memcontrol.c 187.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
95 96 97 98 99
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 101 102
	MEM_CGROUP_STAT_NSTATS,
};

103 104 105
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
106
	"rss_huge",
107 108 109 110
	"mapped_file",
	"swap",
};

111 112 113
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 115
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 117
	MEM_CGROUP_EVENTS_NSTATS,
};
118 119 120 121 122 123 124 125

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

126 127 128 129 130 131 132 133
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

134 135 136 137 138 139 140 141 142
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
143
	MEM_CGROUP_TARGET_NUMAINFO,
144 145
	MEM_CGROUP_NTARGETS,
};
146 147 148
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
149

150
struct mem_cgroup_stat_cpu {
151
	long count[MEM_CGROUP_STAT_NSTATS];
152
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153
	unsigned long nr_page_events;
154
	unsigned long targets[MEM_CGROUP_NTARGETS];
155 156
};

157
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
158 159 160 161
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
162
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
163 164
	unsigned long last_dead_count;

165 166 167 168
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

169 170 171 172
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
173
	struct lruvec		lruvec;
174
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
175

176 177
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

178 179 180 181
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
182
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183
						/* use container_of	   */
184 185 186 187 188 189
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

210 211 212 213 214
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
215
/* For threshold */
216
struct mem_cgroup_threshold_ary {
217
	/* An array index points to threshold just below or equal to usage. */
218
	int current_threshold;
219 220 221 222 223
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
224 225 226 227 228 229 230 231 232 233 234 235

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
236 237 238 239 240
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
241

242 243
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244

B
Balbir Singh 已提交
245 246 247 248 249 250 251
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 253 254
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
255 256 257 258 259 260 261
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
262

263 264 265
	/* vmpressure notifications */
	struct vmpressure vmpressure;

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
283 284
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
285 286 287 288
		 */
		struct work_struct work_freeing;
	};

289 290 291 292
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
293 294 295 296
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
297
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
298 299 300 301

	bool		oom_lock;
	atomic_t	under_oom;

302
	atomic_t	refcnt;
303

304
	int	swappiness;
305 306
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
307

308 309 310
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

311 312 313 314
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
315
	struct mem_cgroup_thresholds thresholds;
316

317
	/* thresholds for mem+swap usage. RCU-protected */
318
	struct mem_cgroup_thresholds memsw_thresholds;
319

K
KAMEZAWA Hiroyuki 已提交
320 321
	/* For oom notifier event fd */
	struct list_head oom_notify;
322

323 324 325 326 327
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
328 329 330 331
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
332 333
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
334
	/*
335
	 * percpu counter.
336
	 */
337
	struct mem_cgroup_stat_cpu __percpu *stat;
338 339 340 341 342 343
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
344

M
Michal Hocko 已提交
345
	atomic_t	dead_count;
M
Michal Hocko 已提交
346
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
347 348
	struct tcp_memcontrol tcp_mem;
#endif
349 350 351 352 353 354 355 356
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
357 358 359 360 361 362 363

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
364

365 366
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
367 368
};

369 370 371 372 373 374
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

375 376 377
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
378
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
379
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
380 381
};

382 383 384
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
385 386 387 388 389 390

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
391 392 393 394 395 396

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

397 398 399 400 401
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

402 403 404 405 406
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

407 408
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
409 410 411 412 413
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
414 415 416 417 418 419 420 421 422
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
423 424
#endif

425 426
/* Stuffs for move charges at task migration. */
/*
427 428
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
429 430
 */
enum move_type {
431
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
432
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
433 434 435
	NR_MOVE_TYPE,
};

436 437
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
438
	spinlock_t	  lock; /* for from, to */
439 440
	struct mem_cgroup *from;
	struct mem_cgroup *to;
441
	unsigned long immigrate_flags;
442
	unsigned long precharge;
443
	unsigned long moved_charge;
444
	unsigned long moved_swap;
445 446 447
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
448
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
449 450
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
451

D
Daisuke Nishimura 已提交
452 453
static bool move_anon(void)
{
454
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
455 456
}

457 458
static bool move_file(void)
{
459
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
460 461
}

462 463 464 465
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
466 467
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
468

469 470
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
471
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
472
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
473
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
474 475 476
	NR_CHARGE_TYPE,
};

477
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
478 479 480 481
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
482
	_KMEM,
G
Glauber Costa 已提交
483 484
};

485 486
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
487
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
488 489
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
490

491 492 493 494 495 496 497 498
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

499 500 501 502 503 504 505
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

506 507
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
508

509 510 511 512 513 514
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

533 534 535 536 537
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
538
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
539
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
540 541 542

void sock_update_memcg(struct sock *sk)
{
543
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
544
		struct mem_cgroup *memcg;
545
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
546 547 548

		BUG_ON(!sk->sk_prot->proto_cgroup);

549 550 551 552 553 554 555 556 557 558
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
559
			css_get(&sk->sk_cgrp->memcg->css);
560 561 562
			return;
		}

G
Glauber Costa 已提交
563 564
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
565
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
566 567
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
568
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
569 570 571 572 573 574 575 576
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
577
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
578 579 580
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
581
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
582 583
	}
}
G
Glauber Costa 已提交
584 585 586 587 588 589 590 591 592

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
593

594 595 596 597 598 599 600 601 602 603 604 605
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

606
#ifdef CONFIG_MEMCG_KMEM
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
625 626
int memcg_limited_groups_array_size;

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

642 643 644 645 646 647
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
648
struct static_key memcg_kmem_enabled_key;
649
EXPORT_SYMBOL(memcg_kmem_enabled_key);
650 651 652

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
653
	if (memcg_kmem_is_active(memcg)) {
654
		static_key_slow_dec(&memcg_kmem_enabled_key);
655 656
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
657 658 659 660 661
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
662 663 664 665 666 667 668 669 670 671 672 673 674
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

675
static void drain_all_stock_async(struct mem_cgroup *memcg);
676

677
static struct mem_cgroup_per_zone *
678
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
679
{
680
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
681
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
682 683
}

684
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
685
{
686
	return &memcg->css;
687 688
}

689
static struct mem_cgroup_per_zone *
690
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
691
{
692 693
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
694

695
	return mem_cgroup_zoneinfo(memcg, nid, zid);
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
714
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
715
				struct mem_cgroup_per_zone *mz,
716 717
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
718 719 720 721 722 723 724 725
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

726 727 728
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
745 746 747
}

static void
748
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
749 750 751 752 753 754 755 756 757
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

758
static void
759
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
760 761 762 763
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
764
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
765 766 767 768
	spin_unlock(&mctz->lock);
}


769
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
770
{
771
	unsigned long long excess;
772 773
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
774 775
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
776 777 778
	mctz = soft_limit_tree_from_page(page);

	/*
779 780
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
781
	 */
782 783 784
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
785 786 787 788
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
789
		if (excess || mz->on_tree) {
790 791 792
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
793
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
794
			/*
795 796
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
797
			 */
798
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
799 800
			spin_unlock(&mctz->lock);
		}
801 802 803
	}
}

804
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
805 806 807 808 809
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
810
	for_each_node(node) {
811
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
812
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
813
			mctz = soft_limit_tree_node_zone(node, zone);
814
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
815 816 817 818
		}
	}
}

819 820 821 822
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
823
	struct mem_cgroup_per_zone *mz;
824 825

retry:
826
	mz = NULL;
827 828 829 830 831 832 833 834 835 836
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
837 838 839
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
875
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
876
				 enum mem_cgroup_stat_index idx)
877
{
878
	long val = 0;
879 880
	int cpu;

881 882
	get_online_cpus();
	for_each_online_cpu(cpu)
883
		val += per_cpu(memcg->stat->count[idx], cpu);
884
#ifdef CONFIG_HOTPLUG_CPU
885 886 887
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
888 889
#endif
	put_online_cpus();
890 891 892
	return val;
}

893
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
894 895 896
					 bool charge)
{
	int val = (charge) ? 1 : -1;
897
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
898 899
}

900
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
901 902 903 904 905 906
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
907
		val += per_cpu(memcg->stat->events[idx], cpu);
908
#ifdef CONFIG_HOTPLUG_CPU
909 910 911
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
912 913 914 915
#endif
	return val;
}

916
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
917
					 struct page *page,
918
					 bool anon, int nr_pages)
919
{
920 921
	preempt_disable();

922 923 924 925 926 927
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
928
				nr_pages);
929
	else
930
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
931
				nr_pages);
932

933 934 935 936
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

937 938
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
939
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
940
	else {
941
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
942 943
		nr_pages = -nr_pages; /* for event */
	}
944

945
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
946

947
	preempt_enable();
948 949
}

950
unsigned long
951
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
952 953 954 955 956 957 958 959
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
960
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
961
			unsigned int lru_mask)
962 963
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
964
	enum lru_list lru;
965 966
	unsigned long ret = 0;

967
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
968

H
Hugh Dickins 已提交
969 970 971
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
972 973 974 975 976
	}
	return ret;
}

static unsigned long
977
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
978 979
			int nid, unsigned int lru_mask)
{
980 981 982
	u64 total = 0;
	int zid;

983
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
984 985
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
986

987 988
	return total;
}
989

990
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
991
			unsigned int lru_mask)
992
{
993
	int nid;
994 995
	u64 total = 0;

996
	for_each_node_state(nid, N_MEMORY)
997
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
998
	return total;
999 1000
}

1001 1002
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
1003 1004 1005
{
	unsigned long val, next;

1006
	val = __this_cpu_read(memcg->stat->nr_page_events);
1007
	next = __this_cpu_read(memcg->stat->targets[target]);
1008
	/* from time_after() in jiffies.h */
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1025
	}
1026
	return false;
1027 1028 1029 1030 1031 1032
}

/*
 * Check events in order.
 *
 */
1033
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1034
{
1035
	preempt_disable();
1036
	/* threshold event is triggered in finer grain than soft limit */
1037 1038
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1039 1040
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1041 1042 1043 1044 1045 1046 1047 1048 1049

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1050
		mem_cgroup_threshold(memcg);
1051
		if (unlikely(do_softlimit))
1052
			mem_cgroup_update_tree(memcg, page);
1053
#if MAX_NUMNODES > 1
1054
		if (unlikely(do_numainfo))
1055
			atomic_inc(&memcg->numainfo_events);
1056
#endif
1057 1058
	} else
		preempt_enable();
1059 1060
}

G
Glauber Costa 已提交
1061
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1062
{
1063 1064
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1065 1066
}

1067
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1068
{
1069 1070 1071 1072 1073 1074 1075 1076
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1077
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1078 1079
}

