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1841
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1842
			loop++;
1843 1844 1845 1846 1847 1848
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1849
				if (!total)
1850 1851
					break;
				/*
L
Lucas De Marchi 已提交
1852
				 * We want to do more targeted reclaim.
1853 1854 1855 1856 1857
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1858
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1859 1860
					break;
			}
1861
			continue;
1862
		}
1863
		if (!mem_cgroup_reclaimable(victim, false))
1864
			continue;
1865 1866 1867 1868
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1869
			break;
1870
	}
1871
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1872
	return total;
1873 1874
}

K
KAMEZAWA Hiroyuki 已提交
1875 1876 1877
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1878
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1879
 */
1880
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1881
{
1882
	struct mem_cgroup *iter, *failed = NULL;
1883

1884
	for_each_mem_cgroup_tree(iter, memcg) {
1885
		if (iter->oom_lock) {
1886 1887 1888 1889 1890
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1891 1892
			mem_cgroup_iter_break(memcg, iter);
			break;
1893 1894
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1895
	}
K
KAMEZAWA Hiroyuki 已提交
1896

1897
	if (!failed)
1898
		return true;
1899 1900 1901 1902 1903

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1904
	for_each_mem_cgroup_tree(iter, memcg) {
1905
		if (iter == failed) {
1906 1907
			mem_cgroup_iter_break(memcg, iter);
			break;
1908 1909 1910
		}
		iter->oom_lock = false;
	}
1911
	return false;
1912
}
1913

1914
/*
1915
 * Has to be called with memcg_oom_lock
1916
 */
1917
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1918
{
K
KAMEZAWA Hiroyuki 已提交
1919 1920
	struct mem_cgroup *iter;

1921
	for_each_mem_cgroup_tree(iter, memcg)
1922 1923 1924 1925
		iter->oom_lock = false;
	return 0;
}

1926
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1927 1928 1929
{
	struct mem_cgroup *iter;

1930
	for_each_mem_cgroup_tree(iter, memcg)
1931 1932 1933
		atomic_inc(&iter->under_oom);
}

1934
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1935 1936 1937
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1938 1939 1940 1941 1942
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1943
	for_each_mem_cgroup_tree(iter, memcg)
1944
		atomic_add_unless(&iter->under_oom, -1, 0);
1945 1946
}

1947
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1948 1949
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1950
struct oom_wait_info {
1951
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1952 1953 1954 1955 1956 1957
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1958 1959
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1960 1961 1962
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1963
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1964 1965

	/*
1966
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1967 1968
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1969 1970
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1971 1972 1973 1974
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1975
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1976
{
1977 1978
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1979 1980
}

1981
static void memcg_oom_recover(struct mem_cgroup *memcg)
1982
{
1983 1984
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1985 1986
}

K
KAMEZAWA Hiroyuki 已提交
1987 1988 1989
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1990 1991
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1992
{
K
KAMEZAWA Hiroyuki 已提交
1993
	struct oom_wait_info owait;
1994
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1995

1996
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1997 1998 1999 2000
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2001
	need_to_kill = true;
2002
	mem_cgroup_mark_under_oom(memcg);
2003

2004
	/* At first, try to OOM lock hierarchy under memcg.*/
2005
	spin_lock(&memcg_oom_lock);
2006
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2007 2008 2009 2010 2011
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2012
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2013
	if (!locked || memcg->oom_kill_disable)
2014 2015
		need_to_kill = false;
	if (locked)
2016
		mem_cgroup_oom_notify(memcg);
2017
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2018

2019 2020
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2021
		mem_cgroup_out_of_memory(memcg, mask, order);
2022
	} else {
K
KAMEZAWA Hiroyuki 已提交
2023
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2024
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2025
	}
2026
	spin_lock(&memcg_oom_lock);
2027
	if (locked)
2028 2029
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2030
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2031

2032
	mem_cgroup_unmark_under_oom(memcg);
2033

K
KAMEZAWA Hiroyuki 已提交
2034 2035 2036
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2037
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2038
	return true;
2039 2040
}

2041 2042 2043
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2061 2062
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2063
 */
2064

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2078
	 * need to take move_lock_mem_cgroup(). Because we already hold
2079
	 * rcu_read_lock(), any calls to move_account will be delayed until
2080
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2081
	 */
2082
	if (!mem_cgroup_stolen(memcg))
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2100
	 * should take move_lock_mem_cgroup().
2101 2102 2103 2104
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2105 2106
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2107
{
2108
	struct mem_cgroup *memcg;
2109
	struct page_cgroup *pc = lookup_page_cgroup(page);
2110
	unsigned long uninitialized_var(flags);
2111

2112
	if (mem_cgroup_disabled())
2113
		return;
2114

2115 2116
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2117
		return;
2118 2119

	switch (idx) {
2120 2121
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2122 2123 2124
		break;
	default:
		BUG();
2125
	}
2126

2127
	this_cpu_add(memcg->stat->count[idx], val);
2128
}
2129

2130 2131 2132 2133
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2134
#define CHARGE_BATCH	32U
2135 2136
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2137
	unsigned int nr_pages;
2138
	struct work_struct work;
2139
	unsigned long flags;
2140
#define FLUSHING_CACHED_CHARGE	0
2141 2142
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2143
static DEFINE_MUTEX(percpu_charge_mutex);
2144

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2155
 */
2156
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2157 2158 2159 2160
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2161 2162 2163
	if (nr_pages > CHARGE_BATCH)
		return false;

2164
	stock = &get_cpu_var(memcg_stock);
2165 2166
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2180 2181 2182 2183
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2184
		if (do_swap_account)
2185 2186
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2199
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2200 2201 2202 2203
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2204
 * This will be consumed by consume_stock() function, later.
2205
 */
2206
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2207 2208 2209
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2210
	if (stock->cached != memcg) { /* reset if necessary */
2211
		drain_stock(stock);
2212
		stock->cached = memcg;
2213
	}
2214
	stock->nr_pages += nr_pages;
2215 2216 2217 2218
	put_cpu_var(memcg_stock);
}

/*
2219
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2220 2221
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2222
 */
2223
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2224
{
2225
	int cpu, curcpu;
2226

2227 2228
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2229
	curcpu = get_cpu();
2230 2231
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2232
		struct mem_cgroup *memcg;
2233

2234 2235
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2236
			continue;
2237
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2238
			continue;
2239 2240 2241 2242 2243 2244
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2245
	}
2246
	put_cpu();
2247 2248 2249 2250 2251 2252

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2253
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2254 2255 2256
			flush_work(&stock->work);
	}
out:
2257
 	put_online_cpus();
2258 2259 2260 2261 2262 2263 2264 2265
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2266
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2267
{
2268 2269 2270 2271 2272
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2273
	drain_all_stock(root_memcg, false);
2274
	mutex_unlock(&percpu_charge_mutex);
2275 2276 2277
}

/* This is a synchronous drain interface. */
2278
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2279 2280
{
	/* called when force_empty is called */
2281
	mutex_lock(&percpu_charge_mutex);
2282
	drain_all_stock(root_memcg, true);
2283
	mutex_unlock(&percpu_charge_mutex);
2284 2285
}

2286 2287 2288 2289
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2290
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2291 2292 2293
{
	int i;

2294
	spin_lock(&memcg->pcp_counter_lock);
2295
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2296
		long x = per_cpu(memcg->stat->count[i], cpu);
2297

2298 2299
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2300
	}
2301
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2302
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2303

