memcontrol.c 144.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75
#else
76
#define do_swap_account		0
77 78 79
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109 110
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
111
	MEM_CGROUP_TARGET_NUMAINFO,
112 113
	MEM_CGROUP_NTARGETS,
};
114 115 116
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
117

118
struct mem_cgroup_stat_cpu {
119
	long count[MEM_CGROUP_STAT_NSTATS];
120
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121
	unsigned long targets[MEM_CGROUP_NTARGETS];
122 123
};

124 125 126 127 128 129 130
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

131 132 133 134
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
135
	struct lruvec		lruvec;
136
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
137

138 139
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

140 141 142 143
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
144
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
145
						/* use container_of	   */
146 147 148 149 150 151 152 153 154 155
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

176 177 178 179 180
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
181
/* For threshold */
182
struct mem_cgroup_threshold_ary {
183
	/* An array index points to threshold just below or equal to usage. */
184
	int current_threshold;
185 186 187 188 189
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
190 191 192 193 194 195 196 197 198 199 200 201

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
202 203 204 205 206
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
207

208 209
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
210

B
Balbir Singh 已提交
211 212 213 214 215 216 217
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
218 219 220
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
221 222 223 224 225 226 227
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
		 * But when using vfree(), that cannot be done at
		 * interrupt time, so we must then queue the work.
		 */
		struct work_struct work_freeing;
	};

252 253 254 255
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
256
	struct mem_cgroup_lru_info info;
257 258 259
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
260 261
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
262
#endif
263 264 265 266
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
267 268 269 270

	bool		oom_lock;
	atomic_t	under_oom;

271
	atomic_t	refcnt;
272

273
	int	swappiness;
274 275
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
276

277 278 279
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

280 281 282 283
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
284
	struct mem_cgroup_thresholds thresholds;
285

286
	/* thresholds for mem+swap usage. RCU-protected */
287
	struct mem_cgroup_thresholds memsw_thresholds;
288

K
KAMEZAWA Hiroyuki 已提交
289 290
	/* For oom notifier event fd */
	struct list_head oom_notify;
291

292 293 294 295 296
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
297 298 299 300
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
301 302
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
303
	/*
304
	 * percpu counter.
305
	 */
306
	struct mem_cgroup_stat_cpu __percpu *stat;
307 308 309 310 311 312
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
313 314 315 316

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
317 318
};

319 320 321 322 323 324
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
325
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
326
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
327 328 329
	NR_MOVE_TYPE,
};

330 331
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
332
	spinlock_t	  lock; /* for from, to */
333 334 335
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
336
	unsigned long moved_charge;
337
	unsigned long moved_swap;
338 339 340
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
341
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
342 343
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
344

D
Daisuke Nishimura 已提交
345 346 347 348 349 350
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

351 352 353 354 355 356
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

357 358 359 360
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
361 362
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
363

364 365 366
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
367
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
368
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
369
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
370
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
371 372 373
	NR_CHARGE_TYPE,
};

374
/* for encoding cft->private value on file */
375 376 377
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
378 379
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
380
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
381 382
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
383

384 385 386 387 388 389 390 391
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

392 393
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
394 395 396 397

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
398
#include <net/ip.h>
G
Glauber Costa 已提交
399 400 401 402

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
403
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
404 405 406 407
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

408 409 410 411 412 413 414 415 416 417 418 419 420 421
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
435
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
436 437 438 439 440 441
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
442

443
#ifdef CONFIG_INET
G
Glauber Costa 已提交
444 445 446 447 448 449 450 451
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
452 453 454
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

455
static void drain_all_stock_async(struct mem_cgroup *memcg);
456

457
static struct mem_cgroup_per_zone *
458
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
459
{
460
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
461 462
}

463
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
464
{
465
	return &memcg->css;
466 467
}

468
static struct mem_cgroup_per_zone *
469
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
470
{
471 472
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
473

474
	return mem_cgroup_zoneinfo(memcg, nid, zid);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
493
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
494
				struct mem_cgroup_per_zone *mz,
495 496
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
497 498 499 500 501 502 503 504
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

505 506 507
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
524 525 526
}

static void
527
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
528 529 530 531 532 533 534 535 536
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

537
static void
538
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
539 540 541 542
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
543
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
544 545 546 547
	spin_unlock(&mctz->lock);
}


548
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
549
{
550
	unsigned long long excess;
551 552
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
553 554
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
555 556 557
	mctz = soft_limit_tree_from_page(page);

	/*
558 559
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
560
	 */
561 562 563
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
564 565 566 567
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
568
		if (excess || mz->on_tree) {
569 570 571
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
572
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
573
			/*
574 575
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
576
			 */
577
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
578 579
			spin_unlock(&mctz->lock);
		}
580 581 582
	}
}

583
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
584 585 586 587 588
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
589
	for_each_node(node) {
590
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
591
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
592
			mctz = soft_limit_tree_node_zone(node, zone);
593
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
594 595 596 597
		}
	}
}

598 599 600 601
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
602
	struct mem_cgroup_per_zone *mz;
603 604

retry:
605
	mz = NULL;
606 607 608 609 610 611 612 613 614 615
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
616 617 618
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
654
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
655
				 enum mem_cgroup_stat_index idx)
656
{
657
	long val = 0;
658 659
	int cpu;

660 661
	get_online_cpus();
	for_each_online_cpu(cpu)
662
		val += per_cpu(memcg->stat->count[idx], cpu);
663
#ifdef CONFIG_HOTPLUG_CPU
664 665 666
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
667 668
#endif
	put_online_cpus();
669 670 671
	return val;
}

672
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
673 674 675
					 bool charge)
{
	int val = (charge) ? 1 : -1;
676
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
677 678
}

679
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
680 681 682 683 684 685
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
686
		val += per_cpu(memcg->stat->events[idx], cpu);
687
#ifdef CONFIG_HOTPLUG_CPU
688 689 690
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
691 692 693 694
#endif
	return val;
}

695
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
696
					 bool anon, int nr_pages)
697
{
698 699
	preempt_disable();

700 701 702 703 704 705
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
706
				nr_pages);
707
	else
708
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
709
				nr_pages);
710

711 712
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
713
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
714
	else {
715
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
716 717
		nr_pages = -nr_pages; /* for event */
	}
718

719
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
720

721
	preempt_enable();
722 723
}

724
unsigned long
725 726 727 728 729 730 731 732 733
mem_cgroup_get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
734
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
735
			unsigned int lru_mask)
736 737
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
738
	enum lru_list lru;
739 740
	unsigned long ret = 0;

741
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
742

H
Hugh Dickins 已提交
743 744 745
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
746 747 748 749 750
	}
	return ret;
}

static unsigned long
751
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
752 753
			int nid, unsigned int lru_mask)
{
754 755 756
	u64 total = 0;
	int zid;

757
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
758 759
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
760

761 762
	return total;
}
763

764
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
765
			unsigned int lru_mask)
766
{
767
	int nid;
768 769
	u64 total = 0;

770
	for_each_node_state(nid, N_HIGH_MEMORY)
771
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
772
	return total;
773 774
}

775 776
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
777 778 779
{
	unsigned long val, next;

780 781
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
782
	/* from time_after() in jiffies.h */
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
799
	}
800
	return false;
801 802 803 804 805 806
}

/*
 * Check events in order.
 *
 */
807
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
808
{
809
	preempt_disable();
810
	/* threshold event is triggered in finer grain than soft limit */
811 812
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
813 814
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
815 816 817 818 819 820 821 822 823

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

824
		mem_cgroup_threshold(memcg);
825
		if (unlikely(do_softlimit))
826
			mem_cgroup_update_tree(memcg, page);
827
#if MAX_NUMNODES > 1
828
		if (unlikely(do_numainfo))
829
			atomic_inc(&memcg->numainfo_events);
830
#endif
831 832
	} else
		preempt_enable();
833 834
}

G
Glauber Costa 已提交
835
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
836 837 838 839 840 841
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

842
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
843
{
844 845 846 847 848 849 850 851
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

852 853 854 855
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

856
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
857
{
858
	struct mem_cgroup *memcg = NULL;
859 860 861

	if (!mm)
		return NULL;
862 863 864 865 866 867 868
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
869 870
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
871
			break;
872
	} while (!css_tryget(&memcg->css));
873
	rcu_read_unlock();
874
	return memcg;
875 876
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
897
{
898 899
	struct mem_cgroup *memcg = NULL;
	int id = 0;
900

901 902 903
	if (mem_cgroup_disabled())
		return NULL;

904 905
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
906

907 908
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
909

910 911
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
912

913 914 915 916 917
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
918

919
	while (!memcg) {
920
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
921
		struct cgroup_subsys_state *css;
922

923 924 925 926 927 928 929 930 931 932 933
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
934

935 936 937 938 939 940 941 942
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
943 944
		rcu_read_unlock();

945 946 947 948 949 950 951
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
952 953 954 955 956

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
957
}
K
KAMEZAWA Hiroyuki 已提交
958

959 960 961 962 963 964 965
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
966 967 968 969 970 971
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
972

973 974 975 976 977 978
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
979
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
980
	     iter != NULL;				\
981
	     iter = mem_cgroup_iter(root, iter, NULL))
982

983
#define for_each_mem_cgroup(iter)			\
984
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
985
	     iter != NULL;				\
986
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
987

988
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
989
{
990
	return (memcg == root_mem_cgroup);
991 992
}

