memcontrol.c 154.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130 131
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147 148 149 150 151 152
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

153 154 155 156
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
157
	struct lruvec		lruvec;
158
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
159

160 161
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

162 163 164 165
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
166
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
167
						/* use container_of	   */
168 169 170 171 172 173 174 175 176 177
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

198 199 200 201 202
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
203
/* For threshold */
204
struct mem_cgroup_threshold_ary {
205
	/* An array index points to threshold just below or equal to usage. */
206
	int current_threshold;
207 208 209 210 211
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
212 213 214 215 216 217 218 219 220 221 222 223

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
224 225 226 227 228
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
229

230 231
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
232

B
Balbir Singh 已提交
233 234 235 236 237 238 239
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 241 242
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
243 244 245 246 247 248 249
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
268 269
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
270 271 272 273
		 */
		struct work_struct work_freeing;
	};

274 275 276 277
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
278 279 280 281
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
282
	struct mem_cgroup_lru_info info;
283 284 285
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
286 287
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
288
#endif
289 290 291 292
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
293
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
294 295 296 297

	bool		oom_lock;
	atomic_t	under_oom;

298
	atomic_t	refcnt;
299

300
	int	swappiness;
301 302
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
303

304 305 306
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

307 308 309 310
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
311
	struct mem_cgroup_thresholds thresholds;
312

313
	/* thresholds for mem+swap usage. RCU-protected */
314
	struct mem_cgroup_thresholds memsw_thresholds;
315

K
KAMEZAWA Hiroyuki 已提交
316 317
	/* For oom notifier event fd */
	struct list_head oom_notify;
318

319 320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
324 325 326 327
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
328 329
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
330
	/*
331
	 * percpu counter.
332
	 */
333
	struct mem_cgroup_stat_cpu __percpu *stat;
334 335 336 337 338 339
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
340

M
Michal Hocko 已提交
341
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
342 343
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
344 345
};

346 347 348 349 350 351 352 353 354 355 356 357 358 359
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
};

#define KMEM_ACCOUNTED_MASK (1 << KMEM_ACCOUNTED_ACTIVE)

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
#endif

360 361 362 363 364 365
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
366
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
367
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
368 369 370
	NR_MOVE_TYPE,
};

371 372
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
373
	spinlock_t	  lock; /* for from, to */
374 375 376
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
377
	unsigned long moved_charge;
378
	unsigned long moved_swap;
379 380 381
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
382
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
383 384
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
385

D
Daisuke Nishimura 已提交
386 387 388 389 390 391
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

392 393 394 395 396 397
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

398 399 400 401
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
402 403
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
404

405 406
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
407
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
408
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
409
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
410 411 412
	NR_CHARGE_TYPE,
};

413
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
414 415 416 417
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
418
	_KMEM,
G
Glauber Costa 已提交
419 420
};

421 422
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
423
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
424 425
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
426

427 428 429 430 431 432 433 434
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

435 436
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
437

438 439 440 441 442 443
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

444 445 446 447 448
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
449
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
450
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
451 452 453

void sock_update_memcg(struct sock *sk)
{
454
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
455
		struct mem_cgroup *memcg;
456
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
457 458 459

		BUG_ON(!sk->sk_prot->proto_cgroup);

460 461 462 463 464 465 466 467 468 469 470 471 472 473
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
474 475
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
476 477
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
478
			mem_cgroup_get(memcg);
479
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
480 481 482 483 484 485 486 487
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
488
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
489 490 491 492 493 494
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
495 496 497 498 499 500 501 502 503

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
504

505 506 507 508 509 510 511 512 513 514 515 516
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

517
static void drain_all_stock_async(struct mem_cgroup *memcg);
518

519
static struct mem_cgroup_per_zone *
520
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
521
{
522
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
523 524
}

525
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
526
{
527
	return &memcg->css;
528 529
}

530
static struct mem_cgroup_per_zone *
531
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
532
{
533 534
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
535

536
	return mem_cgroup_zoneinfo(memcg, nid, zid);
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
555
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
556
				struct mem_cgroup_per_zone *mz,
557 558
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
559 560 561 562 563 564 565 566
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

567 568 569
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
586 587 588
}

static void
589
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
590 591 592 593 594 595 596 597 598
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

599
static void
600
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
601 602 603 604
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
605
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
606 607 608 609
	spin_unlock(&mctz->lock);
}