2304 2305
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2306
	}
2307
	spin_unlock(&memcg->pcp_counter_lock);
2308 2309 2310
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2311 2312 2313 2314 2315
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2316
	struct mem_cgroup *iter;
2317

2318
	if (action == CPU_ONLINE)
2319 2320
		return NOTIFY_OK;

2321
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2322
		return NOTIFY_OK;
2323

2324
	for_each_mem_cgroup(iter)
2325 2326
		mem_cgroup_drain_pcp_counter(iter, cpu);

2327 2328 2329 2330 2331
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2342
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2343 2344
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2345
{
2346
	unsigned long csize = nr_pages * PAGE_SIZE;
2347 2348 2349 2350 2351
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2352
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2353 2354 2355 2356

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2357
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2358 2359 2360
		if (likely(!ret))
			return CHARGE_OK;

2361
		res_counter_uncharge(&memcg->res, csize);
2362 2363 2364 2365
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2366 2367 2368 2369
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2370
	if (nr_pages > min_pages)
2371 2372 2373 2374 2375
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2376 2377 2378
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2379
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2380
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2381
		return CHARGE_RETRY;
2382
	/*
2383 2384 2385 2386 2387 2388 2389
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2390
	 */
2391
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2405
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2406 2407 2408 2409 2410
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2411
/*
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2431
 */
2432
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2433
				   gfp_t gfp_mask,
2434
				   unsigned int nr_pages,
2435
				   struct mem_cgroup **ptr,
2436
				   bool oom)
2437
{
2438
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2439
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2440
	struct mem_cgroup *memcg = NULL;
2441
	int ret;
2442

K
KAMEZAWA Hiroyuki 已提交
2443 2444 2445 2446 2447 2448 2449 2450
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2451

2452
	/*
2453 2454
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2455
	 * thread group leader migrates. It's possible that mm is not
2456
	 * set, if so charge the root memcg (happens for pagecache usage).
2457
	 */
2458
	if (!*ptr && !mm)
2459
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2460
again:
2461 2462 2463
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2464
			goto done;
2465
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2466
			goto done;
2467
		css_get(&memcg->css);
2468
	} else {
K
KAMEZAWA Hiroyuki 已提交
2469
		struct task_struct *p;
2470

K
KAMEZAWA Hiroyuki 已提交
2471 2472 2473
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2474
		 * Because we don't have task_lock(), "p" can exit.
2475
		 * In that case, "memcg" can point to root or p can be NULL with
2476 2477 2478 2479 2480 2481
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2482
		 */
2483
		memcg = mem_cgroup_from_task(p);
2484 2485 2486
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2487 2488 2489
			rcu_read_unlock();
			goto done;
		}
2490
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2503
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2504 2505 2506 2507 2508
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2509

2510 2511
	do {
		bool oom_check;
2512

2513
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2514
		if (fatal_signal_pending(current)) {
2515
			css_put(&memcg->css);
2516
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2517
		}
2518

2519 2520 2521 2522
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2523
		}
2524

2525 2526
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2527 2528 2529 2530
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2531
			batch = nr_pages;
2532 2533
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2534
			goto again;
2535
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2536
			css_put(&memcg->css);
2537 2538
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2539
			if (!oom) {
2540
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2541
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2542
			}
2543 2544 2545 2546
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2547
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2548
			goto bypass;
2549
		}
2550 2551
	} while (ret != CHARGE_OK);

2552
	if (batch > nr_pages)
2553 2554
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2555
done:
2556
	*ptr = memcg;
2557 2558
	return 0;
nomem:
2559
	*ptr = NULL;
2560
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2561
bypass:
2562 2563
	*ptr = root_mem_cgroup;
	return -EINTR;
2564
}
2565

2566 2567 2568 2569 2570
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2571
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2572
				       unsigned int nr_pages)
2573
{
2574
	if (!mem_cgroup_is_root(memcg)) {
2575 2576
		unsigned long bytes = nr_pages * PAGE_SIZE;

2577
		res_counter_uncharge(&memcg->res, bytes);
2578
		if (do_swap_account)
2579
			res_counter_uncharge(&memcg->memsw, bytes);
2580
	}
2581 2582
}

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2601 2602
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2603 2604 2605
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2617
	return mem_cgroup_from_css(css);
2618 2619
}

2620
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2621
{
2622
	struct mem_cgroup *memcg = NULL;
2623
	struct page_cgroup *pc;
2624
	unsigned short id;
2625 2626
	swp_entry_t ent;

2627 2628 2629
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2630
	lock_page_cgroup(pc);
2631
	if (PageCgroupUsed(pc)) {
2632 2633 2634
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2635
	} else if (PageSwapCache(page)) {
2636
		ent.val = page_private(page);
2637
		id = lookup_swap_cgroup_id(ent);
2638
		rcu_read_lock();
2639 2640 2641
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2642
		rcu_read_unlock();
2643
	}
2644
	unlock_page_cgroup(pc);
2645
	return memcg;
2646 2647
}

2648
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2649
				       struct page *page,
2650
				       unsigned int nr_pages,
2651 2652
				       enum charge_type ctype,
				       bool lrucare)
2653
{
2654
	struct page_cgroup *pc = lookup_page_cgroup(page);
2655
	struct zone *uninitialized_var(zone);
2656
	struct lruvec *lruvec;
2657
	bool was_on_lru = false;
2658
	bool anon;
2659

2660
	lock_page_cgroup(pc);
2661
	VM_BUG_ON(PageCgroupUsed(pc));
2662 2663 2664 2665
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2666 2667 2668 2669 2670 2671 2672 2673 2674

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2675
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2676
			ClearPageLRU(page);
2677
			del_page_from_lru_list(page, lruvec, page_lru(page));
2678 2679 2680 2681
			was_on_lru = true;
		}
	}

2682
	pc->mem_cgroup = memcg;
2683 2684 2685 2686 2687 2688 2689
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2690
	smp_wmb();
2691
	SetPageCgroupUsed(pc);
2692

2693 2694
	if (lrucare) {
		if (was_on_lru) {
2695
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2696 2697
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2698
			add_page_to_lru_list(page, lruvec, page_lru(page));
2699 2700 2701 2702
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2703
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2704 2705 2706 2707 2708
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2709
	unlock_page_cgroup(pc);
2710

2711 2712 2713 2714 2715
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2716
	memcg_check_events(memcg, page);
2717
}
2718

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2779 2780 2781 2782 2783 2784 2785

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
}

/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
#endif /* CONFIG_MEMCG_KMEM */

2885 2886
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2887
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2888 2889
/*
 * Because tail pages are not marked as "used", set it. We're under
2890 2891 2892
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2893
 */
2894
void mem_cgroup_split_huge_fixup(struct page *head)
2895 2896
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2897 2898
	struct page_cgroup *pc;
	int i;
2899

2900 2901
	if (mem_cgroup_disabled())
		return;
2902 2903 2904 2905 2906 2907
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2908
}
2909
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2910

2911
/**
2912
 * mem_cgroup_move_account - move account of the page
2913
 * @page: the page
2914
 * @nr_pages: number of regular pages (>1 for huge pages)
2915 2916 2917 2918 2919
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2920
 * - page is not on LRU (isolate_page() is useful.)
2921
 * - compound_lock is held when nr_pages > 1
2922
 *
2923 2924
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2925
 */
2926 2927 2928 2929
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2930
				   struct mem_cgroup *to)
2931
{
2932 2933
	unsigned long flags;
	int ret;
2934
	bool anon = PageAnon(page);
2935

