memcontrol.c 155.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130 131
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147 148 149 150 151 152
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

153 154 155 156
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
157
	struct lruvec		lruvec;
158
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
159

160 161
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

162 163 164 165
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
166
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
167
						/* use container_of	   */
168 169 170 171 172 173 174 175 176 177
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

198 199 200 201 202
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
203
/* For threshold */
204
struct mem_cgroup_threshold_ary {
205
	/* An array index points to threshold just below or equal to usage. */
206
	int current_threshold;
207 208 209 210 211
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
212 213 214 215 216 217 218 219 220 221 222 223

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
224 225 226 227 228
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
229

230 231
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
232

B
Balbir Singh 已提交
233 234 235 236 237 238 239
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 241 242
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
243 244 245 246 247 248 249
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
268 269
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
270 271 272 273
		 */
		struct work_struct work_freeing;
	};

274 275 276 277
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
278 279 280 281
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
282
	struct mem_cgroup_lru_info info;
283 284 285
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
286 287
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
288
#endif
289 290 291 292
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
293
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
294 295 296 297

	bool		oom_lock;
	atomic_t	under_oom;

298
	atomic_t	refcnt;
299

300
	int	swappiness;
301 302
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
303

304 305 306
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

307 308 309 310
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
311
	struct mem_cgroup_thresholds thresholds;
312

313
	/* thresholds for mem+swap usage. RCU-protected */
314
	struct mem_cgroup_thresholds memsw_thresholds;
315

K
KAMEZAWA Hiroyuki 已提交
316 317
	/* For oom notifier event fd */
	struct list_head oom_notify;
318

319 320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
324 325 326 327
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
328 329
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
330
	/*
331
	 * percpu counter.
332
	 */
333
	struct mem_cgroup_stat_cpu __percpu *stat;
334 335 336 337 338 339
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
340

M
Michal Hocko 已提交
341
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
342 343
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
344 345
};

346 347 348
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
349
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
350 351 352 353 354 355 356 357 358
};

#define KMEM_ACCOUNTED_MASK (1 << KMEM_ACCOUNTED_ACTIVE)

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
376 377
#endif

378 379 380 381 382 383
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
384
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
385
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
386 387 388
	NR_MOVE_TYPE,
};

389 390
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
391
	spinlock_t	  lock; /* for from, to */
392 393 394
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
395
	unsigned long moved_charge;
396
	unsigned long moved_swap;
397 398 399
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
400
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
401 402
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
403

D
Daisuke Nishimura 已提交
404 405 406 407 408 409
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

410 411 412 413 414 415
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

416 417 418 419
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
420 421
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
422

423 424
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
425
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
426
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
427
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
428 429 430
	NR_CHARGE_TYPE,
};

431
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
432 433 434 435
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
436
	_KMEM,
G
Glauber Costa 已提交
437 438
};

439 440
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
441
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
442 443
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
444

445 446 447 448 449 450 451 452
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

453 454
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
455

456 457 458 459 460 461
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

462 463 464 465 466
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
467
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
468
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
469 470 471

void sock_update_memcg(struct sock *sk)
{
472
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
473
		struct mem_cgroup *memcg;
474
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
475 476 477

		BUG_ON(!sk->sk_prot->proto_cgroup);

478 479 480 481 482 483 484 485 486 487 488 489 490 491
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
492 493
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
494 495
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
496
			mem_cgroup_get(memcg);
497
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
498 499 500 501 502 503 504 505
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
506
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
507 508 509 510 511 512
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
513 514 515 516 517 518 519 520 521

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
522

523 524 525 526 527 528 529 530 531 532 533 534
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

535
static void drain_all_stock_async(struct mem_cgroup *memcg);
536

537
static struct mem_cgroup_per_zone *
538
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
539
{
540
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
541 542
}

543
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
544
{
545
	return &memcg->css;
546 547
}

548
static struct mem_cgroup_per_zone *
549
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
550
{
551 552
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
553

554
	return mem_cgroup_zoneinfo(memcg, nid, zid);
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
573
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
574
				struct mem_cgroup_per_zone *mz,
575 576
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
577 578 579 580 581 582 583 584
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

585 586 587
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
604 605 606
}

static void
607
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
608 609 610 611 612 613 614 615 616
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

617
static void
618
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
619 620 621 622
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
623
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
624 625 626 627
	spin_unlock(&mctz->lock);
}


628
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
629
{
630
	unsigned long long excess;
631 632
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
633 634
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
635 636 637
	mctz = soft_limit_tree_from_page(page);

	/*
638 639
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
640
	 */
641 642 643
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
644 645 646 647
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
648
		if (excess || mz->on_tree) {
649 650 651
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
652
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
653
			/*
654 655
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
656
			 */
657
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
658 659
			spin_unlock(&mctz->lock);
		}
660 661 662
	}
}

663
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
664 665 666 667 668
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
669
	for_each_node(node) {
670
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
671
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
672
			mctz = soft_limit_tree_node_zone(node, zone);
673
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
674 675 676 677
		}
	}
}

678 679 680 681
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
682
	struct mem_cgroup_per_zone *mz;
683 684

retry:
685
	mz = NULL;
686 687 688 689 690 691 692 693 694 695
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
696 697 698
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
734
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
735
				 enum mem_cgroup_stat_index idx)
736
{
737
	long val = 0;
738 739
	int cpu;

740 741
	get_online_cpus();
	for_each_online_cpu(cpu)
742
		val += per_cpu(memcg->stat->count[idx], cpu);
743
#ifdef CONFIG_HOTPLUG_CPU
744 745 746
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
747 748
#endif
	put_online_cpus();
749 750 751
	return val;
}

752
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
753 754 755
					 bool charge)
{
	int val = (charge) ? 1 : -1;
756
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
757 758
}

759
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
760 761 762 763 764 765
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
766
		val += per_cpu(memcg->stat->events[idx], cpu);
767
#ifdef CONFIG_HOTPLUG_CPU
768 769 770
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
771 772 773 774
#endif
	return val;
}

775
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
776
					 bool anon, int nr_pages)
777
{
778 779
	preempt_disable();

780 781 782 783 784 785
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
786
				nr_pages);
787
	else
788
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
789
				nr_pages);
790

791 792
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
793
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
794
	else {
795
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
796 797
		nr_pages = -nr_pages; /* for event */
	}
798

799
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
800

801
	preempt_enable();
802 803
}

804
unsigned long
805
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
806 807 808 809 810 811 812 813
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
814
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
815
			unsigned int lru_mask)
816 817
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
818
	enum lru_list lru;
819 820
	unsigned long ret = 0;

821
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
822

H
Hugh Dickins 已提交
823 824 825
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
826 827 828 829 830
	}
	return ret;
}

static unsigned long
831
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
832 833
			int nid, unsigned int lru_mask)
{
834 835 836
	u64 total = 0;
	int zid;

837
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
838 839
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
840

841 842
	return total;
}
843

844
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
845
			unsigned int lru_mask)
846
{
847
	int nid;
848 849
	u64 total = 0;

850
	for_each_node_state(nid, N_MEMORY)
851
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
852
	return total;
853 854
}

855 856
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
857 858 859
{
	unsigned long val, next;

860
	val = __this_cpu_read(memcg->stat->nr_page_events);
861
	next = __this_cpu_read(memcg->stat->targets[target]);
862
	/* from time_after() in jiffies.h */
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
879
	}
880
	return false;
881 882 883 884 885 886
}

/*
 * Check events in order.
 *
 */
887
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
888
{
889
	preempt_disable();
890
	/* threshold event is triggered in finer grain than soft limit */
891 892
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
893 894
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
895 896 897 898 899 900 901 902 903

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

904
		mem_cgroup_threshold(memcg);
905
		if (unlikely(do_softlimit))
906
			mem_cgroup_update_tree(memcg, page);
907
#if MAX_NUMNODES > 1
908
		if (unlikely(do_numainfo))
909
			atomic_inc(&memcg->numainfo_events);
910
#endif
911 912
	} else
		preempt_enable();
913 914
}

G
Glauber Costa 已提交
915
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
916
{
917 918
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
919 920
}

921
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
922
{
923 924 925 926 927 928 929 930
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

931
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
932 933
}

934
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
935
{
936
	struct mem_cgroup *memcg = NULL;
937 938 939

	if (!mm)
		return NULL;
940 941 942 943 944 945 946
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
947 948
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
949
			break;
950
	} while (!css_tryget(&memcg->css));
951
	rcu_read_unlock();
952
	return memcg;
953 954
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
975
{
976 977
	struct mem_cgroup *memcg = NULL;
	int id = 0;
978

979 980 981
	if (mem_cgroup_disabled())
		return NULL;

982 983
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
984

985 986
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
987

988 989
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
990

991 992 993 994 995
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
996

997
	while (!memcg) {
998
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
999
		struct cgroup_subsys_state *css;
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
1012

1013 1014 1015 1016
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
1017
				memcg = mem_cgroup_from_css(css);
1018 1019
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
1020 1021
		rcu_read_unlock();

1022 1023 1024 1025 1026 1027 1028
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1029 1030 1031 1032 1033

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1034
}
K
KAMEZAWA Hiroyuki 已提交
1035

1036 1037 1038 1039 1040 1041 1042
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1043 1044 1045 1046 1047 1048
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1049

1050 1051 1052 1053 1054 1055
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1056
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1057
	     iter != NULL;				\
1058
	     iter = mem_cgroup_iter(root, iter, NULL))
1059