1080
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1081
{
1082
	struct mem_cgroup *memcg = NULL;
1083 1084 1085

	if (!mm)
		return NULL;
1086 1087 1088 1089 1090 1091 1092
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1093 1094
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1095
			break;
1096
	} while (!css_tryget(&memcg->css));
1097
	rcu_read_unlock();
1098
	return memcg;
1099 1100
}

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
		struct mem_cgroup *last_visited)
{
	struct cgroup *prev_cgroup, *next_cgroup;

	/*
	 * Root is not visited by cgroup iterators so it needs an
	 * explicit visit.
	 */
	if (!last_visited)
		return root;

	prev_cgroup = (last_visited == root) ? NULL
		: last_visited->css.cgroup;
skip_node:
	next_cgroup = cgroup_next_descendant_pre(
			prev_cgroup, root->css.cgroup);

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
	if (next_cgroup) {
		struct mem_cgroup *mem = mem_cgroup_from_cont(
				next_cgroup);
		if (css_tryget(&mem->css))
			return mem;
		else {
			prev_cgroup = next_cgroup;
			goto skip_node;
		}
	}

	return NULL;
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1218
{
1219
	struct mem_cgroup *memcg = NULL;
1220
	struct mem_cgroup *last_visited = NULL;
1221

1222 1223 1224
	if (mem_cgroup_disabled())
		return NULL;

1225 1226
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1227

1228
	if (prev && !reclaim)
1229
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1230

1231 1232
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1233
			goto out_css_put;
1234 1235
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1236

1237
	rcu_read_lock();
1238
	while (!memcg) {
1239
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1240
		int uninitialized_var(seq);
1241

1242 1243 1244 1245 1246 1247 1248
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1249
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1250
				iter->last_visited = NULL;
1251 1252
				goto out_unlock;
			}
M
Michal Hocko 已提交
1253

1254
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1255
		}
K
KAMEZAWA Hiroyuki 已提交
1256

1257
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1258

1259
		if (reclaim) {
1260
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1261

M
Michal Hocko 已提交
1262
			if (!memcg)
1263 1264 1265 1266
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1267

M
Michal Hocko 已提交
1268
		if (prev && !memcg)
1269
			goto out_unlock;
1270
	}
1271 1272
out_unlock:
	rcu_read_unlock();
1273 1274 1275 1276
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1277
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1278
}
K
KAMEZAWA Hiroyuki 已提交
1279

1280 1281 1282 1283 1284 1285 1286
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1287 1288 1289 1290 1291 1292
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1293

1294 1295 1296 1297 1298 1299
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1300
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1301
	     iter != NULL;				\
1302
	     iter = mem_cgroup_iter(root, iter, NULL))
1303

1304
#define for_each_mem_cgroup(iter)			\
1305
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1306
	     iter != NULL;				\
1307
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1308

1309
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1310
{
1311
	struct mem_cgroup *memcg;
1312 1313

	rcu_read_lock();
1314 1315
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1316 1317 1318 1319
		goto out;

	switch (idx) {
	case PGFAULT:
1320 1321 1322 1323
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1324 1325 1326 1327 1328 1329 1330
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1331
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1332

1333 1334 1335
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1336
 * @memcg: memcg of the wanted lruvec
1337 1338 1339 1340 1341 1342 1343 1344 1345
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1346
	struct lruvec *lruvec;
1347

1348 1349 1350 1351
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1352 1353

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1364 1365
}

K
KAMEZAWA Hiroyuki 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1379

1380
/**
1381
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1382
 * @page: the page
1383
 * @zone: zone of the page
1384
 */
1385
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1386 1387
{
	struct mem_cgroup_per_zone *mz;
1388 1389
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1390
	struct lruvec *lruvec;
1391

1392 1393 1394 1395
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1396

K
KAMEZAWA Hiroyuki 已提交
1397
	pc = lookup_page_cgroup(page);
1398
	memcg = pc->mem_cgroup;
1399 1400

	/*
1401
	 * Surreptitiously switch any uncharged offlist page to root:
1402 1403 1404 1405 1406 1407 1408
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1409
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1410 1411
		pc->mem_cgroup = memcg = root_mem_cgroup;

1412
	mz = page_cgroup_zoneinfo(memcg, page);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1423
}
1424

1425
/**
1426 1427 1428 1429
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1430
 *
1431 1432
 * This function must be called when a page is added to or removed from an
 * lru list.
1433
 */
1434 1435
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1436 1437
{
	struct mem_cgroup_per_zone *mz;
1438
	unsigned long *lru_size;
1439 1440 1441 1442

	if (mem_cgroup_disabled())
		return;

1443 1444 1445 1446
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1447
}
1448

1449
/*
1450
 * Checks whether given mem is same or in the root_mem_cgroup's
1451 1452
 * hierarchy subtree
 */
1453 1454
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1455
{
1456 1457
	if (root_memcg == memcg)
		return true;
1458
	if (!root_memcg->use_hierarchy || !memcg)
1459
		return false;
1460 1461 1462 1463 1464 1465 1466 1467
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1468
	rcu_read_lock();
1469
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1470 1471
	rcu_read_unlock();
	return ret;
1472 1473
}

1474 1475
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1476
{
1477
	struct mem_cgroup *curr = NULL;
1478
	struct task_struct *p;
1479
	bool ret;
1480

1481
	p = find_lock_task_mm(task);
1482 1483 1484 1485 1486 1487 1488 1489 1490
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1491
		rcu_read_lock();
1492 1493 1494
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1495
		rcu_read_unlock();
1496
	}
1497
	if (!curr)
1498
		return false;
1499
	/*
1500
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1501
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1502 1503
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1504
	 */
1505
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1506
	css_put(&curr->css);
1507 1508 1509
	return ret;
}

1510
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1511
{
1512
	unsigned long inactive_ratio;
1513
	unsigned long inactive;
1514
	unsigned long active;
1515
	unsigned long gb;
1516

1517 1518
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1519

1520 1521 1522 1523 1524 1525
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1526
	return inactive * inactive_ratio < active;
1527 1528
}

1529 1530 1531
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1532
/**
1533
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1534
 * @memcg: the memory cgroup
1535
 *
1536
 * Returns the maximum amount of memory @mem can be charged with, in
1537
 * pages.
1538
 */
1539
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1540
{
1541 1542
	unsigned long long margin;

1543
	margin = res_counter_margin(&memcg->res);
1544
	if (do_swap_account)
1545
		margin = min(margin, res_counter_margin(&memcg->memsw));
1546
	return margin >> PAGE_SHIFT;
1547 1548
}

1549
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1550 1551 1552 1553 1554 1555 1556
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1557
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1558 1559
}

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1574 1575 1576 1577

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1578
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1579
{
1580
	atomic_inc(&memcg_moving);
1581
	atomic_inc(&memcg->moving_account);
1582 1583 1584
	synchronize_rcu();
}

1585
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1586
{
1587 1588 1589 1590
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1591 1592
	if (memcg) {
		atomic_dec(&memcg_moving);
1593
		atomic_dec(&memcg->moving_account);
1594
	}
1595
}
1596

1597 1598 1599
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1600 1601
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1602 1603 1604 1605 1606 1607 1608
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1609
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1610 1611
{
	VM_BUG_ON(!rcu_read_lock_held());
1612
	return atomic_read(&memcg->moving_account) > 0;
1613
}
1614

1615
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1616
{
1617 1618
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1619
	bool ret = false;
1620 1621 1622 1623 1624 1625 1626 1627 1628
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1629

1630 1631
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1632 1633
unlock:
	spin_unlock(&mc.lock);
1634 1635 1636
	return ret;
}

1637
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1638 1639
{
	if (mc.moving_task && current != mc.moving_task) {
1640
		if (mem_cgroup_under_move(memcg)) {
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1653 1654 1655 1656
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1657
 * see mem_cgroup_stolen(), too.
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1671
#define K(x) ((x) << (PAGE_SHIFT-10))
1672
/**
1673
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1691 1692
	struct mem_cgroup *iter;
	unsigned int i;
1693

1694
	if (!p)
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1713
	pr_info("Task in %s killed", memcg_name);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1726
	pr_cont(" as a result of limit of %s\n", memcg_name);
1727 1728
done:

1729
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1730 1731 1732
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1733
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1734 1735 1736
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1737
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1738 1739 1740
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1765 1766
}

1767 1768 1769 1770
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1771
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1772 1773
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1774 1775
	struct mem_cgroup *iter;

1776
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1777
		num++;
1778 1779 1780
	return num;
}

D
David Rientjes 已提交
1781 1782 1783
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1784
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1785 1786 1787
{
	u64 limit;

1788 1789
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1790
	/*
1791
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1792
	 */
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1807 1808
}

1809 1810
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1811 1812 1813 1814 1815 1816 1817
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1818
	/*
1819 1820 1821
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1822
	 */
1823
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1824 1825 1826 1827 1828
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1912 1913
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1914
 * @memcg: the target memcg
1915 1916 1917 1918 1919 1920 1921
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1922
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1923 1924
		int nid, bool noswap)
{
1925
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1926 1927 1928
		return true;
	if (noswap || !total_swap_pages)
		return false;
1929
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1930 1931 1932 1933
		return true;
	return false;

}
1934 1935 1936 1937 1938 1939 1940 1941
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1942
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1943 1944
{
	int nid;
1945 1946 1947 1948
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1949
	if (!atomic_read(&memcg->numainfo_events))
1950
		return;
1951
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1952 1953 1954
		return;

	/* make a nodemask where this memcg uses memory from */
1955
	memcg->scan_nodes = node_states[N_MEMORY];
1956

1957
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1958

1959 1960
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1961
	}
1962

1963 1964
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1979
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1980 1981 1982
{
	int node;

1983 1984
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1985

1986
	node = next_node(node, memcg->scan_nodes);
1987
	if (node == MAX_NUMNODES)
1988
		node = first_node(memcg->scan_nodes);
1989 1990 1991 1992 1993 1994 1995 1996 1997
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1998
	memcg->last_scanned_node = node;
1999 2000 2001
	return node;
}

2002 2003 2004 2005 2006 2007
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
2008
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2009 2010 2011 2012 2013 2014 2015
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
2016 2017
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
2018
		     nid < MAX_NUMNODES;
2019
		     nid = next_node(nid, memcg->scan_nodes)) {
2020

2021
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2022 2023 2024 2025 2026 2027
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
2028
	for_each_node_state(nid, N_MEMORY) {
2029
		if (node_isset(nid, memcg->scan_nodes))
2030
			continue;
2031
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2032 2033 2034 2035 2036
			return true;
	}
	return false;
}

