memcontrol.c 141.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75 76
#else
#define do_swap_account		(0)
#endif


77 78 79 80 81 82 83 84
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
85
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
86
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
90 91 92
	MEM_CGROUP_STAT_NSTATS,
};

93 94 95 96
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
97 98
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
99 100
	MEM_CGROUP_EVENTS_NSTATS,
};
101 102 103 104 105 106 107 108 109
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
110
	MEM_CGROUP_TARGET_NUMAINFO,
111 112 113 114
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
115
#define NUMAINFO_EVENTS_TARGET	(1024)
116

117
struct mem_cgroup_stat_cpu {
118
	long count[MEM_CGROUP_STAT_NSTATS];
119
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120
	unsigned long targets[MEM_CGROUP_NTARGETS];
121 122
};

123 124 125 126
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
127 128 129
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
130 131
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
132 133

	struct zone_reclaim_stat reclaim_stat;
134 135 136 137
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
138 139
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
140 141 142 143 144 145 146 147 148 149 150 151
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

172 173 174 175 176
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
177
/* For threshold */
178 179
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
180
	int current_threshold;
181 182 183 184 185
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
186 187 188 189 190 191 192 193 194 195 196 197

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
198 199 200 201 202
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
203 204

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
205
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
206

B
Balbir Singh 已提交
207 208 209 210 211 212 213
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
214 215 216
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
217 218 219 220 221 222 223
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
224 225 226 227
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
228 229 230 231
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
232
	struct mem_cgroup_lru_info info;
233
	/*
234
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
235
	 * reclaimed from.
236
	 */
K
KAMEZAWA Hiroyuki 已提交
237
	int last_scanned_child;
238 239 240
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
241 242
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
243
#endif
244 245 246 247
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
248 249 250 251

	bool		oom_lock;
	atomic_t	under_oom;

252
	atomic_t	refcnt;
253

254
	int	swappiness;
255 256
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
257

258 259 260
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

261 262 263 264
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
265
	struct mem_cgroup_thresholds thresholds;
266

267
	/* thresholds for mem+swap usage. RCU-protected */
268
	struct mem_cgroup_thresholds memsw_thresholds;
269

K
KAMEZAWA Hiroyuki 已提交
270 271
	/* For oom notifier event fd */
	struct list_head oom_notify;
272

273 274 275 276 277
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
278
	/*
279
	 * percpu counter.
280
	 */
281
	struct mem_cgroup_stat_cpu *stat;
282 283 284 285 286 287
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
288 289
};

290 291 292 293 294 295
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
296
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
297
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
298 299 300
	NR_MOVE_TYPE,
};

301 302
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
303
	spinlock_t	  lock; /* for from, to */
304 305 306
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
307
	unsigned long moved_charge;
308
	unsigned long moved_swap;
309 310 311
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
312
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
313 314
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
315

D
Daisuke Nishimura 已提交
316 317 318 319 320 321
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

322 323 324 325 326 327
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

328 329 330 331 332 333 334
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

335 336 337
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
338
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
339
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
340
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
341
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
342 343 344
	NR_CHARGE_TYPE,
};

345 346 347
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
348
#define _OOM_TYPE		(2)
349 350 351
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
352 353
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
354

355 356 357 358 359 360 361
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
362 363
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
364

365 366
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
367
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
368
static void drain_all_stock_async(struct mem_cgroup *mem);
369

370 371 372 373 374 375
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

376 377 378 379 380
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

381
static struct mem_cgroup_per_zone *
382
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
383
{
384 385
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
406
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
407
				struct mem_cgroup_per_zone *mz,
408 409
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
410 411 412 413 414 415 416 417
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

418 419 420
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
437 438 439 440 441 442 443 444 445 446 447 448 449
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

450 451 452 453 454 455
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
456
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
457 458 459 460 461 462
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
463
	unsigned long long excess;
464 465
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
466 467
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
468 469 470
	mctz = soft_limit_tree_from_page(page);

	/*
471 472
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
473
	 */
474 475
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
476
		excess = res_counter_soft_limit_excess(&mem->res);
477 478 479 480
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
481
		if (excess || mz->on_tree) {
482 483 484 485 486
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
487 488
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
489
			 */
490
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
491 492
			spin_unlock(&mctz->lock);
		}
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

511 512 513 514
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
515
	struct mem_cgroup_per_zone *mz;
516 517

retry:
518
	mz = NULL;
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
567 568
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
569
{
570
	long val = 0;
571 572
	int cpu;

573 574
	get_online_cpus();
	for_each_online_cpu(cpu)
575
		val += per_cpu(mem->stat->count[idx], cpu);
576 577 578 579 580 581
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
582 583 584
	return val;
}

585 586 587 588
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
589
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
590 591
}

592 593 594 595 596 597 598 599 600 601
void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
}

void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

618
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
619
					 bool file, int nr_pages)
620
{
621 622
	preempt_disable();

623 624
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
625
	else
626
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
627

628 629
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
630
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
631
	else {
632
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
633 634
		nr_pages = -nr_pages; /* for event */
	}
635

636
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
637

638
	preempt_enable();
639 640
}

641 642 643
unsigned long
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
			unsigned int lru_mask)
644 645
{
	struct mem_cgroup_per_zone *mz;
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	enum lru_list l;
	unsigned long ret = 0;

	mz = mem_cgroup_zoneinfo(mem, nid, zid);

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
			int nid, unsigned int lru_mask)
{
662 663 664
	u64 total = 0;
	int zid;

665 666 667
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);

668 669
	return total;
}
670 671 672

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
			unsigned int lru_mask)
673
{
674
	int nid;
675 676
	u64 total = 0;

677 678
	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
679
	return total;
680 681
}

682 683 684 685 686 687 688 689 690 691 692
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
693
{
694
	unsigned long val, next;
695

696
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
697

698 699 700 701 702 703 704
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
705 706 707
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
708 709 710 711 712
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
713 714 715 716 717 718 719 720 721
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
722
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
723
		mem_cgroup_threshold(mem);
724 725
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
726
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
727
			mem_cgroup_update_tree(mem, page);
728
			__mem_cgroup_target_update(mem,
729 730 731 732 733 734 735 736
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_NUMAINFO))) {
			atomic_inc(&mem->numainfo_events);
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_NUMAINFO);
737
		}
738
#endif
739 740 741
	}
}

742
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
743 744 745 746 747 748
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

749
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
750
{
751 752 753 754 755 756 757 758
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

759 760 761 762
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

763
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
764 765
{
	struct mem_cgroup *mem = NULL;
766 767 768

	if (!mm)
		return NULL;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
784 785
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
786
{
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
809 810 811 812 813 814 815 816 817
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
818 819
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
820
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
821

K
KAMEZAWA Hiroyuki 已提交
822
	css_put(&iter->css);
823 824
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
825
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
826

827 828 829
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
830 831
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
832
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
833 834 835

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
836
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
837
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
838
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
839
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
840
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
841
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
842

K
KAMEZAWA Hiroyuki 已提交
843
	return iter;
K
KAMEZAWA Hiroyuki 已提交
844
}
K
KAMEZAWA Hiroyuki 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

858 859 860
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
861

862 863 864 865 866
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
	struct mem_cgroup *mem;

	if (!mm)
		return;

	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!mem))
		goto out;

	switch (idx) {
	case PGMAJFAULT:
		mem_cgroup_pgmajfault(mem, 1);
		break;
	case PGFAULT:
		mem_cgroup_pgfault(mem, 1);
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
907

K
KAMEZAWA Hiroyuki 已提交
908 909 910 911
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
912