1060
#define for_each_mem_cgroup(iter)			\
1061
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1062
	     iter != NULL;				\
1063
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1064

1065
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1066
{
1067
	struct mem_cgroup *memcg;
1068 1069

	rcu_read_lock();
1070 1071
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1072 1073 1074 1075
		goto out;

	switch (idx) {
	case PGFAULT:
1076 1077 1078 1079
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1080 1081 1082 1083 1084 1085 1086
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1087
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1088

1089 1090 1091
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1092
 * @memcg: memcg of the wanted lruvec
1093 1094 1095 1096 1097 1098 1099 1100 1101
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1102
	struct lruvec *lruvec;
1103

1104 1105 1106 1107
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1108 1109

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1120 1121
}

K
KAMEZAWA Hiroyuki 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1135

1136
/**
1137
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1138
 * @page: the page
1139
 * @zone: zone of the page
1140
 */
1141
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1142 1143
{
	struct mem_cgroup_per_zone *mz;
1144 1145
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1146
	struct lruvec *lruvec;
1147

1148 1149 1150 1151
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1152

K
KAMEZAWA Hiroyuki 已提交
1153
	pc = lookup_page_cgroup(page);
1154
	memcg = pc->mem_cgroup;
1155 1156

	/*
1157
	 * Surreptitiously switch any uncharged offlist page to root:
1158 1159 1160 1161 1162 1163 1164
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1165
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1166 1167
		pc->mem_cgroup = memcg = root_mem_cgroup;

1168
	mz = page_cgroup_zoneinfo(memcg, page);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1179
}
1180

1181
/**
1182 1183 1184 1185
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1186
 *
1187 1188
 * This function must be called when a page is added to or removed from an
 * lru list.
1189
 */
1190 1191
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1192 1193
{
	struct mem_cgroup_per_zone *mz;
1194
	unsigned long *lru_size;
1195 1196 1197 1198

	if (mem_cgroup_disabled())
		return;

1199 1200 1201 1202
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1203
}
1204

1205
/*
1206
 * Checks whether given mem is same or in the root_mem_cgroup's
1207 1208
 * hierarchy subtree
 */
1209 1210
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1211
{
1212 1213
	if (root_memcg == memcg)
		return true;
1214
	if (!root_memcg->use_hierarchy || !memcg)
1215
		return false;
1216 1217 1218 1219 1220 1221 1222 1223
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1224
	rcu_read_lock();
1225
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1226 1227
	rcu_read_unlock();
	return ret;
1228 1229
}

1230
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1231 1232
{
	int ret;
1233
	struct mem_cgroup *curr = NULL;
1234
	struct task_struct *p;
1235

1236
	p = find_lock_task_mm(task);
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1252 1253
	if (!curr)
		return 0;
1254
	/*
1255
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1256
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1257 1258
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1259
	 */
1260
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1261
	css_put(&curr->css);
1262 1263 1264
	return ret;
}

1265
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1266
{
1267
	unsigned long inactive_ratio;
1268
	unsigned long inactive;
1269
	unsigned long active;
1270
	unsigned long gb;
1271

1272 1273
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1274

1275 1276 1277 1278 1279 1280
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1281
	return inactive * inactive_ratio < active;
1282 1283
}

1284
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1285 1286 1287 1288
{
	unsigned long active;
	unsigned long inactive;

1289 1290
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1291 1292 1293 1294

	return (active > inactive);
}

1295 1296 1297
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1298
/**
1299
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1300
 * @memcg: the memory cgroup
1301
 *
1302
 * Returns the maximum amount of memory @mem can be charged with, in
1303
 * pages.
1304
 */
1305
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1306
{
1307 1308
	unsigned long long margin;

1309
	margin = res_counter_margin(&memcg->res);
1310
	if (do_swap_account)
1311
		margin = min(margin, res_counter_margin(&memcg->memsw));
1312
	return margin >> PAGE_SHIFT;
1313 1314
}

1315
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1316 1317 1318 1319 1320 1321 1322
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1323
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1324 1325
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1340 1341 1342 1343

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1344
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1345
{
1346
	atomic_inc(&memcg_moving);
1347
	atomic_inc(&memcg->moving_account);
1348 1349 1350
	synchronize_rcu();
}

1351
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1352
{
1353 1354 1355 1356
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1357 1358
	if (memcg) {
		atomic_dec(&memcg_moving);
1359
		atomic_dec(&memcg->moving_account);
1360
	}
1361
}
1362

1363 1364 1365
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1366 1367
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1368 1369 1370 1371 1372 1373 1374
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1375
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1376 1377
{
	VM_BUG_ON(!rcu_read_lock_held());
1378
	return atomic_read(&memcg->moving_account) > 0;
1379
}
1380

1381
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1382
{
1383 1384
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1385
	bool ret = false;
1386 1387 1388 1389 1390 1391 1392 1393 1394
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1395

1396 1397
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1398 1399
unlock:
	spin_unlock(&mc.lock);
1400 1401 1402
	return ret;
}

1403
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1404 1405
{
	if (mc.moving_task && current != mc.moving_task) {
1406
		if (mem_cgroup_under_move(memcg)) {
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1419 1420 1421 1422
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1423
 * see mem_cgroup_stolen(), too.
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1437
/**
1438
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1457
	if (!memcg || !p)
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1501 1502 1503 1504
	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1505 1506
}

1507 1508 1509 1510
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1511
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1512 1513
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1514 1515
	struct mem_cgroup *iter;

1516
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1517
		num++;
1518 1519 1520
	return num;
}

D
David Rientjes 已提交
1521 1522 1523
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1524
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1525 1526 1527
{
	u64 limit;

1528 1529
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1530
	/*
1531
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1532
	 */
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1547 1548
}

1549 1550
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1551 1552 1553 1554 1555 1556 1557
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1652 1653
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1654
 * @memcg: the target memcg
1655 1656 1657 1658 1659 1660 1661
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1662
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1663 1664
		int nid, bool noswap)
{
1665
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1666 1667 1668
		return true;
	if (noswap || !total_swap_pages)
		return false;
1669
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1670 1671 1672 1673
		return true;
	return false;

}
1674 1675 1676 1677 1678 1679 1680 1681
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1682
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1683 1684
{
	int nid;
1685 1686 1687 1688
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1689
	if (!atomic_read(&memcg->numainfo_events))
1690
		return;
1691
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1692 1693 1694
		return;

	/* make a nodemask where this memcg uses memory from */
1695
	memcg->scan_nodes = node_states[N_MEMORY];
1696

1697
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1698

1699 1700
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1701
	}
1702

1703 1704
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1719
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1720 1721 1722
{
	int node;

1723 1724
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1725

1726
	node = next_node(node, memcg->scan_nodes);
1727
	if (node == MAX_NUMNODES)
1728
		node = first_node(memcg->scan_nodes);
1729 1730 1731 1732 1733 1734 1735 1736 1737
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1738
	memcg->last_scanned_node = node;
1739 1740 1741
	return node;
}

1742 1743 1744 1745 1746 1747
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1748
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1749 1750 1751 1752 1753 1754 1755
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1756 1757
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1758
		     nid < MAX_NUMNODES;
1759
		     nid = next_node(nid, memcg->scan_nodes)) {
1760

1761
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1762 1763 1764 1765 1766 1767
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1768
	for_each_node_state(nid, N_MEMORY) {
1769
		if (node_isset(nid, memcg->scan_nodes))
1770
			continue;
1771
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1772 1773 1774 1775 1776
			return true;
	}
	return false;
}

1777
#else
1778
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1779 1780 1781
{
	return 0;
}
1782

1783
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1784
{
1785
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1786
}
1787 1788
#endif

1789 1790 1791 1792
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1793
{
1794
	struct mem_cgroup *victim = NULL;
1795
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1796
	int loop = 0;
1797
	unsigned long excess;
1798
	unsigned long nr_scanned;
1799 1800 1801 1802
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1803

1804
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1805

1806
	while (1) {
1807
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1808
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1809
			loop++;
1810 1811 1812 1813 1814 1815
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1816
				if (!total)
1817 1818
					break;
				/*
L
Lucas De Marchi 已提交
1819
				 * We want to do more targeted reclaim.
1820 1821 1822 1823 1824
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1825
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1826 1827
					break;
			}
1828
			continue;
1829
		}
1830
		if (!mem_cgroup_reclaimable(victim, false))
1831
			continue;
1832 1833 1834 1835
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1836
			break;
1837
	}
1838
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1839
	return total;
1840 1841
}

K
KAMEZAWA Hiroyuki 已提交
1842 1843 1844
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1845
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1846
 */
1847
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1848
{
1849
	struct mem_cgroup *iter, *failed = NULL;
1850

1851
	for_each_mem_cgroup_tree(iter, memcg) {
1852
		if (iter->oom_lock) {
1853 1854 1855 1856 1857
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1858 1859
			mem_cgroup_iter_break(memcg, iter);
			break;
1860 1861
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1862
	}
K
KAMEZAWA Hiroyuki 已提交
1863

1864
	if (!failed)
1865
		return true;
1866 1867 1868 1869 1870

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1871
	for_each_mem_cgroup_tree(iter, memcg) {
1872
		if (iter == failed) {
1873 1874
			mem_cgroup_iter_break(memcg, iter);
			break;
1875 1876 1877
		}
		iter->oom_lock = false;
	}
1878
	return false;
1879
}
1880

1881
/*
1882
 * Has to be called with memcg_oom_lock
1883
 */
1884
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1885
{
K
KAMEZAWA Hiroyuki 已提交
1886 1887
	struct mem_cgroup *iter;