993 994
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
995
	struct mem_cgroup *memcg;
996 997 998 999 1000

	if (!mm)
		return;

	rcu_read_lock();
1001 1002
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1003 1004 1005 1006
		goto out;

	switch (idx) {
	case PGFAULT:
1007 1008 1009 1010
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1011 1012 1013 1014 1015 1016 1017 1018 1019
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1069 1070
{
	struct mem_cgroup_per_zone *mz;
1071 1072
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1073

1074
	if (mem_cgroup_disabled())
1075 1076
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1077
	pc = lookup_page_cgroup(page);
1078
	memcg = pc->mem_cgroup;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

	/*
	 * Surreptitiously switch any uncharged page to root:
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
	if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
		pc->mem_cgroup = memcg = root_mem_cgroup;

1092 1093
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
1094
	mz->lru_size[lru] += 1 << compound_order(page);
1095
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1096
}
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1107
 */
1108
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1109 1110
{
	struct mem_cgroup_per_zone *mz;
1111
	struct mem_cgroup *memcg;
1112 1113 1114 1115 1116 1117
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1118 1119
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1120 1121
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
1122 1123
	VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
	mz->lru_size[lru] -= 1 << compound_order(page);
1124 1125
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1144
{
1145 1146 1147
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1148
}
1149

1150
/*
1151
 * Checks whether given mem is same or in the root_mem_cgroup's
1152 1153
 * hierarchy subtree
 */
1154 1155
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1156
{
1157 1158 1159 1160
	if (root_memcg == memcg)
		return true;
	if (!root_memcg->use_hierarchy)
		return false;
1161 1162 1163 1164 1165 1166 1167 1168
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1169
	rcu_read_lock();
1170
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1171 1172
	rcu_read_unlock();
	return ret;
1173 1174
}

1175
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1176 1177
{
	int ret;
1178
	struct mem_cgroup *curr = NULL;
1179
	struct task_struct *p;
1180

1181
	p = find_lock_task_mm(task);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1197 1198
	if (!curr)
		return 0;
1199
	/*
1200
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1201
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1202 1203
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1204
	 */
1205
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1206
	css_put(&curr->css);
1207 1208 1209
	return ret;
}

1210
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1211
{
1212
	unsigned long inactive_ratio;
1213
	unsigned long inactive;
1214
	unsigned long active;
1215
	unsigned long gb;
1216

1217 1218
	inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_ANON);
1219

1220 1221 1222 1223 1224 1225
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1226
	return inactive * inactive_ratio < active;
1227 1228
}

1229
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1230 1231 1232 1233
{
	unsigned long active;
	unsigned long inactive;

1234 1235
	inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_FILE);
1236 1237 1238 1239

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1250 1251
	if (!PageCgroupUsed(pc))
		return NULL;
1252 1253
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1254
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1255
	return &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
1256 1257
}

1258 1259 1260
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1261
/**
1262 1263
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1264
 *
1265
 * Returns the maximum amount of memory @mem can be charged with, in
1266
 * pages.
1267
 */
1268
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1269
{
1270 1271
	unsigned long long margin;

1272
	margin = res_counter_margin(&memcg->res);
1273
	if (do_swap_account)
1274
		margin = min(margin, res_counter_margin(&memcg->memsw));
1275
	return margin >> PAGE_SHIFT;
1276 1277
}

1278
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1279 1280 1281 1282 1283 1284 1285
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1286
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1287 1288
}

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1303 1304 1305 1306

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1307
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1308
{
1309
	atomic_inc(&memcg_moving);
1310
	atomic_inc(&memcg->moving_account);
1311 1312 1313
	synchronize_rcu();
}

1314
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1315
{
1316 1317 1318 1319
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1320 1321
	if (memcg) {
		atomic_dec(&memcg_moving);
1322
		atomic_dec(&memcg->moving_account);
1323
	}
1324
}
1325

1326 1327 1328
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1329 1330
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1331 1332 1333 1334 1335 1336 1337
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1338
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1339 1340
{
	VM_BUG_ON(!rcu_read_lock_held());
1341
	return atomic_read(&memcg->moving_account) > 0;
1342
}
1343

1344
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1345
{
1346 1347
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1348
	bool ret = false;
1349 1350 1351 1352 1353 1354 1355 1356 1357
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1358

1359 1360
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1361 1362
unlock:
	spin_unlock(&mc.lock);
1363 1364 1365
	return ret;
}

1366
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1367 1368
{
	if (mc.moving_task && current != mc.moving_task) {
1369
		if (mem_cgroup_under_move(memcg)) {
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1382 1383 1384 1385
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1386
 * see mem_cgroup_stolen(), too.
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1400
/**
1401
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1420
	if (!memcg || !p)
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1466 1467 1468 1469
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1470
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1471 1472
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1473 1474
	struct mem_cgroup *iter;

1475
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1476
		num++;
1477 1478 1479
	return num;
}

D
David Rientjes 已提交
1480 1481 1482 1483 1484 1485 1486 1487
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1488 1489 1490
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1491 1492 1493 1494 1495 1496 1497 1498
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1545
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1546 1547
		int nid, bool noswap)
{
1548
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1549 1550 1551
		return true;
	if (noswap || !total_swap_pages)
		return false;
1552
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1553 1554 1555 1556
		return true;
	return false;

}
1557 1558 1559 1560 1561 1562 1563 1564
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1565
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1566 1567
{
	int nid;
1568 1569 1570 1571
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1572
	if (!atomic_read(&memcg->numainfo_events))
1573
		return;
1574
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1575 1576 1577
		return;

	/* make a nodemask where this memcg uses memory from */
1578
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1579 1580 1581

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1582 1583
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1584
	}
1585

1586 1587
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1602
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1603 1604 1605
{
	int node;

1606 1607
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1608

1609
	node = next_node(node, memcg->scan_nodes);
1610
	if (node == MAX_NUMNODES)
1611
		node = first_node(memcg->scan_nodes);
1612 1613 1614 1615 1616 1617 1618 1619 1620
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1621
	memcg->last_scanned_node = node;
1622 1623 1624
	return node;
}

1625 1626 1627 1628 1629 1630
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1631
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1632 1633 1634 1635 1636 1637 1638
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1639 1640
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1641
		     nid < MAX_NUMNODES;
1642
		     nid = next_node(nid, memcg->scan_nodes)) {
1643

1644
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1645 1646 1647 1648 1649 1650 1651
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1652
		if (node_isset(nid, memcg->scan_nodes))
1653
			continue;
1654
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1655 1656 1657 1658 1659
			return true;
	}
	return false;
}

1660
#else
1661
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1662 1663 1664
{
	return 0;
}
1665

1666
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1667
{
1668
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1669
}
1670 1671
#endif

1672 1673 1674 1675
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1676
{
1677
	struct mem_cgroup *victim = NULL;
1678
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1679
	int loop = 0;
1680
	unsigned long excess;
1681
	unsigned long nr_scanned;
1682 1683 1684 1685
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1686

1687
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1688

1689
	while (1) {
1690
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1691
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1692
			loop++;
1693 1694 1695 1696 1697 1698
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1699
				if (!total)
1700 1701
					break;
				/*
L
Lucas De Marchi 已提交
1702
				 * We want to do more targeted reclaim.
1703 1704 1705 1706 1707
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1708
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1709 1710
					break;
			}
1711
			continue;
1712
		}
1713
		if (!mem_cgroup_reclaimable(victim, false))
1714
			continue;
1715 1716 1717 1718
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1719
			break;
1720
	}
1721
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1722
	return total;
1723 1724
}

K
KAMEZAWA Hiroyuki 已提交
1725 1726 1727
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1728
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1729
 */
1730
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1731
{
1732
	struct mem_cgroup *iter, *failed = NULL;
1733

1734
	for_each_mem_cgroup_tree(iter, memcg) {
1735
		if (iter->oom_lock) {
1736 1737 1738 1739 1740
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1741 1742
			mem_cgroup_iter_break(memcg, iter);
			break;
1743 1744
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1745
	}
K
KAMEZAWA Hiroyuki 已提交
1746

1747
	if (!failed)
1748
		return true;
1749 1750 1751 1752 1753

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1754
	for_each_mem_cgroup_tree(iter, memcg) {
1755
		if (iter == failed) {
1756 1757
			mem_cgroup_iter_break(memcg, iter);
			break;
1758 1759 1760
		}
		iter->oom_lock = false;
	}
1761
	return false;
1762
}
1763

1764
/*
1765
 * Has to be called with memcg_oom_lock
1766
 */
1767
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1768
{
K
KAMEZAWA Hiroyuki 已提交
1769 1770
	struct mem_cgroup *iter;

1771
	for_each_mem_cgroup_tree(iter, memcg)
1772 1773 1774 1775
		iter->oom_lock = false;
	return 0;
}

1776
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1777 1778 1779
{
	struct mem_cgroup *iter;

1780
	for_each_mem_cgroup_tree(iter, memcg)
1781 1782 1783
		atomic_inc(&iter->under_oom);
}

1784
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1785 1786 1787
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1788 1789 1790 1791 1792
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1793
	for_each_mem_cgroup_tree(iter, memcg)
1794
		atomic_add_unless(&iter->under_oom, -1, 0);
1795 1796
}

1797
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1798 1799
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1800
struct oom_wait_info {
1801
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1802 1803 1804 1805 1806 1807
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1808 1809
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1810 1811 1812
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1813
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1814 1815