2936
	VM_BUG_ON(from == to);
2937
	VM_BUG_ON(PageLRU(page));
2938 2939 2940 2941 2942 2943 2944
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2945
	if (nr_pages > 1 && !PageTransHuge(page))
2946 2947 2948 2949 2950 2951 2952 2953
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2954
	move_lock_mem_cgroup(from, &flags);
2955

2956
	if (!anon && page_mapped(page)) {
2957 2958 2959 2960 2961
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2962
	}
2963
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2964

2965
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2966
	pc->mem_cgroup = to;
2967
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2968
	move_unlock_mem_cgroup(from, &flags);
2969 2970
	ret = 0;
unlock:
2971
	unlock_page_cgroup(pc);
2972 2973 2974
	/*
	 * check events
	 */
2975 2976
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2977
out:
2978 2979 2980
	return ret;
}

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3001
 */
3002 3003
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3004
				  struct mem_cgroup *child)
3005 3006
{
	struct mem_cgroup *parent;
3007
	unsigned int nr_pages;
3008
	unsigned long uninitialized_var(flags);
3009 3010
	int ret;

3011
	VM_BUG_ON(mem_cgroup_is_root(child));
3012

3013 3014 3015 3016 3017
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3018

3019
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3020

3021 3022 3023 3024 3025 3026
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3027

3028 3029
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3030
		flags = compound_lock_irqsave(page);
3031
	}
3032

3033
	ret = mem_cgroup_move_account(page, nr_pages,
3034
				pc, child, parent);
3035 3036
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3037

3038
	if (nr_pages > 1)
3039
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3040
	putback_lru_page(page);
3041
put:
3042
	put_page(page);
3043
out:
3044 3045 3046
	return ret;
}

3047 3048 3049 3050 3051 3052 3053
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3054
				gfp_t gfp_mask, enum charge_type ctype)
3055
{
3056
	struct mem_cgroup *memcg = NULL;
3057
	unsigned int nr_pages = 1;
3058
	bool oom = true;
3059
	int ret;
A
Andrea Arcangeli 已提交
3060

A
Andrea Arcangeli 已提交
3061
	if (PageTransHuge(page)) {
3062
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3063
		VM_BUG_ON(!PageTransHuge(page));
3064 3065 3066 3067 3068
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3069
	}
3070

3071
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3072
	if (ret == -ENOMEM)
3073
		return ret;
3074
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3075 3076 3077
	return 0;
}

3078 3079
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3080
{
3081
	if (mem_cgroup_disabled())
3082
		return 0;
3083 3084 3085
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3086
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3087
					MEM_CGROUP_CHARGE_TYPE_ANON);
3088 3089
}

3090 3091 3092
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3093
 * struct page_cgroup is acquired. This refcnt will be consumed by
3094 3095
 * "commit()" or removed by "cancel()"
 */
3096 3097 3098 3099
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3100
{
3101
	struct mem_cgroup *memcg;
3102
	struct page_cgroup *pc;
3103
	int ret;
3104

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3115 3116
	if (!do_swap_account)
		goto charge_cur_mm;
3117 3118
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3119
		goto charge_cur_mm;
3120 3121
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3122
	css_put(&memcg->css);
3123 3124
	if (ret == -EINTR)
		ret = 0;
3125
	return ret;
3126
charge_cur_mm:
3127 3128 3129 3130
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3131 3132
}

3133 3134 3135 3136 3137 3138
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3153 3154 3155
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3156 3157 3158 3159 3160 3161 3162 3163 3164
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3165
static void
3166
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3167
					enum charge_type ctype)
3168
{
3169
	if (mem_cgroup_disabled())
3170
		return;
3171
	if (!memcg)
3172
		return;
3173

3174
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3175 3176 3177
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3178 3179 3180
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3181
	 */
3182
	if (do_swap_account && PageSwapCache(page)) {
3183
		swp_entry_t ent = {.val = page_private(page)};
3184
		mem_cgroup_uncharge_swap(ent);
3185
	}
3186 3187
}

3188 3189
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3190
{
3191
	__mem_cgroup_commit_charge_swapin(page, memcg,
3192
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3193 3194
}

3195 3196
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3197
{
3198 3199 3200 3201
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3202
	if (mem_cgroup_disabled())
3203 3204 3205 3206 3207 3208 3209
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3210 3211
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3212 3213 3214 3215
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3216 3217
}

3218
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3219 3220
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3221 3222 3223
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3236
		batch->memcg = memcg;
3237 3238
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3239
	 * In those cases, all pages freed continuously can be expected to be in
3240 3241 3242 3243 3244 3245 3246 3247
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3248
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3249 3250
		goto direct_uncharge;

3251 3252 3253 3254 3255
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3256
	if (batch->memcg != memcg)
3257 3258
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3259
	batch->nr_pages++;
3260
	if (uncharge_memsw)
3261
		batch->memsw_nr_pages++;
3262 3263
	return;
direct_uncharge:
3264
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3265
	if (uncharge_memsw)
3266 3267 3268
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3269
}
3270

3271
/*
3272
 * uncharge if !page_mapped(page)
3273
 */
3274
static struct mem_cgroup *
3275 3276
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3277
{
3278
	struct mem_cgroup *memcg = NULL;
3279 3280
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3281
	bool anon;
3282

3283
	if (mem_cgroup_disabled())
3284
		return NULL;
3285

3286
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3287

A
Andrea Arcangeli 已提交
3288
	if (PageTransHuge(page)) {
3289
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3290 3291
		VM_BUG_ON(!PageTransHuge(page));
	}
3292
	/*
3293
	 * Check if our page_cgroup is valid
3294
	 */
3295
	pc = lookup_page_cgroup(page);
3296
	if (unlikely(!PageCgroupUsed(pc)))
3297
		return NULL;
3298

3299
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3300

3301
	memcg = pc->mem_cgroup;
3302

K
KAMEZAWA Hiroyuki 已提交
3303 3304 3305
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3306 3307
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3308
	switch (ctype) {
3309
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3310 3311 3312 3313 3314
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3315 3316
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3317
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3318
		/* See mem_cgroup_prepare_migration() */
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3340
	}
K
KAMEZAWA Hiroyuki 已提交
3341

3342
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3343

3344
	ClearPageCgroupUsed(pc);
3345 3346 3347 3348 3349 3350
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3351

3352
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3353
	/*
3354
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3355 3356
	 * will never be freed.
	 */
3357
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3358
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3359 3360
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3361
	}
3362 3363 3364 3365 3366 3367
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3368
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3369

3370
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3371 3372 3373

unlock_out:
	unlock_page_cgroup(pc);
3374
	return NULL;
3375 3376
}

3377 3378
void mem_cgroup_uncharge_page(struct page *page)
{
3379 3380 3381
	/* early check. */
	if (page_mapped(page))
		return;
3382
	VM_BUG_ON(page->mapping && !PageAnon(page));
3383 3384
	if (PageSwapCache(page))
		return;
3385
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3386 3387 3388 3389 3390
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3391
	VM_BUG_ON(page->mapping);
3392
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3393 3394
}

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3409 3410
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3431 3432 3433 3434 3435 3436
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3437
	memcg_oom_recover(batch->memcg);
3438 3439 3440 3441
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3442
#ifdef CONFIG_SWAP
3443
/*
3444
 * called after __delete_from_swap_cache() and drop "page" account.
3445 3446
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3447 3448
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3449 3450
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3451 3452 3453 3454 3455
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3456
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3457

K
KAMEZAWA Hiroyuki 已提交
3458 3459 3460 3461 3462
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3463
		swap_cgroup_record(ent, css_id(&memcg->css));
3464
}
3465
#endif
3466

