memcontrol.c 144.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

A
Andrew Morton 已提交
64
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68

/* for remember boot option*/
A
Andrew Morton 已提交
69
#ifdef CONFIG_MEMCG_SWAP_ENABLED
70 71 72 73 74
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75
#else
76
#define do_swap_account		0
77 78 79
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97 98 99 100
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

101 102 103
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
104 105
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
106 107
	MEM_CGROUP_EVENTS_NSTATS,
};
108 109 110 111 112 113 114 115

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

116 117 118 119 120 121 122 123 124
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
125
	MEM_CGROUP_TARGET_NUMAINFO,
126 127
	MEM_CGROUP_NTARGETS,
};
128 129 130
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
131

132
struct mem_cgroup_stat_cpu {
133
	long count[MEM_CGROUP_STAT_NSTATS];
134
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135
	unsigned long nr_page_events;
136
	unsigned long targets[MEM_CGROUP_NTARGETS];
137 138
};

139 140 141 142 143 144 145
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

146 147 148 149
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
150
	struct lruvec		lruvec;
151
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
152

153 154
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

155 156 157 158
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
159
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
160
						/* use container_of	   */
161 162 163 164 165 166 167 168 169 170
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

191 192 193 194 195
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
196
/* For threshold */
197
struct mem_cgroup_threshold_ary {
198
	/* An array index points to threshold just below or equal to usage. */
199
	int current_threshold;
200 201 202 203 204
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
205 206 207 208 209 210 211 212 213 214 215 216

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
217 218 219 220 221
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
222

223 224
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225

B
Balbir Singh 已提交
226 227 228 229 230 231 232
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 234 235
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
236 237 238 239 240 241 242
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
261 262
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
263 264 265 266
		 */
		struct work_struct work_freeing;
	};

267 268 269 270
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
271
	struct mem_cgroup_lru_info info;
272 273 274
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
275 276
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
277
#endif
278 279 280 281
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
282 283 284 285

	bool		oom_lock;
	atomic_t	under_oom;

286
	atomic_t	refcnt;
287

288
	int	swappiness;
289 290
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
291

292 293 294
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

295 296 297 298
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
299
	struct mem_cgroup_thresholds thresholds;
300

301
	/* thresholds for mem+swap usage. RCU-protected */
302
	struct mem_cgroup_thresholds memsw_thresholds;
303

K
KAMEZAWA Hiroyuki 已提交
304 305
	/* For oom notifier event fd */
	struct list_head oom_notify;
306

307 308 309 310 311
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
312 313 314 315
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
316 317
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
318
	/*
319
	 * percpu counter.
320
	 */
321
	struct mem_cgroup_stat_cpu __percpu *stat;
322 323 324 325 326 327
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
328 329 330 331

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
332 333
};

334 335 336 337 338 339
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
340
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
341
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
342 343 344
	NR_MOVE_TYPE,
};

345 346
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
347
	spinlock_t	  lock; /* for from, to */
348 349 350
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
351
	unsigned long moved_charge;
352
	unsigned long moved_swap;
353 354 355
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
356
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 358
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
359

D
Daisuke Nishimura 已提交
360 361 362 363 364 365
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

366 367 368 369 370 371
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

372 373 374 375
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
376 377
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
378

379 380
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381
	MEM_CGROUP_CHARGE_TYPE_ANON,
382
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
K
KAMEZAWA Hiroyuki 已提交
383
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
384
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
385 386 387
	NR_CHARGE_TYPE,
};

388
/* for encoding cft->private value on file */
389 390 391
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
392 393
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
394
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
395 396
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
397

398 399 400 401 402 403 404 405
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

406 407
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
408 409

/* Writing them here to avoid exposing memcg's inner layout */
A
Andrew Morton 已提交
410
#ifdef CONFIG_MEMCG_KMEM
G
Glauber Costa 已提交
411
#include <net/sock.h>
G
Glauber Costa 已提交
412
#include <net/ip.h>
G
Glauber Costa 已提交
413 414 415 416

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
417
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
418
		struct mem_cgroup *memcg;
419
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
420 421 422

		BUG_ON(!sk->sk_prot->proto_cgroup);

423 424 425 426 427 428 429 430 431 432 433 434 435 436
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
437 438
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
439 440
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
441
			mem_cgroup_get(memcg);
442
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
443 444 445 446 447 448 449 450
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
451
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
452 453 454 455 456 457
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
458

459
#ifdef CONFIG_INET
G
Glauber Costa 已提交
460 461 462 463 464 465 466 467
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
468
#endif /* CONFIG_INET */
A
Andrew Morton 已提交
469
#endif /* CONFIG_MEMCG_KMEM */
G
Glauber Costa 已提交
470

A
Andrew Morton 已提交
471
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
472 473 474 475 476 477 478 479 480 481 482 483
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

484
static void drain_all_stock_async(struct mem_cgroup *memcg);
485

486
static struct mem_cgroup_per_zone *
487
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
488
{
489
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
490 491
}

492
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
493
{
494
	return &memcg->css;
495 496
}

497
static struct mem_cgroup_per_zone *
498
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
499
{
500 501
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
502

503
	return mem_cgroup_zoneinfo(memcg, nid, zid);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
522
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
523
				struct mem_cgroup_per_zone *mz,
524 525
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
526 527 528 529 530 531 532 533
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

534 535 536
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
553 554 555
}

static void
556
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
557 558 559 560 561 562 563 564 565
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

566
static void
567
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
568 569 570 571
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
572
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
	spin_unlock(&mctz->lock);
}


577
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
578
{
579
	unsigned long long excess;
580 581
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
582 583
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
584 585 586
	mctz = soft_limit_tree_from_page(page);

	/*
587 588
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
589
	 */
590 591 592
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
593 594 595 596
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
597
		if (excess || mz->on_tree) {
598 599 600
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
601
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
602
			/*
603 604
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
605
			 */
606
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
607 608
			spin_unlock(&mctz->lock);
		}
609 610 611
	}
}

612
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
613 614 615 616 617
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
618
	for_each_node(node) {
619
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
620
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
621
			mctz = soft_limit_tree_node_zone(node, zone);
622
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
623 624 625 626
		}
	}
}

627 628 629 630
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
631
	struct mem_cgroup_per_zone *mz;
632 633

retry:
634
	mz = NULL;
635 636 637 638 639 640 641 642 643 644
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
645 646 647
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
683
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
684
				 enum mem_cgroup_stat_index idx)
685
{
686
	long val = 0;
687 688
	int cpu;

689 690
	get_online_cpus();
	for_each_online_cpu(cpu)
691
		val += per_cpu(memcg->stat->count[idx], cpu);
692
#ifdef CONFIG_HOTPLUG_CPU
693 694 695
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
696 697
#endif
	put_online_cpus();
698 699 700
	return val;
}

701
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
702 703 704
					 bool charge)
{
	int val = (charge) ? 1 : -1;
705
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
706 707
}

708
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
709 710 711 712 713 714
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
715
		val += per_cpu(memcg->stat->events[idx], cpu);
716
#ifdef CONFIG_HOTPLUG_CPU
717 718 719
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
720 721 722 723
#endif
	return val;
}

724
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
725
					 bool anon, int nr_pages)
726
{
727 728
	preempt_disable();

729 730 731 732 733 734
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
735
				nr_pages);
736
	else
737
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
738
				nr_pages);
739

740 741
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
742
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
743
	else {
744
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
745 746
		nr_pages = -nr_pages; /* for event */
	}
747

748
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
749

750
	preempt_enable();
751 752
}

753
unsigned long
754
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
755 756 757 758 759 760 761 762
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
763
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
764
			unsigned int lru_mask)
765 766
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
767
	enum lru_list lru;
768 769
	unsigned long ret = 0;

770
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
771

H
Hugh Dickins 已提交
772 773 774
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
775 776 777 778 779
	}
	return ret;
}

static unsigned long
780
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
781 782
			int nid, unsigned int lru_mask)
{
783 784 785
	u64 total = 0;
	int zid;

786
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
787 788
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
789

790 791
	return total;
}
792

793
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
794
			unsigned int lru_mask)
795
{
796
	int nid;
797 798
	u64 total = 0;

799
	for_each_node_state(nid, N_HIGH_MEMORY)
800
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
801
	return total;
802 803
}

804 805
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
806 807 808
{
	unsigned long val, next;

809
	val = __this_cpu_read(memcg->stat->nr_page_events);
810
	next = __this_cpu_read(memcg->stat->targets[target]);
811
	/* from time_after() in jiffies.h */
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
828
	}
829
	return false;
830 831 832 833 834 835
}

/*
 * Check events in order.
 *
 */
836
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
837
{
838
	preempt_disable();
839
	/* threshold event is triggered in finer grain than soft limit */
840 841
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
842 843
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
844 845 846 847 848 849 850 851 852

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

853
		mem_cgroup_threshold(memcg);
854
		if (unlikely(do_softlimit))
855
			mem_cgroup_update_tree(memcg, page);
856
#if MAX_NUMNODES > 1
857
		if (unlikely(do_numainfo))
858
			atomic_inc(&memcg->numainfo_events);
859
#endif
860 861
	} else
		preempt_enable();
862 863
}

G
Glauber Costa 已提交
864
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
865 866 867 868 869 870
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

871
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
872
{
873 874 875 876 877 878 879 880
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

881 882 883 884
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

885
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
886
{
887
	struct mem_cgroup *memcg = NULL;
888 889 890

	if (!mm)
		return NULL;
891 892 893 894 895 896 897
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
898 899
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
900
			break;
901
	} while (!css_tryget(&memcg->css));
902
	rcu_read_unlock();
903
	return memcg;
904 905
}