	/*
1816
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1817 1818
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1819 1820
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1821 1822 1823 1824
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1825
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1826
{
1827 1828
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1829 1830
}

1831
static void memcg_oom_recover(struct mem_cgroup *memcg)
1832
{
1833 1834
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1835 1836
}

K
KAMEZAWA Hiroyuki 已提交
1837 1838 1839
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1840 1841
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1842
{
K
KAMEZAWA Hiroyuki 已提交
1843
	struct oom_wait_info owait;
1844
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1845

1846
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1847 1848 1849 1850
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1851
	need_to_kill = true;
1852
	mem_cgroup_mark_under_oom(memcg);
1853

1854
	/* At first, try to OOM lock hierarchy under memcg.*/
1855
	spin_lock(&memcg_oom_lock);
1856
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1857 1858 1859 1860 1861
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1862
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1863
	if (!locked || memcg->oom_kill_disable)
1864 1865
		need_to_kill = false;
	if (locked)
1866
		mem_cgroup_oom_notify(memcg);
1867
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1868

1869 1870
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1871
		mem_cgroup_out_of_memory(memcg, mask, order);
1872
	} else {
K
KAMEZAWA Hiroyuki 已提交
1873
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1874
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1875
	}
1876
	spin_lock(&memcg_oom_lock);
1877
	if (locked)
1878 1879
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1880
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1881

1882
	mem_cgroup_unmark_under_oom(memcg);
1883

K
KAMEZAWA Hiroyuki 已提交
1884 1885 1886
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1887
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1888
	return true;
1889 1890
}

1891 1892 1893
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1911 1912
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1913
 */
1914

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
	 * need to take move_lock_page_cgroup(). Because we already hold
	 * rcu_read_lock(), any calls to move_account will be delayed until
1930
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1931
	 */
1932
	if (!mem_cgroup_stolen(memcg))
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
	 * should take move_lock_page_cgroup().
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1955 1956
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1957
{
1958
	struct mem_cgroup *memcg;
1959
	struct page_cgroup *pc = lookup_page_cgroup(page);
1960
	unsigned long uninitialized_var(flags);
1961

1962
	if (mem_cgroup_disabled())
1963
		return;
1964

1965 1966
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1967
		return;
1968 1969

	switch (idx) {
1970 1971
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1972 1973 1974
		break;
	default:
		BUG();
1975
	}
1976

1977
	this_cpu_add(memcg->stat->count[idx], val);
1978
}
1979

1980 1981 1982 1983
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1984
#define CHARGE_BATCH	32U
1985 1986
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1987
	unsigned int nr_pages;
1988
	struct work_struct work;
1989
	unsigned long flags;
1990
#define FLUSHING_CACHED_CHARGE	0
1991 1992
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1993
static DEFINE_MUTEX(percpu_charge_mutex);
1994 1995

/*
1996
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1997 1998 1999 2000
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2001
static bool consume_stock(struct mem_cgroup *memcg)
2002 2003 2004 2005 2006
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2007
	if (memcg == stock->cached && stock->nr_pages)
2008
		stock->nr_pages--;
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2022 2023 2024 2025
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2026
		if (do_swap_account)
2027 2028
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2041
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2042 2043 2044 2045
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2046
 * This will be consumed by consume_stock() function, later.
2047
 */
2048
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2049 2050 2051
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2052
	if (stock->cached != memcg) { /* reset if necessary */
2053
		drain_stock(stock);
2054
		stock->cached = memcg;
2055
	}
2056
	stock->nr_pages += nr_pages;
2057 2058 2059 2060
	put_cpu_var(memcg_stock);
}

/*
2061
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2062 2063
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2064
 */
2065
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2066
{
2067
	int cpu, curcpu;
2068

2069 2070
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2071
	curcpu = get_cpu();
2072 2073
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2074
		struct mem_cgroup *memcg;
2075

2076 2077
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2078
			continue;
2079
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2080
			continue;
2081 2082 2083 2084 2085 2086
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2087
	}
2088
	put_cpu();
2089 2090 2091 2092 2093 2094

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2095
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2096 2097 2098
			flush_work(&stock->work);
	}
out:
2099
 	put_online_cpus();
2100 2101 2102 2103 2104 2105 2106 2107
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2108
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2109
{
2110 2111 2112 2113 2114
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2115
	drain_all_stock(root_memcg, false);
2116
	mutex_unlock(&percpu_charge_mutex);
2117 2118 2119
}

/* This is a synchronous drain interface. */
2120
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2121 2122
{
	/* called when force_empty is called */
2123
	mutex_lock(&percpu_charge_mutex);
2124
	drain_all_stock(root_memcg, true);
2125
	mutex_unlock(&percpu_charge_mutex);
2126 2127
}

2128 2129 2130 2131
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2132
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2133 2134 2135
{
	int i;

2136
	spin_lock(&memcg->pcp_counter_lock);
2137
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2138
		long x = per_cpu(memcg->stat->count[i], cpu);
2139

2140 2141
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2142
	}
2143
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2144
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2145

2146 2147
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2148
	}
2149
	spin_unlock(&memcg->pcp_counter_lock);
2150 2151 2152
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2153 2154 2155 2156 2157
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2158
	struct mem_cgroup *iter;
2159

2160
	if (action == CPU_ONLINE)
2161 2162
		return NOTIFY_OK;

2163
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2164
		return NOTIFY_OK;
2165

2166
	for_each_mem_cgroup(iter)
2167 2168
		mem_cgroup_drain_pcp_counter(iter, cpu);

2169 2170 2171 2172 2173
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2184
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2185
				unsigned int nr_pages, bool oom_check)
2186
{
2187
	unsigned long csize = nr_pages * PAGE_SIZE;
2188 2189 2190 2191 2192
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2193
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2194 2195 2196 2197

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2198
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2199 2200 2201
		if (likely(!ret))
			return CHARGE_OK;

2202
		res_counter_uncharge(&memcg->res, csize);
2203 2204 2205 2206
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2207
	/*
2208 2209
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2210 2211 2212 2213
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2214
	if (nr_pages == CHARGE_BATCH)
2215 2216 2217 2218 2219
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2220
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2221
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2222
		return CHARGE_RETRY;
2223
	/*
2224 2225 2226 2227 2228 2229 2230
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2231
	 */
2232
	if (nr_pages == 1 && ret)
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2246
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2247 2248 2249 2250 2251
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2252
/*
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2272
 */
2273
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2274
				   gfp_t gfp_mask,
2275
				   unsigned int nr_pages,
2276
				   struct mem_cgroup **ptr,
2277
				   bool oom)
2278
{
2279
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2280
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2281
	struct mem_cgroup *memcg = NULL;
2282
	int ret;
2283

K
KAMEZAWA Hiroyuki 已提交
2284 2285 2286 2287 2288 2289 2290 2291
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2292

2293
	/*
2294 2295
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2296 2297 2298
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2299
	if (!*ptr && !mm)
2300
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2301
again:
2302 2303 2304 2305
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2306
			goto done;
2307
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2308
			goto done;
2309
		css_get(&memcg->css);
2310
	} else {
K
KAMEZAWA Hiroyuki 已提交
2311
		struct task_struct *p;
2312

K
KAMEZAWA Hiroyuki 已提交
2313 2314 2315
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2316
		 * Because we don't have task_lock(), "p" can exit.
2317
		 * In that case, "memcg" can point to root or p can be NULL with
2318 2319 2320 2321 2322 2323
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2324
		 */
2325
		memcg = mem_cgroup_from_task(p);
2326 2327 2328
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2329 2330 2331
			rcu_read_unlock();
			goto done;
		}
2332
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2345
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2346 2347 2348 2349 2350
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2351

2352 2353
	do {
		bool oom_check;
2354

2355
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2356
		if (fatal_signal_pending(current)) {
2357
			css_put(&memcg->css);
2358
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2359
		}
2360

2361 2362 2363 2364
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2365
		}
2366

2367
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2368 2369 2370 2371
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2372
			batch = nr_pages;
2373 2374
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2375
			goto again;
2376
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2377
			css_put(&memcg->css);
2378 2379
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2380
			if (!oom) {
2381
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2382
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2383
			}
2384 2385 2386 2387
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2388
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2389
			goto bypass;
2390
		}
2391 2392
	} while (ret != CHARGE_OK);

2393
	if (batch > nr_pages)
2394 2395
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2396
done:
2397
	*ptr = memcg;
2398 2399
	return 0;
nomem:
2400
	*ptr = NULL;
2401
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2402
bypass:
2403 2404
	*ptr = root_mem_cgroup;
	return -EINTR;
2405
}
2406

2407 2408 2409 2410 2411
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2412
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2413
				       unsigned int nr_pages)
2414
{
2415
	if (!mem_cgroup_is_root(memcg)) {
2416 2417
		unsigned long bytes = nr_pages * PAGE_SIZE;

2418
		res_counter_uncharge(&memcg->res, bytes);
2419
		if (do_swap_account)
2420
			res_counter_uncharge(&memcg->memsw, bytes);
2421
	}
2422 2423
}

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2461
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2462
{
2463
	struct mem_cgroup *memcg = NULL;
2464
	struct page_cgroup *pc;
2465
	unsigned short id;
2466 2467
	swp_entry_t ent;