1888
	for_each_mem_cgroup_tree(iter, memcg)
1889 1890 1891 1892
		iter->oom_lock = false;
	return 0;
}

1893
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1894 1895 1896
{
	struct mem_cgroup *iter;

1897
	for_each_mem_cgroup_tree(iter, memcg)
1898 1899 1900
		atomic_inc(&iter->under_oom);
}

1901
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1902 1903 1904
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1905 1906 1907 1908 1909
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1910
	for_each_mem_cgroup_tree(iter, memcg)
1911
		atomic_add_unless(&iter->under_oom, -1, 0);
1912 1913
}

1914
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1915 1916
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1917
struct oom_wait_info {
1918
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1919 1920 1921 1922 1923 1924
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1925 1926
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1927 1928 1929
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1930
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1931 1932

	/*
1933
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1934 1935
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1936 1937
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1938 1939 1940 1941
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1942
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1943
{
1944 1945
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1946 1947
}

1948
static void memcg_oom_recover(struct mem_cgroup *memcg)
1949
{
1950 1951
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1952 1953
}

K
KAMEZAWA Hiroyuki 已提交
1954 1955 1956
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1957 1958
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1959
{
K
KAMEZAWA Hiroyuki 已提交
1960
	struct oom_wait_info owait;
1961
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1962

1963
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1964 1965 1966 1967
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1968
	need_to_kill = true;
1969
	mem_cgroup_mark_under_oom(memcg);
1970

1971
	/* At first, try to OOM lock hierarchy under memcg.*/
1972
	spin_lock(&memcg_oom_lock);
1973
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1974 1975 1976 1977 1978
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1979
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1980
	if (!locked || memcg->oom_kill_disable)
1981 1982
		need_to_kill = false;
	if (locked)
1983
		mem_cgroup_oom_notify(memcg);
1984
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1985

1986 1987
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1988
		mem_cgroup_out_of_memory(memcg, mask, order);
1989
	} else {
K
KAMEZAWA Hiroyuki 已提交
1990
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1991
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1992
	}
1993
	spin_lock(&memcg_oom_lock);
1994
	if (locked)
1995 1996
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1997
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1998

1999
	mem_cgroup_unmark_under_oom(memcg);
2000

K
KAMEZAWA Hiroyuki 已提交
2001 2002 2003
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2004
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2005
	return true;
2006 2007
}

2008 2009 2010
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2028 2029
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2030
 */
2031

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2045
	 * need to take move_lock_mem_cgroup(). Because we already hold
2046
	 * rcu_read_lock(), any calls to move_account will be delayed until
2047
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2048
	 */
2049
	if (!mem_cgroup_stolen(memcg))
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2067
	 * should take move_lock_mem_cgroup().
2068 2069 2070 2071
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2072 2073
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2074
{
2075
	struct mem_cgroup *memcg;
2076
	struct page_cgroup *pc = lookup_page_cgroup(page);
2077
	unsigned long uninitialized_var(flags);
2078

2079
	if (mem_cgroup_disabled())
2080
		return;
2081

2082 2083
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2084
		return;
2085 2086

	switch (idx) {
2087 2088
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2089 2090 2091
		break;
	default:
		BUG();
2092
	}
2093

2094
	this_cpu_add(memcg->stat->count[idx], val);
2095
}
2096

2097 2098 2099 2100
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2101
#define CHARGE_BATCH	32U
2102 2103
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2104
	unsigned int nr_pages;
2105
	struct work_struct work;
2106
	unsigned long flags;
2107
#define FLUSHING_CACHED_CHARGE	0
2108 2109
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2110
static DEFINE_MUTEX(percpu_charge_mutex);
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2122
 */
2123
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2124 2125 2126 2127
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2128 2129 2130
	if (nr_pages > CHARGE_BATCH)
		return false;

2131
	stock = &get_cpu_var(memcg_stock);
2132 2133
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2147 2148 2149 2150
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2151
		if (do_swap_account)
2152 2153
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2166
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2167 2168 2169 2170
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2171
 * This will be consumed by consume_stock() function, later.
2172
 */
2173
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2174 2175 2176
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2177
	if (stock->cached != memcg) { /* reset if necessary */
2178
		drain_stock(stock);
2179
		stock->cached = memcg;
2180
	}
2181
	stock->nr_pages += nr_pages;
2182 2183 2184 2185
	put_cpu_var(memcg_stock);
}

/*
2186
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2187 2188
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2189
 */
2190
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2191
{
2192
	int cpu, curcpu;
2193

2194 2195
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2196
	curcpu = get_cpu();
2197 2198
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2199
		struct mem_cgroup *memcg;
2200

2201 2202
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2203
			continue;
2204
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2205
			continue;
2206 2207 2208 2209 2210 2211
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2212
	}
2213
	put_cpu();
2214 2215 2216 2217 2218 2219

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2220
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2221 2222 2223
			flush_work(&stock->work);
	}
out:
2224
 	put_online_cpus();
2225 2226 2227 2228 2229 2230 2231 2232
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2233
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2234
{
2235 2236 2237 2238 2239
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2240
	drain_all_stock(root_memcg, false);
2241
	mutex_unlock(&percpu_charge_mutex);
2242 2243 2244
}

/* This is a synchronous drain interface. */
2245
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2246 2247
{
	/* called when force_empty is called */
2248
	mutex_lock(&percpu_charge_mutex);
2249
	drain_all_stock(root_memcg, true);
2250
	mutex_unlock(&percpu_charge_mutex);
2251 2252
}

2253 2254 2255 2256
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2257
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2258 2259 2260
{
	int i;

2261
	spin_lock(&memcg->pcp_counter_lock);
2262
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2263
		long x = per_cpu(memcg->stat->count[i], cpu);
2264

2265 2266
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2267
	}
2268
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2269
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2270

2271 2272
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2273
	}
2274
	spin_unlock(&memcg->pcp_counter_lock);
2275 2276 2277
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2278 2279 2280 2281 2282
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2283
	struct mem_cgroup *iter;
2284

2285
	if (action == CPU_ONLINE)
2286 2287
		return NOTIFY_OK;

2288
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2289
		return NOTIFY_OK;
2290

2291
	for_each_mem_cgroup(iter)
2292 2293
		mem_cgroup_drain_pcp_counter(iter, cpu);

2294 2295 2296 2297 2298
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2309
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2310 2311
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2312
{
2313
	unsigned long csize = nr_pages * PAGE_SIZE;
2314 2315 2316 2317 2318
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2319
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2320 2321 2322 2323

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2324
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2325 2326 2327
		if (likely(!ret))
			return CHARGE_OK;

2328
		res_counter_uncharge(&memcg->res, csize);
2329 2330 2331 2332
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2333 2334 2335 2336
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2337
	if (nr_pages > min_pages)
2338 2339 2340 2341 2342
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2343 2344 2345
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2346
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2347
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2348
		return CHARGE_RETRY;
2349
	/*
2350 2351 2352 2353 2354 2355 2356
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2357
	 */
2358
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2372
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2373 2374 2375 2376 2377
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2378
/*
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2398
 */
2399
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2400
				   gfp_t gfp_mask,
2401
				   unsigned int nr_pages,
2402
				   struct mem_cgroup **ptr,
2403
				   bool oom)
2404
{
2405
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2406
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2407
	struct mem_cgroup *memcg = NULL;
2408
	int ret;
2409

K
KAMEZAWA Hiroyuki 已提交
2410 2411 2412 2413 2414 2415 2416 2417
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2418

2419
	/*
2420 2421
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2422
	 * thread group leader migrates. It's possible that mm is not
2423
	 * set, if so charge the root memcg (happens for pagecache usage).
2424
	 */
2425
	if (!*ptr && !mm)
2426
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2427
again:
2428 2429 2430
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2431
			goto done;
2432
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2433
			goto done;
2434
		css_get(&memcg->css);
2435
	} else {
K
KAMEZAWA Hiroyuki 已提交
2436
		struct task_struct *p;
2437

K
KAMEZAWA Hiroyuki 已提交
2438 2439 2440
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2441
		 * Because we don't have task_lock(), "p" can exit.
2442
		 * In that case, "memcg" can point to root or p can be NULL with
2443 2444 2445 2446 2447 2448
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2449
		 */
2450
		memcg = mem_cgroup_from_task(p);
2451 2452 2453
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2454 2455 2456
			rcu_read_unlock();
			goto done;
		}
2457
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2470
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2471 2472 2473 2474 2475
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2476

2477 2478
	do {
		bool oom_check;
2479

2480
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2481
		if (fatal_signal_pending(current)) {
2482
			css_put(&memcg->css);
2483
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2484
		}
2485

2486 2487 2488 2489
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2490
		}
2491

2492 2493
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2494 2495 2496 2497
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2498
			batch = nr_pages;
2499 2500
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2501
			goto again;
2502
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2503
			css_put(&memcg->css);
2504 2505
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2506
			if (!oom) {
2507
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2508
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2509
			}
2510 2511 2512 2513
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2514
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2515
			goto bypass;
2516
		}
2517 2518
	} while (ret != CHARGE_OK);

2519
	if (batch > nr_pages)
2520 2521
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2522
done:
2523
	*ptr = memcg;
2524 2525
	return 0;
nomem:
2526
	*ptr = NULL;
2527
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2528
bypass:
2529 2530
	*ptr = root_mem_cgroup;
	return -EINTR;
2531
}
2532