610
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
611
{
612
	unsigned long long excess;
613 614
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
615 616
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
617 618 619
	mctz = soft_limit_tree_from_page(page);

	/*
620 621
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
622
	 */
623 624 625
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
626 627 628 629
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
630
		if (excess || mz->on_tree) {
631 632 633
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
634
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
635
			/*
636 637
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
638
			 */
639
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
640 641
			spin_unlock(&mctz->lock);
		}
642 643 644
	}
}

645
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
646 647 648 649 650
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
651
	for_each_node(node) {
652
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
653
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
654
			mctz = soft_limit_tree_node_zone(node, zone);
655
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
656 657 658 659
		}
	}
}

660 661 662 663
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
664
	struct mem_cgroup_per_zone *mz;
665 666

retry:
667
	mz = NULL;
668 669 670 671 672 673 674 675 676 677
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
678 679 680
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
716
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
717
				 enum mem_cgroup_stat_index idx)
718
{
719
	long val = 0;
720 721
	int cpu;

722 723
	get_online_cpus();
	for_each_online_cpu(cpu)
724
		val += per_cpu(memcg->stat->count[idx], cpu);
725
#ifdef CONFIG_HOTPLUG_CPU
726 727 728
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
729 730
#endif
	put_online_cpus();
731 732 733
	return val;
}

734
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
735 736 737
					 bool charge)
{
	int val = (charge) ? 1 : -1;
738
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
739 740
}

741
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
742 743 744 745 746 747
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
748
		val += per_cpu(memcg->stat->events[idx], cpu);
749
#ifdef CONFIG_HOTPLUG_CPU
750 751 752
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
753 754 755 756
#endif
	return val;
}

757
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
758
					 bool anon, int nr_pages)
759
{
760 761
	preempt_disable();

762 763 764 765 766 767
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
768
				nr_pages);
769
	else
770
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
771
				nr_pages);
772

773 774
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
775
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
776
	else {
777
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
778 779
		nr_pages = -nr_pages; /* for event */
	}
780

781
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
782

783
	preempt_enable();
784 785
}

786
unsigned long
787
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
788 789 790 791 792 793 794 795
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
796
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
797
			unsigned int lru_mask)
798 799
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
800
	enum lru_list lru;
801 802
	unsigned long ret = 0;

803
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
804

H
Hugh Dickins 已提交
805 806 807
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
808 809 810 811 812
	}
	return ret;
}

static unsigned long
813
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
814 815
			int nid, unsigned int lru_mask)
{
816 817 818
	u64 total = 0;
	int zid;

819
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
820 821
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
822

823 824
	return total;
}
825

826
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
827
			unsigned int lru_mask)
828
{
829
	int nid;
830 831
	u64 total = 0;

832
	for_each_node_state(nid, N_MEMORY)
833
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
834
	return total;
835 836
}

837 838
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
839 840 841
{
	unsigned long val, next;

842
	val = __this_cpu_read(memcg->stat->nr_page_events);
843
	next = __this_cpu_read(memcg->stat->targets[target]);
844
	/* from time_after() in jiffies.h */
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
861
	}
862
	return false;
863 864 865 866 867 868
}

/*
 * Check events in order.
 *
 */
869
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
870
{
871
	preempt_disable();
872
	/* threshold event is triggered in finer grain than soft limit */
873 874
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
875 876
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
877 878 879 880 881 882 883 884 885

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

886
		mem_cgroup_threshold(memcg);
887
		if (unlikely(do_softlimit))
888
			mem_cgroup_update_tree(memcg, page);
889
#if MAX_NUMNODES > 1
890
		if (unlikely(do_numainfo))
891
			atomic_inc(&memcg->numainfo_events);
892
#endif
893 894
	} else
		preempt_enable();
895 896
}

G
Glauber Costa 已提交
897
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
898
{
899 900
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
901 902
}

903
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
904
{
905 906 907 908 909 910 911 912
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

913
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
914 915
}

916
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
917
{
918
	struct mem_cgroup *memcg = NULL;
919 920 921

	if (!mm)
		return NULL;
922 923 924 925 926 927 928
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
929 930
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
931
			break;
932
	} while (!css_tryget(&memcg->css));
933
	rcu_read_unlock();
934
	return memcg;
935 936
}