2037
#else
2038
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2039 2040 2041
{
	return 0;
}
2042

2043
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2044
{
2045
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2046
}
2047 2048
#endif

2049 2050 2051 2052
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
2053
{
2054
	struct mem_cgroup *victim = NULL;
2055
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
2056
	int loop = 0;
2057
	unsigned long excess;
2058
	unsigned long nr_scanned;
2059 2060 2061 2062
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
2063

2064
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
2065

2066
	while (1) {
2067
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2068
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
2069
			loop++;
2070 2071 2072 2073 2074 2075
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
2076
				if (!total)
2077 2078
					break;
				/*
L
Lucas De Marchi 已提交
2079
				 * We want to do more targeted reclaim.
2080 2081 2082 2083 2084
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
2085
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2086 2087
					break;
			}
2088
			continue;
2089
		}
2090
		if (!mem_cgroup_reclaimable(victim, false))
2091
			continue;
2092 2093 2094 2095
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
2096
			break;
2097
	}
2098
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
2099
	return total;
2100 2101
}

K
KAMEZAWA Hiroyuki 已提交
2102 2103 2104
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2105
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2106
 */
2107
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2108
{
2109
	struct mem_cgroup *iter, *failed = NULL;
2110

2111
	for_each_mem_cgroup_tree(iter, memcg) {
2112
		if (iter->oom_lock) {
2113 2114 2115 2116 2117
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2118 2119
			mem_cgroup_iter_break(memcg, iter);
			break;
2120 2121
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2122
	}
K
KAMEZAWA Hiroyuki 已提交
2123

2124
	if (!failed)
2125
		return true;
2126 2127 2128 2129 2130

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2131
	for_each_mem_cgroup_tree(iter, memcg) {
2132
		if (iter == failed) {
2133 2134
			mem_cgroup_iter_break(memcg, iter);
			break;
2135 2136 2137
		}
		iter->oom_lock = false;
	}
2138
	return false;
2139
}
2140

2141
/*
2142
 * Has to be called with memcg_oom_lock
2143
 */
2144
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2145
{
K
KAMEZAWA Hiroyuki 已提交
2146 2147
	struct mem_cgroup *iter;

2148
	for_each_mem_cgroup_tree(iter, memcg)
2149 2150 2151 2152
		iter->oom_lock = false;
	return 0;
}

2153
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2154 2155 2156
{
	struct mem_cgroup *iter;

2157
	for_each_mem_cgroup_tree(iter, memcg)
2158 2159 2160
		atomic_inc(&iter->under_oom);
}

2161
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2162 2163 2164
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2165 2166 2167 2168 2169
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2170
	for_each_mem_cgroup_tree(iter, memcg)
2171
		atomic_add_unless(&iter->under_oom, -1, 0);
2172 2173
}

2174
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2175 2176
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2177
struct oom_wait_info {
2178
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2179 2180 2181 2182 2183 2184
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2185 2186
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2187 2188 2189
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2190
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2191 2192

	/*
2193
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2194 2195
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2196 2197
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2198 2199 2200 2201
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2202
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2203
{
2204 2205
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2206 2207
}

2208
static void memcg_oom_recover(struct mem_cgroup *memcg)
2209
{
2210 2211
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2212 2213
}

K
KAMEZAWA Hiroyuki 已提交
2214 2215 2216
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2217 2218
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2219
{
K
KAMEZAWA Hiroyuki 已提交
2220
	struct oom_wait_info owait;
2221
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2222

2223
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2224 2225 2226 2227
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2228
	need_to_kill = true;
2229
	mem_cgroup_mark_under_oom(memcg);
2230

2231
	/* At first, try to OOM lock hierarchy under memcg.*/
2232
	spin_lock(&memcg_oom_lock);
2233
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2234 2235 2236 2237 2238
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2239
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2240
	if (!locked || memcg->oom_kill_disable)
2241 2242
		need_to_kill = false;
	if (locked)
2243
		mem_cgroup_oom_notify(memcg);
2244
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2245

2246 2247
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2248
		mem_cgroup_out_of_memory(memcg, mask, order);
2249
	} else {
K
KAMEZAWA Hiroyuki 已提交
2250
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2251
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2252
	}
2253
	spin_lock(&memcg_oom_lock);
2254
	if (locked)
2255 2256
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2257
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2258

2259
	mem_cgroup_unmark_under_oom(memcg);
2260

K
KAMEZAWA Hiroyuki 已提交
2261 2262 2263
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2264
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2265
	return true;
2266 2267
}

2268 2269 2270
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2288 2289
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2290
 */
2291

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2305
	 * need to take move_lock_mem_cgroup(). Because we already hold
2306
	 * rcu_read_lock(), any calls to move_account will be delayed until
2307
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2308
	 */
2309
	if (!mem_cgroup_stolen(memcg))
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2327
	 * should take move_lock_mem_cgroup().
2328 2329 2330 2331
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2332 2333
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2334
{
2335
	struct mem_cgroup *memcg;
2336
	struct page_cgroup *pc = lookup_page_cgroup(page);
2337
	unsigned long uninitialized_var(flags);
2338

2339
	if (mem_cgroup_disabled())
2340
		return;
2341

2342 2343
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2344
		return;
2345 2346

	switch (idx) {
2347 2348
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2349 2350 2351
		break;
	default:
		BUG();
2352
	}
2353

2354
	this_cpu_add(memcg->stat->count[idx], val);
2355
}
2356

2357 2358 2359 2360
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2361
#define CHARGE_BATCH	32U
2362 2363
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2364
	unsigned int nr_pages;
2365
	struct work_struct work;
2366
	unsigned long flags;
2367
#define FLUSHING_CACHED_CHARGE	0
2368 2369
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2370
static DEFINE_MUTEX(percpu_charge_mutex);
2371

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2382
 */
2383
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2384 2385 2386 2387
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2388 2389 2390
	if (nr_pages > CHARGE_BATCH)
		return false;

2391
	stock = &get_cpu_var(memcg_stock);
2392 2393
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2407 2408 2409 2410
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2411
		if (do_swap_account)
2412 2413
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2426
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2427 2428
}

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2440 2441
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2442
 * This will be consumed by consume_stock() function, later.
2443
 */
2444
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2445 2446 2447
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2448
	if (stock->cached != memcg) { /* reset if necessary */
2449
		drain_stock(stock);
2450
		stock->cached = memcg;
2451
	}
2452
	stock->nr_pages += nr_pages;
2453 2454 2455 2456
	put_cpu_var(memcg_stock);
}

/*
2457
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2458 2459
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2460
 */
2461
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2462
{
2463
	int cpu, curcpu;
2464

2465 2466
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2467
	curcpu = get_cpu();
2468 2469
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2470
		struct mem_cgroup *memcg;
2471

2472 2473
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2474
			continue;
2475
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2476
			continue;
2477 2478 2479 2480 2481 2482
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2483
	}
2484
	put_cpu();
2485 2486 2487 2488 2489 2490

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2491
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2492 2493 2494
			flush_work(&stock->work);
	}
out:
2495
 	put_online_cpus();
2496 2497 2498 2499 2500 2501 2502 2503
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2504
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2505
{
2506 2507 2508 2509 2510
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2511
	drain_all_stock(root_memcg, false);
2512
	mutex_unlock(&percpu_charge_mutex);
2513 2514 2515
}

/* This is a synchronous drain interface. */
2516
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2517 2518
{
	/* called when force_empty is called */
2519
	mutex_lock(&percpu_charge_mutex);
2520
	drain_all_stock(root_memcg, true);
2521
	mutex_unlock(&percpu_charge_mutex);
2522 2523
}

2524 2525 2526 2527
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2528
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2529 2530 2531
{
	int i;

2532
	spin_lock(&memcg->pcp_counter_lock);
2533
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2534
		long x = per_cpu(memcg->stat->count[i], cpu);
2535

2536 2537
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2538
	}
2539
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2540
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2541

2542 2543
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2544
	}
2545
	spin_unlock(&memcg->pcp_counter_lock);
2546 2547 2548
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2549 2550 2551 2552 2553
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2554
	struct mem_cgroup *iter;
2555

2556
	if (action == CPU_ONLINE)
2557 2558
		return NOTIFY_OK;

2559
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2560
		return NOTIFY_OK;
2561

2562
	for_each_mem_cgroup(iter)
2563 2564
		mem_cgroup_drain_pcp_counter(iter, cpu);

2565 2566 2567 2568 2569
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2580
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2581 2582
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2583
{
2584
	unsigned long csize = nr_pages * PAGE_SIZE;
2585 2586 2587 2588 2589
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2590
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2591 2592 2593 2594

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2595
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2596 2597 2598
		if (likely(!ret))
			return CHARGE_OK;

2599
		res_counter_uncharge(&memcg->res, csize);
2600 2601 2602 2603
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2604 2605 2606 2607
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2608
	if (nr_pages > min_pages)
2609 2610 2611 2612 2613
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2614 2615 2616
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2617
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2618
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2619
		return CHARGE_RETRY;
2620
	/*
2621 2622 2623 2624 2625 2626 2627
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2628
	 */
2629
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2643
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2644 2645 2646 2647 2648
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2649
/*
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2669
 */
2670
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2671
				   gfp_t gfp_mask,
2672
				   unsigned int nr_pages,
2673
				   struct mem_cgroup **ptr,
2674
				   bool oom)
2675
{
2676
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2677
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2678
	struct mem_cgroup *memcg = NULL;
2679
	int ret;
2680

K
KAMEZAWA Hiroyuki 已提交
2681 2682 2683 2684 2685 2686 2687 2688
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2689

2690
	/*
2691 2692
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2693
	 * thread group leader migrates. It's possible that mm is not
2694
	 * set, if so charge the root memcg (happens for pagecache usage).
2695
	 */
2696
	if (!*ptr && !mm)
2697
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2698
again:
2699 2700 2701
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2702
			goto done;
2703
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2704
			goto done;
2705
		css_get(&memcg->css);
2706
	} else {
K
KAMEZAWA Hiroyuki 已提交
2707
		struct task_struct *p;
2708

K
KAMEZAWA Hiroyuki 已提交
2709 2710 2711
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2712
		 * Because we don't have task_lock(), "p" can exit.
2713
		 * In that case, "memcg" can point to root or p can be NULL with
2714 2715 2716 2717 2718 2719
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2720
		 */
2721
		memcg = mem_cgroup_from_task(p);
2722 2723 2724
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2725 2726 2727
			rcu_read_unlock();
			goto done;
		}
2728
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2741
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2742 2743 2744 2745 2746
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2747