2533 2534 2535 2536 2537
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2538
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2539
				       unsigned int nr_pages)
2540
{
2541
	if (!mem_cgroup_is_root(memcg)) {
2542 2543
		unsigned long bytes = nr_pages * PAGE_SIZE;

2544
		res_counter_uncharge(&memcg->res, bytes);
2545
		if (do_swap_account)
2546
			res_counter_uncharge(&memcg->memsw, bytes);
2547
	}
2548 2549
}

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2568 2569
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2570 2571 2572
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2584
	return mem_cgroup_from_css(css);
2585 2586
}

2587
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2588
{
2589
	struct mem_cgroup *memcg = NULL;
2590
	struct page_cgroup *pc;
2591
	unsigned short id;
2592 2593
	swp_entry_t ent;

2594 2595 2596
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2597
	lock_page_cgroup(pc);
2598
	if (PageCgroupUsed(pc)) {
2599 2600 2601
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2602
	} else if (PageSwapCache(page)) {
2603
		ent.val = page_private(page);
2604
		id = lookup_swap_cgroup_id(ent);
2605
		rcu_read_lock();
2606 2607 2608
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2609
		rcu_read_unlock();
2610
	}
2611
	unlock_page_cgroup(pc);
2612
	return memcg;
2613 2614
}

2615
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2616
				       struct page *page,
2617
				       unsigned int nr_pages,
2618 2619
				       enum charge_type ctype,
				       bool lrucare)
2620
{
2621
	struct page_cgroup *pc = lookup_page_cgroup(page);
2622
	struct zone *uninitialized_var(zone);
2623
	struct lruvec *lruvec;
2624
	bool was_on_lru = false;
2625
	bool anon;
2626

2627
	lock_page_cgroup(pc);
2628
	VM_BUG_ON(PageCgroupUsed(pc));
2629 2630 2631 2632
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2633 2634 2635 2636 2637 2638 2639 2640 2641

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2642
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2643
			ClearPageLRU(page);
2644
			del_page_from_lru_list(page, lruvec, page_lru(page));
2645 2646 2647 2648
			was_on_lru = true;
		}
	}

2649
	pc->mem_cgroup = memcg;
2650 2651 2652 2653 2654 2655 2656
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2657
	smp_wmb();
2658
	SetPageCgroupUsed(pc);
2659

2660 2661
	if (lrucare) {
		if (was_on_lru) {
2662
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2663 2664
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2665
			add_page_to_lru_list(page, lruvec, page_lru(page));
2666 2667 2668 2669
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2670
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2671 2672 2673 2674 2675
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2676
	unlock_page_cgroup(pc);
2677

2678 2679 2680 2681 2682
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2683
	memcg_check_events(memcg, page);
2684
}
2685

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2746 2747 2748 2749 2750 2751 2752

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
}

/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
#endif /* CONFIG_MEMCG_KMEM */

2852 2853
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2854
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2855 2856
/*
 * Because tail pages are not marked as "used", set it. We're under
2857 2858 2859
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2860
 */
2861
void mem_cgroup_split_huge_fixup(struct page *head)
2862 2863
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2864 2865
	struct page_cgroup *pc;
	int i;
2866

2867 2868
	if (mem_cgroup_disabled())
		return;
2869 2870 2871 2872 2873 2874
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2875
}
2876
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2877

2878
/**
2879
 * mem_cgroup_move_account - move account of the page
2880
 * @page: the page
2881
 * @nr_pages: number of regular pages (>1 for huge pages)
2882 2883 2884 2885 2886
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2887
 * - page is not on LRU (isolate_page() is useful.)
2888
 * - compound_lock is held when nr_pages > 1
2889
 *
2890 2891
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2892
 */
2893 2894 2895 2896
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2897
				   struct mem_cgroup *to)
2898
{
2899 2900
	unsigned long flags;
	int ret;
2901
	bool anon = PageAnon(page);
2902

2903
	VM_BUG_ON(from == to);
2904
	VM_BUG_ON(PageLRU(page));
2905 2906 2907 2908 2909 2910 2911
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2912
	if (nr_pages > 1 && !PageTransHuge(page))
2913 2914 2915 2916 2917 2918 2919 2920
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2921
	move_lock_mem_cgroup(from, &flags);
2922

2923
	if (!anon && page_mapped(page)) {
2924 2925 2926 2927 2928
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2929
	}
2930
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2931

2932
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2933
	pc->mem_cgroup = to;
2934
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2935
	move_unlock_mem_cgroup(from, &flags);
2936 2937
	ret = 0;
unlock:
2938
	unlock_page_cgroup(pc);
2939 2940 2941
	/*
	 * check events
	 */
2942 2943
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2944
out:
2945 2946 2947
	return ret;
}

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
2968
 */
2969 2970
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2971
				  struct mem_cgroup *child)
2972 2973
{
	struct mem_cgroup *parent;
2974
	unsigned int nr_pages;
2975
	unsigned long uninitialized_var(flags);
2976 2977
	int ret;

2978
	VM_BUG_ON(mem_cgroup_is_root(child));
2979

2980 2981 2982 2983 2984
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2985

2986
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2987

2988 2989 2990 2991 2992 2993
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2994

2995 2996
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
2997
		flags = compound_lock_irqsave(page);
2998
	}
2999

3000
	ret = mem_cgroup_move_account(page, nr_pages,
3001
				pc, child, parent);
3002 3003
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3004

3005
	if (nr_pages > 1)
3006
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3007
	putback_lru_page(page);
3008
put:
3009
	put_page(page);
3010
out:
3011 3012 3013
	return ret;
}

3014 3015 3016 3017 3018 3019 3020
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3021
				gfp_t gfp_mask, enum charge_type ctype)
3022
{
3023
	struct mem_cgroup *memcg = NULL;
3024
	unsigned int nr_pages = 1;
3025
	bool oom = true;
3026
	int ret;
A
Andrea Arcangeli 已提交
3027

A
Andrea Arcangeli 已提交
3028
	if (PageTransHuge(page)) {
3029
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3030
		VM_BUG_ON(!PageTransHuge(page));
3031 3032 3033 3034 3035
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3036
	}
3037

3038
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3039
	if (ret == -ENOMEM)
3040
		return ret;
3041
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3042 3043 3044
	return 0;
}

3045 3046
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3047
{
3048
	if (mem_cgroup_disabled())
3049
		return 0;
3050 3051 3052
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3053
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3054
					MEM_CGROUP_CHARGE_TYPE_ANON);
3055 3056
}

3057 3058 3059
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3060
 * struct page_cgroup is acquired. This refcnt will be consumed by
3061 3062
 * "commit()" or removed by "cancel()"
 */
3063 3064 3065 3066
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3067
{
3068
	struct mem_cgroup *memcg;
3069
	struct page_cgroup *pc;
3070
	int ret;
3071

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3082 3083
	if (!do_swap_account)
		goto charge_cur_mm;
3084 3085
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3086
		goto charge_cur_mm;
3087 3088
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3089
	css_put(&memcg->css);
3090 3091
	if (ret == -EINTR)
		ret = 0;
3092
	return ret;
3093
charge_cur_mm:
3094 3095 3096 3097
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3098 3099
}

3100 3101 3102 3103 3104 3105
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3120 3121 3122
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3123 3124 3125 3126 3127 3128 3129 3130 3131
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3132
static void
3133
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3134
					enum charge_type ctype)
3135
{
3136
	if (mem_cgroup_disabled())
3137
		return;
3138
	if (!memcg)
3139
		return;
3140

3141
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3142 3143 3144
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3145 3146 3147
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3148
	 */
3149
	if (do_swap_account && PageSwapCache(page)) {
3150
		swp_entry_t ent = {.val = page_private(page)};
3151
		mem_cgroup_uncharge_swap(ent);
3152
	}
3153 3154
}

3155 3156
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3157
{
3158
	__mem_cgroup_commit_charge_swapin(page, memcg,
3159
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3160 3161
}

3162 3163
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3164
{
3165 3166 3167 3168
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3169
	if (mem_cgroup_disabled())
3170 3171 3172 3173 3174 3175 3176
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3177 3178
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3179 3180 3181 3182
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3183 3184
}

3185
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3186 3187
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3188 3189 3190
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3191

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3203
		batch->memcg = memcg;
3204 3205
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3206
	 * In those cases, all pages freed continuously can be expected to be in
3207 3208 3209 3210 3211 3212 3213 3214
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3215
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3216 3217
		goto direct_uncharge;

3218 3219 3220 3221 3222
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3223
	if (batch->memcg != memcg)
3224 3225
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3226
	batch->nr_pages++;
3227
	if (uncharge_memsw)
3228
		batch->memsw_nr_pages++;
3229 3230
	return;
direct_uncharge:
3231
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3232
	if (uncharge_memsw)
3233 3234 3235
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3236
}
3237

3238
/*
3239
 * uncharge if !page_mapped(page)
3240
 */
3241
static struct mem_cgroup *
3242 3243
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3244
{
3245
	struct mem_cgroup *memcg = NULL;
3246 3247
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3248
	bool anon;
3249

3250
	if (mem_cgroup_disabled())
3251
		return NULL;
3252

3253
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3254

A
Andrea Arcangeli 已提交
3255
	if (PageTransHuge(page)) {
3256
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3257 3258
		VM_BUG_ON(!PageTransHuge(page));
	}
3259
	/*
3260
	 * Check if our page_cgroup is valid
3261
	 */
3262
	pc = lookup_page_cgroup(page);
3263
	if (unlikely(!PageCgroupUsed(pc)))
3264
		return NULL;
3265