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
957
{
958 959
	struct mem_cgroup *memcg = NULL;
	int id = 0;
960

961 962 963
	if (mem_cgroup_disabled())
		return NULL;

964 965
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
966

967 968
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
969

970 971
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
972

973 974 975 976 977
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
978

979
	while (!memcg) {
980
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
981
		struct cgroup_subsys_state *css;
982

983 984 985 986 987 988 989 990 991 992 993
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
994

995 996 997 998
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
999
				memcg = mem_cgroup_from_css(css);
1000 1001
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
1002 1003
		rcu_read_unlock();

1004 1005 1006 1007 1008 1009 1010
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1011 1012 1013 1014 1015

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1016
}
K
KAMEZAWA Hiroyuki 已提交
1017

1018 1019 1020 1021 1022 1023 1024
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1025 1026 1027 1028 1029 1030
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1031

1032 1033 1034 1035 1036 1037
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1038
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1039
	     iter != NULL;				\
1040
	     iter = mem_cgroup_iter(root, iter, NULL))
1041

1042
#define for_each_mem_cgroup(iter)			\
1043
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1044
	     iter != NULL;				\
1045
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1046

1047
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1048
{
1049
	struct mem_cgroup *memcg;
1050 1051

	rcu_read_lock();
1052 1053
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1054 1055 1056 1057
		goto out;

	switch (idx) {
	case PGFAULT:
1058 1059 1060 1061
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1062 1063 1064 1065 1066 1067 1068
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1069
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1070

1071 1072 1073
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1074
 * @memcg: memcg of the wanted lruvec
1075 1076 1077 1078 1079 1080 1081 1082 1083
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1084
	struct lruvec *lruvec;
1085

1086 1087 1088 1089
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1090 1091

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1102 1103
}

K
KAMEZAWA Hiroyuki 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1117

1118
/**
1119
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1120
 * @page: the page
1121
 * @zone: zone of the page
1122
 */
1123
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1124 1125
{
	struct mem_cgroup_per_zone *mz;
1126 1127
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1128
	struct lruvec *lruvec;
1129

1130 1131 1132 1133
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1134

K
KAMEZAWA Hiroyuki 已提交
1135
	pc = lookup_page_cgroup(page);
1136
	memcg = pc->mem_cgroup;
1137 1138

	/*
1139
	 * Surreptitiously switch any uncharged offlist page to root:
1140 1141 1142 1143 1144 1145 1146
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1147
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1148 1149
		pc->mem_cgroup = memcg = root_mem_cgroup;

1150
	mz = page_cgroup_zoneinfo(memcg, page);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1161
}
1162

1163
/**
1164 1165 1166 1167
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1168
 *
1169 1170
 * This function must be called when a page is added to or removed from an
 * lru list.
1171
 */
1172 1173
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1174 1175
{
	struct mem_cgroup_per_zone *mz;
1176
	unsigned long *lru_size;
1177 1178 1179 1180

	if (mem_cgroup_disabled())
		return;

1181 1182 1183 1184
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1185
}
1186

1187
/*
1188
 * Checks whether given mem is same or in the root_mem_cgroup's
1189 1190
 * hierarchy subtree
 */
1191 1192
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1193
{
1194 1195
	if (root_memcg == memcg)
		return true;
1196
	if (!root_memcg->use_hierarchy || !memcg)
1197
		return false;
1198 1199 1200 1201 1202 1203 1204 1205
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1206
	rcu_read_lock();
1207
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1208 1209
	rcu_read_unlock();
	return ret;
1210 1211
}

1212
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1213 1214
{
	int ret;
1215
	struct mem_cgroup *curr = NULL;
1216
	struct task_struct *p;
1217

1218
	p = find_lock_task_mm(task);
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1234 1235
	if (!curr)
		return 0;
1236
	/*
1237
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1238
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1239 1240
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1241
	 */
1242
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1243
	css_put(&curr->css);
1244 1245 1246
	return ret;
}

1247
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1248
{
1249
	unsigned long inactive_ratio;
1250
	unsigned long inactive;
1251
	unsigned long active;
1252
	unsigned long gb;
1253

1254 1255
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1256

1257 1258 1259 1260 1261 1262
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1263
	return inactive * inactive_ratio < active;
1264 1265
}