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
926
{
927 928
	struct mem_cgroup *memcg = NULL;
	int id = 0;
929

930 931 932
	if (mem_cgroup_disabled())
		return NULL;

933 934
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
935

936 937
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
938

939 940
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
941

942 943 944 945 946
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
947

948
	while (!memcg) {
949
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
950
		struct cgroup_subsys_state *css;
951

952 953 954 955 956 957 958 959 960 961 962
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
963

964 965 966 967 968 969 970 971
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
972 973
		rcu_read_unlock();

974 975 976 977 978 979 980
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
981 982 983 984 985

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
986
}
K
KAMEZAWA Hiroyuki 已提交
987

988 989 990 991 992 993 994
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
995 996 997 998 999 1000
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1001

1002 1003 1004 1005 1006 1007
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1008
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1009
	     iter != NULL;				\
1010
	     iter = mem_cgroup_iter(root, iter, NULL))
1011

1012
#define for_each_mem_cgroup(iter)			\
1013
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1014
	     iter != NULL;				\
1015
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1016

1017
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1018
{
1019
	return (memcg == root_mem_cgroup);
1020 1021
}

1022 1023
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
1024
	struct mem_cgroup *memcg;
1025 1026 1027 1028 1029

	if (!mm)
		return;

	rcu_read_lock();
1030 1031
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1032 1033 1034 1035
		goto out;

	switch (idx) {
	case PGFAULT:
1036 1037 1038 1039
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1040 1041 1042 1043 1044 1045 1046 1047 1048
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1049 1050 1051
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1052
 * @memcg: memcg of the wanted lruvec
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1083

1084
/**
1085
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1086
 * @page: the page
1087
 * @zone: zone of the page
1088
 */
1089
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1090 1091
{
	struct mem_cgroup_per_zone *mz;
1092 1093
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1094

1095
	if (mem_cgroup_disabled())
1096 1097
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1098
	pc = lookup_page_cgroup(page);
1099
	memcg = pc->mem_cgroup;
1100 1101

	/*
1102
	 * Surreptitiously switch any uncharged offlist page to root:
1103 1104 1105 1106 1107 1108 1109
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1110
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1111 1112
		pc->mem_cgroup = memcg = root_mem_cgroup;

1113 1114
	mz = page_cgroup_zoneinfo(memcg, page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1115
}
1116

1117
/**
1118 1119 1120 1121
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1122
 *
1123 1124
 * This function must be called when a page is added to or removed from an
 * lru list.
1125
 */
1126 1127
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1128 1129
{
	struct mem_cgroup_per_zone *mz;
1130
	unsigned long *lru_size;
1131 1132 1133 1134

	if (mem_cgroup_disabled())
		return;

1135 1136 1137 1138
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1139
}
1140

1141
/*
1142
 * Checks whether given mem is same or in the root_mem_cgroup's
1143 1144
 * hierarchy subtree
 */
1145 1146
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1147
{
1148 1149
	if (root_memcg == memcg)
		return true;
1150
	if (!root_memcg->use_hierarchy || !memcg)
1151
		return false;
1152 1153 1154 1155 1156 1157 1158 1159
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1160
	rcu_read_lock();
1161
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1162 1163
	rcu_read_unlock();
	return ret;
1164 1165
}

1166
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1167 1168
{
	int ret;
1169
	struct mem_cgroup *curr = NULL;
1170
	struct task_struct *p;
1171

1172
	p = find_lock_task_mm(task);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1188 1189
	if (!curr)
		return 0;
1190
	/*
1191
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1192
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1193 1194
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1195
	 */
1196
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1197
	css_put(&curr->css);
1198 1199 1200
	return ret;
}

1201
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1202
{
1203
	unsigned long inactive_ratio;
1204
	unsigned long inactive;
1205
	unsigned long active;
1206
	unsigned long gb;
1207

1208 1209
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1210

1211 1212 1213 1214 1215 1216
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1217
	return inactive * inactive_ratio < active;
1218 1219
}

1220
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1221 1222 1223 1224
{
	unsigned long active;
	unsigned long inactive;

1225 1226
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1227 1228 1229 1230

	return (active > inactive);
}

1231 1232 1233
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1234
/**
1235
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1236
 * @memcg: the memory cgroup
1237
 *
1238
 * Returns the maximum amount of memory @mem can be charged with, in
1239
 * pages.
1240
 */
1241
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1242
{
1243 1244
	unsigned long long margin;

1245
	margin = res_counter_margin(&memcg->res);
1246
	if (do_swap_account)
1247
		margin = min(margin, res_counter_margin(&memcg->memsw));
1248
	return margin >> PAGE_SHIFT;
1249 1250
}

1251
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1252 1253 1254 1255 1256 1257 1258
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1259
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1260 1261
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1276 1277 1278 1279

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1280
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1281
{
1282
	atomic_inc(&memcg_moving);
1283
	atomic_inc(&memcg->moving_account);
1284 1285 1286
	synchronize_rcu();
}

1287
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1288
{
1289 1290 1291 1292
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1293 1294
	if (memcg) {
		atomic_dec(&memcg_moving);
1295
		atomic_dec(&memcg->moving_account);
1296
	}
1297
}
1298

1299 1300 1301
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1302 1303
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1304 1305 1306 1307 1308 1309 1310
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1311
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1312 1313
{
	VM_BUG_ON(!rcu_read_lock_held());
1314
	return atomic_read(&memcg->moving_account) > 0;
1315
}
1316

1317
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1318
{
1319 1320
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1321
	bool ret = false;
1322 1323 1324 1325 1326 1327 1328 1329 1330
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1331

1332 1333
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1334 1335
unlock:
	spin_unlock(&mc.lock);
1336 1337 1338
	return ret;
}

1339
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1340 1341
{
	if (mc.moving_task && current != mc.moving_task) {
1342
		if (mem_cgroup_under_move(memcg)) {
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1355 1356 1357 1358
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1359
 * see mem_cgroup_stolen(), too.
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1373
/**
1374
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1393
	if (!memcg || !p)
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1439 1440 1441 1442
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1443
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1444 1445
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1446 1447
	struct mem_cgroup *iter;

1448
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1449
		num++;
1450 1451 1452
	return num;
}

D
David Rientjes 已提交
1453 1454 1455
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1456
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1457 1458 1459 1460
{
	u64 limit;
	u64 memsw;

1461 1462 1463
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1464 1465 1466 1467 1468 1469 1470 1471
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
void __mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				int order)
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1564 1565
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1566
 * @memcg: the target memcg
1567 1568 1569 1570 1571 1572 1573
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1574
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1575 1576
		int nid, bool noswap)
{
1577
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1578 1579 1580
		return true;
	if (noswap || !total_swap_pages)
		return false;
1581
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1582 1583 1584 1585
		return true;
	return false;

}
1586 1587 1588 1589 1590 1591 1592 1593
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1594
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1595 1596
{
	int nid;
1597 1598 1599 1600
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1601
	if (!atomic_read(&memcg->numainfo_events))
1602
		return;
1603
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1604 1605 1606
		return;

	/* make a nodemask where this memcg uses memory from */
1607
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1608 1609 1610

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1611 1612
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1613
	}
1614

1615 1616
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1631
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1632 1633 1634
{
	int node;

1635 1636
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1637

1638
	node = next_node(node, memcg->scan_nodes);
1639
	if (node == MAX_NUMNODES)
1640
		node = first_node(memcg->scan_nodes);
1641 1642 1643 1644 1645 1646 1647 1648 1649
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1650
	memcg->last_scanned_node = node;
1651 1652 1653
	return node;
}

1654 1655 1656 1657 1658 1659
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1660
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1661 1662 1663 1664 1665 1666 1667
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1668 1669
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1670
		     nid < MAX_NUMNODES;
1671
		     nid = next_node(nid, memcg->scan_nodes)) {
1672

1673
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1674 1675 1676 1677 1678 1679 1680
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1681
		if (node_isset(nid, memcg->scan_nodes))
1682
			continue;
1683
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1684 1685 1686 1687 1688
			return true;
	}
	return false;
}

1689
#else
1690
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1691 1692 1693
{
	return 0;
}
1694

1695
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1696
{
1697
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1698
}
1699 1700
#endif

1701 1702 1703 1704
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1705
{
1706
	struct mem_cgroup *victim = NULL;
1707
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1708
	int loop = 0;
1709
	unsigned long excess;
1710
	unsigned long nr_scanned;
1711 1712 1713 1714
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1715

1716
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1717

1718
	while (1) {
1719
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1720
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1721
			loop++;
1722 1723 1724 1725 1726 1727
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1728
				if (!total)
1729 1730
					break;
				/*
L
Lucas De Marchi 已提交
1731
				 * We want to do more targeted reclaim.
1732 1733 1734 1735 1736
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1737
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1738 1739
					break;
			}
1740
			continue;
1741
		}
1742
		if (!mem_cgroup_reclaimable(victim, false))
1743
			continue;
1744 1745 1746 1747
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1748
			break;
1749
	}
1750
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1751
	return total;
1752 1753
}

K
KAMEZAWA Hiroyuki 已提交
1754 1755 1756
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1757
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1758
 */
1759
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1760
{
1761
	struct mem_cgroup *iter, *failed = NULL;
1762

1763
	for_each_mem_cgroup_tree(iter, memcg) {
1764
		if (iter->oom_lock) {
1765 1766 1767 1768 1769
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1770 1771
			mem_cgroup_iter_break(memcg, iter);
			break;
1772 1773
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1774
	}
K
KAMEZAWA Hiroyuki 已提交
1775