3266
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3267

3268
	memcg = pc->mem_cgroup;
3269

K
KAMEZAWA Hiroyuki 已提交
3270 3271 3272
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3273 3274
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3275
	switch (ctype) {
3276
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3277 3278 3279 3280 3281
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3282 3283
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3284
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3285
		/* See mem_cgroup_prepare_migration() */
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3307
	}
K
KAMEZAWA Hiroyuki 已提交
3308

3309
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3310

3311
	ClearPageCgroupUsed(pc);
3312 3313 3314 3315 3316 3317
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3318

3319
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3320
	/*
3321
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3322 3323
	 * will never be freed.
	 */
3324
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3325
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3326 3327
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3328
	}
3329 3330 3331 3332 3333 3334
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3335
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3336

3337
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3338 3339 3340

unlock_out:
	unlock_page_cgroup(pc);
3341
	return NULL;
3342 3343
}

3344 3345
void mem_cgroup_uncharge_page(struct page *page)
{
3346 3347 3348
	/* early check. */
	if (page_mapped(page))
		return;
3349
	VM_BUG_ON(page->mapping && !PageAnon(page));
3350 3351
	if (PageSwapCache(page))
		return;
3352
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3353 3354 3355 3356 3357
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3358
	VM_BUG_ON(page->mapping);
3359
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3360 3361
}

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3376 3377
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3398 3399 3400 3401 3402 3403
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3404
	memcg_oom_recover(batch->memcg);
3405 3406 3407 3408
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3409
#ifdef CONFIG_SWAP
3410
/*
3411
 * called after __delete_from_swap_cache() and drop "page" account.
3412 3413
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3414 3415
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3416 3417
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3418 3419 3420 3421 3422
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3423
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3424

K
KAMEZAWA Hiroyuki 已提交
3425 3426 3427 3428 3429
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3430
		swap_cgroup_record(ent, css_id(&memcg->css));
3431
}
3432
#endif
3433

A
Andrew Morton 已提交
3434
#ifdef CONFIG_MEMCG_SWAP
3435 3436 3437 3438 3439
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3440
{
3441
	struct mem_cgroup *memcg;
3442
	unsigned short id;
3443 3444 3445 3446

	if (!do_swap_account)
		return;

3447 3448 3449
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3450
	if (memcg) {
3451 3452 3453 3454
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3455
		if (!mem_cgroup_is_root(memcg))
3456
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3457
		mem_cgroup_swap_statistics(memcg, false);
3458 3459
		mem_cgroup_put(memcg);
	}
3460
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3461
}
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3478
				struct mem_cgroup *from, struct mem_cgroup *to)
3479 3480 3481 3482 3483 3484 3485 3486
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3487
		mem_cgroup_swap_statistics(to, true);
3488
		/*
3489 3490 3491 3492 3493 3494
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3495 3496 3497 3498 3499 3500 3501 3502
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3503
				struct mem_cgroup *from, struct mem_cgroup *to)
3504 3505 3506
{
	return -EINVAL;
}
3507
#endif
K
KAMEZAWA Hiroyuki 已提交
3508

3509
/*
3510 3511
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3512
 */
3513 3514
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3515
{
3516
	struct mem_cgroup *memcg = NULL;
3517
	unsigned int nr_pages = 1;
3518
	struct page_cgroup *pc;
3519
	enum charge_type ctype;
3520

3521
	*memcgp = NULL;
3522

3523
	if (mem_cgroup_disabled())
3524
		return;
3525

3526 3527 3528
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

3529 3530 3531
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3532 3533
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3565
	}
3566
	unlock_page_cgroup(pc);
3567 3568 3569 3570
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3571
	if (!memcg)
3572
		return;
3573

3574
	*memcgp = memcg;
3575 3576 3577 3578 3579 3580 3581
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3582
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3583
	else
3584
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3585 3586 3587 3588 3589
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3590
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
3591
}
3592

3593
/* remove redundant charge if migration failed*/
3594
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3595
	struct page *oldpage, struct page *newpage, bool migration_ok)
3596
{
3597
	struct page *used, *unused;
3598
	struct page_cgroup *pc;
3599
	bool anon;
3600

3601
	if (!memcg)
3602
		return;
3603

3604
	if (!migration_ok) {
3605 3606
		used = oldpage;
		unused = newpage;
3607
	} else {
3608
		used = newpage;
3609 3610
		unused = oldpage;
	}
3611
	anon = PageAnon(used);
3612 3613 3614 3615
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3616
	css_put(&memcg->css);
3617
	/*
3618 3619 3620
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3621
	 */
3622 3623 3624 3625 3626
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3627
	/*
3628 3629 3630 3631 3632 3633
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3634
	 */
3635
	if (anon)
3636
		mem_cgroup_uncharge_page(used);
3637
}
3638

3639 3640 3641 3642 3643 3644 3645 3646
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3647
	struct mem_cgroup *memcg = NULL;
3648 3649 3650 3651 3652 3653 3654 3655 3656
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3657 3658 3659 3660 3661
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3662 3663
	unlock_page_cgroup(pc);

3664 3665 3666 3667 3668 3669
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
3670 3671 3672 3673 3674
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3675
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3676 3677
}

3678 3679 3680 3681 3682 3683
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3684 3685 3686 3687 3688
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3708
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3709 3710 3711 3712 3713
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3714 3715
static DEFINE_MUTEX(set_limit_mutex);

3716
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3717
				unsigned long long val)
3718
{
3719
	int retry_count;
3720
	u64 memswlimit, memlimit;
3721
	int ret = 0;
3722 3723
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3724
	int enlarge;
3725 3726 3727 3728 3729 3730 3731 3732 3733

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3734

3735
	enlarge = 0;
3736
	while (retry_count) {
3737 3738 3739 3740
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3741 3742 3743
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3744
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3745 3746 3747 3748 3749 3750
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3751 3752
			break;
		}
3753 3754 3755 3756 3757

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3758
		ret = res_counter_set_limit(&memcg->res, val);
3759 3760 3761 3762 3763 3764
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3765 3766 3767 3768 3769
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3770 3771
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3772 3773 3774 3775 3776 3777
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3778
	}
3779 3780
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3781

3782 3783 3784
	return ret;
}

L
Li Zefan 已提交
3785 3786
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3787
{
3788
	int retry_count;
3789
	u64 memlimit, memswlimit, oldusage, curusage;
3790 3791
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3792
	int enlarge = 0;
3793

3794 3795 3796
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3797 3798 3799 3800 3801 3802 3803 3804
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3805
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3806 3807 3808 3809 3810 3811 3812 3813
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3814 3815 3816
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3817
		ret = res_counter_set_limit(&memcg->memsw, val);
3818 3819 3820 3821 3822 3823
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3824 3825 3826 3827 3828
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3829 3830 3831
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3832
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3833
		/* Usage is reduced ? */
3834
		if (curusage >= oldusage)
3835
			retry_count--;
3836 3837
		else
			oldusage = curusage;
3838
	}
3839 3840
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3841 3842 3843
	return ret;
}

3844
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3845 3846
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3847 3848 3849 3850 3851 3852
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3853
	unsigned long long excess;
3854
	unsigned long nr_scanned;
3855 3856 3857 3858

	if (order > 0)
		return 0;

3859
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3873
		nr_scanned = 0;
3874
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3875
						    gfp_mask, &nr_scanned);
3876
		nr_reclaimed += reclaimed;
3877
		*total_scanned += nr_scanned;
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3900
				if (next_mz == mz)
3901
					css_put(&next_mz->memcg->css);
3902
				else /* next_mz == NULL or other memcg */
3903 3904 3905
					break;
			} while (1);
		}
3906 3907
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3908 3909 3910 3911 3912 3913 3914 3915
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3916
		/* If excess == 0, no tree ops */
3917
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3918
		spin_unlock(&mctz->lock);
3919
		css_put(&mz->memcg->css);
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3932
		css_put(&next_mz->memcg->css);
3933 3934 3935
	return nr_reclaimed;
}

3936 3937 3938 3939 3940 3941 3942
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
3943
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3944 3945
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
3946
 */
3947
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3948
				int node, int zid, enum lru_list lru)
3949
{
3950
	struct lruvec *lruvec;
3951
	unsigned long flags;
3952
	struct list_head *list;
3953 3954
	struct page *busy;
	struct zone *zone;
3955

K
KAMEZAWA Hiroyuki 已提交
3956
	zone = &NODE_DATA(node)->node_zones[zid];
3957 3958
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3959

3960
	busy = NULL;
3961
	do {
3962
		struct page_cgroup *pc;
3963 3964
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3965
		spin_lock_irqsave(&zone->lru_lock, flags);
3966
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3967
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3968
			break;
3969
		}
3970 3971 3972
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3973
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3974
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3975 3976
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3977
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3978

3979
		pc = lookup_page_cgroup(page);
3980

3981
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3982
			/* found lock contention or "pc" is obsolete. */
3983
			busy = page;
3984 3985 3986
			cond_resched();
		} else
			busy = NULL;
3987
	} while (!list_empty(list));
3988 3989 3990
}

/*
3991 3992
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
3993
 * This enables deleting this mem_cgroup.
3994 3995
 *
 * Caller is responsible for holding css reference on the memcg.
3996
 */
3997
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3998
{
3999
	int node, zid;
4000

4001
	do {
4002 4003
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4004 4005
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4006
		for_each_node_state(node, N_MEMORY) {
4007
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4008 4009
				enum lru_list lru;
				for_each_lru(lru) {
4010
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4011
							node, zid, lru);
4012
				}
4013
			}
4014
		}
4015 4016
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4017
		cond_resched();
4018