1266
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1267 1268 1269 1270
{
	unsigned long active;
	unsigned long inactive;

1271 1272
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1273 1274 1275 1276

	return (active > inactive);
}

1277 1278 1279
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1280
/**
1281
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1282
 * @memcg: the memory cgroup
1283
 *
1284
 * Returns the maximum amount of memory @mem can be charged with, in
1285
 * pages.
1286
 */
1287
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1288
{
1289 1290
	unsigned long long margin;

1291
	margin = res_counter_margin(&memcg->res);
1292
	if (do_swap_account)
1293
		margin = min(margin, res_counter_margin(&memcg->memsw));
1294
	return margin >> PAGE_SHIFT;
1295 1296
}

1297
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1298 1299 1300 1301 1302 1303 1304
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1305
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1306 1307
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1322 1323 1324 1325

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1326
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1327
{
1328
	atomic_inc(&memcg_moving);
1329
	atomic_inc(&memcg->moving_account);
1330 1331 1332
	synchronize_rcu();
}

1333
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1334
{
1335 1336 1337 1338
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1339 1340
	if (memcg) {
		atomic_dec(&memcg_moving);
1341
		atomic_dec(&memcg->moving_account);
1342
	}
1343
}
1344

1345 1346 1347
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1348 1349
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1350 1351 1352 1353 1354 1355 1356
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1357
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1358 1359
{
	VM_BUG_ON(!rcu_read_lock_held());
1360
	return atomic_read(&memcg->moving_account) > 0;
1361
}
1362

1363
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1364
{
1365 1366
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1367
	bool ret = false;
1368 1369 1370 1371 1372 1373 1374 1375 1376
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1377

1378 1379
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1380 1381
unlock:
	spin_unlock(&mc.lock);
1382 1383 1384
	return ret;
}

1385
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1386 1387
{
	if (mc.moving_task && current != mc.moving_task) {
1388
		if (mem_cgroup_under_move(memcg)) {
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1401 1402 1403 1404
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1405
 * see mem_cgroup_stolen(), too.
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1419
/**
1420
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1439
	if (!memcg || !p)
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1483 1484 1485 1486
	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1487 1488
}

1489 1490 1491 1492
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1493
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1494 1495
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1496 1497
	struct mem_cgroup *iter;

1498
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1499
		num++;
1500 1501 1502
	return num;
}

D
David Rientjes 已提交
1503 1504 1505
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1506
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1507 1508 1509
{
	u64 limit;

1510 1511
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1512
	/*
1513
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1514
	 */
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1529 1530
}

1531 1532
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1533 1534 1535 1536 1537 1538 1539
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1634 1635
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1636
 * @memcg: the target memcg
1637 1638 1639 1640 1641 1642 1643
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1644
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1645 1646
		int nid, bool noswap)
{
1647
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1648 1649 1650
		return true;
	if (noswap || !total_swap_pages)
		return false;
1651
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1652 1653 1654 1655
		return true;
	return false;

}
1656 1657 1658 1659 1660 1661 1662 1663
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1664
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1665 1666
{
	int nid;
1667 1668 1669 1670
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1671
	if (!atomic_read(&memcg->numainfo_events))
1672
		return;
1673
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1674 1675 1676
		return;

	/* make a nodemask where this memcg uses memory from */
1677
	memcg->scan_nodes = node_states[N_MEMORY];
1678

1679
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1680

1681 1682
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1683
	}
1684

1685 1686
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1701
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1702 1703 1704
{
	int node;

1705 1706
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1707

1708
	node = next_node(node, memcg->scan_nodes);
1709
	if (node == MAX_NUMNODES)
1710
		node = first_node(memcg->scan_nodes);
1711 1712 1713 1714 1715 1716 1717 1718 1719
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1720
	memcg->last_scanned_node = node;
1721 1722 1723
	return node;
}

1724 1725 1726 1727 1728 1729
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1730
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1731 1732 1733 1734 1735 1736 1737
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1738 1739
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1740
		     nid < MAX_NUMNODES;
1741
		     nid = next_node(nid, memcg->scan_nodes)) {
1742

1743
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1744 1745 1746 1747 1748 1749
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1750
	for_each_node_state(nid, N_MEMORY) {
1751
		if (node_isset(nid, memcg->scan_nodes))
1752
			continue;
1753
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1754 1755 1756 1757 1758
			return true;
	}
	return false;
}