913
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
914 915 916
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
917
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
918
		return;
919
	VM_BUG_ON(!pc->mem_cgroup);
920 921 922 923
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
924
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
925 926
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
927 928 929
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
930
	list_del_init(&pc->lru);
931 932
}

K
KAMEZAWA Hiroyuki 已提交
933
void mem_cgroup_del_lru(struct page *page)
934
{
K
KAMEZAWA Hiroyuki 已提交
935 936
	mem_cgroup_del_lru_list(page, page_lru(page));
}
937

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
960
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
961 962 963
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
964 965 966 967
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
968

969
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
970
		return;
971

K
KAMEZAWA Hiroyuki 已提交
972
	pc = lookup_page_cgroup(page);
973
	/* unused or root page is not rotated. */
974 975 976 977 978
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
979
		return;
980
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
981
	list_move(&pc->lru, &mz->lists[lru]);
982 983
}

K
KAMEZAWA Hiroyuki 已提交
984
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
985
{
K
KAMEZAWA Hiroyuki 已提交
986 987
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
988

989
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
990 991
		return;
	pc = lookup_page_cgroup(page);
992
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
993
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
994
		return;
995 996
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
997
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
998 999
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1000 1001 1002
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1003 1004
	list_add(&pc->lru, &mz->lists[lru]);
}
1005

K
KAMEZAWA Hiroyuki 已提交
1006
/*
1007 1008 1009 1010
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1011
 */
1012
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1013
{
1014 1015 1016 1017
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1029 1030 1031 1032 1033 1034 1035 1036
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1037 1038
}

1039
static void mem_cgroup_lru_add_after_commit(struct page *page)
1040 1041 1042 1043 1044
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1045 1046 1047
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1048 1049
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1050
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1051 1052 1053 1054 1055
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1056 1057 1058
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1059
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1060 1061 1062
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1063 1064
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Checks whether given mem is same or in the root_mem's
 * hierarchy subtree
 */
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
		struct mem_cgroup *mem)
{
	if (root_mem != mem) {
		return (root_mem->use_hierarchy &&
			css_is_ancestor(&mem->css, &root_mem->css));
	}

	return true;
}

1080 1081 1082
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1083
	struct mem_cgroup *curr = NULL;
1084
	struct task_struct *p;
1085

1086 1087 1088 1089 1090
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1091 1092
	if (!curr)
		return 0;
1093 1094 1095 1096 1097 1098
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
1099
	ret = mem_cgroup_same_or_subtree(mem, curr);
1100
	css_put(&curr->css);
1101 1102 1103
	return ret;
}

1104
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1105 1106 1107
{
	unsigned long active;
	unsigned long inactive;
1108 1109
	unsigned long gb;
	unsigned long inactive_ratio;
1110

1111 1112
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1141 1142 1143 1144 1145
		return 1;

	return 0;
}

1146 1147 1148 1149 1150
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

1151 1152
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1153 1154 1155 1156

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1157 1158 1159
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1160
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1177 1178
	if (!PageCgroupUsed(pc))
		return NULL;
1179 1180
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1181
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1182 1183 1184
	return &mz->reclaim_stat;
}

1185 1186 1187
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
1188 1189
					isolate_mode_t mode,
					struct zone *z,
1190
					struct mem_cgroup *mem_cont,
1191
					int active, int file)
1192 1193 1194 1195 1196 1197
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1198
	struct page_cgroup *pc, *tmp;
1199
	int nid = zone_to_nid(z);
1200 1201
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1202
	int lru = LRU_FILE * file + active;
1203
	int ret;
1204

1205
	BUG_ON(!mem_cont);
1206
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1207
	src = &mz->lists[lru];
1208

1209 1210
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1211
		if (scan >= nr_to_scan)
1212
			break;
K
KAMEZAWA Hiroyuki 已提交
1213

1214 1215
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1216

1217
		page = lookup_cgroup_page(pc);
1218

H
Hugh Dickins 已提交
1219
		if (unlikely(!PageLRU(page)))
1220 1221
			continue;

H
Hugh Dickins 已提交
1222
		scan++;
1223 1224 1225
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1226
			list_move(&page->lru, dst);
1227
			mem_cgroup_del_lru(page);
1228
			nr_taken += hpage_nr_pages(page);
1229 1230 1231 1232 1233 1234 1235
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1236 1237 1238 1239
		}
	}

	*scanned = scan;
1240 1241 1242 1243

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1244 1245 1246
	return nr_taken;
}

1247 1248 1249
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1250
/**
1251 1252
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1253
 *
1254
 * Returns the maximum amount of memory @mem can be charged with, in
1255
 * pages.
1256
 */
1257
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1258
{
1259 1260 1261 1262 1263
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1264
	return margin >> PAGE_SHIFT;
1265 1266
}

1267
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1268 1269 1270 1271 1272 1273 1274
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1275
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1276 1277
}

1278 1279 1280
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1281 1282 1283 1284

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1285
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1286 1287 1288
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1299 1300 1301
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1302
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1303 1304 1305
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1324 1325 1326

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1327 1328
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1329
	bool ret = false;
1330 1331 1332 1333 1334 1335 1336 1337 1338
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1339 1340 1341

	ret = mem_cgroup_same_or_subtree(mem, from)
		|| mem_cgroup_same_or_subtree(mem, to);
1342 1343
unlock:
	spin_unlock(&mc.lock);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1363
/**
1364
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1383
	if (!memcg || !p)
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1430 1431 1432 1433 1434 1435 1436
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1437 1438 1439 1440
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1441 1442 1443
	return num;
}

D
David Rientjes 已提交
1444 1445 1446 1447 1448 1449 1450 1451
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1452 1453 1454
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1455 1456 1457 1458 1459 1460 1461 1462
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1463
/*
K
KAMEZAWA Hiroyuki 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
		int nid, bool noswap)
{
1513
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1514 1515 1516
		return true;
	if (noswap || !total_swap_pages)
		return false;
1517
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1518 1519 1520 1521
		return true;
	return false;

}
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;
1533 1534 1535 1536 1537 1538 1539
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
	if (!atomic_read(&mem->numainfo_events))
		return;
	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1540 1541 1542 1543 1544 1545 1546
		return;

	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1547 1548
		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
			node_clear(nid, mem->scan_nodes);
1549
	}
1550 1551 1552

	atomic_set(&mem->numainfo_events, 0);
	atomic_set(&mem->numainfo_updating, 0);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(mem->scan_nodes)) {
		for (nid = first_node(mem->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, mem->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
		if (node_isset(nid, mem->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
			return true;
	}
	return false;
}

1625 1626 1627 1628 1629
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
1630 1631 1632 1633 1634

bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
}
1635 1636
#endif

K
KAMEZAWA Hiroyuki 已提交
1637 1638 1639 1640
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1641 1642
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1643 1644 1645
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1646 1647
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1648 1649
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1650
						struct zone *zone,
1651
						gfp_t gfp_mask,
1652 1653
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1654
{
K
KAMEZAWA Hiroyuki 已提交
1655 1656 1657
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1658 1659
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1660
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1661
	unsigned long excess;
1662
	unsigned long nr_scanned;
1663 1664

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1665

1666
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1667
	if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1668 1669
		noswap = true;

1670
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1671
		victim = mem_cgroup_select_victim(root_mem);
1672
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1673
			loop++;
1674 1675 1676 1677 1678 1679 1680
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1681
				drain_all_stock_async(root_mem);
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1693
				 * We want to do more targeted reclaim.
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1705
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1706 1707
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1708 1709
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1710
		/* we use swappiness of local cgroup */
1711
		if (check_soft) {
1712
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1713 1714
				noswap, zone, &nr_scanned);
			*total_scanned += nr_scanned;
1715
		} else
1716
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1717
						noswap);
K
KAMEZAWA Hiroyuki 已提交
1718
		css_put(&victim->css);
1719 1720 1721 1722 1723 1724 1725
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1726
		total += ret;
1727
		if (check_soft) {
1728
			if (!res_counter_soft_limit_excess(&root_mem->res))
1729
				return total;
1730
		} else if (mem_cgroup_margin(root_mem))
1731
			return total;
1732
	}
K
KAMEZAWA Hiroyuki 已提交
1733
	return total;
1734 1735
}