A
Andrew Morton 已提交
3467
#ifdef CONFIG_MEMCG_SWAP
3468 3469 3470 3471 3472
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3473
{
3474
	struct mem_cgroup *memcg;
3475
	unsigned short id;
3476 3477 3478 3479

	if (!do_swap_account)
		return;

3480 3481 3482
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3483
	if (memcg) {
3484 3485 3486 3487
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3488
		if (!mem_cgroup_is_root(memcg))
3489
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3490
		mem_cgroup_swap_statistics(memcg, false);
3491 3492
		mem_cgroup_put(memcg);
	}
3493
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3494
}
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3511
				struct mem_cgroup *from, struct mem_cgroup *to)
3512 3513 3514 3515 3516 3517 3518 3519
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3520
		mem_cgroup_swap_statistics(to, true);
3521
		/*
3522 3523 3524 3525 3526 3527
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3528 3529 3530 3531 3532 3533 3534 3535
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3536
				struct mem_cgroup *from, struct mem_cgroup *to)
3537 3538 3539
{
	return -EINVAL;
}
3540
#endif
K
KAMEZAWA Hiroyuki 已提交
3541

3542
/*
3543 3544
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3545
 */
3546 3547
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3548
{
3549
	struct mem_cgroup *memcg = NULL;
3550
	unsigned int nr_pages = 1;
3551
	struct page_cgroup *pc;
3552
	enum charge_type ctype;
3553

3554
	*memcgp = NULL;
3555

3556
	if (mem_cgroup_disabled())
3557
		return;
3558

3559 3560 3561
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

3562 3563 3564
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3565 3566
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3598
	}
3599
	unlock_page_cgroup(pc);
3600 3601 3602 3603
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3604
	if (!memcg)
3605
		return;
3606

3607
	*memcgp = memcg;
3608 3609 3610 3611 3612 3613 3614
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3615
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3616
	else
3617
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3618 3619 3620 3621 3622
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3623
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
3624
}
3625

3626
/* remove redundant charge if migration failed*/
3627
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3628
	struct page *oldpage, struct page *newpage, bool migration_ok)
3629
{
3630
	struct page *used, *unused;
3631
	struct page_cgroup *pc;
3632
	bool anon;
3633

3634
	if (!memcg)
3635
		return;
3636

3637
	if (!migration_ok) {
3638 3639
		used = oldpage;
		unused = newpage;
3640
	} else {
3641
		used = newpage;
3642 3643
		unused = oldpage;
	}
3644
	anon = PageAnon(used);
3645 3646 3647 3648
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3649
	css_put(&memcg->css);
3650
	/*
3651 3652 3653
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3654
	 */
3655 3656 3657 3658 3659
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3660
	/*
3661 3662 3663 3664 3665 3666
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3667
	 */
3668
	if (anon)
3669
		mem_cgroup_uncharge_page(used);
3670
}
3671

3672 3673 3674 3675 3676 3677 3678 3679
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3680
	struct mem_cgroup *memcg = NULL;
3681 3682 3683 3684 3685 3686 3687 3688 3689
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3690 3691 3692 3693 3694
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3695 3696
	unlock_page_cgroup(pc);

3697 3698 3699 3700 3701 3702
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
3703 3704 3705 3706 3707
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3708
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3709 3710
}

3711 3712 3713 3714 3715 3716
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3717 3718 3719 3720 3721
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3741
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3742 3743 3744 3745 3746
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3747 3748
static DEFINE_MUTEX(set_limit_mutex);

3749
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3750
				unsigned long long val)
3751
{
3752
	int retry_count;
3753
	u64 memswlimit, memlimit;
3754
	int ret = 0;
3755 3756
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3757
	int enlarge;
3758 3759 3760 3761 3762 3763 3764 3765 3766

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3767

3768
	enlarge = 0;
3769
	while (retry_count) {
3770 3771 3772 3773
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3774 3775 3776
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3777
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3778 3779 3780 3781 3782 3783
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3784 3785
			break;
		}
3786 3787 3788 3789 3790

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3791
		ret = res_counter_set_limit(&memcg->res, val);
3792 3793 3794 3795 3796 3797
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3798 3799 3800 3801 3802
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3803 3804
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3805 3806 3807 3808 3809 3810
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3811
	}
3812 3813
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3814

3815 3816 3817
	return ret;
}

L
Li Zefan 已提交
3818 3819
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3820
{
3821
	int retry_count;
3822
	u64 memlimit, memswlimit, oldusage, curusage;
3823 3824
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3825
	int enlarge = 0;
3826

3827 3828 3829
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3830 3831 3832 3833 3834 3835 3836 3837
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3838
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3839 3840 3841 3842 3843 3844 3845 3846
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3847 3848 3849
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3850
		ret = res_counter_set_limit(&memcg->memsw, val);
3851 3852 3853 3854 3855 3856
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3857 3858 3859 3860 3861
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3862 3863 3864
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3865
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3866
		/* Usage is reduced ? */
3867
		if (curusage >= oldusage)
3868
			retry_count--;
3869 3870
		else
			oldusage = curusage;
3871
	}
3872 3873
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3874 3875 3876
	return ret;
}

3877
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3878 3879
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3880 3881 3882 3883 3884 3885
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3886
	unsigned long long excess;
3887
	unsigned long nr_scanned;
3888 3889 3890 3891

	if (order > 0)
		return 0;

3892
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3906
		nr_scanned = 0;
3907
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3908
						    gfp_mask, &nr_scanned);
3909
		nr_reclaimed += reclaimed;
3910
		*total_scanned += nr_scanned;
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3933
				if (next_mz == mz)
3934
					css_put(&next_mz->memcg->css);
3935
				else /* next_mz == NULL or other memcg */
3936 3937 3938
					break;
			} while (1);
		}
3939 3940
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3941 3942 3943 3944 3945 3946 3947 3948
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3949
		/* If excess == 0, no tree ops */
3950
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3951
		spin_unlock(&mctz->lock);
3952
		css_put(&mz->memcg->css);
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3965
		css_put(&next_mz->memcg->css);
3966 3967 3968
	return nr_reclaimed;
}

3969 3970 3971 3972 3973 3974 3975
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
3976
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3977 3978
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
3979
 */
3980
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3981
				int node, int zid, enum lru_list lru)
3982
{
3983
	struct lruvec *lruvec;
3984
	unsigned long flags;
3985
	struct list_head *list;
3986 3987
	struct page *busy;
	struct zone *zone;
3988

K
KAMEZAWA Hiroyuki 已提交
3989
	zone = &NODE_DATA(node)->node_zones[zid];
3990 3991
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3992

3993
	busy = NULL;
3994
	do {
3995
		struct page_cgroup *pc;
3996 3997
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3998
		spin_lock_irqsave(&zone->lru_lock, flags);
3999
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4000
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4001
			break;
4002
		}
4003 4004 4005
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4006
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4007
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4008 4009
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4010
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4011

4012
		pc = lookup_page_cgroup(page);
4013

4014
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4015
			/* found lock contention or "pc" is obsolete. */
4016
			busy = page;
4017 4018 4019
			cond_resched();
		} else
			busy = NULL;
4020
	} while (!list_empty(list));
4021 4022 4023
}

/*
4024 4025
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4026
 * This enables deleting this mem_cgroup.
4027 4028
 *
 * Caller is responsible for holding css reference on the memcg.
4029
 */
4030
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4031
{
4032
	int node, zid;
4033
	u64 usage;
4034