1759
#else
1760
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1761 1762 1763
{
	return 0;
}
1764

1765
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1766
{
1767
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1768
}
1769 1770
#endif

1771 1772 1773 1774
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1775
{
1776
	struct mem_cgroup *victim = NULL;
1777
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1778
	int loop = 0;
1779
	unsigned long excess;
1780
	unsigned long nr_scanned;
1781 1782 1783 1784
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1785

1786
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1787

1788
	while (1) {
1789
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1790
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1791
			loop++;
1792 1793 1794 1795 1796 1797
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1798
				if (!total)
1799 1800
					break;
				/*
L
Lucas De Marchi 已提交
1801
				 * We want to do more targeted reclaim.
1802 1803 1804 1805 1806
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1807
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1808 1809
					break;
			}
1810
			continue;
1811
		}
1812
		if (!mem_cgroup_reclaimable(victim, false))
1813
			continue;
1814 1815 1816 1817
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1818
			break;
1819
	}
1820
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1821
	return total;
1822 1823
}

K
KAMEZAWA Hiroyuki 已提交
1824 1825 1826
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1827
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1828
 */
1829
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1830
{
1831
	struct mem_cgroup *iter, *failed = NULL;
1832

1833
	for_each_mem_cgroup_tree(iter, memcg) {
1834
		if (iter->oom_lock) {
1835 1836 1837 1838 1839
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1840 1841
			mem_cgroup_iter_break(memcg, iter);
			break;
1842 1843
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1844
	}
K
KAMEZAWA Hiroyuki 已提交
1845

1846
	if (!failed)
1847
		return true;
1848 1849 1850 1851 1852

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1853
	for_each_mem_cgroup_tree(iter, memcg) {
1854
		if (iter == failed) {
1855 1856
			mem_cgroup_iter_break(memcg, iter);
			break;
1857 1858 1859
		}
		iter->oom_lock = false;
	}
1860
	return false;
1861
}
1862

1863
/*
1864
 * Has to be called with memcg_oom_lock
1865
 */
1866
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1867
{
K
KAMEZAWA Hiroyuki 已提交
1868 1869
	struct mem_cgroup *iter;

1870
	for_each_mem_cgroup_tree(iter, memcg)
1871 1872 1873 1874
		iter->oom_lock = false;
	return 0;
}

1875
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1876 1877 1878
{
	struct mem_cgroup *iter;

1879
	for_each_mem_cgroup_tree(iter, memcg)
1880 1881 1882
		atomic_inc(&iter->under_oom);
}

1883
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1884 1885 1886
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1887 1888 1889 1890 1891
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1892
	for_each_mem_cgroup_tree(iter, memcg)
1893
		atomic_add_unless(&iter->under_oom, -1, 0);
1894 1895
}

1896
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1897 1898
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1899
struct oom_wait_info {
1900
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1901 1902 1903 1904 1905 1906
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1907 1908
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1909 1910 1911
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1912
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1913 1914

	/*
1915
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1916 1917
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1918 1919
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1920 1921 1922 1923
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1924
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1925
{
1926 1927
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1928 1929
}

1930
static void memcg_oom_recover(struct mem_cgroup *memcg)
1931
{
1932 1933
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1934 1935
}

K
KAMEZAWA Hiroyuki 已提交
1936 1937 1938
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1939 1940
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1941
{
K
KAMEZAWA Hiroyuki 已提交
1942
	struct oom_wait_info owait;
1943
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1944

1945
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1946 1947 1948 1949
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1950
	need_to_kill = true;
1951
	mem_cgroup_mark_under_oom(memcg);
1952

1953
	/* At first, try to OOM lock hierarchy under memcg.*/
1954
	spin_lock(&memcg_oom_lock);
1955
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1956 1957 1958 1959 1960
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1961
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1962
	if (!locked || memcg->oom_kill_disable)
1963 1964
		need_to_kill = false;
	if (locked)
1965
		mem_cgroup_oom_notify(memcg);
1966
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1967

1968 1969
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1970
		mem_cgroup_out_of_memory(memcg, mask, order);
1971
	} else {
K
KAMEZAWA Hiroyuki 已提交
1972
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1973
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1974
	}
1975
	spin_lock(&memcg_oom_lock);
1976
	if (locked)
1977 1978
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1979
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1980