2748 2749
	do {
		bool oom_check;
2750

2751
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2752
		if (fatal_signal_pending(current)) {
2753
			css_put(&memcg->css);
2754
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2755
		}
2756

2757 2758 2759 2760
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2761
		}
2762

2763 2764
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2765 2766 2767 2768
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2769
			batch = nr_pages;
2770 2771
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2772
			goto again;
2773
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2774
			css_put(&memcg->css);
2775 2776
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2777
			if (!oom) {
2778
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2779
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2780
			}
2781 2782 2783 2784
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2785
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2786
			goto bypass;
2787
		}
2788 2789
	} while (ret != CHARGE_OK);

2790
	if (batch > nr_pages)
2791 2792
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2793
done:
2794
	*ptr = memcg;
2795 2796
	return 0;
nomem:
2797
	*ptr = NULL;
2798
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2799
bypass:
2800 2801
	*ptr = root_mem_cgroup;
	return -EINTR;
2802
}
2803

2804 2805 2806 2807 2808
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2809
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2810
				       unsigned int nr_pages)
2811
{
2812
	if (!mem_cgroup_is_root(memcg)) {
2813 2814
		unsigned long bytes = nr_pages * PAGE_SIZE;

2815
		res_counter_uncharge(&memcg->res, bytes);
2816
		if (do_swap_account)
2817
			res_counter_uncharge(&memcg->memsw, bytes);
2818
	}
2819 2820
}

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2839 2840
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2841 2842 2843
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2855
	return mem_cgroup_from_css(css);
2856 2857
}

2858
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2859
{
2860
	struct mem_cgroup *memcg = NULL;
2861
	struct page_cgroup *pc;
2862
	unsigned short id;
2863 2864
	swp_entry_t ent;

2865 2866 2867
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2868
	lock_page_cgroup(pc);
2869
	if (PageCgroupUsed(pc)) {
2870 2871 2872
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2873
	} else if (PageSwapCache(page)) {
2874
		ent.val = page_private(page);
2875
		id = lookup_swap_cgroup_id(ent);
2876
		rcu_read_lock();
2877 2878 2879
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2880
		rcu_read_unlock();
2881
	}
2882
	unlock_page_cgroup(pc);
2883
	return memcg;
2884 2885
}

2886
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2887
				       struct page *page,
2888
				       unsigned int nr_pages,
2889 2890
				       enum charge_type ctype,
				       bool lrucare)
2891
{
2892
	struct page_cgroup *pc = lookup_page_cgroup(page);
2893
	struct zone *uninitialized_var(zone);
2894
	struct lruvec *lruvec;
2895
	bool was_on_lru = false;
2896
	bool anon;
2897

2898
	lock_page_cgroup(pc);
2899
	VM_BUG_ON(PageCgroupUsed(pc));
2900 2901 2902 2903
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2904 2905 2906 2907 2908 2909 2910 2911 2912

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2913
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2914
			ClearPageLRU(page);
2915
			del_page_from_lru_list(page, lruvec, page_lru(page));
2916 2917 2918 2919
			was_on_lru = true;
		}
	}

2920
	pc->mem_cgroup = memcg;
2921 2922 2923 2924 2925 2926 2927
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2928
	smp_wmb();
2929
	SetPageCgroupUsed(pc);
2930

2931 2932
	if (lrucare) {
		if (was_on_lru) {
2933
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2934 2935
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2936
			add_page_to_lru_list(page, lruvec, page_lru(page));
2937 2938 2939 2940
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2941
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2942 2943 2944 2945
		anon = true;
	else
		anon = false;

2946
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2947
	unlock_page_cgroup(pc);
2948

2949 2950 2951 2952 2953
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2954
	memcg_check_events(memcg, page);
2955
}
2956

2957 2958
static DEFINE_MUTEX(set_limit_mutex);

2959 2960 2961 2962 2963 2964 2965
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3053 3054 3055 3056 3057

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3058 3059 3060 3061 3062 3063 3064 3065
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3066
	if (memcg_kmem_test_and_clear_dead(memcg))
3067
		css_put(&memcg->css);
3068 3069
}

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3153 3154
static void kmem_cache_destroy_work_func(struct work_struct *w);

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3206 3207
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3208 3209 3210 3211 3212 3213
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3214 3215 3216
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3217 3218 3219 3220
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

3221 3222
	INIT_WORK(&s->memcg_params->destroy,
			kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3223
	if (memcg) {
3224
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3225
		s->memcg_params->root_cache = root_cache;
3226 3227 3228
	} else
		s->memcg_params->is_root_cache = true;

3229 3230 3231 3232 3233
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3258
	css_put(&memcg->css);
3259
out:
3260 3261 3262
	kfree(s->memcg_params);
}

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3294 3295 3296 3297 3298 3299 3300 3301 3302
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3324 3325 3326 3327 3328 3329 3330 3331
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3352 3353 3354 3355 3356 3357 3358
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3359 3360 3361 3362 3363 3364 3365 3366 3367
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3368

3369 3370 3371
/*
 * Called with memcg_cache_mutex held
 */
3372 3373 3374 3375
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3376
	static char *tmp_name = NULL;
3377

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3396

3397
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3398
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3399

3400 3401 3402
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3418 3419
	if (new_cachep) {
		css_put(&memcg->css);
3420
		goto out;
3421
	}
3422 3423 3424 3425

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3426
		css_put(&memcg->css);
3427 3428 3429
		goto out;
	}

G
Glauber Costa 已提交
3430
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3482
		cancel_work_sync(&c->memcg_params->destroy);
3483 3484 3485 3486 3487
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3488 3489 3490 3491 3492 3493
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3523 3524
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3525 3526 3527 3528
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3529 3530
	if (cw == NULL) {
		css_put(&memcg->css);
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3581 3582 3583
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3584 3585 3586 3587
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3588
		goto out;
3589 3590 3591 3592 3593 3594 3595 3596

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3597 3598 3599
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3600 3601
	}

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3629 3630 3631
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
	 * 	memcg_stop_kmem_account();
	 * 	kmalloc(<large_number>)
	 * 	memcg_resume_kmem_account();
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3755 3756 3757 3758
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3759 3760
#endif /* CONFIG_MEMCG_KMEM */

3761 3762
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3763
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3764 3765
/*
 * Because tail pages are not marked as "used", set it. We're under
3766 3767 3768
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3769
 */
3770
void mem_cgroup_split_huge_fixup(struct page *head)
3771 3772
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3773
	struct page_cgroup *pc;
3774
	struct mem_cgroup *memcg;
3775
	int i;
3776

3777 3778
	if (mem_cgroup_disabled())
		return;
3779 3780

	memcg = head_pc->mem_cgroup;
3781 3782
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3783
		pc->mem_cgroup = memcg;
3784 3785 3786
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3787 3788
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3789
}
3790
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3791

3792
/**
3793
 * mem_cgroup_move_account - move account of the page
3794
 * @page: the page
3795
 * @nr_pages: number of regular pages (>1 for huge pages)
3796 3797 3798 3799 3800
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3801
 * - page is not on LRU (isolate_page() is useful.)
3802
 * - compound_lock is held when nr_pages > 1
3803
 *
3804 3805
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3806
 */
3807 3808 3809 3810
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3811
				   struct mem_cgroup *to)
3812
{
3813 3814
	unsigned long flags;
	int ret;
3815
	bool anon = PageAnon(page);
3816

3817
	VM_BUG_ON(from == to);
3818
	VM_BUG_ON(PageLRU(page));
3819 3820 3821 3822 3823 3824 3825
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3826
	if (nr_pages > 1 && !PageTransHuge(page))
3827 3828 3829 3830 3831 3832 3833 3834
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3835
	move_lock_mem_cgroup(from, &flags);
3836

3837
	if (!anon && page_mapped(page)) {
3838 3839 3840 3841 3842
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3843
	}
3844
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3845

3846
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3847
	pc->mem_cgroup = to;
3848
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3849
	move_unlock_mem_cgroup(from, &flags);
3850 3851
	ret = 0;
unlock:
3852
	unlock_page_cgroup(pc);
3853 3854 3855
	/*
	 * check events
	 */
3856 3857
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3858
out:
3859 3860 3861
	return ret;
}

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3882
 */
3883 3884
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3885
				  struct mem_cgroup *child)
3886 3887
{
	struct mem_cgroup *parent;
3888
	unsigned int nr_pages;
3889
	unsigned long uninitialized_var(flags);
3890 3891
	int ret;

3892
	VM_BUG_ON(mem_cgroup_is_root(child));
3893

3894 3895 3896 3897 3898
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3899

3900
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3901

3902 3903 3904 3905 3906 3907
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3908

3909 3910
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3911
		flags = compound_lock_irqsave(page);
3912
	}
3913

3914
	ret = mem_cgroup_move_account(page, nr_pages,
3915
				pc, child, parent);
3916 3917
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3918

3919
	if (nr_pages > 1)
3920
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3921
	putback_lru_page(page);
3922
put:
3923
	put_page(page);
3924
out:
3925 3926 3927
	return ret;
}

3928 3929 3930 3931 3932 3933 3934
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3935
				gfp_t gfp_mask, enum charge_type ctype)
3936
{
3937
	struct mem_cgroup *memcg = NULL;
3938
	unsigned int nr_pages = 1;
3939
	bool oom = true;
3940
	int ret;
A
Andrea Arcangeli 已提交
3941

A
Andrea Arcangeli 已提交
3942
	if (PageTransHuge(page)) {
3943
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3944
		VM_BUG_ON(!PageTransHuge(page));
3945 3946 3947 3948 3949
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3950
	}
3951

3952
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3953
	if (ret == -ENOMEM)
3954
		return ret;
3955
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3956 3957 3958
	return 0;
}

3959 3960
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3961
{
3962
	if (mem_cgroup_disabled())
3963
		return 0;
3964 3965 3966
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3967
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3968
					MEM_CGROUP_CHARGE_TYPE_ANON);
3969 3970
}

3971 3972 3973
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3974
 * struct page_cgroup is acquired. This refcnt will be consumed by
3975 3976
 * "commit()" or removed by "cancel()"
 */
3977 3978 3979 3980
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3981
{
3982
	struct mem_cgroup *memcg;
3983
	struct page_cgroup *pc;
3984
	int ret;
3985

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3996 3997
	if (!do_swap_account)
		goto charge_cur_mm;
3998 3999
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
4000
		goto charge_cur_mm;
4001 4002
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4003
	css_put(&memcg->css);
4004 4005
	if (ret == -EINTR)
		ret = 0;
4006
	return ret;
4007
charge_cur_mm:
4008 4009 4010 4011
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
4012 4013
}