1776
	if (!failed)
1777
		return true;
1778 1779 1780 1781 1782

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1783
	for_each_mem_cgroup_tree(iter, memcg) {
1784
		if (iter == failed) {
1785 1786
			mem_cgroup_iter_break(memcg, iter);
			break;
1787 1788 1789
		}
		iter->oom_lock = false;
	}
1790
	return false;
1791
}
1792

1793
/*
1794
 * Has to be called with memcg_oom_lock
1795
 */
1796
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1797
{
K
KAMEZAWA Hiroyuki 已提交
1798 1799
	struct mem_cgroup *iter;

1800
	for_each_mem_cgroup_tree(iter, memcg)
1801 1802 1803 1804
		iter->oom_lock = false;
	return 0;
}

1805
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1806 1807 1808
{
	struct mem_cgroup *iter;

1809
	for_each_mem_cgroup_tree(iter, memcg)
1810 1811 1812
		atomic_inc(&iter->under_oom);
}

1813
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1814 1815 1816
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1817 1818 1819 1820 1821
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1822
	for_each_mem_cgroup_tree(iter, memcg)
1823
		atomic_add_unless(&iter->under_oom, -1, 0);
1824 1825
}

1826
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1827 1828
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1829
struct oom_wait_info {
1830
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1831 1832 1833 1834 1835 1836
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1837 1838
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1839 1840 1841
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1842
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1843 1844

	/*
1845
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1846 1847
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1848 1849
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1850 1851 1852 1853
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1854
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1855
{
1856 1857
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1858 1859
}

1860
static void memcg_oom_recover(struct mem_cgroup *memcg)
1861
{
1862 1863
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1864 1865
}

K
KAMEZAWA Hiroyuki 已提交
1866 1867 1868
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1869 1870
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1871
{
K
KAMEZAWA Hiroyuki 已提交
1872
	struct oom_wait_info owait;
1873
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1874

1875
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1876 1877 1878 1879
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1880
	need_to_kill = true;
1881
	mem_cgroup_mark_under_oom(memcg);
1882

1883
	/* At first, try to OOM lock hierarchy under memcg.*/
1884
	spin_lock(&memcg_oom_lock);
1885
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1886 1887 1888 1889 1890
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1891
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1892
	if (!locked || memcg->oom_kill_disable)
1893 1894
		need_to_kill = false;
	if (locked)
1895
		mem_cgroup_oom_notify(memcg);
1896
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1897

1898 1899
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1900
		mem_cgroup_out_of_memory(memcg, mask, order);
1901
	} else {
K
KAMEZAWA Hiroyuki 已提交
1902
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1903
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1904
	}
1905
	spin_lock(&memcg_oom_lock);
1906
	if (locked)
1907 1908
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1909
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1910

1911
	mem_cgroup_unmark_under_oom(memcg);
1912

K
KAMEZAWA Hiroyuki 已提交
1913 1914 1915
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1916
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1917
	return true;
1918 1919
}

1920 1921 1922
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1940 1941
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1942
 */
1943

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
1957
	 * need to take move_lock_mem_cgroup(). Because we already hold
1958
	 * rcu_read_lock(), any calls to move_account will be delayed until
1959
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1960
	 */
1961
	if (!mem_cgroup_stolen(memcg))
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
1979
	 * should take move_lock_mem_cgroup().
1980 1981 1982 1983
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1984 1985
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1986
{
1987
	struct mem_cgroup *memcg;
1988
	struct page_cgroup *pc = lookup_page_cgroup(page);
1989
	unsigned long uninitialized_var(flags);
1990

1991
	if (mem_cgroup_disabled())
1992
		return;
1993

1994 1995
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1996
		return;
1997 1998

	switch (idx) {
1999 2000
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2001 2002 2003
		break;
	default:
		BUG();
2004
	}
2005

2006
	this_cpu_add(memcg->stat->count[idx], val);
2007
}
2008

2009 2010 2011 2012
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2013
#define CHARGE_BATCH	32U
2014 2015
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2016
	unsigned int nr_pages;
2017
	struct work_struct work;
2018
	unsigned long flags;
2019
#define FLUSHING_CACHED_CHARGE	0
2020 2021
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2022
static DEFINE_MUTEX(percpu_charge_mutex);
2023 2024

/*
2025
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2026 2027 2028 2029
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2030
static bool consume_stock(struct mem_cgroup *memcg)
2031 2032 2033 2034 2035
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2036
	if (memcg == stock->cached && stock->nr_pages)
2037
		stock->nr_pages--;
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2051 2052 2053 2054
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2055
		if (do_swap_account)
2056 2057
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2070
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2071 2072 2073 2074
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2075
 * This will be consumed by consume_stock() function, later.
2076
 */
2077
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2078 2079 2080
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2081
	if (stock->cached != memcg) { /* reset if necessary */
2082
		drain_stock(stock);
2083
		stock->cached = memcg;
2084
	}
2085
	stock->nr_pages += nr_pages;
2086 2087 2088 2089
	put_cpu_var(memcg_stock);
}

/*
2090
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2091 2092
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2093
 */
2094
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2095
{
2096
	int cpu, curcpu;
2097

2098 2099
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2100
	curcpu = get_cpu();
2101 2102
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2103
		struct mem_cgroup *memcg;
2104

2105 2106
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2107
			continue;
2108
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2109
			continue;
2110 2111 2112 2113 2114 2115
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2116
	}
2117
	put_cpu();
2118 2119 2120 2121 2122 2123

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2124
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2125 2126 2127
			flush_work(&stock->work);
	}
out:
2128
 	put_online_cpus();
2129 2130 2131 2132 2133 2134 2135 2136
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2137
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2138
{
2139 2140 2141 2142 2143
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2144
	drain_all_stock(root_memcg, false);
2145
	mutex_unlock(&percpu_charge_mutex);
2146 2147 2148
}

/* This is a synchronous drain interface. */
2149
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2150 2151
{
	/* called when force_empty is called */
2152
	mutex_lock(&percpu_charge_mutex);
2153
	drain_all_stock(root_memcg, true);
2154
	mutex_unlock(&percpu_charge_mutex);
2155 2156
}

2157 2158 2159 2160
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2161
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2162 2163 2164
{
	int i;

2165
	spin_lock(&memcg->pcp_counter_lock);
2166
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2167
		long x = per_cpu(memcg->stat->count[i], cpu);
2168

2169 2170
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2171
	}
2172
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2173
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2174

2175 2176
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2177
	}
2178
	spin_unlock(&memcg->pcp_counter_lock);
2179 2180 2181
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2182 2183 2184 2185 2186
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2187
	struct mem_cgroup *iter;
2188

2189
	if (action == CPU_ONLINE)
2190 2191
		return NOTIFY_OK;

2192
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2193
		return NOTIFY_OK;
2194

2195
	for_each_mem_cgroup(iter)
2196 2197
		mem_cgroup_drain_pcp_counter(iter, cpu);

2198 2199 2200 2201 2202
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2213
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2214
				unsigned int nr_pages, bool oom_check)
2215
{
2216
	unsigned long csize = nr_pages * PAGE_SIZE;
2217 2218 2219 2220 2221
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2222
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2223 2224 2225 2226

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2227
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2228 2229 2230
		if (likely(!ret))
			return CHARGE_OK;

2231
		res_counter_uncharge(&memcg->res, csize);
2232 2233 2234 2235
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2236
	/*
2237 2238
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2239 2240 2241 2242
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2243
	if (nr_pages == CHARGE_BATCH)
2244 2245 2246 2247 2248
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2249
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2250
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2251
		return CHARGE_RETRY;
2252
	/*
2253 2254 2255 2256 2257 2258 2259
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2260
	 */
2261
	if (nr_pages == 1 && ret)
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2275
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2276 2277 2278 2279 2280
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2281
/*
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2301
 */
2302
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2303
				   gfp_t gfp_mask,
2304
				   unsigned int nr_pages,
2305
				   struct mem_cgroup **ptr,
2306
				   bool oom)
2307
{
2308
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2309
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2310
	struct mem_cgroup *memcg = NULL;
2311
	int ret;
2312

K
KAMEZAWA Hiroyuki 已提交
2313 2314 2315 2316 2317 2318 2319 2320
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2321

2322
	/*
2323 2324
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2325 2326 2327
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2328
	if (!*ptr && !mm)
2329
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2330
again:
2331 2332 2333 2334
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2335
			goto done;
2336
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2337
			goto done;
2338
		css_get(&memcg->css);
2339
	} else {
K
KAMEZAWA Hiroyuki 已提交
2340
		struct task_struct *p;
2341

K
KAMEZAWA Hiroyuki 已提交
2342 2343 2344
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2345
		 * Because we don't have task_lock(), "p" can exit.
2346
		 * In that case, "memcg" can point to root or p can be NULL with
2347 2348 2349 2350 2351 2352
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2353
		 */
2354
		memcg = mem_cgroup_from_task(p);
2355 2356 2357
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2358 2359 2360
			rcu_read_unlock();
			goto done;
		}
2361
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2374
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2375 2376 2377 2378 2379
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2380

2381 2382
	do {
		bool oom_check;
2383

2384
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2385
		if (fatal_signal_pending(current)) {
2386
			css_put(&memcg->css);
2387
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2388
		}
2389

2390 2391 2392 2393
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2394
		}
2395