2468 2469 2470
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2471
	lock_page_cgroup(pc);
2472
	if (PageCgroupUsed(pc)) {
2473 2474 2475
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2476
	} else if (PageSwapCache(page)) {
2477
		ent.val = page_private(page);
2478
		id = lookup_swap_cgroup_id(ent);
2479
		rcu_read_lock();
2480 2481 2482
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2483
		rcu_read_unlock();
2484
	}
2485
	unlock_page_cgroup(pc);
2486
	return memcg;
2487 2488
}

2489
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2490
				       struct page *page,
2491
				       unsigned int nr_pages,
2492 2493
				       enum charge_type ctype,
				       bool lrucare)
2494
{
2495
	struct page_cgroup *pc = lookup_page_cgroup(page);
2496 2497
	struct zone *uninitialized_var(zone);
	bool was_on_lru = false;
2498
	bool anon;
2499

2500 2501 2502
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2503
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2504 2505 2506 2507 2508 2509
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
			ClearPageLRU(page);
			del_page_from_lru_list(zone, page, page_lru(page));
			was_on_lru = true;
		}
	}

2525
	pc->mem_cgroup = memcg;
2526 2527 2528 2529 2530 2531 2532
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2533
	smp_wmb();
2534
	SetPageCgroupUsed(pc);
2535

2536 2537 2538 2539 2540 2541 2542 2543 2544
	if (lrucare) {
		if (was_on_lru) {
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
			add_page_to_lru_list(zone, page, page_lru(page));
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2545 2546 2547 2548 2549 2550
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2551
	unlock_page_cgroup(pc);
2552

2553 2554 2555 2556 2557
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2558
	memcg_check_events(memcg, page);
2559
}
2560

2561 2562
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2563
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2564 2565
/*
 * Because tail pages are not marked as "used", set it. We're under
2566 2567 2568
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2569
 */
2570
void mem_cgroup_split_huge_fixup(struct page *head)
2571 2572
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2573 2574
	struct page_cgroup *pc;
	int i;
2575

2576 2577
	if (mem_cgroup_disabled())
		return;
2578 2579 2580 2581 2582 2583
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2584
}
2585
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2586

2587
/**
2588
 * mem_cgroup_move_account - move account of the page
2589
 * @page: the page
2590
 * @nr_pages: number of regular pages (>1 for huge pages)
2591 2592 2593 2594 2595
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2596
 * - page is not on LRU (isolate_page() is useful.)
2597
 * - compound_lock is held when nr_pages > 1
2598
 *
2599 2600
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2601
 */
2602 2603 2604 2605
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2606
				   struct mem_cgroup *to)
2607
{
2608 2609
	unsigned long flags;
	int ret;
2610
	bool anon = PageAnon(page);
2611

2612
	VM_BUG_ON(from == to);
2613
	VM_BUG_ON(PageLRU(page));
2614 2615 2616 2617 2618 2619 2620
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2621
	if (nr_pages > 1 && !PageTransHuge(page))
2622 2623 2624 2625 2626 2627 2628 2629
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2630
	move_lock_mem_cgroup(from, &flags);
2631

2632
	if (!anon && page_mapped(page)) {
2633 2634 2635 2636 2637
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2638
	}
2639
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2640

2641
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2642
	pc->mem_cgroup = to;
2643
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2644 2645 2646
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2647
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2648
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2649
	 * status here.
2650
	 */
2651
	move_unlock_mem_cgroup(from, &flags);
2652 2653
	ret = 0;
unlock:
2654
	unlock_page_cgroup(pc);
2655 2656 2657
	/*
	 * check events
	 */
2658 2659
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2660
out:
2661 2662 2663 2664 2665 2666 2667
	return ret;
}

/*
 * move charges to its parent.
 */

2668 2669
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2670 2671 2672 2673
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct mem_cgroup *parent;
2674
	unsigned int nr_pages;
2675
	unsigned long uninitialized_var(flags);
2676 2677 2678
	int ret;

	/* Is ROOT ? */
2679
	if (mem_cgroup_is_root(child))
2680 2681
		return -EINVAL;

2682 2683 2684 2685 2686
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2687

2688
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2689

2690 2691 2692 2693 2694 2695
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2696

2697
	if (nr_pages > 1)
2698 2699
		flags = compound_lock_irqsave(page);

2700
	ret = mem_cgroup_move_account(page, nr_pages,
2701
				pc, child, parent);
2702 2703
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2704

2705
	if (nr_pages > 1)
2706
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2707
	putback_lru_page(page);
2708
put:
2709
	put_page(page);
2710
out:
2711 2712 2713
	return ret;
}

2714 2715 2716 2717 2718 2719 2720
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2721
				gfp_t gfp_mask, enum charge_type ctype)
2722
{
2723
	struct mem_cgroup *memcg = NULL;
2724
	unsigned int nr_pages = 1;
2725
	bool oom = true;
2726
	int ret;
A
Andrea Arcangeli 已提交
2727

A
Andrea Arcangeli 已提交
2728
	if (PageTransHuge(page)) {
2729
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2730
		VM_BUG_ON(!PageTransHuge(page));
2731 2732 2733 2734 2735
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2736
	}
2737

2738
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2739
	if (ret == -ENOMEM)
2740
		return ret;
2741
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2742 2743 2744
	return 0;
}

2745 2746
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2747
{
2748
	if (mem_cgroup_disabled())
2749
		return 0;
2750 2751 2752
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2753
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2754
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2755 2756
}

D
Daisuke Nishimura 已提交
2757 2758 2759 2760
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2761 2762
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2763
{
2764
	struct mem_cgroup *memcg = NULL;
2765
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2766 2767
	int ret;

2768
	if (mem_cgroup_disabled())
2769
		return 0;
2770 2771
	if (PageCompound(page))
		return 0;
2772

2773
	if (unlikely(!mm))
2774
		mm = &init_mm;
2775 2776
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2777

2778
	if (!PageSwapCache(page))
2779
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2780
	else { /* page is swapcache/shmem */
2781
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2782
		if (!ret)
2783 2784
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2785
	return ret;
2786 2787
}

2788 2789 2790
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2791
 * struct page_cgroup is acquired. This refcnt will be consumed by
2792 2793
 * "commit()" or removed by "cancel()"
 */
2794 2795
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2796
				 gfp_t mask, struct mem_cgroup **memcgp)
2797
{
2798
	struct mem_cgroup *memcg;
2799
	int ret;
2800

2801
	*memcgp = NULL;
2802

2803
	if (mem_cgroup_disabled())
2804 2805 2806 2807 2808 2809
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2810 2811 2812
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2813 2814
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2815
		goto charge_cur_mm;
2816 2817
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2818
		goto charge_cur_mm;
2819 2820
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2821
	css_put(&memcg->css);
2822 2823
	if (ret == -EINTR)
		ret = 0;
2824
	return ret;
2825 2826 2827
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2828 2829 2830 2831
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2832 2833
}

D
Daisuke Nishimura 已提交
2834
static void
2835
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2836
					enum charge_type ctype)
2837
{
2838
	if (mem_cgroup_disabled())
2839
		return;
2840
	if (!memcg)
2841
		return;
2842
	cgroup_exclude_rmdir(&memcg->css);
2843

2844
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2845 2846 2847
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2848 2849 2850
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2851
	 */
2852
	if (do_swap_account && PageSwapCache(page)) {
2853
		swp_entry_t ent = {.val = page_private(page)};
2854
		mem_cgroup_uncharge_swap(ent);
2855
	}
2856 2857 2858 2859 2860
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2861
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2862 2863
}

2864 2865
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2866
{
2867 2868
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2869 2870
}

2871
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2872
{
2873
	if (mem_cgroup_disabled())
2874
		return;
2875
	if (!memcg)
2876
		return;
2877
	__mem_cgroup_cancel_charge(memcg, 1);
2878 2879
}

2880
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2881 2882
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2883 2884 2885
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2886

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2898
		batch->memcg = memcg;
2899 2900
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2901
	 * In those cases, all pages freed continuously can be expected to be in
2902 2903 2904 2905 2906 2907 2908 2909
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2910
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2911 2912
		goto direct_uncharge;

2913 2914 2915 2916 2917
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2918
	if (batch->memcg != memcg)
2919 2920
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2921
	batch->nr_pages++;
2922
	if (uncharge_memsw)
2923
		batch->memsw_nr_pages++;
2924 2925
	return;
direct_uncharge:
2926
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2927
	if (uncharge_memsw)
2928 2929 2930
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2931
}
2932

2933
/*
2934
 * uncharge if !page_mapped(page)
2935
 */
2936
static struct mem_cgroup *
2937
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2938
{
2939
	struct mem_cgroup *memcg = NULL;
2940 2941
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2942
	bool anon;
2943

2944
	if (mem_cgroup_disabled())
2945
		return NULL;
2946

K
KAMEZAWA Hiroyuki 已提交
2947
	if (PageSwapCache(page))
2948
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2949

A
Andrea Arcangeli 已提交
2950
	if (PageTransHuge(page)) {
2951
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2952 2953
		VM_BUG_ON(!PageTransHuge(page));
	}
2954
	/*
2955
	 * Check if our page_cgroup is valid
2956
	 */
2957
	pc = lookup_page_cgroup(page);
2958
	if (unlikely(!PageCgroupUsed(pc)))
2959
		return NULL;
2960

2961
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2962

2963
	memcg = pc->mem_cgroup;
2964

K
KAMEZAWA Hiroyuki 已提交
2965 2966 2967
	if (!PageCgroupUsed(pc))
		goto unlock_out;