4019 4020 4021 4022 4023 4024 4025 4026
		/*
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4039

4040
	/* returns EBUSY if there is a task or if we come here twice. */
4041 4042 4043
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4044 4045
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4046
	/* try to free all pages in this cgroup */
4047
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4048
		int progress;
4049

4050 4051 4052
		if (signal_pending(current))
			return -EINTR;

4053
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4054
						false);
4055
		if (!progress) {
4056
			nr_retries--;
4057
			/* maybe some writeback is necessary */
4058
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4059
		}
4060 4061

	}
K
KAMEZAWA Hiroyuki 已提交
4062
	lru_add_drain();
4063 4064 4065
	mem_cgroup_reparent_charges(memcg);

	return 0;
4066 4067
}

4068
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4069
{
4070 4071 4072
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4073 4074
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4075 4076 4077 4078 4079
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4080 4081 4082
}


4083 4084 4085 4086 4087 4088 4089 4090 4091
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4092
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4093
	struct cgroup *parent = cont->parent;
4094
	struct mem_cgroup *parent_memcg = NULL;
4095 4096

	if (parent)
4097
		parent_memcg = mem_cgroup_from_cont(parent);
4098 4099

	cgroup_lock();
4100 4101 4102 4103

	if (memcg->use_hierarchy == val)
		goto out;

4104
	/*
4105
	 * If parent's use_hierarchy is set, we can't make any modifications
4106 4107 4108 4109 4110 4111
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4112
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4113 4114
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
4115
			memcg->use_hierarchy = val;
4116 4117 4118 4119
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4120 4121

out:
4122 4123 4124 4125 4126
	cgroup_unlock();

	return retval;
}

4127

4128
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4129
					       enum mem_cgroup_stat_index idx)
4130
{
K
KAMEZAWA Hiroyuki 已提交
4131
	struct mem_cgroup *iter;
4132
	long val = 0;
4133

4134
	/* Per-cpu values can be negative, use a signed accumulator */
4135
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4136 4137 4138 4139 4140
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4141 4142
}

4143
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4144
{
K
KAMEZAWA Hiroyuki 已提交
4145
	u64 val;
4146

4147
	if (!mem_cgroup_is_root(memcg)) {
4148
		if (!swap)
4149
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4150
		else
4151
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4152 4153
	}

4154 4155
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4156

K
KAMEZAWA Hiroyuki 已提交
4157
	if (swap)
4158
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4159 4160 4161 4162

	return val << PAGE_SHIFT;
}

4163 4164 4165
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4166
{
4167
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4168
	char str[64];
4169
	u64 val;
G
Glauber Costa 已提交
4170 4171
	int name, len;
	enum res_type type;
4172 4173 4174

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4175 4176 4177 4178

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4179 4180
	switch (type) {
	case _MEM:
4181
		if (name == RES_USAGE)
4182
			val = mem_cgroup_usage(memcg, false);
4183
		else
4184
			val = res_counter_read_u64(&memcg->res, name);
4185 4186
		break;
	case _MEMSWAP:
4187
		if (name == RES_USAGE)
4188
			val = mem_cgroup_usage(memcg, true);
4189
		else
4190
			val = res_counter_read_u64(&memcg->memsw, name);
4191
		break;
4192 4193 4194
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4195 4196 4197
	default:
		BUG();
	}
4198 4199 4200

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4201
}
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 *
	 * Taking the cgroup_lock is really offensive, but it is so far the only
	 * way to guarantee that no children will appear. There are plenty of
	 * other offenders, and they should all go away. Fine grained locking
	 * is probably the way to go here. When we are fully hierarchical, we
	 * can also get rid of the use_hierarchy check.
	 */
	cgroup_lock();
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
						!list_empty(&cont->children))) {
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

		memcg_kmem_set_active(memcg);
4238 4239 4240 4241 4242 4243 4244
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
	cgroup_unlock();
#endif
	return ret;
}

static void memcg_propagate_kmem(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
		return;
	memcg->kmem_account_flags = parent->kmem_account_flags;
4260 4261 4262 4263
#ifdef CONFIG_MEMCG_KMEM
	if (memcg_kmem_is_active(memcg))
		mem_cgroup_get(memcg);
#endif
4264 4265
}

4266 4267 4268 4269
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4270 4271
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
4272
{
4273
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4274 4275
	enum res_type type;
	int name;
4276 4277 4278
	unsigned long long val;
	int ret;

4279 4280
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4281 4282 4283 4284

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4285
	switch (name) {
4286
	case RES_LIMIT:
4287 4288 4289 4290
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4291 4292
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4293 4294 4295
		if (ret)
			break;
		if (type == _MEM)
4296
			ret = mem_cgroup_resize_limit(memcg, val);
4297
		else if (type == _MEMSWAP)
4298
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4299 4300 4301 4302
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
4303
		break;
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4318 4319 4320 4321 4322
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4323 4324
}

4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4352
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4353
{
4354
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4355 4356
	int name;
	enum res_type type;
4357

4358 4359
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4360 4361 4362 4363

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4364
	switch (name) {
4365
	case RES_MAX_USAGE:
4366
		if (type == _MEM)
4367
			res_counter_reset_max(&memcg->res);
4368
		else if (type == _MEMSWAP)
4369
			res_counter_reset_max(&memcg->memsw);
4370 4371 4372 4373
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
4374 4375
		break;
	case RES_FAILCNT:
4376
		if (type == _MEM)
4377
			res_counter_reset_failcnt(&memcg->res);
4378
		else if (type == _MEMSWAP)
4379
			res_counter_reset_failcnt(&memcg->memsw);
4380 4381 4382 4383
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
4384 4385
		break;
	}
4386

4387
	return 0;
4388 4389
}

4390 4391 4392 4393 4394 4395
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4396
#ifdef CONFIG_MMU
4397 4398 4399
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4400
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4401 4402 4403 4404 4405 4406 4407 4408 4409

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4410
	memcg->move_charge_at_immigrate = val;
4411 4412 4413 4414
	cgroup_unlock();

	return 0;
}
4415 4416 4417 4418 4419 4420 4421
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4422

4423
#ifdef CONFIG_NUMA
4424
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4425
				      struct seq_file *m)
4426 4427 4428 4429
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4430
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4431

4432
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4433
	seq_printf(m, "total=%lu", total_nr);
4434
	for_each_node_state(nid, N_MEMORY) {
4435
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4436 4437 4438 4439
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4440
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4441
	seq_printf(m, "file=%lu", file_nr);
4442
	for_each_node_state(nid, N_MEMORY) {
4443
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4444
				LRU_ALL_FILE);
4445 4446 4447 4448
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4449
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4450
	seq_printf(m, "anon=%lu", anon_nr);
4451
	for_each_node_state(nid, N_MEMORY) {
4452
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4453
				LRU_ALL_ANON);
4454 4455 4456 4457
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4458
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4459
	seq_printf(m, "unevictable=%lu", unevictable_nr);
4460
	for_each_node_state(nid, N_MEMORY) {
4461
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4462
				BIT(LRU_UNEVICTABLE));
4463 4464 4465 4466 4467 4468 4469
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4483
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4484
				 struct seq_file *m)
4485
{
4486
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4487 4488
	struct mem_cgroup *mi;
	unsigned int i;
4489

4490
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4491
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4492
			continue;
4493 4494
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4495
	}
L
Lee Schermerhorn 已提交
4496

4497 4498 4499 4500 4501 4502 4503 4504
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4505
	/* Hierarchical information */
4506 4507
	{
		unsigned long long limit, memsw_limit;
4508
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4509
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4510
		if (do_swap_account)
4511 4512
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4513
	}
K
KOSAKI Motohiro 已提交
4514

4515 4516 4517
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4518
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4519
			continue;
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4540
	}
K
KAMEZAWA Hiroyuki 已提交
4541

K
KOSAKI Motohiro 已提交
4542 4543 4544 4545
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4546
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4547 4548 4549 4550 4551
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4552
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4553
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4554

4555 4556 4557 4558
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4559
			}
4560 4561 4562 4563
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4564 4565 4566
	}
#endif

4567 4568 4569
	return 0;
}

K
KOSAKI Motohiro 已提交
4570 4571 4572 4573
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4574
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4575 4576 4577 4578 4579 4580 4581
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4582

K
KOSAKI Motohiro 已提交
4583 4584 4585 4586 4587 4588 4589
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4590 4591 4592

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4593 4594
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4595 4596
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4597
		return -EINVAL;
4598
	}
K
KOSAKI Motohiro 已提交
4599 4600 4601

	memcg->swappiness = val;

4602 4603
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4604 4605 4606
	return 0;
}

4607 4608 4609 4610 4611 4612 4613 4614
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4615
		t = rcu_dereference(memcg->thresholds.primary);
4616
	else
4617
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4618 4619 4620 4621 4622 4623 4624

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4625
	 * current_threshold points to threshold just below or equal to usage.
4626 4627 4628
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4629
	i = t->current_threshold;
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4653
	t->current_threshold = i - 1;
4654 4655 4656 4657 4658 4659
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4660 4661 4662 4663 4664 4665 4666
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4677
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4678 4679 4680
{
	struct mem_cgroup_eventfd_list *ev;

4681
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4682 4683 4684 4685
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4686
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4687
{
K
KAMEZAWA Hiroyuki 已提交
4688 4689
	struct mem_cgroup *iter;