K
KAMEZAWA Hiroyuki 已提交
1736 1737 1738
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1739
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1740 1741 1742
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
1743 1744
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1745

1746
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1747
		if (iter->oom_lock) {
1748 1749 1750 1751 1752 1753
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
			cond = false;
1754 1755
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1756
	}
K
KAMEZAWA Hiroyuki 已提交
1757

1758
	if (!failed)
1759
		return true;
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
1773
	return false;
1774
}
1775

1776
/*
1777
 * Has to be called with memcg_oom_lock
1778
 */
K
KAMEZAWA Hiroyuki 已提交
1779
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1780
{
K
KAMEZAWA Hiroyuki 已提交
1781 1782
	struct mem_cgroup *iter;

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	for_each_mem_cgroup_tree(iter, mem)
		iter->oom_lock = false;
	return 0;
}

static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		atomic_inc(&iter->under_oom);
}

static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1800 1801 1802 1803 1804
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1805
	for_each_mem_cgroup_tree(iter, mem)
1806
		atomic_add_unless(&iter->under_oom, -1, 0);
1807 1808
}

1809
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1810 1811
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1812 1813 1814 1815 1816 1817 1818 1819
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1820 1821
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
			  *oom_wait_mem;
K
KAMEZAWA Hiroyuki 已提交
1822 1823 1824
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1825
	oom_wait_mem = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1826 1827 1828 1829 1830

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1831 1832
	if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
			&& !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
K
KAMEZAWA Hiroyuki 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1843 1844
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1845
	if (mem && atomic_read(&mem->under_oom))
1846 1847 1848
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1849 1850 1851 1852
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1853
{
K
KAMEZAWA Hiroyuki 已提交
1854
	struct oom_wait_info owait;
1855
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1856

K
KAMEZAWA Hiroyuki 已提交
1857 1858 1859 1860 1861
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1862
	need_to_kill = true;
1863 1864
	mem_cgroup_mark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1865
	/* At first, try to OOM lock hierarchy under mem.*/
1866
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1867 1868 1869 1870 1871 1872
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1873 1874 1875 1876
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1877
		mem_cgroup_oom_notify(mem);
1878
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1879

1880 1881
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1882
		mem_cgroup_out_of_memory(mem, mask);
1883
	} else {
K
KAMEZAWA Hiroyuki 已提交
1884
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1885
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1886
	}
1887
	spin_lock(&memcg_oom_lock);
1888 1889
	if (locked)
		mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1890
	memcg_wakeup_oom(mem);
1891
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1892

1893 1894
	mem_cgroup_unmark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1895 1896 1897 1898 1899
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1900 1901
}

1902 1903 1904
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1924
 */
1925

1926 1927
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1928 1929
{
	struct mem_cgroup *mem;
1930 1931
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1932
	unsigned long uninitialized_var(flags);
1933 1934 1935 1936

	if (unlikely(!pc))
		return;

1937
	rcu_read_lock();
1938
	mem = pc->mem_cgroup;
1939 1940 1941
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1942
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1943
		/* take a lock against to access pc->mem_cgroup */
1944
		move_lock_page_cgroup(pc, &flags);
1945 1946 1947 1948 1949
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1950 1951

	switch (idx) {
1952
	case MEMCG_NR_FILE_MAPPED:
1953 1954 1955
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1956
			ClearPageCgroupFileMapped(pc);
1957
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1958 1959 1960
		break;
	default:
		BUG();
1961
	}
1962

1963 1964
	this_cpu_add(mem->stat->count[idx], val);

1965 1966
out:
	if (unlikely(need_unlock))
1967
		move_unlock_page_cgroup(pc, &flags);
1968 1969
	rcu_read_unlock();
	return;
1970
}
1971
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1972

1973 1974 1975 1976
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1977
#define CHARGE_BATCH	32U
1978 1979
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1980
	unsigned int nr_pages;
1981
	struct work_struct work;
1982 1983
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1984 1985
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1986
static DEFINE_MUTEX(percpu_charge_mutex);
1987 1988

/*
1989
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2000 2001
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2015 2016 2017 2018
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2019
		if (do_swap_account)
2020 2021
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2034
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2035 2036 2037 2038
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2039
 * This will be consumed by consume_stock() function, later.
2040
 */
2041
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2042 2043 2044 2045 2046 2047 2048
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
2049
	stock->nr_pages += nr_pages;
2050 2051 2052 2053
	put_cpu_var(memcg_stock);
}

/*
2054 2055 2056
 * Drains all per-CPU charge caches for given root_mem resp. subtree
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2057
 */
2058
static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2059
{
2060
	int cpu, curcpu;
2061

2062 2063
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2064
	curcpu = get_cpu();
2065 2066
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2067 2068 2069
		struct mem_cgroup *mem;

		mem = stock->cached;
2070
		if (!mem || !stock->nr_pages)
2071
			continue;
2072 2073
		if (!mem_cgroup_same_or_subtree(root_mem, mem))
			continue;
2074 2075 2076 2077 2078 2079
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2080
	}
2081
	put_cpu();
2082 2083 2084 2085 2086 2087

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2088
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2089 2090 2091
			flush_work(&stock->work);
	}
out:
2092
 	put_online_cpus();
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(struct mem_cgroup *root_mem)
{
2103 2104 2105 2106 2107
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2108
	drain_all_stock(root_mem, false);
2109
	mutex_unlock(&percpu_charge_mutex);
2110 2111 2112
}

/* This is a synchronous drain interface. */
2113
static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2114 2115
{
	/* called when force_empty is called */
2116
	mutex_lock(&percpu_charge_mutex);
2117
	drain_all_stock(root_mem, true);
2118
	mutex_unlock(&percpu_charge_mutex);
2119 2120
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2131
		long x = per_cpu(mem->stat->count[i], cpu);
2132 2133 2134 2135

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
2136 2137 2138 2139 2140 2141
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2153 2154 2155 2156
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2157 2158 2159 2160 2161
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2162
	struct mem_cgroup *iter;
2163

2164 2165 2166 2167 2168 2169
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2170
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2171
		return NOTIFY_OK;
2172 2173 2174 2175

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2176 2177 2178 2179 2180
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2191 2192
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
2193
{
2194
	unsigned long csize = nr_pages * PAGE_SIZE;
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2209
		res_counter_uncharge(&mem->res, csize);
2210 2211 2212 2213
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2214
	/*
2215 2216
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2217 2218 2219 2220
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2221
	if (nr_pages == CHARGE_BATCH)
2222 2223 2224 2225 2226 2227
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2228
					      gfp_mask, flags, NULL);
2229
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2230
		return CHARGE_RETRY;
2231
	/*
2232 2233 2234 2235 2236 2237 2238
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2239
	 */
2240
	if (nr_pages == 1 && ret)
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2260 2261 2262
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2263
 */
2264
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2265
				   gfp_t gfp_mask,
2266 2267 2268
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2269
{
2270
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2271 2272 2273
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2274

K
KAMEZAWA Hiroyuki 已提交
2275 2276 2277 2278 2279 2280 2281 2282
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2283

2284
	/*
2285 2286
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2287 2288 2289
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2290 2291 2292 2293
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2294
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2295 2296 2297
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2298
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2299
			goto done;
2300 2301
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2302
		struct task_struct *p;
2303