2968 2969
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
2970 2971
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2972 2973 2974 2975 2976
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
2977 2978
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
2979
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2980 2981
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2993
	}
K
KAMEZAWA Hiroyuki 已提交
2994

2995
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2996

2997
	ClearPageCgroupUsed(pc);
2998 2999 3000 3001 3002 3003
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3004

3005
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3006
	/*
3007
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3008 3009
	 * will never be freed.
	 */
3010
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3011
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3012 3013
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3014
	}
3015 3016
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3017

3018
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3019 3020 3021

unlock_out:
	unlock_page_cgroup(pc);
3022
	return NULL;
3023 3024
}

3025 3026
void mem_cgroup_uncharge_page(struct page *page)
{
3027 3028 3029
	/* early check. */
	if (page_mapped(page))
		return;
3030
	VM_BUG_ON(page->mapping && !PageAnon(page));
3031 3032 3033 3034 3035 3036
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3037
	VM_BUG_ON(page->mapping);
3038 3039 3040
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3055 3056
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3077 3078 3079 3080 3081 3082
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3083
	memcg_oom_recover(batch->memcg);
3084 3085 3086 3087
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3088
#ifdef CONFIG_SWAP
3089
/*
3090
 * called after __delete_from_swap_cache() and drop "page" account.
3091 3092
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3093 3094
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3095 3096
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3097 3098 3099 3100 3101 3102
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3103

K
KAMEZAWA Hiroyuki 已提交
3104 3105 3106 3107 3108
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3109
		swap_cgroup_record(ent, css_id(&memcg->css));
3110
}
3111
#endif
3112 3113 3114 3115 3116 3117 3118

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3119
{
3120
	struct mem_cgroup *memcg;
3121
	unsigned short id;
3122 3123 3124 3125

	if (!do_swap_account)
		return;

3126 3127 3128
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3129
	if (memcg) {
3130 3131 3132 3133
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3134
		if (!mem_cgroup_is_root(memcg))
3135
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3136
		mem_cgroup_swap_statistics(memcg, false);
3137 3138
		mem_cgroup_put(memcg);
	}
3139
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3140
}
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3157
				struct mem_cgroup *from, struct mem_cgroup *to)
3158 3159 3160 3161 3162 3163 3164 3165
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3166
		mem_cgroup_swap_statistics(to, true);
3167
		/*
3168 3169 3170 3171 3172 3173
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3174 3175 3176 3177 3178 3179 3180 3181
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3182
				struct mem_cgroup *from, struct mem_cgroup *to)
3183 3184 3185
{
	return -EINVAL;
}
3186
#endif
K
KAMEZAWA Hiroyuki 已提交
3187

3188
/*
3189 3190
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3191
 */
3192
int mem_cgroup_prepare_migration(struct page *page,
3193
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3194
{
3195
	struct mem_cgroup *memcg = NULL;
3196
	struct page_cgroup *pc;
3197
	enum charge_type ctype;
3198
	int ret = 0;
3199

3200
	*memcgp = NULL;
3201

A
Andrea Arcangeli 已提交
3202
	VM_BUG_ON(PageTransHuge(page));
3203
	if (mem_cgroup_disabled())
3204 3205
		return 0;

3206 3207 3208
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3209 3210
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3242
	}
3243
	unlock_page_cgroup(pc);
3244 3245 3246 3247
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3248
	if (!memcg)
3249
		return 0;
3250

3251 3252
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3253
	css_put(&memcg->css);/* drop extra refcnt */
3254
	if (ret) {
3255 3256 3257 3258 3259 3260 3261 3262 3263
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3264
		/* we'll need to revisit this error code (we have -EINTR) */
3265
		return -ENOMEM;
3266
	}
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3279
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3280
	return ret;
3281
}
3282

3283
/* remove redundant charge if migration failed*/
3284
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3285
	struct page *oldpage, struct page *newpage, bool migration_ok)
3286
{
3287
	struct page *used, *unused;
3288
	struct page_cgroup *pc;
3289
	bool anon;
3290

3291
	if (!memcg)
3292
		return;
3293
	/* blocks rmdir() */
3294
	cgroup_exclude_rmdir(&memcg->css);
3295
	if (!migration_ok) {
3296 3297
		used = oldpage;
		unused = newpage;
3298
	} else {
3299
		used = newpage;
3300 3301
		unused = oldpage;
	}
3302
	/*
3303 3304 3305
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3306
	 */
3307 3308 3309 3310
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3311 3312 3313 3314
	anon = PageAnon(used);
	__mem_cgroup_uncharge_common(unused,
		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3315

3316
	/*
3317 3318 3319 3320 3321 3322
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3323
	 */
3324
	if (anon)
3325
		mem_cgroup_uncharge_page(used);
3326
	/*
3327 3328
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3329 3330 3331
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3332
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3333
}
3334

3335 3336 3337 3338 3339 3340 3341 3342
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3343
	struct mem_cgroup *memcg = NULL;
3344 3345 3346 3347 3348 3349 3350 3351 3352
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3353 3354 3355 3356 3357
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3358 3359
	unlock_page_cgroup(pc);

3360 3361 3362 3363 3364 3365 3366
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;

3367 3368 3369 3370 3371 3372 3373 3374
	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3375
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3376 3377
}

3378 3379 3380 3381 3382 3383
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3384 3385 3386 3387 3388
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3408
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3409 3410 3411 3412 3413
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3414 3415
static DEFINE_MUTEX(set_limit_mutex);

3416
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3417
				unsigned long long val)
3418
{
3419
	int retry_count;
3420
	u64 memswlimit, memlimit;
3421
	int ret = 0;
3422 3423
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3424
	int enlarge;
3425 3426 3427 3428 3429 3430 3431 3432 3433

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3434

3435
	enlarge = 0;
3436
	while (retry_count) {
3437 3438 3439 3440
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3441 3442 3443
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3444
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3445 3446 3447 3448 3449 3450
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3451 3452
			break;
		}
3453 3454 3455 3456 3457

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3458
		ret = res_counter_set_limit(&memcg->res, val);
3459 3460 3461 3462 3463 3464
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3465 3466 3467 3468 3469
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3470 3471
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3472 3473 3474 3475 3476 3477
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3478
	}
3479 3480
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3481

3482 3483 3484
	return ret;
}

L
Li Zefan 已提交
3485 3486
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3487
{
3488
	int retry_count;
3489
	u64 memlimit, memswlimit, oldusage, curusage;
3490 3491
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3492
	int enlarge = 0;
3493

3494 3495 3496
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3497 3498 3499 3500 3501 3502 3503 3504
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3505
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3506 3507 3508 3509 3510 3511 3512 3513
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3514 3515 3516
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3517
		ret = res_counter_set_limit(&memcg->memsw, val);
3518 3519 3520 3521 3522 3523
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3524 3525 3526 3527 3528
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3529 3530 3531
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3532
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3533
		/* Usage is reduced ? */
3534
		if (curusage >= oldusage)
3535
			retry_count--;
3536 3537
		else
			oldusage = curusage;
3538
	}
3539 3540
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3541 3542 3543
	return ret;
}

3544
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3545 3546
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3547 3548 3549 3550 3551 3552
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3553
	unsigned long long excess;
3554
	unsigned long nr_scanned;
3555 3556 3557 3558

	if (order > 0)
		return 0;

3559
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3573
		nr_scanned = 0;
3574
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3575
						    gfp_mask, &nr_scanned);
3576
		nr_reclaimed += reclaimed;
3577
		*total_scanned += nr_scanned;
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3600
				if (next_mz == mz)
3601
					css_put(&next_mz->memcg->css);
3602
				else /* next_mz == NULL or other memcg */
3603 3604 3605
					break;
			} while (1);
		}
3606 3607
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3608 3609 3610 3611 3612 3613 3614 3615
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3616
		/* If excess == 0, no tree ops */
3617
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3618
		spin_unlock(&mctz->lock);
3619
		css_put(&mz->memcg->css);
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3632
		css_put(&next_mz->memcg->css);
3633 3634 3635
	return nr_reclaimed;
}

3636 3637 3638 3639
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3640
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3641
				int node, int zid, enum lru_list lru)
3642
{
K
KAMEZAWA Hiroyuki 已提交
3643 3644
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3645
	struct list_head *list;
3646 3647
	struct page *busy;
	struct zone *zone;
3648
	int ret = 0;
3649

K
KAMEZAWA Hiroyuki 已提交
3650
	zone = &NODE_DATA(node)->node_zones[zid];
3651
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3652
	list = &mz->lruvec.lists[lru];
3653

3654
	loop = mz->lru_size[lru];
3655 3656 3657 3658
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3659
		struct page_cgroup *pc;
3660 3661
		struct page *page;

3662
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3663
		spin_lock_irqsave(&zone->lru_lock, flags);
3664
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3665
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3666
			break;
3667
		}
3668 3669 3670
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3671
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3672
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3673 3674
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3675
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3676

3677
		pc = lookup_page_cgroup(page);
3678

3679
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3680
		if (ret == -ENOMEM || ret == -EINTR)
3681
			break;
3682 3683 3684

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3685
			busy = page;
3686 3687 3688
			cond_resched();
		} else
			busy = NULL;
3689
	}
K
KAMEZAWA Hiroyuki 已提交
3690

3691 3692 3693
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3694 3695 3696 3697 3698 3699
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3700
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3701
{
3702 3703 3704
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3705
	struct cgroup *cgrp = memcg->css.cgroup;
3706