4035
	do {
4036 4037
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4038 4039
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4040
		for_each_node_state(node, N_MEMORY) {
4041
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4042 4043
				enum lru_list lru;
				for_each_lru(lru) {
4044
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4045
							node, zid, lru);
4046
				}
4047
			}
4048
		}
4049 4050
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4051
		cond_resched();
4052

4053
		/*
4054 4055 4056 4057 4058
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4059 4060 4061 4062 4063 4064
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4065 4066 4067
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4080

4081
	/* returns EBUSY if there is a task or if we come here twice. */
4082 4083 4084
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4085 4086
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4087
	/* try to free all pages in this cgroup */
4088
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4089
		int progress;
4090

4091 4092 4093
		if (signal_pending(current))
			return -EINTR;

4094
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4095
						false);
4096
		if (!progress) {
4097
			nr_retries--;
4098
			/* maybe some writeback is necessary */
4099
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4100
		}
4101 4102

	}
K
KAMEZAWA Hiroyuki 已提交
4103
	lru_add_drain();
4104 4105 4106
	mem_cgroup_reparent_charges(memcg);

	return 0;
4107 4108
}

4109
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4110
{
4111 4112 4113
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4114 4115
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4116 4117 4118 4119 4120
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4121 4122 4123
}


4124 4125 4126 4127 4128 4129 4130 4131 4132
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4133
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4134
	struct cgroup *parent = cont->parent;
4135
	struct mem_cgroup *parent_memcg = NULL;
4136 4137

	if (parent)
4138
		parent_memcg = mem_cgroup_from_cont(parent);
4139 4140

	cgroup_lock();
4141 4142 4143 4144

	if (memcg->use_hierarchy == val)
		goto out;

4145
	/*
4146
	 * If parent's use_hierarchy is set, we can't make any modifications
4147 4148 4149 4150 4151 4152
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4153
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4154 4155
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
4156
			memcg->use_hierarchy = val;
4157 4158 4159 4160
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4161 4162

out:
4163 4164 4165 4166 4167
	cgroup_unlock();

	return retval;
}

4168

4169
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4170
					       enum mem_cgroup_stat_index idx)
4171
{
K
KAMEZAWA Hiroyuki 已提交
4172
	struct mem_cgroup *iter;
4173
	long val = 0;
4174

4175
	/* Per-cpu values can be negative, use a signed accumulator */
4176
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4177 4178 4179 4180 4181
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4182 4183
}

4184
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4185
{
K
KAMEZAWA Hiroyuki 已提交
4186
	u64 val;
4187

4188
	if (!mem_cgroup_is_root(memcg)) {
4189
		if (!swap)
4190
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4191
		else
4192
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4193 4194
	}

4195 4196
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4197

K
KAMEZAWA Hiroyuki 已提交
4198
	if (swap)
4199
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4200 4201 4202 4203

	return val << PAGE_SHIFT;
}

4204 4205 4206
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4207
{
4208
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4209
	char str[64];
4210
	u64 val;
G
Glauber Costa 已提交
4211 4212
	int name, len;
	enum res_type type;
4213 4214 4215

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4216 4217 4218 4219

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4220 4221
	switch (type) {
	case _MEM:
4222
		if (name == RES_USAGE)
4223
			val = mem_cgroup_usage(memcg, false);
4224
		else
4225
			val = res_counter_read_u64(&memcg->res, name);
4226 4227
		break;
	case _MEMSWAP:
4228
		if (name == RES_USAGE)
4229
			val = mem_cgroup_usage(memcg, true);
4230
		else
4231
			val = res_counter_read_u64(&memcg->memsw, name);
4232
		break;
4233 4234 4235
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4236 4237 4238
	default:
		BUG();
	}
4239 4240 4241

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4242
}
4243 4244 4245 4246 4247

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4248 4249
	bool must_inc_static_branch = false;

4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 *
	 * Taking the cgroup_lock is really offensive, but it is so far the only
	 * way to guarantee that no children will appear. There are plenty of
	 * other offenders, and they should all go away. Fine grained locking
	 * is probably the way to go here. When we are fully hierarchical, we
	 * can also get rid of the use_hierarchy check.
	 */
	cgroup_lock();
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
						!list_empty(&cont->children))) {
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4280 4281 4282 4283 4284 4285 4286 4287 4288
		/*
		 * After this point, kmem_accounted (that we test atomically in
		 * the beginning of this conditional), is no longer 0. This
		 * guarantees only one process will set the following boolean
		 * to true. We don't need test_and_set because we're protected
		 * by the set_limit_mutex anyway.
		 */
		memcg_kmem_set_activated(memcg);
		must_inc_static_branch = true;
4289 4290 4291 4292 4293 4294 4295
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
4296 4297 4298 4299 4300
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
	cgroup_unlock();
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321

	/*
	 * We are by now familiar with the fact that we can't inc the static
	 * branch inside cgroup_lock. See disarm functions for details. A
	 * worker here is overkill, but also wrong: After the limit is set, we
	 * must start accounting right away. Since this operation can't fail,
	 * we can safely defer it to here - no rollback will be needed.
	 *
	 * The boolean used to control this is also safe, because
	 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
	 * able to set it to true;
	 */
	if (must_inc_static_branch) {
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
	}

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
#endif
	return ret;
}

static void memcg_propagate_kmem(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
		return;
	memcg->kmem_account_flags = parent->kmem_account_flags;
4332
#ifdef CONFIG_MEMCG_KMEM
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
	if (memcg_kmem_is_active(memcg)) {
4344
		mem_cgroup_get(memcg);
4345 4346
		static_key_slow_inc(&memcg_kmem_enabled_key);
	}
4347
#endif
4348 4349
}

4350 4351 4352 4353
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4354 4355
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
4356
{
4357
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4358 4359
	enum res_type type;
	int name;
4360 4361 4362
	unsigned long long val;
	int ret;

4363 4364
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4365 4366 4367 4368

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4369
	switch (name) {
4370
	case RES_LIMIT:
4371 4372 4373 4374
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4375 4376
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4377 4378 4379
		if (ret)
			break;
		if (type == _MEM)
4380
			ret = mem_cgroup_resize_limit(memcg, val);
4381
		else if (type == _MEMSWAP)
4382
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4383 4384 4385 4386
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
4387
		break;
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4402 4403 4404 4405 4406
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4407 4408
}

4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4436
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4437
{
4438
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4439 4440
	int name;
	enum res_type type;
4441

4442 4443
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4444 4445 4446 4447

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4448
	switch (name) {
4449
	case RES_MAX_USAGE:
4450
		if (type == _MEM)
4451
			res_counter_reset_max(&memcg->res);
4452
		else if (type == _MEMSWAP)
4453
			res_counter_reset_max(&memcg->memsw);
4454 4455 4456 4457
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
4458 4459
		break;
	case RES_FAILCNT:
4460
		if (type == _MEM)
4461
			res_counter_reset_failcnt(&memcg->res);
4462
		else if (type == _MEMSWAP)
4463
			res_counter_reset_failcnt(&memcg->memsw);
4464 4465 4466 4467
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
4468 4469
		break;
	}
4470

4471
	return 0;
4472 4473
}

4474 4475 4476 4477 4478 4479
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4480
#ifdef CONFIG_MMU
4481 4482 4483
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4484
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4485 4486 4487 4488 4489 4490 4491 4492 4493

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4494
	memcg->move_charge_at_immigrate = val;
4495 4496 4497 4498
	cgroup_unlock();

	return 0;
}
4499 4500 4501 4502 4503 4504 4505
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4506