2396
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2397 2398 2399 2400
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2401
			batch = nr_pages;
2402 2403
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2404
			goto again;
2405
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2406
			css_put(&memcg->css);
2407 2408
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2409
			if (!oom) {
2410
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2411
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2412
			}
2413 2414 2415 2416
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2417
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2418
			goto bypass;
2419
		}
2420 2421
	} while (ret != CHARGE_OK);

2422
	if (batch > nr_pages)
2423 2424
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2425
done:
2426
	*ptr = memcg;
2427 2428
	return 0;
nomem:
2429
	*ptr = NULL;
2430
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2431
bypass:
2432 2433
	*ptr = root_mem_cgroup;
	return -EINTR;
2434
}
2435

2436 2437 2438 2439 2440
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2441
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2442
				       unsigned int nr_pages)
2443
{
2444
	if (!mem_cgroup_is_root(memcg)) {
2445 2446
		unsigned long bytes = nr_pages * PAGE_SIZE;

2447
		res_counter_uncharge(&memcg->res, bytes);
2448
		if (do_swap_account)
2449
			res_counter_uncharge(&memcg->memsw, bytes);
2450
	}
2451 2452
}

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2490
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2491
{
2492
	struct mem_cgroup *memcg = NULL;
2493
	struct page_cgroup *pc;
2494
	unsigned short id;
2495 2496
	swp_entry_t ent;

2497 2498 2499
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2500
	lock_page_cgroup(pc);
2501
	if (PageCgroupUsed(pc)) {
2502 2503 2504
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2505
	} else if (PageSwapCache(page)) {
2506
		ent.val = page_private(page);
2507
		id = lookup_swap_cgroup_id(ent);
2508
		rcu_read_lock();
2509 2510 2511
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2512
		rcu_read_unlock();
2513
	}
2514
	unlock_page_cgroup(pc);
2515
	return memcg;
2516 2517
}

2518
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2519
				       struct page *page,
2520
				       unsigned int nr_pages,
2521 2522
				       enum charge_type ctype,
				       bool lrucare)
2523
{
2524
	struct page_cgroup *pc = lookup_page_cgroup(page);
2525
	struct zone *uninitialized_var(zone);
2526
	struct lruvec *lruvec;
2527
	bool was_on_lru = false;
2528
	bool anon;
2529

2530 2531 2532
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2533
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2534 2535 2536 2537 2538 2539
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2540 2541 2542 2543 2544 2545 2546 2547 2548

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2549
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2550
			ClearPageLRU(page);
2551
			del_page_from_lru_list(page, lruvec, page_lru(page));
2552 2553 2554 2555
			was_on_lru = true;
		}
	}

2556
	pc->mem_cgroup = memcg;
2557 2558 2559 2560 2561 2562 2563
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2564
	smp_wmb();
2565
	SetPageCgroupUsed(pc);
2566

2567 2568
	if (lrucare) {
		if (was_on_lru) {
2569
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2570 2571
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2572
			add_page_to_lru_list(page, lruvec, page_lru(page));
2573 2574 2575 2576
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2577
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2578 2579 2580 2581 2582
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2583
	unlock_page_cgroup(pc);
2584

2585 2586 2587 2588 2589
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2590
	memcg_check_events(memcg, page);
2591
}
2592

2593 2594
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2595
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2596 2597
/*
 * Because tail pages are not marked as "used", set it. We're under
2598 2599 2600
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2601
 */
2602
void mem_cgroup_split_huge_fixup(struct page *head)
2603 2604
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2605 2606
	struct page_cgroup *pc;
	int i;
2607

2608 2609
	if (mem_cgroup_disabled())
		return;
2610 2611 2612 2613 2614 2615
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2616
}
2617
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2618

2619
/**
2620
 * mem_cgroup_move_account - move account of the page
2621
 * @page: the page
2622
 * @nr_pages: number of regular pages (>1 for huge pages)
2623 2624 2625 2626 2627
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2628
 * - page is not on LRU (isolate_page() is useful.)
2629
 * - compound_lock is held when nr_pages > 1
2630
 *
2631 2632
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2633
 */
2634 2635 2636 2637
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2638
				   struct mem_cgroup *to)
2639
{
2640 2641
	unsigned long flags;
	int ret;
2642
	bool anon = PageAnon(page);
2643

2644
	VM_BUG_ON(from == to);
2645
	VM_BUG_ON(PageLRU(page));
2646 2647 2648 2649 2650 2651 2652
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2653
	if (nr_pages > 1 && !PageTransHuge(page))
2654 2655 2656 2657 2658 2659 2660 2661
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2662
	move_lock_mem_cgroup(from, &flags);
2663

2664
	if (!anon && page_mapped(page)) {
2665 2666 2667 2668 2669
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2670
	}
2671
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2672

2673
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2674
	pc->mem_cgroup = to;
2675
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2676 2677 2678
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2679
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2680
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2681
	 * status here.
2682
	 */
2683
	move_unlock_mem_cgroup(from, &flags);
2684 2685
	ret = 0;
unlock:
2686
	unlock_page_cgroup(pc);
2687 2688 2689
	/*
	 * check events
	 */
2690 2691
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2692
out:
2693 2694 2695 2696 2697 2698 2699
	return ret;
}

/*
 * move charges to its parent.
 */

2700 2701
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2702
				  struct mem_cgroup *child)
2703 2704
{
	struct mem_cgroup *parent;
2705
	unsigned int nr_pages;
2706
	unsigned long uninitialized_var(flags);
2707 2708 2709
	int ret;

	/* Is ROOT ? */
2710
	if (mem_cgroup_is_root(child))
2711 2712
		return -EINVAL;

2713 2714 2715 2716 2717
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2718

2719
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2720

2721 2722 2723 2724 2725 2726
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2727

2728
	if (nr_pages > 1)
2729 2730
		flags = compound_lock_irqsave(page);

2731
	ret = mem_cgroup_move_account(page, nr_pages,
2732
				pc, child, parent);
2733 2734
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2735

2736
	if (nr_pages > 1)
2737
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2738
	putback_lru_page(page);
2739
put:
2740
	put_page(page);
2741
out:
2742 2743 2744
	return ret;
}

2745 2746 2747 2748 2749 2750 2751
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2752
				gfp_t gfp_mask, enum charge_type ctype)
2753
{
2754
	struct mem_cgroup *memcg = NULL;
2755
	unsigned int nr_pages = 1;
2756
	bool oom = true;
2757
	int ret;
A
Andrea Arcangeli 已提交
2758

A
Andrea Arcangeli 已提交
2759
	if (PageTransHuge(page)) {
2760
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2761
		VM_BUG_ON(!PageTransHuge(page));
2762 2763 2764 2765 2766
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2767
	}
2768

2769
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2770
	if (ret == -ENOMEM)
2771
		return ret;
2772
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2773 2774 2775
	return 0;
}

2776 2777
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2778
{
2779
	if (mem_cgroup_disabled())
2780
		return 0;
2781 2782 2783
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2784
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2785
					MEM_CGROUP_CHARGE_TYPE_ANON);
2786 2787
}

D
Daisuke Nishimura 已提交
2788 2789 2790 2791
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2792 2793
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2794
{
2795
	struct mem_cgroup *memcg = NULL;
2796
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2797 2798
	int ret;

2799
	if (mem_cgroup_disabled())
2800
		return 0;
2801 2802
	if (PageCompound(page))
		return 0;
2803

2804
	if (unlikely(!mm))
2805
		mm = &init_mm;
2806 2807
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2808

2809
	if (!PageSwapCache(page))
2810
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2811
	else { /* page is swapcache/shmem */
2812
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2813
		if (!ret)
2814 2815
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2816
	return ret;
2817 2818
}

2819 2820 2821
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2822
 * struct page_cgroup is acquired. This refcnt will be consumed by
2823 2824
 * "commit()" or removed by "cancel()"
 */
2825 2826
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2827
				 gfp_t mask, struct mem_cgroup **memcgp)
2828
{
2829
	struct mem_cgroup *memcg;
2830
	int ret;
2831

2832
	*memcgp = NULL;
2833

2834
	if (mem_cgroup_disabled())
2835 2836 2837 2838 2839 2840
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2841 2842 2843
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2844 2845
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2846
		goto charge_cur_mm;
2847 2848
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2849
		goto charge_cur_mm;
2850 2851
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2852
	css_put(&memcg->css);
2853 2854
	if (ret == -EINTR)
		ret = 0;
2855
	return ret;
2856 2857 2858
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2859 2860 2861 2862
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2863 2864
}

D
Daisuke Nishimura 已提交
2865
static void
2866
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2867
					enum charge_type ctype)
2868
{
2869
	if (mem_cgroup_disabled())
2870
		return;
2871
	if (!memcg)
2872
		return;
2873
	cgroup_exclude_rmdir(&memcg->css);
2874

2875
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2876 2877 2878
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2879 2880 2881
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2882
	 */
2883
	if (do_swap_account && PageSwapCache(page)) {
2884
		swp_entry_t ent = {.val = page_private(page)};
2885
		mem_cgroup_uncharge_swap(ent);
2886
	}
2887 2888 2889 2890 2891
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2892
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2893 2894
}

2895 2896
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2897
{
2898
	__mem_cgroup_commit_charge_swapin(page, memcg,
2899
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
2900 2901
}

2902
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2903
{
2904
	if (mem_cgroup_disabled())
2905
		return;
2906
	if (!memcg)
2907
		return;
2908
	__mem_cgroup_cancel_charge(memcg, 1);
2909 2910
}

2911
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2912 2913
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2914 2915 2916
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2917