3707
	css_get(&memcg->css);
3708 3709

	shrink = 0;
3710 3711 3712
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3713
move_account:
3714
	do {
3715
		ret = -EBUSY;
3716 3717 3718 3719
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3720
			goto out;
3721 3722
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3723
		drain_all_stock_sync(memcg);
3724
		ret = 0;
3725
		mem_cgroup_start_move(memcg);
3726
		for_each_node_state(node, N_HIGH_MEMORY) {
3727
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3728 3729
				enum lru_list lru;
				for_each_lru(lru) {
3730
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3731
							node, zid, lru);
3732 3733 3734
					if (ret)
						break;
				}
3735
			}
3736 3737 3738
			if (ret)
				break;
		}
3739 3740
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3741 3742 3743
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3744
		cond_resched();
3745
	/* "ret" should also be checked to ensure all lists are empty. */
3746
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3747
out:
3748
	css_put(&memcg->css);
3749
	return ret;
3750 3751

try_to_free:
3752 3753
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3754 3755 3756
		ret = -EBUSY;
		goto out;
	}
3757 3758
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3759 3760
	/* try to free all pages in this cgroup */
	shrink = 1;
3761
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3762
		int progress;
3763 3764 3765 3766 3767

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3768
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3769
						false);
3770
		if (!progress) {
3771
			nr_retries--;
3772
			/* maybe some writeback is necessary */
3773
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3774
		}
3775 3776

	}
K
KAMEZAWA Hiroyuki 已提交
3777
	lru_add_drain();
3778
	/* try move_account...there may be some *locked* pages. */
3779
	goto move_account;
3780 3781
}

3782
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3783 3784 3785 3786 3787
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3788 3789 3790 3791 3792 3793 3794 3795 3796
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3797
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3798
	struct cgroup *parent = cont->parent;
3799
	struct mem_cgroup *parent_memcg = NULL;
3800 3801

	if (parent)
3802
		parent_memcg = mem_cgroup_from_cont(parent);
3803 3804 3805

	cgroup_lock();
	/*
3806
	 * If parent's use_hierarchy is set, we can't make any modifications
3807 3808 3809 3810 3811 3812
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3813
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3814 3815
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3816
			memcg->use_hierarchy = val;
3817 3818 3819 3820 3821 3822 3823 3824 3825
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3826

3827
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3828
					       enum mem_cgroup_stat_index idx)
3829
{
K
KAMEZAWA Hiroyuki 已提交
3830
	struct mem_cgroup *iter;
3831
	long val = 0;
3832

3833
	/* Per-cpu values can be negative, use a signed accumulator */
3834
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3835 3836 3837 3838 3839
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3840 3841
}

3842
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3843
{
K
KAMEZAWA Hiroyuki 已提交
3844
	u64 val;
3845

3846
	if (!mem_cgroup_is_root(memcg)) {
3847
		if (!swap)
3848
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3849
		else
3850
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3851 3852
	}

3853 3854
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3855

K
KAMEZAWA Hiroyuki 已提交
3856
	if (swap)
3857
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3858 3859 3860 3861

	return val << PAGE_SHIFT;
}

3862 3863 3864
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3865
{
3866
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3867
	char str[64];
3868
	u64 val;
3869
	int type, name, len;
3870 3871 3872

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3873 3874 3875 3876

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3877 3878
	switch (type) {
	case _MEM:
3879
		if (name == RES_USAGE)
3880
			val = mem_cgroup_usage(memcg, false);
3881
		else
3882
			val = res_counter_read_u64(&memcg->res, name);
3883 3884
		break;
	case _MEMSWAP:
3885
		if (name == RES_USAGE)
3886
			val = mem_cgroup_usage(memcg, true);
3887
		else
3888
			val = res_counter_read_u64(&memcg->memsw, name);
3889 3890 3891 3892
		break;
	default:
		BUG();
	}
3893 3894 3895

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3896
}
3897 3898 3899 3900
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3901 3902
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3903
{
3904
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3905
	int type, name;
3906 3907 3908
	unsigned long long val;
	int ret;

3909 3910
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3911 3912 3913 3914

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3915
	switch (name) {
3916
	case RES_LIMIT:
3917 3918 3919 3920
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3921 3922
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3923 3924 3925
		if (ret)
			break;
		if (type == _MEM)
3926
			ret = mem_cgroup_resize_limit(memcg, val);
3927 3928
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3929
		break;
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3944 3945 3946 3947 3948
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3949 3950
}

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

3978
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3979
{
3980
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3981
	int type, name;
3982

3983 3984
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
3985 3986 3987 3988

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3989
	switch (name) {
3990
	case RES_MAX_USAGE:
3991
		if (type == _MEM)
3992
			res_counter_reset_max(&memcg->res);
3993
		else
3994
			res_counter_reset_max(&memcg->memsw);
3995 3996
		break;
	case RES_FAILCNT:
3997
		if (type == _MEM)
3998
			res_counter_reset_failcnt(&memcg->res);
3999
		else
4000
			res_counter_reset_failcnt(&memcg->memsw);
4001 4002
		break;
	}
4003

4004
	return 0;
4005 4006
}

4007 4008 4009 4010 4011 4012
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4013
#ifdef CONFIG_MMU
4014 4015 4016
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4017
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4018 4019 4020 4021 4022 4023 4024 4025 4026

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4027
	memcg->move_charge_at_immigrate = val;
4028 4029 4030 4031
	cgroup_unlock();

	return 0;
}
4032 4033 4034 4035 4036 4037 4038
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4039

K
KAMEZAWA Hiroyuki 已提交
4040 4041 4042 4043 4044

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4045
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4046 4047
	MCS_PGPGIN,
	MCS_PGPGOUT,
4048
	MCS_SWAP,
4049 4050
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4061 4062
};

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
static const char *memcg_stat_strings[NR_MCS_STAT] = {
	"cache",
	"rss",
	"mapped_file",
	"pgpgin",
	"pgpgout",
	"swap",
	"pgfault",
	"pgmajfault",
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
K
KAMEZAWA Hiroyuki 已提交
4077 4078
};

K
KAMEZAWA Hiroyuki 已提交
4079
static void
4080
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4081 4082 4083 4084
{
	s64 val;

	/* per cpu stat */
4085
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4086
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4087
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4088
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4089
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4090
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4091
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4092
	s->stat[MCS_PGPGIN] += val;
4093
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4094
	s->stat[MCS_PGPGOUT] += val;
4095
	if (do_swap_account) {
4096
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4097 4098
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4099
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4100
	s->stat[MCS_PGFAULT] += val;
4101
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4102
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4103 4104

	/* per zone stat */
4105
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4106
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4107
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4108
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4109
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4110
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4111
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4112
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4113
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4114 4115 4116 4117
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4118
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4119
{
K
KAMEZAWA Hiroyuki 已提交
4120 4121
	struct mem_cgroup *iter;

4122
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4123
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4124 4125
}

4126
#ifdef CONFIG_NUMA
4127 4128
static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
				      struct seq_file *m)
4129 4130 4131 4132
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4133
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4134

4135
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4136 4137
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4138
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4139 4140 4141 4142
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4143
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4144 4145
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4146
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4147
				LRU_ALL_FILE);
4148 4149 4150 4151
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4152
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4153 4154
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4155
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4156
				LRU_ALL_ANON);
4157 4158 4159 4160
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4161
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4162 4163
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4164
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4165
				BIT(LRU_UNEVICTABLE));
4166 4167 4168 4169 4170 4171 4172
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4173
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4174
				 struct seq_file *m)
4175
{
4176
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4177
	struct mcs_total_stat mystat;
4178 4179
	int i;

K
KAMEZAWA Hiroyuki 已提交
4180
	memset(&mystat, 0, sizeof(mystat));
4181
	mem_cgroup_get_local_stat(memcg, &mystat);
4182

4183

4184 4185 4186
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
4187 4188
		seq_printf(m, "%s %llu\n", memcg_stat_strings[i],
			   (unsigned long long)mystat.stat[i]);
4189
	}
L
Lee Schermerhorn 已提交
4190

K
KAMEZAWA Hiroyuki 已提交
4191
	/* Hierarchical information */
4192 4193
	{
		unsigned long long limit, memsw_limit;
4194
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4195
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4196
		if (do_swap_account)
4197 4198
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4199
	}
K
KOSAKI Motohiro 已提交
4200

K
KAMEZAWA Hiroyuki 已提交
4201
	memset(&mystat, 0, sizeof(mystat));
4202
	mem_cgroup_get_total_stat(memcg, &mystat);
4203 4204 4205
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
4206 4207
		seq_printf(m, "total_%s %llu\n", memcg_stat_strings[i],
			   (unsigned long long)mystat.stat[i]);
4208
	}
K
KAMEZAWA Hiroyuki 已提交
4209

K
KOSAKI Motohiro 已提交
4210 4211 4212 4213
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4214
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4215 4216 4217 4218 4219
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4220
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4221
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4222

4223 4224 4225 4226
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4227
			}
4228 4229 4230 4231
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4232 4233 4234
	}
#endif

4235 4236 4237
	return 0;
}

K
KOSAKI Motohiro 已提交
4238 4239 4240 4241
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4242
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4243 4244 4245 4246 4247 4248 4249
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4250

K
KOSAKI Motohiro 已提交
4251 4252 4253 4254 4255 4256 4257
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4258 4259 4260