1981
	mem_cgroup_unmark_under_oom(memcg);
1982

K
KAMEZAWA Hiroyuki 已提交
1983 1984 1985
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1986
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1987
	return true;
1988 1989
}

1990 1991 1992
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2010 2011
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2012
 */
2013

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2027
	 * need to take move_lock_mem_cgroup(). Because we already hold
2028
	 * rcu_read_lock(), any calls to move_account will be delayed until
2029
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2030
	 */
2031
	if (!mem_cgroup_stolen(memcg))
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2049
	 * should take move_lock_mem_cgroup().
2050 2051 2052 2053
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2054 2055
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2056
{
2057
	struct mem_cgroup *memcg;
2058
	struct page_cgroup *pc = lookup_page_cgroup(page);
2059
	unsigned long uninitialized_var(flags);
2060

2061
	if (mem_cgroup_disabled())
2062
		return;
2063

2064 2065
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2066
		return;
2067 2068

	switch (idx) {
2069 2070
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2071 2072 2073
		break;
	default:
		BUG();
2074
	}
2075

2076
	this_cpu_add(memcg->stat->count[idx], val);
2077
}
2078

2079 2080 2081 2082
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2083
#define CHARGE_BATCH	32U
2084 2085
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2086
	unsigned int nr_pages;
2087
	struct work_struct work;
2088
	unsigned long flags;
2089
#define FLUSHING_CACHED_CHARGE	0
2090 2091
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2092
static DEFINE_MUTEX(percpu_charge_mutex);
2093

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2104
 */
2105
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2106 2107 2108 2109
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2110 2111 2112
	if (nr_pages > CHARGE_BATCH)
		return false;

2113
	stock = &get_cpu_var(memcg_stock);
2114 2115
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2129 2130 2131 2132
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2133
		if (do_swap_account)
2134 2135
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2148
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2149 2150 2151 2152
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2153
 * This will be consumed by consume_stock() function, later.
2154
 */
2155
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2156 2157 2158
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2159
	if (stock->cached != memcg) { /* reset if necessary */
2160
		drain_stock(stock);
2161
		stock->cached = memcg;
2162
	}
2163
	stock->nr_pages += nr_pages;
2164 2165 2166 2167
	put_cpu_var(memcg_stock);
}

/*
2168
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2169 2170
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2171
 */
2172
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2173
{
2174
	int cpu, curcpu;
2175

2176 2177
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2178
	curcpu = get_cpu();
2179 2180
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2181
		struct mem_cgroup *memcg;
2182

2183 2184
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2185
			continue;
2186
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2187
			continue;
2188 2189 2190 2191 2192 2193
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2194
	}
2195
	put_cpu();
2196 2197 2198 2199 2200 2201

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2202
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2203 2204 2205
			flush_work(&stock->work);
	}
out:
2206
 	put_online_cpus();
2207 2208 2209 2210 2211 2212 2213 2214
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2215
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2216
{
2217 2218 2219 2220 2221
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2222
	drain_all_stock(root_memcg, false);
2223
	mutex_unlock(&percpu_charge_mutex);
2224 2225 2226
}

/* This is a synchronous drain interface. */
2227
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2228 2229
{
	/* called when force_empty is called */
2230
	mutex_lock(&percpu_charge_mutex);
2231
	drain_all_stock(root_memcg, true);
2232
	mutex_unlock(&percpu_charge_mutex);
2233 2234
}

2235 2236 2237 2238
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2239
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2240 2241 2242
{
	int i;

2243
	spin_lock(&memcg->pcp_counter_lock);
2244
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2245
		long x = per_cpu(memcg->stat->count[i], cpu);
2246

2247 2248
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2249
	}
2250
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2251
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2252

2253 2254
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2255
	}
2256
	spin_unlock(&memcg->pcp_counter_lock);
2257 2258 2259
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2260 2261 2262 2263 2264
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2265
	struct mem_cgroup *iter;
2266

2267
	if (action == CPU_ONLINE)
2268 2269
		return NOTIFY_OK;

2270
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2271
		return NOTIFY_OK;
2272

2273
	for_each_mem_cgroup(iter)
2274 2275
		mem_cgroup_drain_pcp_counter(iter, cpu);