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2929
		batch->memcg = memcg;
2930 2931
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2932
	 * In those cases, all pages freed continuously can be expected to be in
2933 2934 2935 2936 2937 2938 2939 2940
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2941
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2942 2943
		goto direct_uncharge;

2944 2945 2946 2947 2948
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2949
	if (batch->memcg != memcg)
2950 2951
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2952
	batch->nr_pages++;
2953
	if (uncharge_memsw)
2954
		batch->memsw_nr_pages++;
2955 2956
	return;
direct_uncharge:
2957
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2958
	if (uncharge_memsw)
2959 2960 2961
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2962
}
2963

2964
/*
2965
 * uncharge if !page_mapped(page)
2966
 */
2967
static struct mem_cgroup *
2968
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2969
{
2970
	struct mem_cgroup *memcg = NULL;
2971 2972
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2973
	bool anon;
2974

2975
	if (mem_cgroup_disabled())
2976
		return NULL;
2977

K
KAMEZAWA Hiroyuki 已提交
2978
	if (PageSwapCache(page))
2979
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2980

A
Andrea Arcangeli 已提交
2981
	if (PageTransHuge(page)) {
2982
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2983 2984
		VM_BUG_ON(!PageTransHuge(page));
	}
2985
	/*
2986
	 * Check if our page_cgroup is valid
2987
	 */
2988
	pc = lookup_page_cgroup(page);
2989
	if (unlikely(!PageCgroupUsed(pc)))
2990
		return NULL;
2991

2992
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2993

2994
	memcg = pc->mem_cgroup;
2995

K
KAMEZAWA Hiroyuki 已提交
2996 2997 2998
	if (!PageCgroupUsed(pc))
		goto unlock_out;

2999 3000
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3001
	switch (ctype) {
3002
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3003 3004 3005 3006 3007
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3008 3009
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3010
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3011 3012
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3024
	}
K
KAMEZAWA Hiroyuki 已提交
3025

3026
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3027

3028
	ClearPageCgroupUsed(pc);
3029 3030 3031 3032 3033 3034
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3035

3036
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3037
	/*
3038
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3039 3040
	 * will never be freed.
	 */
3041
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3042
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3043 3044
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3045
	}
3046 3047
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3048

3049
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3050 3051 3052

unlock_out:
	unlock_page_cgroup(pc);
3053
	return NULL;
3054 3055
}

3056 3057
void mem_cgroup_uncharge_page(struct page *page)
{
3058 3059 3060
	/* early check. */
	if (page_mapped(page))
		return;
3061
	VM_BUG_ON(page->mapping && !PageAnon(page));
3062
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON);
3063 3064 3065 3066 3067
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3068
	VM_BUG_ON(page->mapping);
3069 3070 3071
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3086 3087
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3108 3109 3110 3111 3112 3113
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3114
	memcg_oom_recover(batch->memcg);
3115 3116 3117 3118
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3119
#ifdef CONFIG_SWAP
3120
/*
3121
 * called after __delete_from_swap_cache() and drop "page" account.
3122 3123
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3124 3125
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3126 3127
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3128 3129 3130 3131 3132 3133
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3134

K
KAMEZAWA Hiroyuki 已提交
3135 3136 3137 3138 3139
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3140
		swap_cgroup_record(ent, css_id(&memcg->css));
3141
}
3142
#endif
3143

A
Andrew Morton 已提交
3144
#ifdef CONFIG_MEMCG_SWAP
3145 3146 3147 3148 3149
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3150
{
3151
	struct mem_cgroup *memcg;
3152
	unsigned short id;
3153 3154 3155 3156

	if (!do_swap_account)
		return;

3157 3158 3159
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3160
	if (memcg) {
3161 3162 3163 3164
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3165
		if (!mem_cgroup_is_root(memcg))
3166
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3167
		mem_cgroup_swap_statistics(memcg, false);
3168 3169
		mem_cgroup_put(memcg);
	}
3170
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3171
}
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3188
				struct mem_cgroup *from, struct mem_cgroup *to)
3189 3190 3191 3192 3193 3194 3195 3196
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3197
		mem_cgroup_swap_statistics(to, true);
3198
		/*
3199 3200 3201 3202 3203 3204
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3205 3206 3207 3208 3209 3210 3211 3212
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3213
				struct mem_cgroup *from, struct mem_cgroup *to)
3214 3215 3216
{
	return -EINVAL;
}
3217
#endif
K
KAMEZAWA Hiroyuki 已提交
3218

3219
/*
3220 3221
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3222
 */
3223
int mem_cgroup_prepare_migration(struct page *page,
3224
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3225
{
3226
	struct mem_cgroup *memcg = NULL;
3227
	struct page_cgroup *pc;
3228
	enum charge_type ctype;
3229
	int ret = 0;
3230

3231
	*memcgp = NULL;
3232

A
Andrea Arcangeli 已提交
3233
	VM_BUG_ON(PageTransHuge(page));
3234
	if (mem_cgroup_disabled())
3235 3236
		return 0;

3237 3238 3239
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3240 3241
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3273
	}
3274
	unlock_page_cgroup(pc);
3275 3276 3277 3278
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3279
	if (!memcg)
3280
		return 0;
3281

3282 3283
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3284
	css_put(&memcg->css);/* drop extra refcnt */
3285
	if (ret) {
3286 3287 3288 3289 3290 3291 3292 3293 3294
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3295
		/* we'll need to revisit this error code (we have -EINTR) */
3296
		return -ENOMEM;
3297
	}
3298 3299 3300 3301 3302 3303 3304
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3305
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3306 3307 3308 3309
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3310
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3311
	return ret;
3312
}
3313

3314
/* remove redundant charge if migration failed*/
3315
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3316
	struct page *oldpage, struct page *newpage, bool migration_ok)
3317
{
3318
	struct page *used, *unused;
3319
	struct page_cgroup *pc;
3320
	bool anon;
3321

3322
	if (!memcg)
3323
		return;
3324
	/* blocks rmdir() */
3325
	cgroup_exclude_rmdir(&memcg->css);
3326
	if (!migration_ok) {
3327 3328
		used = oldpage;
		unused = newpage;
3329
	} else {
3330
		used = newpage;
3331 3332
		unused = oldpage;
	}
3333
	/*
3334 3335 3336
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3337
	 */
3338 3339 3340 3341
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3342 3343
	anon = PageAnon(used);
	__mem_cgroup_uncharge_common(unused,
3344
		anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3345
		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3346

3347
	/*
3348 3349 3350 3351 3352 3353
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3354
	 */
3355
	if (anon)
3356
		mem_cgroup_uncharge_page(used);
3357
	/*
3358 3359
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3360 3361 3362
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3363
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3364
}
3365

3366 3367 3368 3369 3370 3371 3372 3373
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3374
	struct mem_cgroup *memcg = NULL;
3375 3376 3377 3378 3379 3380 3381 3382 3383
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3384 3385 3386 3387 3388
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3389 3390
	unlock_page_cgroup(pc);

3391 3392 3393 3394 3395 3396 3397
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;

3398 3399 3400 3401 3402 3403 3404 3405
	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3406
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3407 3408
}

3409 3410 3411 3412 3413 3414
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3415 3416 3417 3418 3419
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3439
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3440 3441 3442 3443 3444
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3445 3446
static DEFINE_MUTEX(set_limit_mutex);

3447
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3448
				unsigned long long val)
3449
{
3450
	int retry_count;
3451
	u64 memswlimit, memlimit;
3452
	int ret = 0;
3453 3454
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3455
	int enlarge;
3456 3457 3458 3459 3460 3461 3462 3463 3464

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3465

3466
	enlarge = 0;
3467
	while (retry_count) {
3468 3469 3470 3471
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3472 3473 3474
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3475
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3476 3477 3478 3479 3480 3481
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3482 3483
			break;
		}
3484 3485 3486 3487 3488

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3489
		ret = res_counter_set_limit(&memcg->res, val);
3490 3491 3492 3493 3494 3495
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3496 3497 3498 3499 3500
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3501 3502
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3503 3504 3505 3506 3507 3508
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3509
	}
3510 3511
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3512

3513 3514 3515
	return ret;
}

L
Li Zefan 已提交
3516 3517
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3518
{
3519
	int retry_count;
3520
	u64 memlimit, memswlimit, oldusage, curusage;
3521 3522
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3523
	int enlarge = 0;
3524

3525 3526 3527
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3528 3529 3530 3531 3532 3533 3534 3535
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3536
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3537 3538 3539 3540 3541 3542 3543 3544
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3545 3546 3547
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3548
		ret = res_counter_set_limit(&memcg->memsw, val);
3549 3550 3551 3552 3553 3554
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3555 3556 3557 3558 3559
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3560 3561 3562
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3563
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3564
		/* Usage is reduced ? */
3565
		if (curusage >= oldusage)
3566
			retry_count--;
3567 3568
		else
			oldusage = curusage;
3569
	}
3570 3571
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3572 3573 3574
	return ret;
}

3575
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3576 3577
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3578 3579 3580 3581 3582 3583
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3584
	unsigned long long excess;
3585
	unsigned long nr_scanned;
3586 3587 3588 3589

	if (order > 0)
		return 0;

3590
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3604
		nr_scanned = 0;
3605
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3606
						    gfp_mask, &nr_scanned);
3607
		nr_reclaimed += reclaimed;
3608
		*total_scanned += nr_scanned;
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3631
				if (next_mz == mz)
3632
					css_put(&next_mz->memcg->css);
3633
				else /* next_mz == NULL or other memcg */
3634 3635 3636
					break;
			} while (1);
		}
3637 3638
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3639 3640 3641 3642 3643 3644 3645 3646
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3647
		/* If excess == 0, no tree ops */
3648
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3649
		spin_unlock(&mctz->lock);
3650
		css_put(&mz->memcg->css);
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3663
		css_put(&next_mz->memcg->css);
3664 3665 3666
	return nr_reclaimed;
}