4014 4015 4016 4017 4018 4019
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4034 4035 4036
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4037 4038 4039 4040 4041 4042 4043 4044 4045
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4046
static void
4047
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4048
					enum charge_type ctype)
4049
{
4050
	if (mem_cgroup_disabled())
4051
		return;
4052
	if (!memcg)
4053
		return;
4054

4055
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4056 4057 4058
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4059 4060 4061
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4062
	 */
4063
	if (do_swap_account && PageSwapCache(page)) {
4064
		swp_entry_t ent = {.val = page_private(page)};
4065
		mem_cgroup_uncharge_swap(ent);
4066
	}
4067 4068
}

4069 4070
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4071
{
4072
	__mem_cgroup_commit_charge_swapin(page, memcg,
4073
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4074 4075
}

4076 4077
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4078
{
4079 4080 4081 4082
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4083
	if (mem_cgroup_disabled())
4084 4085 4086 4087 4088 4089 4090
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4091 4092
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4093 4094 4095 4096
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4097 4098
}

4099
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4100 4101
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4102 4103 4104
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4105

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4117
		batch->memcg = memcg;
4118 4119
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4120
	 * In those cases, all pages freed continuously can be expected to be in
4121 4122 4123 4124 4125 4126 4127 4128
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4129
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4130 4131
		goto direct_uncharge;

4132 4133 4134 4135 4136
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4137
	if (batch->memcg != memcg)
4138 4139
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4140
	batch->nr_pages++;
4141
	if (uncharge_memsw)
4142
		batch->memsw_nr_pages++;
4143 4144
	return;
direct_uncharge:
4145
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4146
	if (uncharge_memsw)
4147 4148 4149
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4150
}
4151

4152
/*
4153
 * uncharge if !page_mapped(page)
4154
 */
4155
static struct mem_cgroup *
4156 4157
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4158
{
4159
	struct mem_cgroup *memcg = NULL;
4160 4161
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4162
	bool anon;
4163

4164
	if (mem_cgroup_disabled())
4165
		return NULL;
4166

A
Andrea Arcangeli 已提交
4167
	if (PageTransHuge(page)) {
4168
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4169 4170
		VM_BUG_ON(!PageTransHuge(page));
	}
4171
	/*
4172
	 * Check if our page_cgroup is valid
4173
	 */
4174
	pc = lookup_page_cgroup(page);
4175
	if (unlikely(!PageCgroupUsed(pc)))
4176
		return NULL;
4177

4178
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4179

4180
	memcg = pc->mem_cgroup;
4181

K
KAMEZAWA Hiroyuki 已提交
4182 4183 4184
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4185 4186
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4187
	switch (ctype) {
4188
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4189 4190 4191 4192 4193
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4194 4195
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4196
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4197
		/* See mem_cgroup_prepare_migration() */
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4219
	}
K
KAMEZAWA Hiroyuki 已提交
4220

4221
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4222

4223
	ClearPageCgroupUsed(pc);
4224 4225 4226 4227 4228 4229
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4230

4231
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4232
	/*
4233
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4234 4235
	 * will never be freed.
	 */
4236
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4237
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4238 4239
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4240
	}
4241 4242 4243 4244 4245 4246
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4247
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4248

4249
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4250 4251 4252

unlock_out:
	unlock_page_cgroup(pc);
4253
	return NULL;
4254 4255
}

4256 4257
void mem_cgroup_uncharge_page(struct page *page)
{
4258 4259 4260
	/* early check. */
	if (page_mapped(page))
		return;
4261
	VM_BUG_ON(page->mapping && !PageAnon(page));
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4274 4275
	if (PageSwapCache(page))
		return;
4276
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4277 4278 4279 4280 4281
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4282
	VM_BUG_ON(page->mapping);
4283
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4284 4285
}

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4300 4301
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4322 4323 4324 4325 4326 4327
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4328
	memcg_oom_recover(batch->memcg);
4329 4330 4331 4332
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4333
#ifdef CONFIG_SWAP
4334
/*
4335
 * called after __delete_from_swap_cache() and drop "page" account.
4336 4337
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4338 4339
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4340 4341
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4342 4343 4344 4345 4346
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4347
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4348

K
KAMEZAWA Hiroyuki 已提交
4349 4350 4351 4352 4353
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4354
		swap_cgroup_record(ent, css_id(&memcg->css));
4355
}
4356
#endif
4357

A
Andrew Morton 已提交
4358
#ifdef CONFIG_MEMCG_SWAP
4359 4360 4361 4362 4363
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4364
{
4365
	struct mem_cgroup *memcg;
4366
	unsigned short id;
4367 4368 4369 4370

	if (!do_swap_account)
		return;

4371 4372 4373
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4374
	if (memcg) {
4375 4376 4377 4378
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4379
		if (!mem_cgroup_is_root(memcg))
4380
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4381
		mem_cgroup_swap_statistics(memcg, false);
4382 4383
		mem_cgroup_put(memcg);
	}
4384
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4385
}
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4402
				struct mem_cgroup *from, struct mem_cgroup *to)
4403 4404 4405 4406 4407 4408 4409 4410
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4411
		mem_cgroup_swap_statistics(to, true);
4412
		/*
4413 4414 4415 4416 4417 4418
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4419 4420 4421 4422 4423 4424 4425 4426
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4427
				struct mem_cgroup *from, struct mem_cgroup *to)
4428 4429 4430
{
	return -EINVAL;
}
4431
#endif
K
KAMEZAWA Hiroyuki 已提交
4432

4433
/*
4434 4435
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4436
 */
4437 4438
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4439
{
4440
	struct mem_cgroup *memcg = NULL;
4441
	unsigned int nr_pages = 1;
4442
	struct page_cgroup *pc;
4443
	enum charge_type ctype;
4444

4445
	*memcgp = NULL;
4446

4447
	if (mem_cgroup_disabled())
4448
		return;
4449

4450 4451 4452
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4453 4454 4455
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4456 4457
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4489
	}
4490
	unlock_page_cgroup(pc);
4491 4492 4493 4494
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4495
	if (!memcg)
4496
		return;
4497

4498
	*memcgp = memcg;
4499 4500 4501 4502 4503 4504 4505
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4506
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4507
	else
4508
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4509 4510 4511 4512 4513
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4514
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4515
}
4516

4517
/* remove redundant charge if migration failed*/
4518
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4519
	struct page *oldpage, struct page *newpage, bool migration_ok)
4520
{
4521
	struct page *used, *unused;
4522
	struct page_cgroup *pc;
4523
	bool anon;
4524

4525
	if (!memcg)
4526
		return;
4527

4528
	if (!migration_ok) {
4529 4530
		used = oldpage;
		unused = newpage;
4531
	} else {
4532
		used = newpage;
4533 4534
		unused = oldpage;
	}
4535
	anon = PageAnon(used);
4536 4537 4538 4539
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4540
	css_put(&memcg->css);
4541
	/*
4542 4543 4544
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4545
	 */
4546 4547 4548 4549 4550
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4551
	/*
4552 4553 4554 4555 4556 4557
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4558
	 */
4559
	if (anon)
4560
		mem_cgroup_uncharge_page(used);
4561
}
4562

4563 4564 4565 4566 4567 4568 4569 4570
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4571
	struct mem_cgroup *memcg = NULL;
4572 4573 4574 4575 4576 4577 4578 4579 4580
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4581 4582
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4583
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4584 4585
		ClearPageCgroupUsed(pc);
	}
4586 4587
	unlock_page_cgroup(pc);

4588 4589 4590 4591 4592 4593
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4594 4595 4596 4597 4598
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4599
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4600 4601
}

4602 4603 4604 4605 4606 4607
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4608 4609 4610 4611 4612
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4632 4633
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4634 4635 4636 4637
	}
}
#endif

4638
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4639
				unsigned long long val)
4640
{
4641
	int retry_count;
4642
	u64 memswlimit, memlimit;
4643
	int ret = 0;
4644 4645
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4646
	int enlarge;
4647 4648 4649 4650 4651 4652 4653 4654 4655

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4656

4657
	enlarge = 0;
4658
	while (retry_count) {
4659 4660 4661 4662
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4663 4664 4665
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4666
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4667 4668 4669 4670 4671 4672
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4673 4674
			break;
		}
4675 4676 4677 4678 4679

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4680
		ret = res_counter_set_limit(&memcg->res, val);
4681 4682 4683 4684 4685 4686
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4687 4688 4689 4690 4691
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4692 4693
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4694 4695 4696 4697 4698 4699
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4700
	}
4701 4702
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4703

4704 4705 4706
	return ret;
}

L
Li Zefan 已提交
4707 4708
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4709
{
4710
	int retry_count;
4711
	u64 memlimit, memswlimit, oldusage, curusage;
4712 4713
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4714
	int enlarge = 0;
4715

4716 4717 4718
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4719 4720 4721 4722 4723 4724 4725 4726
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4727
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4728 4729 4730 4731 4732 4733 4734 4735
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4736 4737 4738
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4739
		ret = res_counter_set_limit(&memcg->memsw, val);
4740 4741 4742 4743 4744 4745
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4746 4747 4748 4749 4750
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4751 4752 4753
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4754
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4755
		/* Usage is reduced ? */
4756
		if (curusage >= oldusage)
4757
			retry_count--;
4758 4759
		else
			oldusage = curusage;
4760
	}
4761 4762
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4763 4764 4765
	return ret;
}

4766
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4767 4768
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4769 4770 4771 4772 4773 4774
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4775
	unsigned long long excess;
4776
	unsigned long nr_scanned;
4777 4778 4779 4780

	if (order > 0)
		return 0;

4781
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4795
		nr_scanned = 0;
4796
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4797
						    gfp_mask, &nr_scanned);
4798
		nr_reclaimed += reclaimed;
4799
		*total_scanned += nr_scanned;
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4822
				if (next_mz == mz)
4823
					css_put(&next_mz->memcg->css);
4824
				else /* next_mz == NULL or other memcg */
4825 4826 4827
					break;
			} while (1);
		}
4828 4829
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4830 4831 4832 4833 4834 4835 4836 4837
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4838
		/* If excess == 0, no tree ops */
4839
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4840
		spin_unlock(&mctz->lock);
4841
		css_put(&mz->memcg->css);
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4854
		css_put(&next_mz->memcg->css);
4855 4856 4857
	return nr_reclaimed;
}