4507
#ifdef CONFIG_NUMA
4508
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4509
				      struct seq_file *m)
4510 4511 4512 4513
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4514
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4515

4516
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4517
	seq_printf(m, "total=%lu", total_nr);
4518
	for_each_node_state(nid, N_MEMORY) {
4519
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4520 4521 4522 4523
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4524
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4525
	seq_printf(m, "file=%lu", file_nr);
4526
	for_each_node_state(nid, N_MEMORY) {
4527
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4528
				LRU_ALL_FILE);
4529 4530 4531 4532
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4533
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4534
	seq_printf(m, "anon=%lu", anon_nr);
4535
	for_each_node_state(nid, N_MEMORY) {
4536
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4537
				LRU_ALL_ANON);
4538 4539 4540 4541
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4542
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4543
	seq_printf(m, "unevictable=%lu", unevictable_nr);
4544
	for_each_node_state(nid, N_MEMORY) {
4545
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4546
				BIT(LRU_UNEVICTABLE));
4547 4548 4549 4550 4551 4552 4553
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4567
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4568
				 struct seq_file *m)
4569
{
4570
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4571 4572
	struct mem_cgroup *mi;
	unsigned int i;
4573

4574
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4575
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4576
			continue;
4577 4578
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4579
	}
L
Lee Schermerhorn 已提交
4580

4581 4582 4583 4584 4585 4586 4587 4588
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4589
	/* Hierarchical information */
4590 4591
	{
		unsigned long long limit, memsw_limit;
4592
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4593
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4594
		if (do_swap_account)
4595 4596
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4597
	}
K
KOSAKI Motohiro 已提交
4598

4599 4600 4601
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4602
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4603
			continue;
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4624
	}
K
KAMEZAWA Hiroyuki 已提交
4625

K
KOSAKI Motohiro 已提交
4626 4627 4628 4629
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4630
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4631 4632 4633 4634 4635
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4636
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4637
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4638

4639 4640 4641 4642
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4643
			}
4644 4645 4646 4647
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4648 4649 4650
	}
#endif

4651 4652 4653
	return 0;
}

K
KOSAKI Motohiro 已提交
4654 4655 4656 4657
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4658
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4659 4660 4661 4662 4663 4664 4665
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4666

K
KOSAKI Motohiro 已提交
4667 4668 4669 4670 4671 4672 4673
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4674 4675 4676

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4677 4678
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4679 4680
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4681
		return -EINVAL;
4682
	}
K
KOSAKI Motohiro 已提交
4683 4684 4685

	memcg->swappiness = val;

4686 4687
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4688 4689 4690
	return 0;
}

4691 4692 4693 4694 4695 4696 4697 4698
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4699
		t = rcu_dereference(memcg->thresholds.primary);
4700
	else
4701
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4702 4703 4704 4705 4706 4707 4708

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4709
	 * current_threshold points to threshold just below or equal to usage.
4710 4711 4712
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4713
	i = t->current_threshold;
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4737
	t->current_threshold = i - 1;
4738 4739 4740 4741 4742 4743
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4744 4745 4746 4747 4748 4749 4750
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4761
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4762 4763 4764
{
	struct mem_cgroup_eventfd_list *ev;

4765
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4766 4767 4768 4769
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4770
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4771
{
K
KAMEZAWA Hiroyuki 已提交
4772 4773
	struct mem_cgroup *iter;

4774
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4775
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4776 4777 4778 4779
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4780 4781
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4782 4783
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
4784
	enum res_type type = MEMFILE_TYPE(cft->private);
4785
	u64 threshold, usage;
4786
	int i, size, ret;
4787 4788 4789 4790 4791 4792

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4793

4794
	if (type == _MEM)
4795
		thresholds = &memcg->thresholds;
4796
	else if (type == _MEMSWAP)
4797
		thresholds = &memcg->memsw_thresholds;
4798 4799 4800 4801 4802 4803
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4804
	if (thresholds->primary)
4805 4806
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4807
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4808 4809

	/* Allocate memory for new array of thresholds */
4810
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4811
			GFP_KERNEL);
4812
	if (!new) {
4813 4814 4815
		ret = -ENOMEM;
		goto unlock;
	}
4816
	new->size = size;
4817 4818

	/* Copy thresholds (if any) to new array */
4819 4820
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4821
				sizeof(struct mem_cgroup_threshold));
4822 4823
	}

4824
	/* Add new threshold */
4825 4826
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4827 4828

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4829
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4830 4831 4832
			compare_thresholds, NULL);

	/* Find current threshold */
4833
	new->current_threshold = -1;
4834
	for (i = 0; i < size; i++) {
4835
		if (new->entries[i].threshold <= usage) {
4836
			/*
4837 4838
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4839 4840
			 * it here.
			 */
4841
			++new->current_threshold;
4842 4843
		} else
			break;
4844 4845
	}

4846 4847 4848 4849 4850
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4851

4852
	/* To be sure that nobody uses thresholds */
4853 4854 4855 4856 4857 4858 4859 4860
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4861
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4862
	struct cftype *cft, struct eventfd_ctx *eventfd)
4863 4864
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4865 4866
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
4867
	enum res_type type = MEMFILE_TYPE(cft->private);
4868
	u64 usage;
4869
	int i, j, size;
4870 4871 4872

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4873
		thresholds = &memcg->thresholds;
4874
	else if (type == _MEMSWAP)
4875
		thresholds = &memcg->memsw_thresholds;
4876 4877 4878
	else
		BUG();

4879 4880 4881
	if (!thresholds->primary)
		goto unlock;

4882 4883 4884 4885 4886 4887
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4888 4889 4890
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4891 4892 4893
			size++;
	}

4894
	new = thresholds->spare;
4895

4896 4897
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4898 4899
		kfree(new);
		new = NULL;
4900
		goto swap_buffers;
4901 4902
	}

4903
	new->size = size;
4904 4905

	/* Copy thresholds and find current threshold */
4906 4907 4908
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4909 4910
			continue;

4911
		new->entries[j] = thresholds->primary->entries[i];
4912
		if (new->entries[j].threshold <= usage) {
4913
			/*
4914
			 * new->current_threshold will not be used
4915 4916 4917
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4918
			++new->current_threshold;
4919 4920 4921 4922
		}
		j++;
	}

4923
swap_buffers:
4924 4925
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4926 4927 4928 4929 4930 4931
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4932
	rcu_assign_pointer(thresholds->primary, new);
4933

4934
	/* To be sure that nobody uses thresholds */
4935
	synchronize_rcu();
4936
unlock:
4937 4938
	mutex_unlock(&memcg->thresholds_lock);
}
4939

K
KAMEZAWA Hiroyuki 已提交
4940 4941 4942 4943 4944
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
4945
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
4946 4947 4948 4949 4950 4951

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4952
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4953 4954 4955 4956 4957

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4958
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4959
		eventfd_signal(eventfd, 1);
4960
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4961 4962 4963 4964

	return 0;
}

4965
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4966 4967
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4968
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4969
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
4970
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
4971 4972 4973

	BUG_ON(type != _OOM_TYPE);

4974
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4975

4976
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4977 4978 4979 4980 4981 4982
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4983
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4984 4985
}

4986 4987 4988
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4989
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4990