4690
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4691
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4692 4693 4694 4695
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4696 4697
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4698 4699
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
4700
	enum res_type type = MEMFILE_TYPE(cft->private);
4701
	u64 threshold, usage;
4702
	int i, size, ret;
4703 4704 4705 4706 4707 4708

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4709

4710
	if (type == _MEM)
4711
		thresholds = &memcg->thresholds;
4712
	else if (type == _MEMSWAP)
4713
		thresholds = &memcg->memsw_thresholds;
4714 4715 4716 4717 4718 4719
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4720
	if (thresholds->primary)
4721 4722
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4723
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4724 4725

	/* Allocate memory for new array of thresholds */
4726
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4727
			GFP_KERNEL);
4728
	if (!new) {
4729 4730 4731
		ret = -ENOMEM;
		goto unlock;
	}
4732
	new->size = size;
4733 4734

	/* Copy thresholds (if any) to new array */
4735 4736
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4737
				sizeof(struct mem_cgroup_threshold));
4738 4739
	}

4740
	/* Add new threshold */
4741 4742
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4743 4744

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4745
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4746 4747 4748
			compare_thresholds, NULL);

	/* Find current threshold */
4749
	new->current_threshold = -1;
4750
	for (i = 0; i < size; i++) {
4751
		if (new->entries[i].threshold <= usage) {
4752
			/*
4753 4754
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4755 4756
			 * it here.
			 */
4757
			++new->current_threshold;
4758 4759
		} else
			break;
4760 4761
	}

4762 4763 4764 4765 4766
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4767

4768
	/* To be sure that nobody uses thresholds */
4769 4770 4771 4772 4773 4774 4775 4776
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4777
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4778
	struct cftype *cft, struct eventfd_ctx *eventfd)
4779 4780
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4781 4782
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
4783
	enum res_type type = MEMFILE_TYPE(cft->private);
4784
	u64 usage;
4785
	int i, j, size;
4786 4787 4788

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4789
		thresholds = &memcg->thresholds;
4790
	else if (type == _MEMSWAP)
4791
		thresholds = &memcg->memsw_thresholds;
4792 4793 4794
	else
		BUG();

4795 4796 4797
	if (!thresholds->primary)
		goto unlock;

4798 4799 4800 4801 4802 4803
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4804 4805 4806
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4807 4808 4809
			size++;
	}

4810
	new = thresholds->spare;
4811

4812 4813
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4814 4815
		kfree(new);
		new = NULL;
4816
		goto swap_buffers;
4817 4818
	}

4819
	new->size = size;
4820 4821

	/* Copy thresholds and find current threshold */
4822 4823 4824
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4825 4826
			continue;

4827
		new->entries[j] = thresholds->primary->entries[i];
4828
		if (new->entries[j].threshold <= usage) {
4829
			/*
4830
			 * new->current_threshold will not be used
4831 4832 4833
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4834
			++new->current_threshold;
4835 4836 4837 4838
		}
		j++;
	}

4839
swap_buffers:
4840 4841
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4842 4843 4844 4845 4846 4847
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4848
	rcu_assign_pointer(thresholds->primary, new);
4849

4850
	/* To be sure that nobody uses thresholds */
4851
	synchronize_rcu();
4852
unlock:
4853 4854
	mutex_unlock(&memcg->thresholds_lock);
}
4855

K
KAMEZAWA Hiroyuki 已提交
4856 4857 4858 4859 4860
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
4861
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
4862 4863 4864 4865 4866 4867

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4868
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4869 4870 4871 4872 4873

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4874
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4875
		eventfd_signal(eventfd, 1);
4876
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4877 4878 4879 4880

	return 0;
}

4881
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4882 4883
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4884
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4885
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
4886
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
4887 4888 4889

	BUG_ON(type != _OOM_TYPE);

4890
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4891

4892
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4893 4894 4895 4896 4897 4898
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4899
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4900 4901
}

4902 4903 4904
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4905
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4906

4907
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4908

4909
	if (atomic_read(&memcg->under_oom))
4910 4911 4912 4913 4914 4915 4916 4917 4918
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4919
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4931
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4932 4933 4934
		cgroup_unlock();
		return -EINVAL;
	}
4935
	memcg->oom_kill_disable = val;
4936
	if (!val)
4937
		memcg_oom_recover(memcg);
4938 4939 4940 4941
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
4942
#ifdef CONFIG_MEMCG_KMEM
4943
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4944
{
4945
	memcg_propagate_kmem(memcg);
4946
	return mem_cgroup_sockets_init(memcg, ss);
4947 4948
};

4949
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4950
{
4951
	mem_cgroup_sockets_destroy(memcg);
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
4966
}
4967
#else
4968
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4969 4970 4971
{
	return 0;
}
G
Glauber Costa 已提交
4972

4973
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4974 4975
{
}
4976 4977
#endif

B
Balbir Singh 已提交
4978 4979
static struct cftype mem_cgroup_files[] = {
	{
4980
		.name = "usage_in_bytes",
4981
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4982
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4983 4984
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4985
	},
4986 4987
	{
		.name = "max_usage_in_bytes",
4988
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4989
		.trigger = mem_cgroup_reset,
4990
		.read = mem_cgroup_read,
4991
	},
B
Balbir Singh 已提交
4992
	{
4993
		.name = "limit_in_bytes",
4994
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4995
		.write_string = mem_cgroup_write,
4996
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4997
	},
4998 4999 5000 5001
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5002
		.read = mem_cgroup_read,
5003
	},
B
Balbir Singh 已提交
5004 5005
	{
		.name = "failcnt",
5006
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5007
		.trigger = mem_cgroup_reset,
5008
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5009
	},
5010 5011
	{
		.name = "stat",
5012
		.read_seq_string = memcg_stat_show,
5013
	},
5014 5015 5016 5017
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5018 5019 5020 5021 5022
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5023 5024 5025 5026 5027
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5028 5029 5030 5031 5032
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5033 5034
	{
		.name = "oom_control",
5035 5036
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5037 5038 5039 5040
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5041 5042 5043
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5044
		.read_seq_string = memcg_numa_stat_show,
5045 5046
	},
#endif
A
Andrew Morton 已提交
5047
#ifdef CONFIG_MEMCG_SWAP
5048 5049 5050
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5051
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5052 5053
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
5054 5055 5056 5057 5058
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
5059
		.read = mem_cgroup_read,
5060 5061 5062 5063 5064
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
5065
		.read = mem_cgroup_read,
5066 5067 5068 5069 5070
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
5071
		.read = mem_cgroup_read,
5072
	},
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
#endif
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5098
#endif
5099
	{ },	/* terminate */
5100
};
5101

5102
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5103 5104
{
	struct mem_cgroup_per_node *pn;
5105
	struct mem_cgroup_per_zone *mz;
5106
	int zone, tmp = node;
5107 5108 5109 5110 5111 5112 5113 5114
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5115 5116
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5117
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5118 5119
	if (!pn)
		return 1;
5120 5121 5122

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5123
		lruvec_init(&mz->lruvec);
5124
		mz->usage_in_excess = 0;
5125
		mz->on_tree = false;
5126
		mz->memcg = memcg;
5127
	}
5128
	memcg->info.nodeinfo[node] = pn;
5129 5130 5131
	return 0;
}

5132
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5133
{
5134
	kfree(memcg->info.nodeinfo[node]);
5135 5136
}

5137 5138
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5139
	struct mem_cgroup *memcg;
5140
	int size = sizeof(struct mem_cgroup);
5141

5142
	/* Can be very big if MAX_NUMNODES is very big */
5143
	if (size < PAGE_SIZE)
5144
		memcg = kzalloc(size, GFP_KERNEL);
5145
	else
5146
		memcg = vzalloc(size);
5147

5148
	if (!memcg)
5149 5150
		return NULL;

5151 5152
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5153
		goto out_free;
5154 5155
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5156 5157 5158

out_free:
	if (size < PAGE_SIZE)
5159
		kfree(memcg);
5160
	else
5161
		vfree(memcg);
5162
	return NULL;
5163 5164
}

5165
/*
5166
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
5167 5168 5169
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
5170
static void free_work(struct work_struct *work)
5171 5172
{
	struct mem_cgroup *memcg;
5173
	int size = sizeof(struct mem_cgroup);
5174 5175

	memcg = container_of(work, struct mem_cgroup, work_freeing);
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
5188 5189 5190 5191
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5192
}
5193 5194

static void free_rcu(struct rcu_head *rcu_head)
5195 5196 5197 5198
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
5199
	INIT_WORK(&memcg->work_freeing, free_work);
5200 5201 5202
	schedule_work(&memcg->work_freeing);
}

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

5214
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5215
{
K
KAMEZAWA Hiroyuki 已提交
5216 5217
	int node;

5218 5219
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
5220

B
Bob Liu 已提交
5221
	for_each_node(node)
5222
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
5223

5224
	free_percpu(memcg->stat);
5225
	call_rcu(&memcg->rcu_freeing, free_rcu);
5226 5227
}

5228
static void mem_cgroup_get(struct mem_cgroup *memcg)
5229
{
5230
	atomic_inc(&memcg->refcnt);
5231 5232
}

5233
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
5234
{
5235 5236 5237
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
5238 5239 5240
		if (parent)
			mem_cgroup_put(parent);
	}
5241 5242
}

5243
static void mem_cgroup_put(struct mem_cgroup *memcg)
5244
{
5245
	__mem_cgroup_put(memcg, 1);
5246 5247
}

5248 5249 5250
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5251
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5252
{
5253
	if (!memcg->res.parent)
5254
		return NULL;
5255
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5256
}
G
Glauber Costa 已提交
5257
EXPORT_SYMBOL(parent_mem_cgroup);
5258