4858 4859 4860 4861 4862 4863 4864
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4865
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4866 4867
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4868
 */
4869
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4870
				int node, int zid, enum lru_list lru)
4871
{
4872
	struct lruvec *lruvec;
4873
	unsigned long flags;
4874
	struct list_head *list;
4875 4876
	struct page *busy;
	struct zone *zone;
4877

K
KAMEZAWA Hiroyuki 已提交
4878
	zone = &NODE_DATA(node)->node_zones[zid];
4879 4880
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4881

4882
	busy = NULL;
4883
	do {
4884
		struct page_cgroup *pc;
4885 4886
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4887
		spin_lock_irqsave(&zone->lru_lock, flags);
4888
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4889
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4890
			break;
4891
		}
4892 4893 4894
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4895
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4896
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4897 4898
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4899
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4900

4901
		pc = lookup_page_cgroup(page);
4902

4903
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4904
			/* found lock contention or "pc" is obsolete. */
4905
			busy = page;
4906 4907 4908
			cond_resched();
		} else
			busy = NULL;
4909
	} while (!list_empty(list));
4910 4911 4912
}

/*
4913 4914
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4915
 * This enables deleting this mem_cgroup.
4916 4917
 *
 * Caller is responsible for holding css reference on the memcg.
4918
 */
4919
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4920
{
4921
	int node, zid;
4922
	u64 usage;
4923

4924
	do {
4925 4926
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4927 4928
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4929
		for_each_node_state(node, N_MEMORY) {
4930
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4931 4932
				enum lru_list lru;
				for_each_lru(lru) {
4933
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4934
							node, zid, lru);
4935
				}
4936
			}
4937
		}
4938 4939
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4940
		cond_resched();
4941

4942
		/*
4943 4944 4945 4946 4947
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4948 4949 4950 4951 4952 4953
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4954 4955 4956
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4957 4958
}

4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
	struct cgroup *pos;

	/* bounce at first found */
	cgroup_for_each_child(pos, memcg->css.cgroup)
		return true;
	return false;
}

/*
4975 4976
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4977 4978 4979 4980 4981 4982 4983 4984 4985
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4996

4997
	/* returns EBUSY if there is a task or if we come here twice. */
4998 4999 5000
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

5001 5002
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
5003
	/* try to free all pages in this cgroup */
5004
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5005
		int progress;
5006

5007 5008 5009
		if (signal_pending(current))
			return -EINTR;

5010
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5011
						false);
5012
		if (!progress) {
5013
			nr_retries--;
5014
			/* maybe some writeback is necessary */
5015
			congestion_wait(BLK_RW_ASYNC, HZ/10);
5016
		}
5017 5018

	}
K
KAMEZAWA Hiroyuki 已提交
5019
	lru_add_drain();
5020 5021 5022
	mem_cgroup_reparent_charges(memcg);

	return 0;
5023 5024
}

5025
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
5026
{
5027 5028 5029
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

5030 5031
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5032 5033 5034 5035 5036
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
5037 5038 5039
}


5040 5041 5042 5043 5044 5045 5046 5047 5048
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
5049
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5050
	struct cgroup *parent = cont->parent;
5051
	struct mem_cgroup *parent_memcg = NULL;
5052 5053

	if (parent)
5054
		parent_memcg = mem_cgroup_from_cont(parent);
5055

5056
	mutex_lock(&memcg_create_mutex);
5057 5058 5059 5060

	if (memcg->use_hierarchy == val)
		goto out;

5061
	/*
5062
	 * If parent's use_hierarchy is set, we can't make any modifications
5063 5064 5065 5066 5067 5068
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5069
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5070
				(val == 1 || val == 0)) {
5071
		if (!__memcg_has_children(memcg))
5072
			memcg->use_hierarchy = val;
5073 5074 5075 5076
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5077 5078

out:
5079
	mutex_unlock(&memcg_create_mutex);
5080 5081 5082 5083

	return retval;
}

5084

5085
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5086
					       enum mem_cgroup_stat_index idx)
5087
{
K
KAMEZAWA Hiroyuki 已提交
5088
	struct mem_cgroup *iter;
5089
	long val = 0;
5090

5091
	/* Per-cpu values can be negative, use a signed accumulator */
5092
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5093 5094 5095 5096 5097
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5098 5099
}

5100
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5101
{
K
KAMEZAWA Hiroyuki 已提交
5102
	u64 val;
5103

5104
	if (!mem_cgroup_is_root(memcg)) {
5105
		if (!swap)
5106
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5107
		else
5108
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5109 5110
	}

5111 5112 5113 5114
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5115 5116
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5117

K
KAMEZAWA Hiroyuki 已提交
5118
	if (swap)
5119
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5120 5121 5122 5123

	return val << PAGE_SHIFT;
}

5124 5125 5126
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5127
{
5128
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5129
	char str[64];
5130
	u64 val;
G
Glauber Costa 已提交
5131 5132
	int name, len;
	enum res_type type;
5133 5134 5135

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5136

5137 5138
	switch (type) {
	case _MEM:
5139
		if (name == RES_USAGE)
5140
			val = mem_cgroup_usage(memcg, false);
5141
		else
5142
			val = res_counter_read_u64(&memcg->res, name);
5143 5144
		break;
	case _MEMSWAP:
5145
		if (name == RES_USAGE)
5146
			val = mem_cgroup_usage(memcg, true);
5147
		else
5148
			val = res_counter_read_u64(&memcg->memsw, name);
5149
		break;
5150 5151 5152
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5153 5154 5155
	default:
		BUG();
	}
5156 5157 5158

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5159
}
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5178
	mutex_lock(&memcg_create_mutex);
5179 5180
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5181
		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5182 5183 5184 5185 5186 5187
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5188 5189 5190 5191 5192
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5193 5194 5195 5196 5197 5198
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5199 5200 5201 5202
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5203
	mutex_unlock(&memcg_create_mutex);
5204 5205 5206 5207
#endif
	return ret;
}

5208
#ifdef CONFIG_MEMCG_KMEM
5209
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5210
{
5211
	int ret = 0;
5212 5213
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5214 5215
		goto out;

5216
	memcg->kmem_account_flags = parent->kmem_account_flags;
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5227 5228 5229 5230
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5231 5232 5233
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5234 5235 5236 5237
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5238
	memcg_stop_kmem_account();
5239
	ret = memcg_update_cache_sizes(memcg);
5240
	memcg_resume_kmem_account();
5241 5242 5243
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5244
}
5245
#endif /* CONFIG_MEMCG_KMEM */
5246

5247 5248 5249 5250
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5251 5252
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5253
{
5254
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5255 5256
	enum res_type type;
	int name;
5257 5258 5259
	unsigned long long val;
	int ret;

5260 5261
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5262

5263
	switch (name) {
5264
	case RES_LIMIT:
5265 5266 5267 5268
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5269 5270
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5271 5272 5273
		if (ret)
			break;
		if (type == _MEM)
5274
			ret = mem_cgroup_resize_limit(memcg, val);
5275
		else if (type == _MEMSWAP)
5276
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5277 5278 5279 5280
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5281
		break;
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5296 5297 5298 5299 5300
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5301 5302
}

5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5330
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5331
{
5332
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5333 5334
	int name;
	enum res_type type;
5335

5336 5337
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5338

5339
	switch (name) {
5340
	case RES_MAX_USAGE:
5341
		if (type == _MEM)
5342
			res_counter_reset_max(&memcg->res);
5343
		else if (type == _MEMSWAP)
5344
			res_counter_reset_max(&memcg->memsw);
5345 5346 5347 5348
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5349 5350
		break;
	case RES_FAILCNT:
5351
		if (type == _MEM)
5352
			res_counter_reset_failcnt(&memcg->res);
5353
		else if (type == _MEMSWAP)
5354
			res_counter_reset_failcnt(&memcg->memsw);
5355 5356 5357 5358
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5359 5360
		break;
	}
5361

5362
	return 0;
5363 5364
}

5365 5366 5367 5368 5369 5370
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5371
#ifdef CONFIG_MMU
5372 5373 5374
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5375
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5376 5377 5378

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5379

5380
	/*
5381 5382 5383 5384
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5385
	 */
5386
	memcg->move_charge_at_immigrate = val;
5387 5388
	return 0;
}
5389 5390 5391 5392 5393 5394 5395
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5396

5397
#ifdef CONFIG_NUMA
5398
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5399
				      struct seq_file *m)
5400 5401 5402 5403
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5404
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5405

5406
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5407
	seq_printf(m, "total=%lu", total_nr);
5408
	for_each_node_state(nid, N_MEMORY) {
5409
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5410 5411 5412 5413
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5414
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5415
	seq_printf(m, "file=%lu", file_nr);
5416
	for_each_node_state(nid, N_MEMORY) {
5417
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5418
				LRU_ALL_FILE);
5419 5420 5421 5422
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5423
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5424
	seq_printf(m, "anon=%lu", anon_nr);
5425
	for_each_node_state(nid, N_MEMORY) {
5426
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5427
				LRU_ALL_ANON);
5428 5429 5430 5431
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5432
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5433
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5434
	for_each_node_state(nid, N_MEMORY) {
5435
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5436
				BIT(LRU_UNEVICTABLE));
5437 5438 5439 5440 5441 5442 5443
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5444 5445 5446 5447 5448
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5449
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5450
				 struct seq_file *m)
5451
{
5452
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5453 5454
	struct mem_cgroup *mi;
	unsigned int i;
5455

5456
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5457
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5458
			continue;
5459 5460
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5461
	}
L
Lee Schermerhorn 已提交
5462

5463 5464 5465 5466 5467 5468 5469 5470
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5471
	/* Hierarchical information */
5472 5473
	{
		unsigned long long limit, memsw_limit;
5474
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5475
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5476
		if (do_swap_account)
5477 5478
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5479
	}
K
KOSAKI Motohiro 已提交
5480

5481 5482 5483
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5484
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5485
			continue;
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5506
	}
K
KAMEZAWA Hiroyuki 已提交
5507

K
KOSAKI Motohiro 已提交
5508 5509 5510 5511
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5512
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5513 5514 5515 5516 5517
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5518
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5519
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5520

5521 5522 5523 5524
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5525
			}
5526 5527 5528 5529
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5530 5531 5532
	}
#endif

5533 5534 5535
	return 0;
}

K
KOSAKI Motohiro 已提交
5536 5537 5538 5539
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5540
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5541 5542 5543 5544 5545 5546 5547
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5548

K
KOSAKI Motohiro 已提交
5549 5550 5551 5552 5553 5554 5555
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5556