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4261 4262
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4263 4264
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4265
		return -EINVAL;
4266
	}
K
KOSAKI Motohiro 已提交
4267 4268 4269

	memcg->swappiness = val;

4270 4271
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4272 4273 4274
	return 0;
}

4275 4276 4277 4278 4279 4280 4281 4282
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4283
		t = rcu_dereference(memcg->thresholds.primary);
4284
	else
4285
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4286 4287 4288 4289 4290 4291 4292

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4293
	 * current_threshold points to threshold just below or equal to usage.
4294 4295 4296
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4297
	i = t->current_threshold;
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4321
	t->current_threshold = i - 1;
4322 4323 4324 4325 4326 4327
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4328 4329 4330 4331 4332 4333 4334
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4345
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4346 4347 4348
{
	struct mem_cgroup_eventfd_list *ev;

4349
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4350 4351 4352 4353
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4354
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4355
{
K
KAMEZAWA Hiroyuki 已提交
4356 4357
	struct mem_cgroup *iter;

4358
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4359
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4360 4361 4362 4363
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4364 4365
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4366 4367
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4368 4369
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4370
	int i, size, ret;
4371 4372 4373 4374 4375 4376

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4377

4378
	if (type == _MEM)
4379
		thresholds = &memcg->thresholds;
4380
	else if (type == _MEMSWAP)
4381
		thresholds = &memcg->memsw_thresholds;
4382 4383 4384 4385 4386 4387
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4388
	if (thresholds->primary)
4389 4390
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4391
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4392 4393

	/* Allocate memory for new array of thresholds */
4394
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4395
			GFP_KERNEL);
4396
	if (!new) {
4397 4398 4399
		ret = -ENOMEM;
		goto unlock;
	}
4400
	new->size = size;
4401 4402

	/* Copy thresholds (if any) to new array */
4403 4404
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4405
				sizeof(struct mem_cgroup_threshold));
4406 4407
	}

4408
	/* Add new threshold */
4409 4410
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4411 4412

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4413
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4414 4415 4416
			compare_thresholds, NULL);

	/* Find current threshold */
4417
	new->current_threshold = -1;
4418
	for (i = 0; i < size; i++) {
4419
		if (new->entries[i].threshold <= usage) {
4420
			/*
4421 4422
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4423 4424
			 * it here.
			 */
4425
			++new->current_threshold;
4426 4427
		} else
			break;
4428 4429
	}

4430 4431 4432 4433 4434
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4435

4436
	/* To be sure that nobody uses thresholds */
4437 4438 4439 4440 4441 4442 4443 4444
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4445
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4446
	struct cftype *cft, struct eventfd_ctx *eventfd)
4447 4448
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4449 4450
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4451 4452
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4453
	int i, j, size;
4454 4455 4456

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4457
		thresholds = &memcg->thresholds;
4458
	else if (type == _MEMSWAP)
4459
		thresholds = &memcg->memsw_thresholds;
4460 4461 4462
	else
		BUG();

4463 4464 4465
	if (!thresholds->primary)
		goto unlock;

4466 4467 4468 4469 4470 4471
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4472 4473 4474
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4475 4476 4477
			size++;
	}

4478
	new = thresholds->spare;
4479

4480 4481
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4482 4483
		kfree(new);
		new = NULL;
4484
		goto swap_buffers;
4485 4486
	}

4487
	new->size = size;
4488 4489

	/* Copy thresholds and find current threshold */
4490 4491 4492
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4493 4494
			continue;

4495
		new->entries[j] = thresholds->primary->entries[i];
4496
		if (new->entries[j].threshold <= usage) {
4497
			/*
4498
			 * new->current_threshold will not be used
4499 4500 4501
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4502
			++new->current_threshold;
4503 4504 4505 4506
		}
		j++;
	}

4507
swap_buffers:
4508 4509
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4510 4511 4512 4513 4514 4515
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4516
	rcu_assign_pointer(thresholds->primary, new);
4517

4518
	/* To be sure that nobody uses thresholds */
4519
	synchronize_rcu();
4520
unlock:
4521 4522
	mutex_unlock(&memcg->thresholds_lock);
}
4523

K
KAMEZAWA Hiroyuki 已提交
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4536
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4537 4538 4539 4540 4541

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4542
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4543
		eventfd_signal(eventfd, 1);
4544
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4545 4546 4547 4548

	return 0;
}

4549
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4550 4551
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4552
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4553 4554 4555 4556 4557
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4558
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4559

4560
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4561 4562 4563 4564 4565 4566
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4567
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4568 4569
}

4570 4571 4572
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4573
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4574

4575
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4576

4577
	if (atomic_read(&memcg->under_oom))
4578 4579 4580 4581 4582 4583 4584 4585 4586
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4587
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4599
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4600 4601 4602
		cgroup_unlock();
		return -EINVAL;
	}
4603
	memcg->oom_kill_disable = val;
4604
	if (!val)
4605
		memcg_oom_recover(memcg);
4606 4607 4608 4609
	cgroup_unlock();
	return 0;
}

4610
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4611
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4612
{
4613
	return mem_cgroup_sockets_init(memcg, ss);
4614 4615
};

4616
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4617
{
4618
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4619
}
4620
#else
4621
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4622 4623 4624
{
	return 0;
}
G
Glauber Costa 已提交
4625

4626
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4627 4628
{
}
4629 4630
#endif

B
Balbir Singh 已提交
4631 4632
static struct cftype mem_cgroup_files[] = {
	{
4633
		.name = "usage_in_bytes",
4634
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4635
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4636 4637
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4638
	},
4639 4640
	{
		.name = "max_usage_in_bytes",
4641
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4642
		.trigger = mem_cgroup_reset,
4643
		.read = mem_cgroup_read,
4644
	},
B
Balbir Singh 已提交
4645
	{
4646
		.name = "limit_in_bytes",
4647
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4648
		.write_string = mem_cgroup_write,
4649
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4650
	},
4651 4652 4653 4654
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4655
		.read = mem_cgroup_read,
4656
	},
B
Balbir Singh 已提交
4657 4658
	{
		.name = "failcnt",
4659
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4660
		.trigger = mem_cgroup_reset,
4661
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4662
	},
4663 4664
	{
		.name = "stat",
4665
		.read_seq_string = mem_control_stat_show,
4666
	},
4667 4668 4669 4670
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4671 4672 4673 4674 4675
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4676 4677 4678 4679 4680
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4681 4682 4683 4684 4685
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4686 4687
	{
		.name = "oom_control",
4688 4689
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4690 4691 4692 4693
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4694 4695 4696
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4697
		.read_seq_string = mem_control_numa_stat_show,
4698 4699
	},
#endif
4700 4701 4702 4703
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4704
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4705 4706
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4707 4708 4709 4710 4711
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4712
		.read = mem_cgroup_read,
4713 4714 4715 4716 4717
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4718
		.read = mem_cgroup_read,
4719 4720 4721 4722 4723
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4724
		.read = mem_cgroup_read,
4725 4726
	},
#endif
4727
	{ },	/* terminate */
4728
};
4729

4730
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4731 4732
{
	struct mem_cgroup_per_node *pn;
4733
	struct mem_cgroup_per_zone *mz;
4734
	int zone, tmp = node;
4735 4736 4737 4738 4739 4740 4741 4742
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4743 4744
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4745
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4746 4747
	if (!pn)
		return 1;
4748 4749 4750

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4751
		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4752
		mz->usage_in_excess = 0;
4753
		mz->on_tree = false;
4754
		mz->memcg = memcg;
4755
	}
4756
	memcg->info.nodeinfo[node] = pn;
4757 4758 4759
	return 0;
}

4760
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4761
{
4762
	kfree(memcg->info.nodeinfo[node]);
4763 4764
}

4765 4766
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4767
	struct mem_cgroup *memcg;
4768
	int size = sizeof(struct mem_cgroup);
4769

4770
	/* Can be very big if MAX_NUMNODES is very big */
4771
	if (size < PAGE_SIZE)
4772
		memcg = kzalloc(size, GFP_KERNEL);
4773
	else
4774
		memcg = vzalloc(size);
4775

4776
	if (!memcg)
4777 4778
		return NULL;

4779 4780
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4781
		goto out_free;
4782 4783
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4784 4785 4786

out_free:
	if (size < PAGE_SIZE)
4787
		kfree(memcg);
4788
	else
4789
		vfree(memcg);
4790
	return NULL;
4791 4792
}

4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
/*
 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
static void vfree_work(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, work_freeing);
	vfree(memcg);
}
static void vfree_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, vfree_work);
	schedule_work(&memcg->work_freeing);
}

4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4825
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4826
{
K
KAMEZAWA Hiroyuki 已提交
4827 4828
	int node;

4829 4830
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4831

B
Bob Liu 已提交
4832
	for_each_node(node)
4833
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4834

4835
	free_percpu(memcg->stat);
4836
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4837
		kfree_rcu(memcg, rcu_freeing);
4838
	else
4839
		call_rcu(&memcg->rcu_freeing, vfree_rcu);
4840 4841
}

4842
static void mem_cgroup_get(struct mem_cgroup *memcg)
4843
{
4844
	atomic_inc(&memcg->refcnt);
4845 4846
}

4847
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4848
{
4849 4850 4851
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4852 4853 4854
		if (parent)
			mem_cgroup_put(parent);
	}
4855 4856
}