3667
/*
3668 3669 3670 3671
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
 * reclaim the pages page themselves - it just removes the page_cgroups.
 * Returns true if some page_cgroups were not freed, indicating that the caller
 * must retry this operation.
3672
 */
3673
static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3674
				int node, int zid, enum lru_list lru)
3675
{
K
KAMEZAWA Hiroyuki 已提交
3676 3677
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3678
	struct list_head *list;
3679 3680
	struct page *busy;
	struct zone *zone;
3681

K
KAMEZAWA Hiroyuki 已提交
3682
	zone = &NODE_DATA(node)->node_zones[zid];
3683
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3684
	list = &mz->lruvec.lists[lru];
3685

3686
	loop = mz->lru_size[lru];
3687 3688 3689 3690
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3691
		struct page_cgroup *pc;
3692 3693
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3694
		spin_lock_irqsave(&zone->lru_lock, flags);
3695
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3696
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3697
			break;
3698
		}
3699 3700 3701
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3702
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3703
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3704 3705
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3706
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3707

3708
		pc = lookup_page_cgroup(page);
3709

3710
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3711
			/* found lock contention or "pc" is obsolete. */
3712
			busy = page;
3713 3714 3715
			cond_resched();
		} else
			busy = NULL;
3716
	}
3717
	return !list_empty(list);
3718 3719 3720 3721 3722 3723
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3724
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3725
{
3726 3727 3728
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3729
	struct cgroup *cgrp = memcg->css.cgroup;
3730

3731
	css_get(&memcg->css);
3732 3733

	shrink = 0;
3734 3735 3736
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3737
move_account:
3738
	do {
3739
		ret = -EBUSY;
3740 3741
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
3742 3743
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3744
		drain_all_stock_sync(memcg);
3745
		ret = 0;
3746
		mem_cgroup_start_move(memcg);
3747
		for_each_node_state(node, N_HIGH_MEMORY) {
3748
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3749 3750
				enum lru_list lru;
				for_each_lru(lru) {
3751
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3752
							node, zid, lru);
3753 3754 3755
					if (ret)
						break;
				}
3756
			}
3757 3758 3759
			if (ret)
				break;
		}
3760 3761
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3762
		cond_resched();
3763
	/* "ret" should also be checked to ensure all lists are empty. */
3764
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3765
out:
3766
	css_put(&memcg->css);
3767
	return ret;
3768 3769

try_to_free:
3770 3771
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3772 3773 3774
		ret = -EBUSY;
		goto out;
	}
3775 3776
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3777 3778
	/* try to free all pages in this cgroup */
	shrink = 1;
3779
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3780
		int progress;
3781 3782 3783 3784 3785

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3786
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3787
						false);
3788
		if (!progress) {
3789
			nr_retries--;
3790
			/* maybe some writeback is necessary */
3791
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3792
		}
3793 3794

	}
K
KAMEZAWA Hiroyuki 已提交
3795
	lru_add_drain();
3796
	/* try move_account...there may be some *locked* pages. */
3797
	goto move_account;
3798 3799
}

3800
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3801 3802 3803 3804 3805
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3806 3807 3808 3809 3810 3811 3812 3813 3814
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3815
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3816
	struct cgroup *parent = cont->parent;
3817
	struct mem_cgroup *parent_memcg = NULL;
3818 3819

	if (parent)
3820
		parent_memcg = mem_cgroup_from_cont(parent);
3821 3822

	cgroup_lock();
3823 3824 3825 3826

	if (memcg->use_hierarchy == val)
		goto out;

3827
	/*
3828
	 * If parent's use_hierarchy is set, we can't make any modifications
3829 3830 3831 3832 3833 3834
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3835
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3836 3837
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3838
			memcg->use_hierarchy = val;
3839 3840 3841 3842
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3843 3844

out:
3845 3846 3847 3848 3849
	cgroup_unlock();

	return retval;
}

3850

3851
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3852
					       enum mem_cgroup_stat_index idx)
3853
{
K
KAMEZAWA Hiroyuki 已提交
3854
	struct mem_cgroup *iter;
3855
	long val = 0;
3856

3857
	/* Per-cpu values can be negative, use a signed accumulator */
3858
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3859 3860 3861 3862 3863
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3864 3865
}

3866
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3867
{
K
KAMEZAWA Hiroyuki 已提交
3868
	u64 val;
3869

3870
	if (!mem_cgroup_is_root(memcg)) {
3871
		if (!swap)
3872
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3873
		else
3874
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3875 3876
	}

3877 3878
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3879

K
KAMEZAWA Hiroyuki 已提交
3880
	if (swap)
3881
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3882 3883 3884 3885

	return val << PAGE_SHIFT;
}

3886 3887 3888
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3889
{
3890
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3891
	char str[64];
3892
	u64 val;
3893
	int type, name, len;
3894 3895 3896

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3897 3898 3899 3900

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3901 3902
	switch (type) {
	case _MEM:
3903
		if (name == RES_USAGE)
3904
			val = mem_cgroup_usage(memcg, false);
3905
		else
3906
			val = res_counter_read_u64(&memcg->res, name);
3907 3908
		break;
	case _MEMSWAP:
3909
		if (name == RES_USAGE)
3910
			val = mem_cgroup_usage(memcg, true);
3911
		else
3912
			val = res_counter_read_u64(&memcg->memsw, name);
3913 3914 3915 3916
		break;
	default:
		BUG();
	}
3917 3918 3919

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3920
}
3921 3922 3923 3924
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3925 3926
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3927
{
3928
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3929
	int type, name;
3930 3931 3932
	unsigned long long val;
	int ret;

3933 3934
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3935 3936 3937 3938

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3939
	switch (name) {
3940
	case RES_LIMIT:
3941 3942 3943 3944
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3945 3946
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3947 3948 3949
		if (ret)
			break;
		if (type == _MEM)
3950
			ret = mem_cgroup_resize_limit(memcg, val);
3951 3952
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3953
		break;
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3968 3969 3970 3971 3972
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3973 3974
}

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4002
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4003
{
4004
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4005
	int type, name;
4006

4007 4008
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4009 4010 4011 4012

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4013
	switch (name) {
4014
	case RES_MAX_USAGE:
4015
		if (type == _MEM)
4016
			res_counter_reset_max(&memcg->res);
4017
		else
4018
			res_counter_reset_max(&memcg->memsw);
4019 4020
		break;
	case RES_FAILCNT:
4021
		if (type == _MEM)
4022
			res_counter_reset_failcnt(&memcg->res);
4023
		else
4024
			res_counter_reset_failcnt(&memcg->memsw);
4025 4026
		break;
	}
4027

4028
	return 0;
4029 4030
}

4031 4032 4033 4034 4035 4036
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4037
#ifdef CONFIG_MMU
4038 4039 4040
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4041
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4042 4043 4044 4045 4046 4047 4048 4049 4050

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4051
	memcg->move_charge_at_immigrate = val;
4052 4053 4054 4055
	cgroup_unlock();

	return 0;
}
4056 4057 4058 4059 4060 4061 4062
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4063

4064
#ifdef CONFIG_NUMA
4065
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4066
				      struct seq_file *m)
4067 4068 4069 4070
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4071
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4072

4073
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4074 4075
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4076
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4077 4078 4079 4080
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4081
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4082 4083
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4084
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4085
				LRU_ALL_FILE);
4086 4087 4088 4089
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4090
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4091 4092
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4093
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4094
				LRU_ALL_ANON);
4095 4096 4097 4098
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4099
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4100 4101
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4102
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4103
				BIT(LRU_UNEVICTABLE));
4104 4105 4106 4107 4108 4109 4110
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4124
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4125
				 struct seq_file *m)
4126
{
4127
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4128 4129
	struct mem_cgroup *mi;
	unsigned int i;
4130

4131
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4132
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4133
			continue;
4134 4135
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4136
	}
L
Lee Schermerhorn 已提交
4137

4138 4139 4140 4141 4142 4143 4144 4145
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4146
	/* Hierarchical information */
4147 4148
	{
		unsigned long long limit, memsw_limit;
4149
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4150
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4151
		if (do_swap_account)
4152 4153
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4154
	}
K
KOSAKI Motohiro 已提交
4155

4156 4157 4158
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4159
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4160
			continue;
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4181
	}
K
KAMEZAWA Hiroyuki 已提交
4182

K
KOSAKI Motohiro 已提交
4183 4184 4185 4186
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4187
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4188 4189 4190 4191 4192
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4193
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4194
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4195

4196 4197 4198 4199
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4200
			}
4201 4202 4203 4204
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4205 4206 4207
	}
#endif

4208 4209 4210
	return 0;
}

K
KOSAKI Motohiro 已提交
4211 4212 4213 4214
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4215
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4216 4217 4218 4219 4220 4221 4222
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4223

K
KOSAKI Motohiro 已提交
4224 4225 4226 4227 4228 4229 4230
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4231 4232 4233

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4234 4235
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4236 4237
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4238
		return -EINVAL;
4239
	}
K
KOSAKI Motohiro 已提交
4240 4241 4242

	memcg->swappiness = val;

4243 4244
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4245 4246 4247
	return 0;
}