4991
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4992

4993
	if (atomic_read(&memcg->under_oom))
4994 4995 4996 4997 4998 4999 5000 5001 5002
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5003
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
5015
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5016 5017 5018
		cgroup_unlock();
		return -EINVAL;
	}
5019
	memcg->oom_kill_disable = val;
5020
	if (!val)
5021
		memcg_oom_recover(memcg);
5022 5023 5024 5025
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
5026
#ifdef CONFIG_MEMCG_KMEM
5027
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5028
{
5029
	memcg_propagate_kmem(memcg);
5030
	return mem_cgroup_sockets_init(memcg, ss);
5031 5032
};

5033
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5034
{
5035
	mem_cgroup_sockets_destroy(memcg);
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5050
}
5051
#else
5052
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5053 5054 5055
{
	return 0;
}
G
Glauber Costa 已提交
5056

5057
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5058 5059
{
}
5060 5061
#endif

B
Balbir Singh 已提交
5062 5063
static struct cftype mem_cgroup_files[] = {
	{
5064
		.name = "usage_in_bytes",
5065
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5066
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5067 5068
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5069
	},
5070 5071
	{
		.name = "max_usage_in_bytes",
5072
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5073
		.trigger = mem_cgroup_reset,
5074
		.read = mem_cgroup_read,
5075
	},
B
Balbir Singh 已提交
5076
	{
5077
		.name = "limit_in_bytes",
5078
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5079
		.write_string = mem_cgroup_write,
5080
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5081
	},
5082 5083 5084 5085
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5086
		.read = mem_cgroup_read,
5087
	},
B
Balbir Singh 已提交
5088 5089
	{
		.name = "failcnt",
5090
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5091
		.trigger = mem_cgroup_reset,
5092
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5093
	},
5094 5095
	{
		.name = "stat",
5096
		.read_seq_string = memcg_stat_show,
5097
	},
5098 5099 5100 5101
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5102 5103 5104 5105 5106
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5107 5108 5109 5110 5111
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5112 5113 5114 5115 5116
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5117 5118
	{
		.name = "oom_control",
5119 5120
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5121 5122 5123 5124
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5125 5126 5127
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5128
		.read_seq_string = memcg_numa_stat_show,
5129 5130
	},
#endif
A
Andrew Morton 已提交
5131
#ifdef CONFIG_MEMCG_SWAP
5132 5133 5134
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5135
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5136 5137
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
5138 5139 5140 5141 5142
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
5143
		.read = mem_cgroup_read,
5144 5145 5146 5147 5148
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
5149
		.read = mem_cgroup_read,
5150 5151 5152 5153 5154
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
5155
		.read = mem_cgroup_read,
5156
	},
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
#endif
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5182
#endif
5183
	{ },	/* terminate */
5184
};
5185

5186
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5187 5188
{
	struct mem_cgroup_per_node *pn;
5189
	struct mem_cgroup_per_zone *mz;
5190
	int zone, tmp = node;
5191 5192 5193 5194 5195 5196 5197 5198
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5199 5200
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5201
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5202 5203
	if (!pn)
		return 1;
5204 5205 5206

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5207
		lruvec_init(&mz->lruvec);
5208
		mz->usage_in_excess = 0;
5209
		mz->on_tree = false;
5210
		mz->memcg = memcg;
5211
	}
5212
	memcg->info.nodeinfo[node] = pn;
5213 5214 5215
	return 0;
}

5216
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5217
{
5218
	kfree(memcg->info.nodeinfo[node]);
5219 5220
}

5221 5222
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5223
	struct mem_cgroup *memcg;
5224
	int size = sizeof(struct mem_cgroup);
5225

5226
	/* Can be very big if MAX_NUMNODES is very big */
5227
	if (size < PAGE_SIZE)
5228
		memcg = kzalloc(size, GFP_KERNEL);
5229
	else
5230
		memcg = vzalloc(size);
5231

5232
	if (!memcg)
5233 5234
		return NULL;

5235 5236
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5237
		goto out_free;
5238 5239
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5240 5241 5242

out_free:
	if (size < PAGE_SIZE)
5243
		kfree(memcg);
5244
	else
5245
		vfree(memcg);
5246
	return NULL;
5247 5248
}

5249
/*
5250
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
5251 5252 5253
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
5254
static void free_work(struct work_struct *work)
5255 5256
{
	struct mem_cgroup *memcg;
5257
	int size = sizeof(struct mem_cgroup);
5258 5259

	memcg = container_of(work, struct mem_cgroup, work_freeing);
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5271
	disarm_static_keys(memcg);
5272 5273 5274 5275
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5276
}
5277 5278

static void free_rcu(struct rcu_head *rcu_head)
5279 5280 5281 5282
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
5283
	INIT_WORK(&memcg->work_freeing, free_work);
5284 5285 5286
	schedule_work(&memcg->work_freeing);
}

5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

5298
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5299
{
K
KAMEZAWA Hiroyuki 已提交
5300 5301
	int node;

5302 5303
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
5304

B
Bob Liu 已提交
5305
	for_each_node(node)
5306
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
5307

5308
	free_percpu(memcg->stat);
5309
	call_rcu(&memcg->rcu_freeing, free_rcu);
5310 5311
}

5312
static void mem_cgroup_get(struct mem_cgroup *memcg)
5313
{
5314
	atomic_inc(&memcg->refcnt);
5315 5316
}

5317
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
5318
{
5319 5320 5321
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
5322 5323 5324
		if (parent)
			mem_cgroup_put(parent);
	}
5325 5326
}

5327
static void mem_cgroup_put(struct mem_cgroup *memcg)
5328
{
5329
	__mem_cgroup_put(memcg, 1);
5330 5331
}

5332 5333 5334
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5335
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5336
{
5337
	if (!memcg->res.parent)
5338
		return NULL;
5339
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5340
}
G
Glauber Costa 已提交
5341
EXPORT_SYMBOL(parent_mem_cgroup);
5342

A
Andrew Morton 已提交
5343
#ifdef CONFIG_MEMCG_SWAP
5344 5345
static void __init enable_swap_cgroup(void)
{
5346
	if (!mem_cgroup_disabled() && really_do_swap_account)
5347 5348 5349 5350 5351 5352 5353 5354
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5355 5356 5357 5358 5359 5360
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
5361
	for_each_node(node) {
5362 5363 5364 5365 5366
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
5367
			goto err_cleanup;
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
5378 5379

err_cleanup:
B
Bob Liu 已提交
5380
	for_each_node(node) {
5381 5382 5383 5384 5385 5386 5387
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

5388 5389
}

L
Li Zefan 已提交
5390
static struct cgroup_subsys_state * __ref
5391
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
5392
{
5393
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
5394
	long error = -ENOMEM;
5395
	int node;
B
Balbir Singh 已提交
5396

5397 5398
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5399
		return ERR_PTR(error);
5400

B
Bob Liu 已提交
5401
	for_each_node(node)
5402
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5403
			goto free_out;
5404

5405
	/* root ? */
5406
	if (cont->parent == NULL) {
5407
		int cpu;
5408
		enable_swap_cgroup();
5409
		parent = NULL;
5410 5411
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5412
		root_mem_cgroup = memcg;
5413 5414 5415 5416 5417
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5418
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5419
	} else {
5420
		parent = mem_cgroup_from_cont(cont->parent);
5421 5422
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5423
	}
5424

5425
	if (parent && parent->use_hierarchy) {
5426 5427
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5428
		res_counter_init(&memcg->kmem, &parent->kmem);
5429 5430 5431 5432 5433 5434 5435
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5436
	} else {
5437 5438
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5439
		res_counter_init(&memcg->kmem, NULL);
5440 5441 5442 5443 5444 5445 5446
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
5447
	}
5448 5449
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5450