4857
static void mem_cgroup_put(struct mem_cgroup *memcg)
4858
{
4859
	__mem_cgroup_put(memcg, 1);
4860 4861
}

4862 4863 4864
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4865
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4866
{
4867
	if (!memcg->res.parent)
4868
		return NULL;
4869
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4870
}
G
Glauber Costa 已提交
4871
EXPORT_SYMBOL(parent_mem_cgroup);
4872

4873 4874 4875
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4876
	if (!mem_cgroup_disabled() && really_do_swap_account)
4877 4878 4879 4880 4881 4882 4883 4884
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4885 4886 4887 4888 4889 4890
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4891
	for_each_node(node) {
4892 4893 4894 4895 4896
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4897
			goto err_cleanup;
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4908 4909

err_cleanup:
B
Bob Liu 已提交
4910
	for_each_node(node) {
4911 4912 4913 4914 4915 4916 4917
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4918 4919
}

L
Li Zefan 已提交
4920
static struct cgroup_subsys_state * __ref
4921
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4922
{
4923
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4924
	long error = -ENOMEM;
4925
	int node;
B
Balbir Singh 已提交
4926

4927 4928
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4929
		return ERR_PTR(error);
4930

B
Bob Liu 已提交
4931
	for_each_node(node)
4932
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4933
			goto free_out;
4934

4935
	/* root ? */
4936
	if (cont->parent == NULL) {
4937
		int cpu;
4938
		enable_swap_cgroup();
4939
		parent = NULL;
4940 4941
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4942
		root_mem_cgroup = memcg;
4943 4944 4945 4946 4947
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4948
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4949
	} else {
4950
		parent = mem_cgroup_from_cont(cont->parent);
4951 4952
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4953
	}
4954

4955
	if (parent && parent->use_hierarchy) {
4956 4957
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4958 4959 4960 4961 4962 4963 4964
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4965
	} else {
4966 4967
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4968
	}
4969 4970
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4971

K
KOSAKI Motohiro 已提交
4972
	if (parent)
4973 4974 4975 4976
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
4977
	spin_lock_init(&memcg->move_lock);
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
4989
	return &memcg->css;
4990
free_out:
4991
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4992
	return ERR_PTR(error);
B
Balbir Singh 已提交
4993 4994
}

4995
static int mem_cgroup_pre_destroy(struct cgroup *cont)
4996
{
4997
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4998

4999
	return mem_cgroup_force_empty(memcg, false);
5000 5001
}

5002
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
5003
{
5004
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5005

5006
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5007

5008
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5009 5010
}

5011
#ifdef CONFIG_MMU
5012
/* Handlers for move charge at task migration. */
5013 5014
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5015
{
5016 5017
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5018
	struct mem_cgroup *memcg = mc.to;
5019

5020
	if (mem_cgroup_is_root(memcg)) {
5021 5022 5023 5024 5025 5026 5027 5028
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5029
		 * "memcg" cannot be under rmdir() because we've already checked
5030 5031 5032 5033
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5034
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5035
			goto one_by_one;
5036
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5037
						PAGE_SIZE * count, &dummy)) {
5038
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5055 5056
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5057
		if (ret)
5058
			/* mem_cgroup_clear_mc() will do uncharge later */
5059
			return ret;
5060 5061
		mc.precharge++;
	}
5062 5063 5064 5065
	return ret;
}

/**
5066
 * get_mctgt_type - get target type of moving charge
5067 5068 5069
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5070
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5071 5072 5073 5074 5075 5076
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5077 5078 5079
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5080 5081 5082 5083 5084
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5085
	swp_entry_t	ent;
5086 5087 5088
};

enum mc_target_type {
5089
	MC_TARGET_NONE = 0,
5090
	MC_TARGET_PAGE,
5091
	MC_TARGET_SWAP,
5092 5093
};

D
Daisuke Nishimura 已提交
5094 5095
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5096
{
D
Daisuke Nishimura 已提交
5097
	struct page *page = vm_normal_page(vma, addr, ptent);
5098

D
Daisuke Nishimura 已提交
5099 5100 5101 5102
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5103
		if (!move_anon())
D
Daisuke Nishimura 已提交
5104
			return NULL;
5105 5106
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5107 5108 5109 5110 5111 5112 5113
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5114
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5115 5116 5117 5118 5119 5120 5121 5122
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5123 5124 5125 5126 5127
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5128 5129 5130 5131 5132
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5133 5134 5135 5136 5137 5138 5139
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5140

5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5160 5161 5162 5163 5164 5165
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5166
		if (do_swap_account)
5167 5168
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5169
	}
5170
#endif
5171 5172 5173
	return page;
}

5174
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5175 5176 5177 5178
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5179
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5180 5181 5182 5183 5184 5185
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5186 5187
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5188 5189

	if (!page && !ent.val)
5190
		return ret;
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5206 5207
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5208
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5209 5210 5211
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5212 5213 5214 5215
	}
	return ret;
}

5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5251 5252 5253 5254 5255 5256 5257 5258
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5259 5260 5261 5262
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5263
		return 0;
5264
	}
5265

5266 5267
	if (pmd_trans_unstable(pmd))
		return 0;
5268 5269
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5270
		if (get_mctgt_type(vma, addr, *pte, NULL))
5271 5272 5273 5274
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5275 5276 5277
	return 0;
}

5278 5279 5280 5281 5282
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5283
	down_read(&mm->mmap_sem);
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5295
	up_read(&mm->mmap_sem);
5296 5297 5298 5299 5300 5301 5302 5303 5304

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5305 5306 5307 5308 5309
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5310 5311
}

5312 5313
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5314
{
5315 5316 5317
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5318
	/* we must uncharge all the leftover precharges from mc.to */
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5330
	}
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5365
	spin_lock(&mc.lock);
5366 5367
	mc.from = NULL;
	mc.to = NULL;
5368
	spin_unlock(&mc.lock);
5369
	mem_cgroup_end_move(from);
5370 5371
}

5372 5373
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5374
{
5375
	struct task_struct *p = cgroup_taskset_first(tset);
5376
	int ret = 0;
5377
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5378

5379
	if (memcg->move_charge_at_immigrate) {
5380 5381 5382
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5383
		VM_BUG_ON(from == memcg);
5384 5385 5386 5387 5388

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5389 5390 5391 5392
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5393
			VM_BUG_ON(mc.moved_charge);
5394
			VM_BUG_ON(mc.moved_swap);
5395
			mem_cgroup_start_move(from);
5396
			spin_lock(&mc.lock);
5397
			mc.from = from;
5398
			mc.to = memcg;
5399
			spin_unlock(&mc.lock);
5400
			/* We set mc.moving_task later */
5401 5402 5403 5404

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5405 5406
		}
		mmput(mm);
5407 5408 5409 5410
	}
	return ret;
}

5411 5412
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5413
{
5414
	mem_cgroup_clear_mc();
5415 5416
}

5417 5418 5419
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5420
{
5421 5422 5423 5424
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5425 5426 5427 5428
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5429

5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5441
		if (mc.precharge < HPAGE_PMD_NR) {
5442 5443 5444 5445 5446 5447 5448 5449 5450
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5451
							pc, mc.from, mc.to)) {
5452 5453 5454 5455 5456 5457 5458 5459
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5460
		return 0;
5461 5462
	}

5463 5464
	if (pmd_trans_unstable(pmd))
		return 0;
5465 5466 5467 5468
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5469
		swp_entry_t ent;
5470 5471 5472 5473

		if (!mc.precharge)
			break;

5474
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5475 5476 5477 5478 5479
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5480
			if (!mem_cgroup_move_account(page, 1, pc,
5481
						     mc.from, mc.to)) {
5482
				mc.precharge--;
5483 5484
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5485 5486
			}
			putback_lru_page(page);
5487
put:			/* get_mctgt_type() gets the page */
5488 5489
			put_page(page);
			break;
5490 5491
		case MC_TARGET_SWAP:
			ent = target.ent;
5492
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5493
				mc.precharge--;
5494 5495 5496
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5497
			break;
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5512
		ret = mem_cgroup_do_precharge(1);
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5556
	up_read(&mm->mmap_sem);
5557 5558
}

5559 5560
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5561
{
5562
	struct task_struct *p = cgroup_taskset_first(tset);
5563
	struct mm_struct *mm = get_task_mm(p);
5564 5565

	if (mm) {
5566 5567
		if (mc.to)
			mem_cgroup_move_charge(mm);
5568 5569
		mmput(mm);
	}
5570 5571
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5572
}
5573
#else	/* !CONFIG_MMU */
5574 5575
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5576 5577 5578
{
	return 0;
}
5579 5580
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5581 5582
{
}
5583 5584
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5585 5586 5587
{
}
#endif
B
Balbir Singh 已提交
5588

B
Balbir Singh 已提交
5589 5590 5591 5592
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5593
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5594
	.destroy = mem_cgroup_destroy,
5595 5596
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5597
	.attach = mem_cgroup_move_task,
5598
	.base_cftypes = mem_cgroup_files,
5599
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5600
	.use_id = 1,
5601
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5602
};
5603 5604

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5605 5606 5607
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5608
	if (!strcmp(s, "1"))
5609
		really_do_swap_account = 1;
5610
	else if (!strcmp(s, "0"))
5611 5612 5613
		really_do_swap_account = 0;
	return 1;
}
5614
__setup("swapaccount=", enable_swap_account);
5615 5616

#endif