K
KAMEZAWA Hiroyuki 已提交
2304 2305 2306
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2307 2308 2309 2310 2311 2312 2313 2314
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2315 2316
		 */
		mem = mem_cgroup_from_task(p);
2317
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2318 2319 2320
			rcu_read_unlock();
			goto done;
		}
2321
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2340

2341 2342
	do {
		bool oom_check;
2343

2344
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2345 2346
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2347
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2348
		}
2349

2350 2351 2352 2353
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2354
		}
2355

2356
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2357 2358 2359 2360
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2361
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2362 2363 2364
			css_put(&mem->css);
			mem = NULL;
			goto again;
2365
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2366
			css_put(&mem->css);
2367 2368
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2369 2370
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2371
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2372
			}
2373 2374 2375 2376
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2377
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2378
			goto bypass;
2379
		}
2380 2381
	} while (ret != CHARGE_OK);

2382 2383
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2384
	css_put(&mem->css);
2385
done:
K
KAMEZAWA Hiroyuki 已提交
2386
	*memcg = mem;
2387 2388
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2389
	*memcg = NULL;
2390
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2391 2392 2393
bypass:
	*memcg = NULL;
	return 0;
2394
}
2395

2396 2397 2398 2399 2400
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2401
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2402
				       unsigned int nr_pages)
2403 2404
{
	if (!mem_cgroup_is_root(mem)) {
2405 2406 2407
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2408
		if (do_swap_account)
2409
			res_counter_uncharge(&mem->memsw, bytes);
2410
	}
2411 2412
}

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2432
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2433
{
2434
	struct mem_cgroup *mem = NULL;
2435
	struct page_cgroup *pc;
2436
	unsigned short id;
2437 2438
	swp_entry_t ent;

2439 2440 2441
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2442
	lock_page_cgroup(pc);
2443
	if (PageCgroupUsed(pc)) {
2444
		mem = pc->mem_cgroup;
2445 2446
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2447
	} else if (PageSwapCache(page)) {
2448
		ent.val = page_private(page);
2449 2450 2451 2452 2453 2454
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2455
	}
2456
	unlock_page_cgroup(pc);
2457 2458 2459
	return mem;
}

2460
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2461
				       struct page *page,
2462
				       unsigned int nr_pages,
2463
				       struct page_cgroup *pc,
2464
				       enum charge_type ctype)
2465
{
2466 2467 2468
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2469
		__mem_cgroup_cancel_charge(mem, nr_pages);
2470 2471 2472 2473 2474 2475
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2476
	pc->mem_cgroup = mem;
2477 2478 2479 2480 2481 2482 2483
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2484
	smp_wmb();
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2498

2499
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2500
	unlock_page_cgroup(pc);
2501 2502 2503 2504 2505
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2506
	memcg_check_events(mem, page);
2507
}
2508

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2523 2524
	if (mem_cgroup_disabled())
		return;
2525
	/*
2526
	 * We have no races with charge/uncharge but will have races with
2527 2528 2529 2530 2531 2532
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2543
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2544 2545
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2546 2547 2548 2549 2550
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2551
/**
2552
 * mem_cgroup_move_account - move account of the page
2553
 * @page: the page
2554
 * @nr_pages: number of regular pages (>1 for huge pages)
2555 2556 2557
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2558
 * @uncharge: whether we should call uncharge and css_put against @from.
2559 2560
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2561
 * - page is not on LRU (isolate_page() is useful.)
2562
 * - compound_lock is held when nr_pages > 1
2563
 *
2564
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2565
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2566 2567
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2568
 */
2569 2570 2571 2572 2573 2574
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2575
{
2576 2577
	unsigned long flags;
	int ret;
2578

2579
	VM_BUG_ON(from == to);
2580
	VM_BUG_ON(PageLRU(page));
2581 2582 2583 2584 2585 2586 2587
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2588
	if (nr_pages > 1 && !PageTransHuge(page))
2589 2590 2591 2592 2593 2594 2595 2596 2597
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2598

2599
	if (PageCgroupFileMapped(pc)) {
2600 2601 2602 2603 2604
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2605
	}
2606
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2607 2608
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2609
		__mem_cgroup_cancel_charge(from, nr_pages);
2610

2611
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2612
	pc->mem_cgroup = to;
2613
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2614 2615 2616
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2617
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2618
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2619
	 * status here.
2620
	 */
2621 2622 2623
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2624
	unlock_page_cgroup(pc);
2625 2626 2627
	/*
	 * check events
	 */
2628 2629
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2630
out:
2631 2632 2633 2634 2635 2636 2637
	return ret;
}

/*
 * move charges to its parent.
 */

2638 2639
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2640 2641 2642 2643 2644 2645
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2646
	unsigned int nr_pages;
2647
	unsigned long uninitialized_var(flags);
2648 2649 2650 2651 2652 2653
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2654 2655 2656 2657 2658
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2659

2660
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2661

2662
	parent = mem_cgroup_from_cont(pcg);
2663
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2664
	if (ret || !parent)
2665
		goto put_back;
2666

2667
	if (nr_pages > 1)
2668 2669
		flags = compound_lock_irqsave(page);

2670
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2671
	if (ret)
2672
		__mem_cgroup_cancel_charge(parent, nr_pages);
2673

2674
	if (nr_pages > 1)
2675
		compound_unlock_irqrestore(page, flags);
2676
put_back:
K
KAMEZAWA Hiroyuki 已提交
2677
	putback_lru_page(page);
2678
put:
2679
	put_page(page);
2680
out:
2681 2682 2683
	return ret;
}

2684 2685 2686 2687 2688 2689 2690
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2691
				gfp_t gfp_mask, enum charge_type ctype)
2692
{
2693
	struct mem_cgroup *mem = NULL;
2694
	unsigned int nr_pages = 1;
2695
	struct page_cgroup *pc;
2696
	bool oom = true;
2697
	int ret;
A
Andrea Arcangeli 已提交
2698

A
Andrea Arcangeli 已提交
2699
	if (PageTransHuge(page)) {
2700
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2701
		VM_BUG_ON(!PageTransHuge(page));
2702 2703 2704 2705 2706
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2707
	}
2708 2709

	pc = lookup_page_cgroup(page);
2710
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2711

2712
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2713
	if (ret || !mem)
2714 2715
		return ret;

2716
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2717 2718 2719
	return 0;
}

2720 2721
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2722
{
2723
	if (mem_cgroup_disabled())
2724
		return 0;
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2736
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2737
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2738 2739
}

D
Daisuke Nishimura 已提交
2740 2741 2742 2743
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2760 2761
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2762
{
2763
	struct mem_cgroup *mem = NULL;
2764 2765
	int ret;

2766
	if (mem_cgroup_disabled())
2767
		return 0;
2768 2769
	if (PageCompound(page))
		return 0;
2770

2771
	if (unlikely(!mm))
2772
		mm = &init_mm;
2773

2774 2775 2776 2777
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2778

2779 2780 2781 2782 2783 2784 2785 2786 2787
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2788 2789 2790 2791 2792 2793 2794 2795
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2796
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2797 2798

	return ret;
2799 2800
}

2801 2802 2803
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2804
 * struct page_cgroup is acquired. This refcnt will be consumed by
2805 2806
 * "commit()" or removed by "cancel()"
 */
2807 2808 2809 2810 2811
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2812
	int ret;
2813

2814 2815
	*ptr = NULL;