2276 2277 2278 2279 2280
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2291
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2292 2293
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2294
{
2295
	unsigned long csize = nr_pages * PAGE_SIZE;
2296 2297 2298 2299 2300
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2301
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2302 2303 2304 2305

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2306
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2307 2308 2309
		if (likely(!ret))
			return CHARGE_OK;

2310
		res_counter_uncharge(&memcg->res, csize);
2311 2312 2313 2314
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2315 2316 2317 2318
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2319
	if (nr_pages > min_pages)
2320 2321 2322 2323 2324
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2325 2326 2327
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2328
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2329
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2330
		return CHARGE_RETRY;
2331
	/*
2332 2333 2334 2335 2336 2337 2338
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2339
	 */
2340
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2354
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2355 2356 2357 2358 2359
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2360
/*
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2380
 */
2381
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2382
				   gfp_t gfp_mask,
2383
				   unsigned int nr_pages,
2384
				   struct mem_cgroup **ptr,
2385
				   bool oom)
2386
{
2387
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2388
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2389
	struct mem_cgroup *memcg = NULL;
2390
	int ret;
2391

K
KAMEZAWA Hiroyuki 已提交
2392 2393 2394 2395 2396 2397 2398 2399
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2400

2401
	/*
2402 2403
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2404
	 * thread group leader migrates. It's possible that mm is not
2405
	 * set, if so charge the root memcg (happens for pagecache usage).
2406
	 */
2407
	if (!*ptr && !mm)
2408
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2409
again:
2410 2411 2412
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2413
			goto done;
2414
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2415
			goto done;
2416
		css_get(&memcg->css);
2417
	} else {
K
KAMEZAWA Hiroyuki 已提交
2418
		struct task_struct *p;
2419

K
KAMEZAWA Hiroyuki 已提交
2420 2421 2422
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2423
		 * Because we don't have task_lock(), "p" can exit.
2424
		 * In that case, "memcg" can point to root or p can be NULL with
2425 2426 2427 2428 2429 2430
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2431
		 */
2432
		memcg = mem_cgroup_from_task(p);
2433 2434 2435
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2436 2437 2438
			rcu_read_unlock();
			goto done;
		}
2439
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2452
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2453 2454 2455 2456 2457
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2458

2459 2460
	do {
		bool oom_check;
2461

2462
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2463
		if (fatal_signal_pending(current)) {
2464
			css_put(&memcg->css);
2465
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2466
		}
2467

2468 2469 2470 2471
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2472
		}
2473

2474 2475
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2476 2477 2478 2479
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2480
			batch = nr_pages;
2481 2482
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2483
			goto again;
2484
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2485
			css_put(&memcg->css);
2486 2487
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2488
			if (!oom) {
2489
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2490
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2491
			}
2492 2493 2494 2495
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2496
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2497
			goto bypass;
2498
		}
2499 2500
	} while (ret != CHARGE_OK);

2501
	if (batch > nr_pages)
2502 2503
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2504
done:
2505
	*ptr = memcg;
2506 2507
	return 0;
nomem:
2508
	*ptr = NULL;
2509
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2510
bypass:
2511 2512
	*ptr = root_mem_cgroup;
	return -EINTR;
2513
}
2514

2515 2516 2517 2518 2519
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2520
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2521
				       unsigned int nr_pages)
2522
{
2523
	if (!mem_cgroup_is_root(memcg)) {
2524 2525
		unsigned long bytes = nr_pages * PAGE_SIZE;

2526
		res_counter_uncharge(&memcg->res, bytes);
2527
		if (do_swap_account)
2528
			res_counter_uncharge(&memcg->memsw, bytes);
2529
	}
2530 2531
}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2550 2551
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2552 2553 2554
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2566
	return mem_cgroup_from_css(css);
2567 2568
}

2569
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2570
{
2571
	struct mem_cgroup *memcg = NULL;
2572
	struct page_cgroup *pc;
2573
	unsigned short id;
2574 2575
	swp_entry_t ent;

2576 2577 2578
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2579
	lock_page_cgroup(pc);
2580
	if (PageCgroupUsed(pc)) {
2581 2582 2583
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2584
	} else if (PageSwapCache(page)) {
2585
		ent.val = page_private(page);
2586
		id = lookup_swap_cgroup_id(ent);
2587
		rcu_read_lock();
2588 2589 2590
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2591
		rcu_read_unlock();
2592
	}
2593
	unlock_page_cgroup(pc);
2594
	return memcg;
2595 2596
}