4248 4249 4250 4251 4252 4253 4254 4255
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4256
		t = rcu_dereference(memcg->thresholds.primary);
4257
	else
4258
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4259 4260 4261 4262 4263 4264 4265

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4266
	 * current_threshold points to threshold just below or equal to usage.
4267 4268 4269
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4270
	i = t->current_threshold;
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4294
	t->current_threshold = i - 1;
4295 4296 4297 4298 4299 4300
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4301 4302 4303 4304 4305 4306 4307
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4318
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4319 4320 4321
{
	struct mem_cgroup_eventfd_list *ev;

4322
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4323 4324 4325 4326
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4327
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4328
{
K
KAMEZAWA Hiroyuki 已提交
4329 4330
	struct mem_cgroup *iter;

4331
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4332
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4333 4334 4335 4336
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4337 4338
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4339 4340
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4341 4342
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4343
	int i, size, ret;
4344 4345 4346 4347 4348 4349

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4350

4351
	if (type == _MEM)
4352
		thresholds = &memcg->thresholds;
4353
	else if (type == _MEMSWAP)
4354
		thresholds = &memcg->memsw_thresholds;
4355 4356 4357 4358 4359 4360
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4361
	if (thresholds->primary)
4362 4363
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4364
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4365 4366

	/* Allocate memory for new array of thresholds */
4367
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4368
			GFP_KERNEL);
4369
	if (!new) {
4370 4371 4372
		ret = -ENOMEM;
		goto unlock;
	}
4373
	new->size = size;
4374 4375

	/* Copy thresholds (if any) to new array */
4376 4377
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4378
				sizeof(struct mem_cgroup_threshold));
4379 4380
	}

4381
	/* Add new threshold */
4382 4383
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4384 4385

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4386
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4387 4388 4389
			compare_thresholds, NULL);

	/* Find current threshold */
4390
	new->current_threshold = -1;
4391
	for (i = 0; i < size; i++) {
4392
		if (new->entries[i].threshold <= usage) {
4393
			/*
4394 4395
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4396 4397
			 * it here.
			 */
4398
			++new->current_threshold;
4399 4400
		} else
			break;
4401 4402
	}

4403 4404 4405 4406 4407
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4408

4409
	/* To be sure that nobody uses thresholds */
4410 4411 4412 4413 4414 4415 4416 4417
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4418
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4419
	struct cftype *cft, struct eventfd_ctx *eventfd)
4420 4421
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4422 4423
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4424 4425
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4426
	int i, j, size;
4427 4428 4429

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4430
		thresholds = &memcg->thresholds;
4431
	else if (type == _MEMSWAP)
4432
		thresholds = &memcg->memsw_thresholds;
4433 4434 4435
	else
		BUG();

4436 4437 4438
	if (!thresholds->primary)
		goto unlock;

4439 4440 4441 4442 4443 4444
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4445 4446 4447
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4448 4449 4450
			size++;
	}

4451
	new = thresholds->spare;
4452

4453 4454
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4455 4456
		kfree(new);
		new = NULL;
4457
		goto swap_buffers;
4458 4459
	}

4460
	new->size = size;
4461 4462

	/* Copy thresholds and find current threshold */
4463 4464 4465
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4466 4467
			continue;

4468
		new->entries[j] = thresholds->primary->entries[i];
4469
		if (new->entries[j].threshold <= usage) {
4470
			/*
4471
			 * new->current_threshold will not be used
4472 4473 4474
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4475
			++new->current_threshold;
4476 4477 4478 4479
		}
		j++;
	}

4480
swap_buffers:
4481 4482
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4483 4484 4485 4486 4487 4488
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4489
	rcu_assign_pointer(thresholds->primary, new);
4490

4491
	/* To be sure that nobody uses thresholds */
4492
	synchronize_rcu();
4493
unlock:
4494 4495
	mutex_unlock(&memcg->thresholds_lock);
}
4496

K
KAMEZAWA Hiroyuki 已提交
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4509
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4510 4511 4512 4513 4514

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4515
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4516
		eventfd_signal(eventfd, 1);
4517
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4518 4519 4520 4521

	return 0;
}

4522
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4523 4524
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4525
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4526 4527 4528 4529 4530
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4531
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4532

4533
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4534 4535 4536 4537 4538 4539
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4540
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4541 4542
}

4543 4544 4545
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4546
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4547

4548
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4549

4550
	if (atomic_read(&memcg->under_oom))
4551 4552 4553 4554 4555 4556 4557 4558 4559
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4560
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4572
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4573 4574 4575
		cgroup_unlock();
		return -EINVAL;
	}
4576
	memcg->oom_kill_disable = val;
4577
	if (!val)
4578
		memcg_oom_recover(memcg);
4579 4580 4581 4582
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
4583
#ifdef CONFIG_MEMCG_KMEM
4584
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4585
{
4586
	return mem_cgroup_sockets_init(memcg, ss);
4587 4588
};

4589
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4590
{
4591
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4592
}
4593
#else
4594
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4595 4596 4597
{
	return 0;
}
G
Glauber Costa 已提交
4598

4599
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4600 4601
{
}
4602 4603
#endif

B
Balbir Singh 已提交
4604 4605
static struct cftype mem_cgroup_files[] = {
	{
4606
		.name = "usage_in_bytes",
4607
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4608
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4609 4610
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4611
	},
4612 4613
	{
		.name = "max_usage_in_bytes",
4614
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4615
		.trigger = mem_cgroup_reset,
4616
		.read = mem_cgroup_read,
4617
	},
B
Balbir Singh 已提交
4618
	{
4619
		.name = "limit_in_bytes",
4620
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4621
		.write_string = mem_cgroup_write,
4622
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4623
	},
4624 4625 4626 4627
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4628
		.read = mem_cgroup_read,
4629
	},
B
Balbir Singh 已提交
4630 4631
	{
		.name = "failcnt",
4632
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4633
		.trigger = mem_cgroup_reset,
4634
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4635
	},
4636 4637
	{
		.name = "stat",
4638
		.read_seq_string = memcg_stat_show,
4639
	},
4640 4641 4642 4643
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4644 4645 4646 4647 4648
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4649 4650 4651 4652 4653
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4654 4655 4656 4657 4658
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4659 4660
	{
		.name = "oom_control",
4661 4662
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4663 4664 4665 4666
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4667 4668 4669
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4670
		.read_seq_string = memcg_numa_stat_show,
4671 4672
	},
#endif
A
Andrew Morton 已提交
4673
#ifdef CONFIG_MEMCG_SWAP
4674 4675 4676
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4677
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4678 4679
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4680 4681 4682 4683 4684
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4685
		.read = mem_cgroup_read,
4686 4687 4688 4689 4690
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4691
		.read = mem_cgroup_read,
4692 4693 4694 4695 4696
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4697
		.read = mem_cgroup_read,
4698 4699
	},
#endif
4700
	{ },	/* terminate */
4701
};
4702

4703
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4704 4705
{
	struct mem_cgroup_per_node *pn;
4706
	struct mem_cgroup_per_zone *mz;
4707
	int zone, tmp = node;
4708 4709 4710 4711 4712 4713 4714 4715
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4716 4717
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4718
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4719 4720
	if (!pn)
		return 1;
4721 4722 4723

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4724
		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4725
		mz->usage_in_excess = 0;
4726
		mz->on_tree = false;
4727
		mz->memcg = memcg;
4728
	}
4729
	memcg->info.nodeinfo[node] = pn;
4730 4731 4732
	return 0;
}

4733
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4734
{
4735
	kfree(memcg->info.nodeinfo[node]);
4736 4737
}

4738 4739
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4740
	struct mem_cgroup *memcg;
4741
	int size = sizeof(struct mem_cgroup);
4742

4743
	/* Can be very big if MAX_NUMNODES is very big */
4744
	if (size < PAGE_SIZE)
4745
		memcg = kzalloc(size, GFP_KERNEL);
4746
	else
4747
		memcg = vzalloc(size);
4748

4749
	if (!memcg)
4750 4751
		return NULL;

4752 4753
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4754
		goto out_free;
4755 4756
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4757 4758 4759

out_free:
	if (size < PAGE_SIZE)
4760
		kfree(memcg);
4761
	else
4762
		vfree(memcg);
4763
	return NULL;
4764 4765
}

4766
/*
4767
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4768 4769 4770
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
4771
static void free_work(struct work_struct *work)
4772 4773
{
	struct mem_cgroup *memcg;
4774
	int size = sizeof(struct mem_cgroup);
4775 4776

	memcg = container_of(work, struct mem_cgroup, work_freeing);
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
4789 4790 4791 4792
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
4793
}
4794 4795

static void free_rcu(struct rcu_head *rcu_head)
4796 4797 4798 4799
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4800
	INIT_WORK(&memcg->work_freeing, free_work);
4801 4802 4803
	schedule_work(&memcg->work_freeing);
}

4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4815
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4816
{
K
KAMEZAWA Hiroyuki 已提交
4817 4818
	int node;

4819 4820
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4821

B
Bob Liu 已提交
4822
	for_each_node(node)
4823
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4824

4825
	free_percpu(memcg->stat);
4826
	call_rcu(&memcg->rcu_freeing, free_rcu);
4827 4828
}

4829
static void mem_cgroup_get(struct mem_cgroup *memcg)
4830
{
4831
	atomic_inc(&memcg->refcnt);
4832 4833
}

4834
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4835
{
4836 4837 4838
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4839 4840 4841
		if (parent)
			mem_cgroup_put(parent);
	}
4842 4843
}

4844
static void mem_cgroup_put(struct mem_cgroup *memcg)
4845
{
4846
	__mem_cgroup_put(memcg, 1);
4847 4848
}