A
Andrew Morton 已提交
5259
#ifdef CONFIG_MEMCG_SWAP
5260 5261
static void __init enable_swap_cgroup(void)
{
5262
	if (!mem_cgroup_disabled() && really_do_swap_account)
5263 5264 5265 5266 5267 5268 5269 5270
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5271 5272 5273 5274 5275 5276
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
5277
	for_each_node(node) {
5278 5279 5280 5281 5282
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
5283
			goto err_cleanup;
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
5294 5295

err_cleanup:
B
Bob Liu 已提交
5296
	for_each_node(node) {
5297 5298 5299 5300 5301 5302 5303
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

5304 5305
}

L
Li Zefan 已提交
5306
static struct cgroup_subsys_state * __ref
5307
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
5308
{
5309
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
5310
	long error = -ENOMEM;
5311
	int node;
B
Balbir Singh 已提交
5312

5313 5314
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5315
		return ERR_PTR(error);
5316

B
Bob Liu 已提交
5317
	for_each_node(node)
5318
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5319
			goto free_out;
5320

5321
	/* root ? */
5322
	if (cont->parent == NULL) {
5323
		int cpu;
5324
		enable_swap_cgroup();
5325
		parent = NULL;
5326 5327
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5328
		root_mem_cgroup = memcg;
5329 5330 5331 5332 5333
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5334
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5335
	} else {
5336
		parent = mem_cgroup_from_cont(cont->parent);
5337 5338
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5339
	}
5340

5341
	if (parent && parent->use_hierarchy) {
5342 5343
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5344
		res_counter_init(&memcg->kmem, &parent->kmem);
5345 5346 5347 5348 5349 5350 5351
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5352
	} else {
5353 5354
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5355
		res_counter_init(&memcg->kmem, NULL);
5356 5357 5358 5359 5360 5361 5362
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
5363
	}
5364 5365
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5366

K
KOSAKI Motohiro 已提交
5367
	if (parent)
5368 5369 5370 5371
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5372
	spin_lock_init(&memcg->move_lock);
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5384
	return &memcg->css;
5385
free_out:
5386
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5387
	return ERR_PTR(error);
B
Balbir Singh 已提交
5388 5389
}

5390
static void mem_cgroup_css_offline(struct cgroup *cont)
5391
{
5392
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5393

5394
	mem_cgroup_reparent_charges(memcg);
5395 5396
}

5397
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
5398
{
5399
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5400

5401
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5402

5403
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5404 5405
}

5406
#ifdef CONFIG_MMU
5407
/* Handlers for move charge at task migration. */
5408 5409
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5410
{
5411 5412
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5413
	struct mem_cgroup *memcg = mc.to;
5414

5415
	if (mem_cgroup_is_root(memcg)) {
5416 5417 5418 5419 5420 5421 5422 5423
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5424
		 * "memcg" cannot be under rmdir() because we've already checked
5425 5426 5427 5428
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5429
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5430
			goto one_by_one;
5431
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5432
						PAGE_SIZE * count, &dummy)) {
5433
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5450 5451
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5452
		if (ret)
5453
			/* mem_cgroup_clear_mc() will do uncharge later */
5454
			return ret;
5455 5456
		mc.precharge++;
	}
5457 5458 5459 5460
	return ret;
}

/**
5461
 * get_mctgt_type - get target type of moving charge
5462 5463 5464
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5465
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5466 5467 5468 5469 5470 5471
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5472 5473 5474
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5475 5476 5477 5478 5479
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5480
	swp_entry_t	ent;
5481 5482 5483
};

enum mc_target_type {
5484
	MC_TARGET_NONE = 0,
5485
	MC_TARGET_PAGE,
5486
	MC_TARGET_SWAP,
5487 5488
};

D
Daisuke Nishimura 已提交
5489 5490
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5491
{
D
Daisuke Nishimura 已提交
5492
	struct page *page = vm_normal_page(vma, addr, ptent);
5493

D
Daisuke Nishimura 已提交
5494 5495 5496 5497
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5498
		if (!move_anon())
D
Daisuke Nishimura 已提交
5499
			return NULL;
5500 5501
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5502 5503 5504 5505 5506 5507 5508
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5509
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5510 5511 5512 5513 5514 5515 5516 5517
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5518 5519 5520 5521 5522
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5523 5524 5525 5526 5527
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5528 5529 5530 5531 5532 5533 5534
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5535

5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5555 5556 5557 5558 5559 5560
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5561
		if (do_swap_account)
5562 5563
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5564
	}
5565
#endif
5566 5567 5568
	return page;
}

5569
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5570 5571 5572 5573
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5574
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5575 5576 5577 5578 5579 5580
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5581 5582
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5583 5584

	if (!page && !ent.val)
5585
		return ret;
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5601 5602
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5603
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5604 5605 5606
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5607 5608 5609 5610
	}
	return ret;
}

5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5646 5647 5648 5649 5650 5651 5652 5653
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5654 5655 5656 5657
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5658
		return 0;
5659
	}
5660

5661 5662
	if (pmd_trans_unstable(pmd))
		return 0;
5663 5664
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5665
		if (get_mctgt_type(vma, addr, *pte, NULL))
5666 5667 5668 5669
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5670 5671 5672
	return 0;
}

5673 5674 5675 5676 5677
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5678
	down_read(&mm->mmap_sem);
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5690
	up_read(&mm->mmap_sem);
5691 5692 5693 5694 5695 5696 5697 5698 5699

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5700 5701 5702 5703 5704
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5705 5706
}

5707 5708
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5709
{
5710 5711 5712
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5713
	/* we must uncharge all the leftover precharges from mc.to */
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5725
	}
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5760
	spin_lock(&mc.lock);
5761 5762
	mc.from = NULL;
	mc.to = NULL;
5763
	spin_unlock(&mc.lock);
5764
	mem_cgroup_end_move(from);
5765 5766
}

5767 5768
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5769
{
5770
	struct task_struct *p = cgroup_taskset_first(tset);
5771
	int ret = 0;
5772
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5773

5774
	if (memcg->move_charge_at_immigrate) {
5775 5776 5777
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5778
		VM_BUG_ON(from == memcg);
5779 5780 5781 5782 5783

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5784 5785 5786 5787
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5788
			VM_BUG_ON(mc.moved_charge);
5789
			VM_BUG_ON(mc.moved_swap);
5790
			mem_cgroup_start_move(from);
5791
			spin_lock(&mc.lock);
5792
			mc.from = from;
5793
			mc.to = memcg;
5794
			spin_unlock(&mc.lock);
5795
			/* We set mc.moving_task later */
5796 5797 5798 5799

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5800 5801
		}
		mmput(mm);
5802 5803 5804 5805
	}
	return ret;
}

5806 5807
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5808
{
5809
	mem_cgroup_clear_mc();
5810 5811
}

5812 5813 5814
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5815
{
5816 5817 5818 5819
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5820 5821 5822 5823
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5824

5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5836
		if (mc.precharge < HPAGE_PMD_NR) {
5837 5838 5839 5840 5841 5842 5843 5844 5845
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5846
							pc, mc.from, mc.to)) {
5847 5848 5849 5850 5851 5852 5853 5854
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5855
		return 0;
5856 5857
	}

5858 5859
	if (pmd_trans_unstable(pmd))
		return 0;
5860 5861 5862 5863
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5864
		swp_entry_t ent;
5865 5866 5867 5868

		if (!mc.precharge)
			break;

5869
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5870 5871 5872 5873 5874
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5875
			if (!mem_cgroup_move_account(page, 1, pc,
5876
						     mc.from, mc.to)) {
5877
				mc.precharge--;
5878 5879
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5880 5881
			}
			putback_lru_page(page);
5882
put:			/* get_mctgt_type() gets the page */
5883 5884
			put_page(page);
			break;
5885 5886
		case MC_TARGET_SWAP:
			ent = target.ent;
5887
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5888
				mc.precharge--;
5889 5890 5891
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5892
			break;
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5907
		ret = mem_cgroup_do_precharge(1);
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5951
	up_read(&mm->mmap_sem);
5952 5953
}

5954 5955
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5956
{
5957
	struct task_struct *p = cgroup_taskset_first(tset);
5958
	struct mm_struct *mm = get_task_mm(p);
5959 5960

	if (mm) {
5961 5962
		if (mc.to)
			mem_cgroup_move_charge(mm);
5963 5964
		mmput(mm);
	}
5965 5966
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5967
}
5968
#else	/* !CONFIG_MMU */
5969 5970
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5971 5972 5973
{
	return 0;
}
5974 5975
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5976 5977
{
}
5978 5979
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5980 5981 5982
{
}
#endif
B
Balbir Singh 已提交
5983

B
Balbir Singh 已提交
5984 5985 5986
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
5987 5988 5989
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5990 5991
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5992
	.attach = mem_cgroup_move_task,
5993
	.base_cftypes = mem_cgroup_files,
5994
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5995
	.use_id = 1,
B
Balbir Singh 已提交
5996
};
5997

A
Andrew Morton 已提交
5998
#ifdef CONFIG_MEMCG_SWAP
5999 6000 6001
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6002
	if (!strcmp(s, "1"))
6003
		really_do_swap_account = 1;
6004
	else if (!strcmp(s, "0"))
6005 6006 6007
		really_do_swap_account = 0;
	return 1;
}
6008
__setup("swapaccount=", enable_swap_account);
6009 6010

#endif