5557
	mutex_lock(&memcg_create_mutex);
5558

K
KOSAKI Motohiro 已提交
5559
	/* If under hierarchy, only empty-root can set this value */
5560
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5561
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5562
		return -EINVAL;
5563
	}
K
KOSAKI Motohiro 已提交
5564 5565 5566

	memcg->swappiness = val;

5567
	mutex_unlock(&memcg_create_mutex);
5568

K
KOSAKI Motohiro 已提交
5569 5570 5571
	return 0;
}

5572 5573 5574 5575 5576 5577 5578 5579
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5580
		t = rcu_dereference(memcg->thresholds.primary);
5581
	else
5582
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5583 5584 5585 5586 5587 5588 5589

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5590
	 * current_threshold points to threshold just below or equal to usage.
5591 5592 5593
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5594
	i = t->current_threshold;
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5618
	t->current_threshold = i - 1;
5619 5620 5621 5622 5623 5624
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5625 5626 5627 5628 5629 5630 5631
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5642
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5643 5644 5645
{
	struct mem_cgroup_eventfd_list *ev;

5646
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5647 5648 5649 5650
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5651
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5652
{
K
KAMEZAWA Hiroyuki 已提交
5653 5654
	struct mem_cgroup *iter;

5655
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5656
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5657 5658 5659 5660
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5661 5662
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5663 5664
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5665
	enum res_type type = MEMFILE_TYPE(cft->private);
5666
	u64 threshold, usage;
5667
	int i, size, ret;
5668 5669 5670 5671 5672 5673

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5674

5675
	if (type == _MEM)
5676
		thresholds = &memcg->thresholds;
5677
	else if (type == _MEMSWAP)
5678
		thresholds = &memcg->memsw_thresholds;
5679 5680 5681 5682 5683 5684
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5685
	if (thresholds->primary)
5686 5687
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5688
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5689 5690

	/* Allocate memory for new array of thresholds */
5691
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5692
			GFP_KERNEL);
5693
	if (!new) {
5694 5695 5696
		ret = -ENOMEM;
		goto unlock;
	}
5697
	new->size = size;
5698 5699

	/* Copy thresholds (if any) to new array */
5700 5701
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5702
				sizeof(struct mem_cgroup_threshold));
5703 5704
	}

5705
	/* Add new threshold */
5706 5707
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5708 5709

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5710
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5711 5712 5713
			compare_thresholds, NULL);

	/* Find current threshold */
5714
	new->current_threshold = -1;
5715
	for (i = 0; i < size; i++) {
5716
		if (new->entries[i].threshold <= usage) {
5717
			/*
5718 5719
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5720 5721
			 * it here.
			 */
5722
			++new->current_threshold;
5723 5724
		} else
			break;
5725 5726
	}

5727 5728 5729 5730 5731
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5732

5733
	/* To be sure that nobody uses thresholds */
5734 5735 5736 5737 5738 5739 5740 5741
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5742
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5743
	struct cftype *cft, struct eventfd_ctx *eventfd)
5744 5745
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5746 5747
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5748
	enum res_type type = MEMFILE_TYPE(cft->private);
5749
	u64 usage;
5750
	int i, j, size;
5751 5752 5753

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5754
		thresholds = &memcg->thresholds;
5755
	else if (type == _MEMSWAP)
5756
		thresholds = &memcg->memsw_thresholds;
5757 5758 5759
	else
		BUG();

5760 5761 5762
	if (!thresholds->primary)
		goto unlock;

5763 5764 5765 5766 5767 5768
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5769 5770 5771
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5772 5773 5774
			size++;
	}

5775
	new = thresholds->spare;
5776

5777 5778
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5779 5780
		kfree(new);
		new = NULL;
5781
		goto swap_buffers;
5782 5783
	}

5784
	new->size = size;
5785 5786

	/* Copy thresholds and find current threshold */
5787 5788 5789
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5790 5791
			continue;

5792
		new->entries[j] = thresholds->primary->entries[i];
5793
		if (new->entries[j].threshold <= usage) {
5794
			/*
5795
			 * new->current_threshold will not be used
5796 5797 5798
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5799
			++new->current_threshold;
5800 5801 5802 5803
		}
		j++;
	}

5804
swap_buffers:
5805 5806
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5807 5808 5809 5810 5811 5812
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5813
	rcu_assign_pointer(thresholds->primary, new);
5814

5815
	/* To be sure that nobody uses thresholds */
5816
	synchronize_rcu();
5817
unlock:
5818 5819
	mutex_unlock(&memcg->thresholds_lock);
}
5820

K
KAMEZAWA Hiroyuki 已提交
5821 5822 5823 5824 5825
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5826
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5827 5828 5829 5830 5831 5832

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5833
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5834 5835 5836 5837 5838

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5839
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5840
		eventfd_signal(eventfd, 1);
5841
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5842 5843 5844 5845

	return 0;
}

5846
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5847 5848
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5849
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5850
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5851
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5852 5853 5854

	BUG_ON(type != _OOM_TYPE);

5855
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5856

5857
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5858 5859 5860 5861 5862 5863
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5864
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5865 5866
}

5867 5868 5869
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5870
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5871

5872
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5873

5874
	if (atomic_read(&memcg->under_oom))
5875 5876 5877 5878 5879 5880 5881 5882 5883
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5884
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5885 5886 5887 5888 5889 5890 5891 5892
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

5893
	mutex_lock(&memcg_create_mutex);
5894
	/* oom-kill-disable is a flag for subhierarchy. */
5895
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5896
		mutex_unlock(&memcg_create_mutex);
5897 5898
		return -EINVAL;
	}
5899
	memcg->oom_kill_disable = val;
5900
	if (!val)
5901
		memcg_oom_recover(memcg);
5902
	mutex_unlock(&memcg_create_mutex);
5903 5904 5905
	return 0;
}

A
Andrew Morton 已提交
5906
#ifdef CONFIG_MEMCG_KMEM
5907
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5908
{
5909 5910
	int ret;

5911
	memcg->kmemcg_id = -1;
5912 5913 5914
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5915

5916
	return mem_cgroup_sockets_init(memcg, ss);
5917
}
5918

5919
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5920
{
5921
	mem_cgroup_sockets_destroy(memcg);
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5948 5949 5950 5951 5952 5953 5954

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5955
		css_put(&memcg->css);
G
Glauber Costa 已提交
5956
}
5957
#else
5958
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5959 5960 5961
{
	return 0;
}
G
Glauber Costa 已提交
5962

5963 5964 5965 5966 5967
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5968 5969
{
}
5970 5971
#endif

B
Balbir Singh 已提交
5972 5973
static struct cftype mem_cgroup_files[] = {
	{
5974
		.name = "usage_in_bytes",
5975
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5976
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5977 5978
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5979
	},
5980 5981
	{
		.name = "max_usage_in_bytes",
5982
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5983
		.trigger = mem_cgroup_reset,
5984
		.read = mem_cgroup_read,
5985
	},
B
Balbir Singh 已提交
5986
	{
5987
		.name = "limit_in_bytes",
5988
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5989
		.write_string = mem_cgroup_write,
5990
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5991
	},
5992 5993 5994 5995
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5996
		.read = mem_cgroup_read,
5997
	},
B
Balbir Singh 已提交
5998 5999
	{
		.name = "failcnt",
6000
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6001
		.trigger = mem_cgroup_reset,
6002
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
6003
	},
6004 6005
	{
		.name = "stat",
6006
		.read_seq_string = memcg_stat_show,
6007
	},
6008 6009 6010 6011
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6012 6013
	{
		.name = "use_hierarchy",
6014
		.flags = CFTYPE_INSANE,
6015 6016 6017
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
6018 6019 6020 6021 6022
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6023 6024 6025 6026 6027
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6028 6029
	{
		.name = "oom_control",
6030 6031
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6032 6033 6034 6035
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6036 6037 6038 6039 6040
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
6041 6042 6043
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6044
		.read_seq_string = memcg_numa_stat_show,
6045 6046
	},
#endif
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6071 6072 6073 6074 6075 6076
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6077
#endif
6078
	{ },	/* terminate */
6079
};
6080

6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6111
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6112 6113
{
	struct mem_cgroup_per_node *pn;
6114
	struct mem_cgroup_per_zone *mz;
6115
	int zone, tmp = node;
6116 6117 6118 6119 6120 6121 6122 6123
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6124 6125
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6126
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6127 6128
	if (!pn)
		return 1;
6129 6130 6131

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6132
		lruvec_init(&mz->lruvec);
6133
		mz->usage_in_excess = 0;
6134
		mz->on_tree = false;
6135
		mz->memcg = memcg;
6136
	}
6137
	memcg->nodeinfo[node] = pn;
6138 6139 6140
	return 0;
}

6141
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6142
{
6143
	kfree(memcg->nodeinfo[node]);
6144 6145
}

6146 6147
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6148
	struct mem_cgroup *memcg;
6149
	size_t size = memcg_size();
6150

6151
	/* Can be very big if nr_node_ids is very big */
6152
	if (size < PAGE_SIZE)
6153
		memcg = kzalloc(size, GFP_KERNEL);
6154
	else
6155
		memcg = vzalloc(size);
6156

6157
	if (!memcg)
6158 6159
		return NULL;

6160 6161
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6162
		goto out_free;
6163 6164
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6165 6166 6167

out_free:
	if (size < PAGE_SIZE)
6168
		kfree(memcg);
6169
	else
6170
		vfree(memcg);
6171
	return NULL;
6172 6173
}

6174
/*
6175 6176 6177 6178 6179 6180 6181 6182
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6183
 */
6184 6185

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6186
{
6187
	int node;
6188
	size_t size = memcg_size();
6189

6190 6191 6192 6193 6194 6195 6196 6197
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6209
	disarm_static_keys(memcg);
6210 6211 6212 6213
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6214
}
6215

6216

6217
/*
6218 6219 6220
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
6221
 */
6222
static void free_work(struct work_struct *work)
6223
{
6224
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6225

6226 6227 6228
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
6229

6230 6231 6232
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6233

6234 6235 6236
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
6237 6238
}

6239
static void mem_cgroup_get(struct mem_cgroup *memcg)
6240
{
6241
	atomic_inc(&memcg->refcnt);
6242 6243
}

6244
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6245
{
6246 6247
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6248
		call_rcu(&memcg->rcu_freeing, free_rcu);
6249 6250 6251
		if (parent)
			mem_cgroup_put(parent);
	}
6252 6253
}

6254
static void mem_cgroup_put(struct mem_cgroup *memcg)
6255
{
6256
	__mem_cgroup_put(memcg, 1);
6257 6258
}