4849 4850 4851
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4852
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4853
{
4854
	if (!memcg->res.parent)
4855
		return NULL;
4856
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4857
}
G
Glauber Costa 已提交
4858
EXPORT_SYMBOL(parent_mem_cgroup);
4859

A
Andrew Morton 已提交
4860
#ifdef CONFIG_MEMCG_SWAP
4861 4862
static void __init enable_swap_cgroup(void)
{
4863
	if (!mem_cgroup_disabled() && really_do_swap_account)
4864 4865 4866 4867 4868 4869 4870 4871
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4872 4873 4874 4875 4876 4877
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4878
	for_each_node(node) {
4879 4880 4881 4882 4883
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4884
			goto err_cleanup;
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4895 4896

err_cleanup:
B
Bob Liu 已提交
4897
	for_each_node(node) {
4898 4899 4900 4901 4902 4903 4904
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4905 4906
}

L
Li Zefan 已提交
4907
static struct cgroup_subsys_state * __ref
4908
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4909
{
4910
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4911
	long error = -ENOMEM;
4912
	int node;
B
Balbir Singh 已提交
4913

4914 4915
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4916
		return ERR_PTR(error);
4917

B
Bob Liu 已提交
4918
	for_each_node(node)
4919
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4920
			goto free_out;
4921

4922
	/* root ? */
4923
	if (cont->parent == NULL) {
4924
		int cpu;
4925
		enable_swap_cgroup();
4926
		parent = NULL;
4927 4928
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4929
		root_mem_cgroup = memcg;
4930 4931 4932 4933 4934
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4935
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4936
	} else {
4937
		parent = mem_cgroup_from_cont(cont->parent);
4938 4939
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4940
	}
4941

4942
	if (parent && parent->use_hierarchy) {
4943 4944
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4945 4946 4947 4948 4949 4950 4951
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4952
	} else {
4953 4954
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4955
	}
4956 4957
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4958

K
KOSAKI Motohiro 已提交
4959
	if (parent)
4960 4961 4962 4963
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
4964
	spin_lock_init(&memcg->move_lock);
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
4976
	return &memcg->css;
4977
free_out:
4978
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4979
	return ERR_PTR(error);
B
Balbir Singh 已提交
4980 4981
}

4982
static int mem_cgroup_pre_destroy(struct cgroup *cont)
4983
{
4984
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4985

4986
	return mem_cgroup_force_empty(memcg, false);
4987 4988
}

4989
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
4990
{
4991
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4992

4993
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
4994

4995
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
4996 4997
}

4998
#ifdef CONFIG_MMU
4999
/* Handlers for move charge at task migration. */
5000 5001
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5002
{
5003 5004
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5005
	struct mem_cgroup *memcg = mc.to;
5006

5007
	if (mem_cgroup_is_root(memcg)) {
5008 5009 5010 5011 5012 5013 5014 5015
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5016
		 * "memcg" cannot be under rmdir() because we've already checked
5017 5018 5019 5020
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5021
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5022
			goto one_by_one;
5023
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5024
						PAGE_SIZE * count, &dummy)) {
5025
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5042 5043
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5044
		if (ret)
5045
			/* mem_cgroup_clear_mc() will do uncharge later */
5046
			return ret;
5047 5048
		mc.precharge++;
	}
5049 5050 5051 5052
	return ret;
}

/**
5053
 * get_mctgt_type - get target type of moving charge
5054 5055 5056
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5057
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5058 5059 5060 5061 5062 5063
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5064 5065 5066
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5067 5068 5069 5070 5071
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5072
	swp_entry_t	ent;
5073 5074 5075
};

enum mc_target_type {
5076
	MC_TARGET_NONE = 0,
5077
	MC_TARGET_PAGE,
5078
	MC_TARGET_SWAP,
5079 5080
};

D
Daisuke Nishimura 已提交
5081 5082
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5083
{
D
Daisuke Nishimura 已提交
5084
	struct page *page = vm_normal_page(vma, addr, ptent);
5085

D
Daisuke Nishimura 已提交
5086 5087 5088 5089
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5090
		if (!move_anon())
D
Daisuke Nishimura 已提交
5091
			return NULL;
5092 5093
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5094 5095 5096 5097 5098 5099 5100
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5101
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5102 5103 5104 5105 5106 5107 5108 5109
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5110 5111 5112 5113 5114
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5115 5116 5117 5118 5119
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5120 5121 5122 5123 5124 5125 5126
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5127

5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5147 5148 5149 5150 5151 5152
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5153
		if (do_swap_account)
5154 5155
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5156
	}
5157
#endif
5158 5159 5160
	return page;
}

5161
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5162 5163 5164 5165
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5166
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5167 5168 5169 5170 5171 5172
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5173 5174
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5175 5176

	if (!page && !ent.val)
5177
		return ret;
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5193 5194
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5195
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5196 5197 5198
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5199 5200 5201 5202
	}
	return ret;
}

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5238 5239 5240 5241 5242 5243 5244 5245
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5246 5247 5248 5249
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5250
		return 0;
5251
	}
5252

5253 5254
	if (pmd_trans_unstable(pmd))
		return 0;
5255 5256
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5257
		if (get_mctgt_type(vma, addr, *pte, NULL))
5258 5259 5260 5261
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5262 5263 5264
	return 0;
}

5265 5266 5267 5268 5269
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5270
	down_read(&mm->mmap_sem);
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5282
	up_read(&mm->mmap_sem);
5283 5284 5285 5286 5287 5288 5289 5290 5291

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5292 5293 5294 5295 5296
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5297 5298
}

5299 5300
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5301
{
5302 5303 5304
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5305
	/* we must uncharge all the leftover precharges from mc.to */
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5317
	}
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5352
	spin_lock(&mc.lock);
5353 5354
	mc.from = NULL;
	mc.to = NULL;
5355
	spin_unlock(&mc.lock);
5356
	mem_cgroup_end_move(from);
5357 5358
}

5359 5360
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5361
{
5362
	struct task_struct *p = cgroup_taskset_first(tset);
5363
	int ret = 0;
5364
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5365

5366
	if (memcg->move_charge_at_immigrate) {
5367 5368 5369
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5370
		VM_BUG_ON(from == memcg);
5371 5372 5373 5374 5375

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5376 5377 5378 5379
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5380
			VM_BUG_ON(mc.moved_charge);
5381
			VM_BUG_ON(mc.moved_swap);
5382
			mem_cgroup_start_move(from);
5383
			spin_lock(&mc.lock);
5384
			mc.from = from;
5385
			mc.to = memcg;
5386
			spin_unlock(&mc.lock);
5387
			/* We set mc.moving_task later */
5388 5389 5390 5391

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5392 5393
		}
		mmput(mm);
5394 5395 5396 5397
	}
	return ret;
}

5398 5399
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5400
{
5401
	mem_cgroup_clear_mc();
5402 5403
}

5404 5405 5406
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5407
{
5408 5409 5410 5411
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5412 5413 5414 5415
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5416

5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5428
		if (mc.precharge < HPAGE_PMD_NR) {
5429 5430 5431 5432 5433 5434 5435 5436 5437
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5438
							pc, mc.from, mc.to)) {
5439 5440 5441 5442 5443 5444 5445 5446
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5447
		return 0;
5448 5449
	}

5450 5451
	if (pmd_trans_unstable(pmd))
		return 0;
5452 5453 5454 5455
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5456
		swp_entry_t ent;
5457 5458 5459 5460

		if (!mc.precharge)
			break;

5461
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5462 5463 5464 5465 5466
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5467
			if (!mem_cgroup_move_account(page, 1, pc,
5468
						     mc.from, mc.to)) {
5469
				mc.precharge--;
5470 5471
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5472 5473
			}
			putback_lru_page(page);
5474
put:			/* get_mctgt_type() gets the page */
5475 5476
			put_page(page);
			break;
5477 5478
		case MC_TARGET_SWAP:
			ent = target.ent;
5479
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5480
				mc.precharge--;
5481 5482 5483
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5484
			break;
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5499
		ret = mem_cgroup_do_precharge(1);
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5543
	up_read(&mm->mmap_sem);
5544 5545
}

5546 5547
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5548
{
5549
	struct task_struct *p = cgroup_taskset_first(tset);
5550
	struct mm_struct *mm = get_task_mm(p);
5551 5552

	if (mm) {
5553 5554
		if (mc.to)
			mem_cgroup_move_charge(mm);
5555 5556
		mmput(mm);
	}
5557 5558
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5559
}
5560
#else	/* !CONFIG_MMU */
5561 5562
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5563 5564 5565
{
	return 0;
}
5566 5567
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5568 5569
{
}
5570 5571
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5572 5573 5574
{
}
#endif
B
Balbir Singh 已提交
5575

B
Balbir Singh 已提交
5576 5577 5578 5579
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5580
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5581
	.destroy = mem_cgroup_destroy,
5582 5583
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5584
	.attach = mem_cgroup_move_task,
5585
	.base_cftypes = mem_cgroup_files,
5586
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5587
	.use_id = 1,
5588
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5589
};
5590

A
Andrew Morton 已提交
5591
#ifdef CONFIG_MEMCG_SWAP
5592 5593 5594
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5595
	if (!strcmp(s, "1"))
5596
		really_do_swap_account = 1;
5597
	else if (!strcmp(s, "0"))
5598 5599 5600
		really_do_swap_account = 0;
	return 1;
}
5601
__setup("swapaccount=", enable_swap_account);
5602 5603

#endif