2816
	if (mem_cgroup_disabled())
2817 2818 2819 2820 2821 2822
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2823 2824 2825
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2826 2827
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2828
		goto charge_cur_mm;
2829
	mem = try_get_mem_cgroup_from_page(page);
2830 2831
	if (!mem)
		goto charge_cur_mm;
2832
	*ptr = mem;
2833
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2834 2835
	css_put(&mem->css);
	return ret;
2836 2837 2838
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2839
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2840 2841
}

D
Daisuke Nishimura 已提交
2842 2843 2844
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2845
{
2846
	if (mem_cgroup_disabled())
2847 2848 2849
		return;
	if (!ptr)
		return;
2850
	cgroup_exclude_rmdir(&ptr->css);
2851 2852

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2853 2854 2855
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2856 2857 2858
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2859
	 */
2860
	if (do_swap_account && PageSwapCache(page)) {
2861
		swp_entry_t ent = {.val = page_private(page)};
2862
		unsigned short id;
2863
		struct mem_cgroup *memcg;
2864 2865 2866 2867

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2868
		if (memcg) {
2869 2870 2871 2872
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2873
			if (!mem_cgroup_is_root(memcg))
2874
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2875
			mem_cgroup_swap_statistics(memcg, false);
2876 2877
			mem_cgroup_put(memcg);
		}
2878
		rcu_read_unlock();
2879
	}
2880 2881 2882 2883 2884 2885
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2886 2887
}

D
Daisuke Nishimura 已提交
2888 2889 2890 2891 2892 2893
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2894 2895
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2896
	if (mem_cgroup_disabled())
2897 2898 2899
		return;
	if (!mem)
		return;
2900
	__mem_cgroup_cancel_charge(mem, 1);
2901 2902
}

2903 2904 2905
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2906 2907 2908
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2909

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2922 2923
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2924
	 * In those cases, all pages freed continuously can be expected to be in
2925 2926 2927 2928 2929 2930 2931 2932
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2933
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2934 2935
		goto direct_uncharge;

2936 2937 2938 2939 2940 2941 2942 2943
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2944
	batch->nr_pages++;
2945
	if (uncharge_memsw)
2946
		batch->memsw_nr_pages++;
2947 2948
	return;
direct_uncharge:
2949
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2950
	if (uncharge_memsw)
2951
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2952 2953
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2954 2955
	return;
}
2956

2957
/*
2958
 * uncharge if !page_mapped(page)
2959
 */
2960
static struct mem_cgroup *
2961
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2962
{
2963
	struct mem_cgroup *mem = NULL;
2964 2965
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2966

2967
	if (mem_cgroup_disabled())
2968
		return NULL;
2969

K
KAMEZAWA Hiroyuki 已提交
2970
	if (PageSwapCache(page))
2971
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2972

A
Andrea Arcangeli 已提交
2973
	if (PageTransHuge(page)) {
2974
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2975 2976
		VM_BUG_ON(!PageTransHuge(page));
	}
2977
	/*
2978
	 * Check if our page_cgroup is valid
2979
	 */
2980 2981
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2982
		return NULL;
2983

2984
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2985

2986 2987
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2988 2989 2990 2991 2992
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2993
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2994 2995
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3007
	}
K
KAMEZAWA Hiroyuki 已提交
3008

3009
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3010

3011
	ClearPageCgroupUsed(pc);
3012 3013 3014 3015 3016 3017
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3018

3019
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3020 3021 3022 3023
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
3024
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
3025 3026 3027 3028 3029
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
3030
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3031

3032
	return mem;
K
KAMEZAWA Hiroyuki 已提交
3033 3034 3035

unlock_out:
	unlock_page_cgroup(pc);
3036
	return NULL;
3037 3038
}

3039 3040
void mem_cgroup_uncharge_page(struct page *page)
{
3041 3042 3043 3044 3045
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3046 3047 3048 3049 3050 3051
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3052
	VM_BUG_ON(page->mapping);
3053 3054 3055
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3070 3071
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3092 3093 3094 3095 3096 3097
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3098
	memcg_oom_recover(batch->memcg);
3099 3100 3101 3102
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3103
#ifdef CONFIG_SWAP
3104
/*
3105
 * called after __delete_from_swap_cache() and drop "page" account.
3106 3107
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3108 3109
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3110 3111
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3112 3113 3114 3115 3116 3117
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3118

K
KAMEZAWA Hiroyuki 已提交
3119 3120 3121 3122 3123
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3124
		swap_cgroup_record(ent, css_id(&memcg->css));
3125
}
3126
#endif
3127 3128 3129 3130 3131 3132 3133

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3134
{
3135
	struct mem_cgroup *memcg;
3136
	unsigned short id;
3137 3138 3139 3140

	if (!do_swap_account)
		return;

3141 3142 3143
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3144
	if (memcg) {
3145 3146 3147 3148
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3149
		if (!mem_cgroup_is_root(memcg))
3150
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3151
		mem_cgroup_swap_statistics(memcg, false);
3152 3153
		mem_cgroup_put(memcg);
	}
3154
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3155
}
3156 3157 3158 3159 3160 3161

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3162
 * @need_fixup: whether we should fixup res_counters and refcounts.
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3173
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3174 3175 3176 3177 3178 3179 3180 3181
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3182
		mem_cgroup_swap_statistics(to, true);
3183
		/*
3184 3185 3186 3187 3188 3189
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3190 3191
		 */
		mem_cgroup_get(to);
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3203 3204 3205 3206 3207 3208
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3209
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3210 3211 3212
{
	return -EINVAL;
}
3213
#endif
K
KAMEZAWA Hiroyuki 已提交
3214

3215
/*
3216 3217
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3218
 */
3219
int mem_cgroup_prepare_migration(struct page *page,
3220
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3221
{
3222
	struct mem_cgroup *mem = NULL;
3223
	struct page_cgroup *pc;
3224
	enum charge_type ctype;
3225
	int ret = 0;
3226

3227 3228
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3229
	VM_BUG_ON(PageTransHuge(page));
3230
	if (mem_cgroup_disabled())
3231 3232
		return 0;

3233 3234 3235
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3236 3237
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3269
	}
3270
	unlock_page_cgroup(pc);
3271 3272 3273 3274 3275 3276
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3277

A
Andrea Arcangeli 已提交
3278
	*ptr = mem;
3279
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3292
	}
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3306
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3307
	return ret;
3308
}
3309

3310
/* remove redundant charge if migration failed*/
3311
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3312
	struct page *oldpage, struct page *newpage, bool migration_ok)
3313
{
3314
	struct page *used, *unused;
3315 3316 3317 3318
	struct page_cgroup *pc;

	if (!mem)
		return;
3319
	/* blocks rmdir() */
3320
	cgroup_exclude_rmdir(&mem->css);
3321
	if (!migration_ok) {
3322 3323
		used = oldpage;
		unused = newpage;
3324
	} else {
3325
		used = newpage;
3326 3327
		unused = oldpage;
	}
3328
	/*
3329 3330 3331
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3332
	 */
3333 3334 3335 3336
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3337

3338 3339
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3340
	/*
3341 3342 3343 3344 3345 3346
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3347
	 */
3348 3349
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3350
	/*
3351 3352
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3353 3354 3355 3356
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3357
}
3358

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3405 3406
static DEFINE_MUTEX(set_limit_mutex);

3407
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3408
				unsigned long long val)
3409
{
3410
	int retry_count;
3411
	u64 memswlimit, memlimit;
3412
	int ret = 0;
3413 3414
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3415
	int enlarge;
3416 3417 3418 3419 3420 3421 3422 3423 3424

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3425

3426
	enlarge = 0;
3427
	while (retry_count) {
3428 3429 3430 3431
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3442 3443
			break;
		}
3444 3445 3446 3447 3448