6259 6260 6261
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6262
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6263
{
6264
	if (!memcg->res.parent)
6265
		return NULL;
6266
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6267
}
G
Glauber Costa 已提交
6268
EXPORT_SYMBOL(parent_mem_cgroup);
6269

6270
static void __init mem_cgroup_soft_limit_tree_init(void)
6271 6272 6273 6274 6275
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6276
	for_each_node(node) {
6277 6278 6279 6280
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6281
		BUG_ON(!rtpn);
6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6293
static struct cgroup_subsys_state * __ref
6294
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6295
{
6296
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6297
	long error = -ENOMEM;
6298
	int node;
B
Balbir Singh 已提交
6299

6300 6301
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6302
		return ERR_PTR(error);
6303

B
Bob Liu 已提交
6304
	for_each_node(node)
6305
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6306
			goto free_out;
6307

6308
	/* root ? */
6309
	if (cont->parent == NULL) {
6310
		root_mem_cgroup = memcg;
6311 6312 6313
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6314
	}
6315

6316 6317 6318 6319 6320 6321
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6322
	vmpressure_init(&memcg->vmpressure);
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
mem_cgroup_css_online(struct cgroup *cont)
{
	struct mem_cgroup *memcg, *parent;
	int error = 0;

	if (!cont->parent)
		return 0;

6340
	mutex_lock(&memcg_create_mutex);
6341 6342 6343 6344 6345 6346 6347 6348
	memcg = mem_cgroup_from_cont(cont);
	parent = mem_cgroup_from_cont(cont->parent);

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6349 6350
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6351
		res_counter_init(&memcg->kmem, &parent->kmem);
6352

6353 6354 6355 6356 6357 6358 6359
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6360
	} else {
6361 6362
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6363
		res_counter_init(&memcg->kmem, NULL);
6364 6365 6366 6367 6368
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6369
		if (parent != root_mem_cgroup)
6370
			mem_cgroup_subsys.broken_hierarchy = true;
6371
	}
6372 6373

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6374
	mutex_unlock(&memcg_create_mutex);
6375
	return error;
B
Balbir Singh 已提交
6376 6377
}

M
Michal Hocko 已提交
6378 6379 6380 6381 6382 6383 6384 6385
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6386
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6387 6388 6389 6390 6391 6392

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6393
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6394 6395
}

6396
static void mem_cgroup_css_offline(struct cgroup *cont)
6397
{
6398
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6399

6400 6401
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6402
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6403
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6404
	mem_cgroup_destroy_all_caches(memcg);
6405 6406
}

6407
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6408
{
6409
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6410

6411 6412
	memcg_destroy_kmem(memcg);
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6413 6414
}

6415
#ifdef CONFIG_MMU
6416
/* Handlers for move charge at task migration. */
6417 6418
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6419
{
6420 6421
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6422
	struct mem_cgroup *memcg = mc.to;
6423

6424
	if (mem_cgroup_is_root(memcg)) {
6425 6426 6427 6428 6429 6430 6431 6432
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6433
		 * "memcg" cannot be under rmdir() because we've already checked
6434 6435 6436 6437
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6438
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6439
			goto one_by_one;
6440
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6441
						PAGE_SIZE * count, &dummy)) {
6442
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6459 6460
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6461
		if (ret)
6462
			/* mem_cgroup_clear_mc() will do uncharge later */
6463
			return ret;
6464 6465
		mc.precharge++;
	}
6466 6467 6468 6469
	return ret;
}

/**
6470
 * get_mctgt_type - get target type of moving charge
6471 6472 6473
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6474
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6475 6476 6477 6478 6479 6480
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6481 6482 6483
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6484 6485 6486 6487 6488
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6489
	swp_entry_t	ent;
6490 6491 6492
};

enum mc_target_type {
6493
	MC_TARGET_NONE = 0,
6494
	MC_TARGET_PAGE,
6495
	MC_TARGET_SWAP,
6496 6497
};

D
Daisuke Nishimura 已提交
6498 6499
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6500
{
D
Daisuke Nishimura 已提交
6501
	struct page *page = vm_normal_page(vma, addr, ptent);
6502

D
Daisuke Nishimura 已提交
6503 6504 6505 6506
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6507
		if (!move_anon())
D
Daisuke Nishimura 已提交
6508
			return NULL;
6509 6510
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6511 6512 6513 6514 6515 6516 6517
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6518
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6519 6520 6521 6522 6523 6524 6525 6526
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6527 6528 6529 6530
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6531
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6532 6533 6534 6535 6536
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6537 6538 6539 6540 6541 6542 6543
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6544

6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6564 6565 6566 6567 6568 6569
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6570
		if (do_swap_account)
6571
			*entry = swap;
6572
		page = find_get_page(swap_address_space(swap), swap.val);
6573
	}
6574
#endif
6575 6576 6577
	return page;
}

6578
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6579 6580 6581 6582
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6583
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6584 6585 6586 6587 6588 6589
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6590 6591
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6592 6593

	if (!page && !ent.val)
6594
		return ret;
6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6610 6611
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6612
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6613 6614 6615
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6616 6617 6618 6619
	}
	return ret;
}

6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6655 6656 6657 6658 6659 6660 6661 6662
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6663 6664 6665 6666
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6667
		return 0;
6668
	}
6669

6670 6671
	if (pmd_trans_unstable(pmd))
		return 0;
6672 6673
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6674
		if (get_mctgt_type(vma, addr, *pte, NULL))
6675 6676 6677 6678
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6679 6680 6681
	return 0;
}

6682 6683 6684 6685 6686
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6687
	down_read(&mm->mmap_sem);
6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6699
	up_read(&mm->mmap_sem);
6700 6701 6702 6703 6704 6705 6706 6707 6708

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6709 6710 6711 6712 6713
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6714 6715
}

6716 6717
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6718
{
6719 6720 6721
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6722
	/* we must uncharge all the leftover precharges from mc.to */
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6734
	}
6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6769
	spin_lock(&mc.lock);
6770 6771
	mc.from = NULL;
	mc.to = NULL;
6772
	spin_unlock(&mc.lock);
6773
	mem_cgroup_end_move(from);
6774 6775
}

6776 6777
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6778
{
6779
	struct task_struct *p = cgroup_taskset_first(tset);
6780
	int ret = 0;
6781
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6782
	unsigned long move_charge_at_immigrate;
6783

6784 6785 6786 6787 6788 6789 6790
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6791 6792 6793
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6794
		VM_BUG_ON(from == memcg);
6795 6796 6797 6798 6799

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6800 6801 6802 6803
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6804
			VM_BUG_ON(mc.moved_charge);
6805
			VM_BUG_ON(mc.moved_swap);
6806
			mem_cgroup_start_move(from);
6807
			spin_lock(&mc.lock);
6808
			mc.from = from;
6809
			mc.to = memcg;
6810
			mc.immigrate_flags = move_charge_at_immigrate;
6811
			spin_unlock(&mc.lock);
6812
			/* We set mc.moving_task later */
6813 6814 6815 6816

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6817 6818
		}
		mmput(mm);
6819 6820 6821 6822
	}
	return ret;
}

6823 6824
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6825
{
6826
	mem_cgroup_clear_mc();
6827 6828
}

6829 6830 6831
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6832
{
6833 6834 6835 6836
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6837 6838 6839 6840
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6841

6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6853
		if (mc.precharge < HPAGE_PMD_NR) {
6854 6855 6856 6857 6858 6859 6860 6861 6862
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6863
							pc, mc.from, mc.to)) {
6864 6865 6866 6867 6868 6869 6870 6871
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6872
		return 0;
6873 6874
	}

6875 6876
	if (pmd_trans_unstable(pmd))
		return 0;
6877 6878 6879 6880
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6881
		swp_entry_t ent;
6882 6883 6884 6885

		if (!mc.precharge)
			break;

6886
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6887 6888 6889 6890 6891
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6892
			if (!mem_cgroup_move_account(page, 1, pc,
6893
						     mc.from, mc.to)) {
6894
				mc.precharge--;
6895 6896
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6897 6898
			}
			putback_lru_page(page);
6899
put:			/* get_mctgt_type() gets the page */
6900 6901
			put_page(page);
			break;
6902 6903
		case MC_TARGET_SWAP:
			ent = target.ent;
6904
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6905
				mc.precharge--;
6906 6907 6908
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6909
			break;
6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6924
		ret = mem_cgroup_do_precharge(1);
6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6968
	up_read(&mm->mmap_sem);
6969 6970
}

6971 6972
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6973
{
6974
	struct task_struct *p = cgroup_taskset_first(tset);
6975
	struct mm_struct *mm = get_task_mm(p);
6976 6977

	if (mm) {
6978 6979
		if (mc.to)
			mem_cgroup_move_charge(mm);
6980 6981
		mmput(mm);
	}
6982 6983
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6984
}
6985
#else	/* !CONFIG_MMU */
6986 6987
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6988 6989 6990
{
	return 0;
}
6991 6992
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6993 6994
{
}
6995 6996
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6997 6998 6999
{
}
#endif
B
Balbir Singh 已提交
7000

7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
static void mem_cgroup_bind(struct cgroup *root)
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
	if (cgroup_sane_behavior(root))
		mem_cgroup_from_cont(root)->use_hierarchy = true;
}

B
Balbir Singh 已提交
7016 7017 7018
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
7019
	.css_alloc = mem_cgroup_css_alloc,
7020
	.css_online = mem_cgroup_css_online,
7021 7022
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7023 7024
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7025
	.attach = mem_cgroup_move_task,
7026
	.bind = mem_cgroup_bind,
7027
	.base_cftypes = mem_cgroup_files,
7028
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
7029
	.use_id = 1,
B
Balbir Singh 已提交
7030
};
7031

A
Andrew Morton 已提交
7032
#ifdef CONFIG_MEMCG_SWAP
7033 7034 7035
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
7036
	if (!strcmp(s, "1"))
7037
		really_do_swap_account = 1;
7038
	else if (!strcmp(s, "0"))
7039 7040 7041
		really_do_swap_account = 0;
	return 1;
}
7042
__setup("swapaccount=", enable_swap_account);
7043

7044 7045
static void __init memsw_file_init(void)
{
7046 7047 7048 7049 7050 7051 7052 7053 7054
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7055
}
7056

7057
#else
7058
static void __init enable_swap_cgroup(void)
7059 7060
{
}
7061
#endif
7062 7063

/*
7064 7065 7066 7067 7068 7069
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7070 7071 7072 7073
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7074
	enable_swap_cgroup();
7075
	mem_cgroup_soft_limit_tree_init();
7076
	memcg_stock_init();
7077 7078 7079
	return 0;
}
subsys_initcall(mem_cgroup_init);