K
KOSAKI Motohiro 已提交
5451
	if (parent)
5452 5453 5454 5455
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5456
	spin_lock_init(&memcg->move_lock);
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5468
	return &memcg->css;
5469
free_out:
5470
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5471
	return ERR_PTR(error);
B
Balbir Singh 已提交
5472 5473
}

5474
static void mem_cgroup_css_offline(struct cgroup *cont)
5475
{
5476
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5477

5478
	mem_cgroup_reparent_charges(memcg);
5479 5480
}

5481
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
5482
{
5483
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5484

5485
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5486

5487
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5488 5489
}

5490
#ifdef CONFIG_MMU
5491
/* Handlers for move charge at task migration. */
5492 5493
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5494
{
5495 5496
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5497
	struct mem_cgroup *memcg = mc.to;
5498

5499
	if (mem_cgroup_is_root(memcg)) {
5500 5501 5502 5503 5504 5505 5506 5507
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5508
		 * "memcg" cannot be under rmdir() because we've already checked
5509 5510 5511 5512
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5513
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5514
			goto one_by_one;
5515
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5516
						PAGE_SIZE * count, &dummy)) {
5517
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5534 5535
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5536
		if (ret)
5537
			/* mem_cgroup_clear_mc() will do uncharge later */
5538
			return ret;
5539 5540
		mc.precharge++;
	}
5541 5542 5543 5544
	return ret;
}

/**
5545
 * get_mctgt_type - get target type of moving charge
5546 5547 5548
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5549
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5550 5551 5552 5553 5554 5555
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5556 5557 5558
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5559 5560 5561 5562 5563
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5564
	swp_entry_t	ent;
5565 5566 5567
};

enum mc_target_type {
5568
	MC_TARGET_NONE = 0,
5569
	MC_TARGET_PAGE,
5570
	MC_TARGET_SWAP,
5571 5572
};

D
Daisuke Nishimura 已提交
5573 5574
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5575
{
D
Daisuke Nishimura 已提交
5576
	struct page *page = vm_normal_page(vma, addr, ptent);
5577

D
Daisuke Nishimura 已提交
5578 5579 5580 5581
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5582
		if (!move_anon())
D
Daisuke Nishimura 已提交
5583
			return NULL;
5584 5585
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5586 5587 5588 5589 5590 5591 5592
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5593
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5594 5595 5596 5597 5598 5599 5600 5601
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5602 5603 5604 5605 5606
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5607 5608 5609 5610 5611
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5612 5613 5614 5615 5616 5617 5618
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5619

5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5639 5640 5641 5642 5643 5644
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5645
		if (do_swap_account)
5646 5647
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5648
	}
5649
#endif
5650 5651 5652
	return page;
}

5653
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5654 5655 5656 5657
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5658
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5659 5660 5661 5662 5663 5664
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5665 5666
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5667 5668

	if (!page && !ent.val)
5669
		return ret;
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5685 5686
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5687
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5688 5689 5690
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5691 5692 5693 5694
	}
	return ret;
}

5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5730 5731 5732 5733 5734 5735 5736 5737
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5738 5739 5740 5741
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5742
		return 0;
5743
	}
5744

5745 5746
	if (pmd_trans_unstable(pmd))
		return 0;
5747 5748
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5749
		if (get_mctgt_type(vma, addr, *pte, NULL))
5750 5751 5752 5753
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5754 5755 5756
	return 0;
}

5757 5758 5759 5760 5761
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5762
	down_read(&mm->mmap_sem);
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5774
	up_read(&mm->mmap_sem);
5775 5776 5777 5778 5779 5780 5781 5782 5783

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5784 5785 5786 5787 5788
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5789 5790
}

5791 5792
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5793
{
5794 5795 5796
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5797
	/* we must uncharge all the leftover precharges from mc.to */
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5809
	}
5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5844
	spin_lock(&mc.lock);
5845 5846
	mc.from = NULL;
	mc.to = NULL;
5847
	spin_unlock(&mc.lock);
5848
	mem_cgroup_end_move(from);
5849 5850
}

5851 5852
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5853
{
5854
	struct task_struct *p = cgroup_taskset_first(tset);
5855
	int ret = 0;
5856
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5857

5858
	if (memcg->move_charge_at_immigrate) {
5859 5860 5861
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5862
		VM_BUG_ON(from == memcg);
5863 5864 5865 5866 5867

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5868 5869 5870 5871
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5872
			VM_BUG_ON(mc.moved_charge);
5873
			VM_BUG_ON(mc.moved_swap);
5874
			mem_cgroup_start_move(from);
5875
			spin_lock(&mc.lock);
5876
			mc.from = from;
5877
			mc.to = memcg;
5878
			spin_unlock(&mc.lock);
5879
			/* We set mc.moving_task later */
5880 5881 5882 5883

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5884 5885
		}
		mmput(mm);
5886 5887 5888 5889
	}
	return ret;
}

5890 5891
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5892
{
5893
	mem_cgroup_clear_mc();
5894 5895
}

5896 5897 5898
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5899
{
5900 5901 5902 5903
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5904 5905 5906 5907
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5908

5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5920
		if (mc.precharge < HPAGE_PMD_NR) {
5921 5922 5923 5924 5925 5926 5927 5928 5929
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5930
							pc, mc.from, mc.to)) {
5931 5932 5933 5934 5935 5936 5937 5938
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5939
		return 0;
5940 5941
	}

5942 5943
	if (pmd_trans_unstable(pmd))
		return 0;
5944 5945 5946 5947
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5948
		swp_entry_t ent;
5949 5950 5951 5952

		if (!mc.precharge)
			break;

5953
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5954 5955 5956 5957 5958
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5959
			if (!mem_cgroup_move_account(page, 1, pc,
5960
						     mc.from, mc.to)) {
5961
				mc.precharge--;
5962 5963
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5964 5965
			}
			putback_lru_page(page);
5966
put:			/* get_mctgt_type() gets the page */
5967 5968
			put_page(page);
			break;
5969 5970
		case MC_TARGET_SWAP:
			ent = target.ent;
5971
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5972
				mc.precharge--;
5973 5974 5975
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5976
			break;
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5991
		ret = mem_cgroup_do_precharge(1);
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6035
	up_read(&mm->mmap_sem);
6036 6037
}

6038 6039
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6040
{
6041
	struct task_struct *p = cgroup_taskset_first(tset);
6042
	struct mm_struct *mm = get_task_mm(p);
6043 6044

	if (mm) {
6045 6046
		if (mc.to)
			mem_cgroup_move_charge(mm);
6047 6048
		mmput(mm);
	}
6049 6050
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6051
}
6052
#else	/* !CONFIG_MMU */
6053 6054
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6055 6056 6057
{
	return 0;
}
6058 6059
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6060 6061
{
}
6062 6063
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6064 6065 6066
{
}
#endif
B
Balbir Singh 已提交
6067

B
Balbir Singh 已提交
6068 6069 6070
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6071 6072 6073
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6074 6075
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6076
	.attach = mem_cgroup_move_task,
6077
	.base_cftypes = mem_cgroup_files,
6078
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6079
	.use_id = 1,
B
Balbir Singh 已提交
6080
};
6081

A
Andrew Morton 已提交
6082
#ifdef CONFIG_MEMCG_SWAP
6083 6084 6085
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6086
	if (!strcmp(s, "1"))
6087
		really_do_swap_account = 1;
6088
	else if (!strcmp(s, "0"))
6089 6090 6091
		really_do_swap_account = 0;
	return 1;
}
6092
__setup("swapaccount=", enable_swap_account);
6093 6094

#endif