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3449
		ret = res_counter_set_limit(&memcg->res, val);
3450 3451 3452 3453 3454 3455
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3456 3457 3458 3459 3460
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3461
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3462 3463
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3464 3465 3466 3467 3468 3469
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3470
	}
3471 3472
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3473

3474 3475 3476
	return ret;
}

L
Li Zefan 已提交
3477 3478
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3479
{
3480
	int retry_count;
3481
	u64 memlimit, memswlimit, oldusage, curusage;
3482 3483
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3484
	int enlarge = 0;
3485

3486 3487 3488
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3506 3507 3508
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3509
		ret = res_counter_set_limit(&memcg->memsw, val);
3510 3511 3512 3513 3514 3515
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3516 3517 3518 3519 3520
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3521
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3522
						MEM_CGROUP_RECLAIM_NOSWAP |
3523 3524
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3525
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3526
		/* Usage is reduced ? */
3527
		if (curusage >= oldusage)
3528
			retry_count--;
3529 3530
		else
			oldusage = curusage;
3531
	}
3532 3533
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3534 3535 3536
	return ret;
}

3537
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3538 3539
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3540 3541 3542 3543 3544 3545
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3546
	unsigned long long excess;
3547
	unsigned long nr_scanned;
3548 3549 3550 3551

	if (order > 0)
		return 0;

3552
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3566
		nr_scanned = 0;
3567 3568
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3569 3570
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3571
		nr_reclaimed += reclaimed;
3572
		*total_scanned += nr_scanned;
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3595
				if (next_mz == mz)
3596
					css_put(&next_mz->mem->css);
3597
				else /* next_mz == NULL or other memcg */
3598 3599 3600 3601
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3602
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3603 3604 3605 3606 3607 3608 3609 3610
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3611 3612
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3631 3632 3633 3634
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3635
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3636
				int node, int zid, enum lru_list lru)
3637
{
K
KAMEZAWA Hiroyuki 已提交
3638 3639
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3640
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3641
	unsigned long flags, loop;
3642
	struct list_head *list;
3643
	int ret = 0;
3644

K
KAMEZAWA Hiroyuki 已提交
3645 3646
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3647
	list = &mz->lists[lru];
3648

3649 3650 3651 3652 3653
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3654 3655
		struct page *page;

3656
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3657
		spin_lock_irqsave(&zone->lru_lock, flags);
3658
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3659
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3660
			break;
3661 3662 3663 3664
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3665
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3666
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3667 3668
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3669
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3670

3671
		page = lookup_cgroup_page(pc);
3672 3673

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3674
		if (ret == -ENOMEM)
3675
			break;
3676 3677 3678 3679 3680 3681 3682

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3683
	}
K
KAMEZAWA Hiroyuki 已提交
3684

3685 3686 3687
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3688 3689 3690 3691 3692 3693
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3694
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3695
{
3696 3697 3698
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3699
	struct cgroup *cgrp = mem->css.cgroup;
3700

3701
	css_get(&mem->css);
3702 3703

	shrink = 0;
3704 3705 3706
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3707
move_account:
3708
	do {
3709
		ret = -EBUSY;
3710 3711 3712 3713
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3714
			goto out;
3715 3716
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3717
		drain_all_stock_sync(mem);
3718
		ret = 0;
3719
		mem_cgroup_start_move(mem);
3720
		for_each_node_state(node, N_HIGH_MEMORY) {
3721
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3722
				enum lru_list l;
3723 3724
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3725
							node, zid, l);
3726 3727 3728
					if (ret)
						break;
				}
3729
			}
3730 3731 3732
			if (ret)
				break;
		}
3733
		mem_cgroup_end_move(mem);
3734
		memcg_oom_recover(mem);
3735 3736 3737
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3738
		cond_resched();
3739 3740
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3741 3742 3743
out:
	css_put(&mem->css);
	return ret;
3744 3745

try_to_free:
3746 3747
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3748 3749 3750
		ret = -EBUSY;
		goto out;
	}
3751 3752
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3753 3754 3755 3756
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3757 3758 3759 3760 3761

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3762
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3763
						false);
3764
		if (!progress) {
3765
			nr_retries--;
3766
			/* maybe some writeback is necessary */
3767
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3768
		}
3769 3770

	}
K
KAMEZAWA Hiroyuki 已提交
3771
	lru_add_drain();
3772
	/* try move_account...there may be some *locked* pages. */
3773
	goto move_account;
3774 3775
}

3776 3777 3778 3779 3780 3781
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3800
	 * If parent's use_hierarchy is set, we can't make any modifications
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3820

3821 3822
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3823
{
K
KAMEZAWA Hiroyuki 已提交
3824
	struct mem_cgroup *iter;
3825
	long val = 0;
3826

3827
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3828 3829 3830 3831 3832 3833
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3834 3835
}

3836 3837
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3838
	u64 val;
3839 3840 3841 3842 3843 3844 3845 3846

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

3847 3848
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3849

K
KAMEZAWA Hiroyuki 已提交
3850
	if (swap)
3851
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3852 3853 3854 3855

	return val << PAGE_SHIFT;
}

3856
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3857
{
3858
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3859
	u64 val;
3860 3861 3862 3863 3864 3865
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3866 3867 3868
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3869
			val = res_counter_read_u64(&mem->res, name);
3870 3871
		break;
	case _MEMSWAP:
3872 3873 3874
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3875
			val = res_counter_read_u64(&mem->memsw, name);
3876 3877 3878 3879 3880 3881
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3882
}
3883 3884 3885 3886
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3887 3888
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3889
{
3890
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3891
	int type, name;
3892 3893 3894
	unsigned long long val;
	int ret;

3895 3896 3897
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3898
	case RES_LIMIT:
3899 3900 3901 3902
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3903 3904
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3905 3906 3907
		if (ret)
			break;
		if (type == _MEM)
3908
			ret = mem_cgroup_resize_limit(memcg, val);
3909 3910
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3911
		break;
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3926 3927 3928 3929 3930
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3931 3932
}

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3961
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3962 3963
{
	struct mem_cgroup *mem;
3964
	int type, name;
3965 3966

	mem = mem_cgroup_from_cont(cont);
3967 3968 3969
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3970
	case RES_MAX_USAGE:
3971 3972 3973 3974
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3975 3976
		break;
	case RES_FAILCNT:
3977 3978 3979 3980
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3981 3982
		break;
	}
3983

3984
	return 0;
3985 3986
}

3987 3988 3989 3990 3991 3992
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3993
#ifdef CONFIG_MMU
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
4012 4013 4014 4015 4016 4017 4018
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4019

K
KAMEZAWA Hiroyuki 已提交
4020 4021 4022 4023 4024

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4025
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4026 4027
	MCS_PGPGIN,
	MCS_PGPGOUT,
4028
	MCS_SWAP,
4029 4030
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4041 4042
};

K
KAMEZAWA Hiroyuki 已提交
4043 4044 4045 4046 4047 4048
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4049
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4050 4051
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4052
	{"swap", "total_swap"},
4053 4054
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4055 4056 4057 4058 4059 4060 4061 4062
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4063 4064
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4065 4066 4067 4068
{
	s64 val;

	/* per cpu stat */
4069
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4070
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4071
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4072
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4073
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4074
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4075
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4076
	s->stat[MCS_PGPGIN] += val;
4077
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4078
	s->stat[MCS_PGPGOUT] += val;
4079
	if (do_swap_account) {
4080
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4081 4082
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4083 4084 4085 4086
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
	s->stat[MCS_PGFAULT] += val;
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4087 4088

	/* per zone stat */
4089
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4090
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4091
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4092
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4093
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4094
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4095
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4096
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4097
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4098 4099 4100 4101 4102 4103
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
4104 4105 4106 4107
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4108 4109
}

4110 4111 4112 4113 4114 4115 4116 4117 4118
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4119
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4120 4121
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4122
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4123 4124 4125 4126
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4127
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4128 4129
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4130 4131
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4132 4133 4134 4135
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4136
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4137 4138
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4139 4140
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4141 4142 4143 4144
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4145
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4146 4147
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4148 4149
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4150 4151 4152 4153 4154 4155 4156
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4157 4158
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4159 4160
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4161
	struct mcs_total_stat mystat;
4162 4163
	int i;

K
KAMEZAWA Hiroyuki 已提交
4164 4165
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4166

4167

4168 4169 4170
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4171
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4172
	}
L
Lee Schermerhorn 已提交
4173

K
KAMEZAWA Hiroyuki 已提交
4174
	/* Hierarchical information */
4175 4176 4177 4178 4179 4180 4181
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4182

K
KAMEZAWA Hiroyuki 已提交
4183 4184
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4185 4186 4187
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4188
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4189
	}
K
KAMEZAWA Hiroyuki 已提交
4190

K
KOSAKI Motohiro 已提交
4191
#ifdef CONFIG_DEBUG_VM
4192
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4220 4221 4222
	return 0;
}

K
KOSAKI Motohiro 已提交
4223 4224 4225 4226
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4227
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4228 4229 4230 4231 4232 4233 4234
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4235

K
KOSAKI Motohiro 已提交
4236 4237 4238 4239 4240 4241 4242
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4243 4244 4245

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4246 4247
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4248 4249
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4250
		return -EINVAL;
4251
	}
K
KOSAKI Motohiro 已提交
4252 4253 4254

	memcg->swappiness = val;

4255 4256
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4257 4258 4259
	return 0;
}

4260 4261 4262 4263 4264 4265 4266 4267
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4268
		t = rcu_dereference(memcg->thresholds.primary);
4269
	else
4270
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4282
	i = t->current_threshold;
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4306
	t->current_threshold = i - 1;
4307 4308 4309 4310 4311 4312
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4313 4314 4315 4316 4317 4318 4319
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4330
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4341 4342 4343 4344
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4345 4346 4347 4348
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4349 4350
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4351 4352
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4353 4354
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4355
	int i, size, ret;
4356 4357 4358 4359 4360 4361

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4362

4363
	if (type == _MEM)
4364
		thresholds = &memcg->thresholds;
4365
	else if (type == _MEMSWAP)
4366
		thresholds = &memcg->memsw_thresholds;
4367 4368 4369 4370 4371 4372
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4373
	if (thresholds->primary)
4374 4375
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4376
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4377 4378

	/* Allocate memory for new array of thresholds */
4379
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4380
			GFP_KERNEL);
4381
	if (!new) {
4382 4383 4384
		ret = -ENOMEM;
		goto unlock;
	}
4385
	new->size = size;
4386 4387

	/* Copy thresholds (if any) to new array */
4388 4389
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4390
				sizeof(struct mem_cgroup_threshold));
4391 4392
	}

4393
	/* Add new threshold */
4394 4395
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4396 4397

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4398
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4399 4400 4401
			compare_thresholds, NULL);

	/* Find current threshold */
4402
	new->current_threshold = -1;
4403
	for (i = 0; i < size; i++) {
4404
		if (new->entries[i].threshold < usage) {
4405
			/*
4406 4407
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4408 4409
			 * it here.
			 */
4410
			++new->current_threshold;
4411 4412 4413
		}
	}

4414 4415 4416 4417 4418
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4419

4420
	/* To be sure that nobody uses thresholds */
4421 4422 4423 4424 4425 4426 4427 4428
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4429
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4430
	struct cftype *cft, struct eventfd_ctx *eventfd)
4431 4432
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4433 4434
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4435 4436
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4437
	int i, j, size;
4438 4439 4440

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4441
		thresholds = &memcg->thresholds;
4442
	else if (type == _MEMSWAP)
4443
		thresholds = &memcg->memsw_thresholds;
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4459 4460 4461
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4462 4463 4464
			size++;
	}

4465
	new = thresholds->spare;
4466

4467 4468
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4469 4470
		kfree(new);
		new = NULL;
4471
		goto swap_buffers;
4472 4473
	}

4474
	new->size = size;
4475 4476

	/* Copy thresholds and find current threshold */
4477 4478 4479
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4480 4481
			continue;

4482 4483
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4484
			/*
4485
			 * new->current_threshold will not be used
4486 4487 4488
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4489
			++new->current_threshold;
4490 4491 4492 4493
		}
		j++;
	}

4494
swap_buffers:
4495 4496 4497
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4498

4499
	/* To be sure that nobody uses thresholds */
4500 4501 4502 4503
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4504

K
KAMEZAWA Hiroyuki 已提交
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4517
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4518 4519 4520 4521 4522

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4523
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4524
		eventfd_signal(eventfd, 1);
4525
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4526 4527 4528 4529

	return 0;
}

4530
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4531 4532 4533 4534 4535 4536 4537 4538
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4539
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4540 4541 4542 4543 4544 4545 4546 4547

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4548
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4549 4550
}

4551 4552 4553 4554 4555 4556 4557
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

4558
	if (atomic_read(&mem->under_oom))
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4585 4586
	if (!val)
		memcg_oom_recover(mem);
4587 4588 4589 4590
	cgroup_unlock();
	return 0;
}

4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

B
Balbir Singh 已提交
4607 4608
static struct cftype mem_cgroup_files[] = {
	{
4609
		.name = "usage_in_bytes",
4610
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4611
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4612 4613
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4614
	},
4615 4616
	{
		.name = "max_usage_in_bytes",
4617
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4618
		.trigger = mem_cgroup_reset,
4619 4620
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4621
	{
4622
		.name = "limit_in_bytes",
4623
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4624
		.write_string = mem_cgroup_write,
4625
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4626
	},
4627 4628 4629 4630 4631 4632
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4633 4634
	{
		.name = "failcnt",
4635
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4636
		.trigger = mem_cgroup_reset,
4637
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4638
	},
4639 4640
	{
		.name = "stat",
4641
		.read_map = mem_control_stat_show,
4642
	},
4643 4644 4645 4646
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4647 4648 4649 4650 4651
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4652 4653 4654 4655 4656
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4657 4658 4659 4660 4661
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4662 4663
	{
		.name = "oom_control",
4664 4665
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4666 4667 4668 4669
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4670 4671 4672 4673
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4674
		.mode = S_IRUGO,
4675 4676
	},
#endif
B
Balbir Singh 已提交
4677 4678
};

4679 4680 4681 4682 4683 4684
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4685 4686
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4722 4723 4724
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4725
	struct mem_cgroup_per_zone *mz;
4726
	enum lru_list l;
4727
	int zone, tmp = node;
4728 4729 4730 4731 4732 4733 4734 4735
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4736 4737
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4738
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4739 4740
	if (!pn)
		return 1;
4741

4742
	mem->info.nodeinfo[node] = pn;
4743 4744
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4745 4746
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4747
		mz->usage_in_excess = 0;
4748 4749
		mz->on_tree = false;
		mz->mem = mem;
4750
	}
4751 4752 4753
	return 0;
}

4754 4755 4756 4757 4758
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4759 4760 4761
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4762
	int size = sizeof(struct mem_cgroup);
4763

4764
	/* Can be very big if MAX_NUMNODES is very big */
4765
	if (size < PAGE_SIZE)
4766
		mem = kzalloc(size, GFP_KERNEL);
4767
	else
4768
		mem = vzalloc(size);
4769

4770 4771 4772
	if (!mem)
		return NULL;

4773
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4774 4775
	if (!mem->stat)
		goto out_free;
4776
	spin_lock_init(&mem->pcp_counter_lock);
4777
	return mem;
4778 4779 4780 4781 4782 4783 4784

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4785 4786
}

4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4798
static void __mem_cgroup_free(struct mem_cgroup *mem)
4799
{
K
KAMEZAWA Hiroyuki 已提交
4800 4801
	int node;

4802
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4803 4804
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4805 4806 4807
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4808 4809
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4810 4811 4812 4813 4814
		kfree(mem);
	else
		vfree(mem);
}

4815 4816 4817 4818 4819
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4820
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4821
{
4822
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4823
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4824
		__mem_cgroup_free(mem);
4825 4826 4827
		if (parent)
			mem_cgroup_put(parent);
	}
4828 4829
}

4830 4831 4832 4833 4834
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4835 4836 4837 4838 4839 4840 4841 4842 4843
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4844

4845 4846 4847
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4848
	if (!mem_cgroup_disabled() && really_do_swap_account)
4849 4850 4851 4852 4853 4854 4855 4856
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4882
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4883 4884
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4885
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4886
	long error = -ENOMEM;
4887
	int node;
B
Balbir Singh 已提交
4888

4889 4890
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4891
		return ERR_PTR(error);
4892

4893 4894 4895
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4896

4897
	/* root ? */
4898
	if (cont->parent == NULL) {
4899
		int cpu;
4900
		enable_swap_cgroup();
4901
		parent = NULL;
4902
		root_mem_cgroup = mem;
4903 4904
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4905 4906 4907 4908 4909
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4910
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4911
	} else {
4912
		parent = mem_cgroup_from_cont(cont->parent);
4913
		mem->use_hierarchy = parent->use_hierarchy;
4914
		mem->oom_kill_disable = parent->oom_kill_disable;
4915
	}
4916

4917 4918 4919
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4920 4921 4922 4923 4924 4925 4926
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4927 4928 4929 4930
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4931
	mem->last_scanned_child = 0;
4932
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
4933
	INIT_LIST_HEAD(&mem->oom_notify);
4934

K
KOSAKI Motohiro 已提交
4935
	if (parent)
4936
		mem->swappiness = mem_cgroup_swappiness(parent);
4937
	atomic_set(&mem->refcnt, 1);
4938
	mem->move_charge_at_immigrate = 0;
4939
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4940
	return &mem->css;
4941
free_out:
4942
	__mem_cgroup_free(mem);
4943
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4944
	return ERR_PTR(error);
B
Balbir Singh 已提交
4945 4946
}

4947
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4948 4949 4950
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4951 4952

	return mem_cgroup_force_empty(mem, false);
4953 4954
}

B
Balbir Singh 已提交
4955 4956 4957
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4958 4959 4960
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4961 4962 4963 4964 4965
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4966 4967 4968 4969 4970 4971 4972 4973
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4974 4975
}

4976
#ifdef CONFIG_MMU
4977
/* Handlers for move charge at task migration. */
4978 4979
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4980
{
4981 4982
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4983 4984
	struct mem_cgroup *mem = mc.to;

4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5020
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5021 5022 5023 5024 5025
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5026 5027 5028 5029 5030 5031 5032 5033
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5034
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5035 5036 5037 5038 5039 5040
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5041 5042 5043
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5044 5045 5046 5047 5048
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5049
	swp_entry_t	ent;
5050 5051 5052 5053 5054
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5055
	MC_TARGET_SWAP,
5056 5057
};

D
Daisuke Nishimura 已提交
5058 5059
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5060
{
D
Daisuke Nishimura 已提交
5061
	struct page *page = vm_normal_page(vma, addr, ptent);
5062

D
Daisuke Nishimura 已提交
5063 5064 5065 5066 5067 5068
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5069 5070
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5089 5090
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5091
		return NULL;
5092
	}
D
Daisuke Nishimura 已提交
5093 5094 5095 5096 5097 5098
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5120 5121 5122 5123 5124 5125
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5126
		if (do_swap_account)
5127 5128
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5129
	}
5130
#endif
5131 5132 5133
	return page;
}

D
Daisuke Nishimura 已提交
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5146 5147
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5148 5149 5150

	if (!page && !ent.val)
		return 0;
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5166 5167
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5168 5169 5170 5171
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5184 5185
	split_huge_page_pmd(walk->mm, pmd);

5186 5187 5188 5189 5190 5191 5192
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5193 5194 5195
	return 0;
}

5196 5197 5198 5199 5200
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5201
	down_read(&mm->mmap_sem);
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5213
	up_read(&mm->mmap_sem);
5214 5215 5216 5217 5218 5219 5220 5221 5222

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5223 5224 5225 5226 5227
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5228 5229
}

5230 5231
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5232
{
5233 5234 5235
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5236
	/* we must uncharge all the leftover precharges from mc.to */
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5248
	}
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5283
	spin_lock(&mc.lock);
5284 5285
	mc.from = NULL;
	mc.to = NULL;
5286
	spin_unlock(&mc.lock);
5287
	mem_cgroup_end_move(from);
5288 5289
}

5290 5291
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5292
				struct task_struct *p)
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5307 5308 5309 5310
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5311
			VM_BUG_ON(mc.moved_charge);
5312
			VM_BUG_ON(mc.moved_swap);
5313
			mem_cgroup_start_move(from);
5314
			spin_lock(&mc.lock);
5315 5316
			mc.from = from;
			mc.to = mem;
5317
			spin_unlock(&mc.lock);
5318
			/* We set mc.moving_task later */
5319 5320 5321 5322

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5323 5324
		}
		mmput(mm);
5325 5326 5327 5328 5329 5330
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5331
				struct task_struct *p)
5332
{
5333
	mem_cgroup_clear_mc();
5334 5335
}

5336 5337 5338
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5339
{
5340 5341 5342 5343 5344
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5345
	split_huge_page_pmd(walk->mm, pmd);
5346 5347 5348 5349 5350 5351 5352 5353
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5354
		swp_entry_t ent;
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5366 5367
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5368
				mc.precharge--;
5369 5370
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5371 5372 5373 5374 5375
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5376 5377
		case MC_TARGET_SWAP:
			ent = target.ent;
5378 5379
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5380
				mc.precharge--;
5381 5382 5383
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5384
			break;
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5399
		ret = mem_cgroup_do_precharge(1);
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5443
	up_read(&mm->mmap_sem);
5444 5445
}

B
Balbir Singh 已提交
5446 5447 5448
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5449
				struct task_struct *p)
B
Balbir Singh 已提交
5450
{
5451
	struct mm_struct *mm = get_task_mm(p);
5452 5453

	if (mm) {
5454 5455 5456
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5457 5458
		mmput(mm);
	}
5459 5460
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5461
}
5462 5463 5464
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5465
				struct task_struct *p)
5466 5467 5468 5469 5470
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5471
				struct task_struct *p)
5472 5473 5474 5475 5476
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5477
				struct task_struct *p)
5478 5479 5480
{
}
#endif
B
Balbir Singh 已提交
5481

B
Balbir Singh 已提交
5482 5483 5484 5485
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5486
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5487 5488
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5489 5490
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5491
	.attach = mem_cgroup_move_task,
5492
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5493
	.use_id = 1,
B
Balbir Singh 已提交
5494
};
5495 5496

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5497 5498 5499
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5500
	if (!strcmp(s, "1"))
5501
		really_do_swap_account = 1;
5502
	else if (!strcmp(s, "0"))
5503 5504 5505
		really_do_swap_account = 0;
	return 1;
}
5506
__setup("swapaccount=", enable_swap_account);
5507 5508

#endif