2597
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2598
				       struct page *page,
2599
				       unsigned int nr_pages,
2600 2601
				       enum charge_type ctype,
				       bool lrucare)
2602
{
2603
	struct page_cgroup *pc = lookup_page_cgroup(page);
2604
	struct zone *uninitialized_var(zone);
2605
	struct lruvec *lruvec;
2606
	bool was_on_lru = false;
2607
	bool anon;
2608

2609
	lock_page_cgroup(pc);
2610
	VM_BUG_ON(PageCgroupUsed(pc));
2611 2612 2613 2614
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2615 2616 2617 2618 2619 2620 2621 2622 2623

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2624
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2625
			ClearPageLRU(page);
2626
			del_page_from_lru_list(page, lruvec, page_lru(page));
2627 2628 2629 2630
			was_on_lru = true;
		}
	}

2631
	pc->mem_cgroup = memcg;
2632 2633 2634 2635 2636 2637 2638
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2639
	smp_wmb();
2640
	SetPageCgroupUsed(pc);
2641

2642 2643
	if (lrucare) {
		if (was_on_lru) {
2644
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2645 2646
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2647
			add_page_to_lru_list(page, lruvec, page_lru(page));
2648 2649 2650 2651
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2652
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2653 2654 2655 2656 2657
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2658
	unlock_page_cgroup(pc);
2659

2660 2661 2662 2663 2664
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2665
	memcg_check_events(memcg, page);
2666
}
2667

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->kmem, size);
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
}

/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	mem_cgroup_get(memcg);

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;
	else
		mem_cgroup_put(memcg);

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		mem_cgroup_put(memcg);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
	mem_cgroup_put(memcg);
}
#endif /* CONFIG_MEMCG_KMEM */

2834 2835
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2836
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2837 2838
/*
 * Because tail pages are not marked as "used", set it. We're under
2839 2840 2841
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2842
 */
2843
void mem_cgroup_split_huge_fixup(struct page *head)
2844 2845
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2846 2847
	struct page_cgroup *pc;
	int i;
2848

2849 2850
	if (mem_cgroup_disabled())
		return;
2851 2852 2853 2854 2855 2856
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2857
}
2858
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2859

2860
/**
2861
 * mem_cgroup_move_account - move account of the page
2862
 * @page: the page
2863
 * @nr_pages: number of regular pages (>1 for huge pages)
2864 2865 2866 2867 2868
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2869
 * - page is not on LRU (isolate_page() is useful.)
2870
 * - compound_lock is held when nr_pages > 1
2871
 *
2872 2873
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2874
 */
2875 2876 2877 2878
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2879
				   struct mem_cgroup *to)
2880
{
2881 2882
	unsigned long flags;
	int ret;
2883
	bool anon = PageAnon(page);
2884

2885
	VM_BUG_ON(from == to);
2886
	VM_BUG_ON(PageLRU(page));
2887 2888 2889 2890 2891 2892 2893
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2894
	if (nr_pages > 1 && !PageTransHuge(page))
2895 2896 2897 2898 2899 2900 2901 2902
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2903
	move_lock_mem_cgroup(from, &flags);
2904

2905
	if (!anon && page_mapped(page)) {
2906 2907 2908 2909 2910
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2911
	}
2912
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2913

2914
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2915
	pc->mem_cgroup = to;
2916
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2917
	move_unlock_mem_cgroup(from, &flags);
2918 2919
	ret = 0;
unlock:
2920
	unlock_page_cgroup(pc);
2921 2922 2923
	/*
	 * check events
	 */
2924 2925
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2926
out:
2927 2928 2929
	return ret;
}

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
2950
 */
2951 2952
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2953
				  struct mem_cgroup *child)
2954 2955
{
	struct mem_cgroup *parent;
2956
	unsigned int nr_pages;
2957
	unsigned long uninitialized_var(flags);
2958 2959
	int ret;

2960
	VM_BUG_ON(mem_cgroup_is_root(child));
2961

2962 2963 2964 2965 2966
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2967

2968
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2969

2970 2971 2972 2973 2974 2975
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2976

2977 2978
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
2979
		flags = compound_lock_irqsave(page);
2980
	}
2981

2982
	ret = mem_cgroup_move_account(page, nr_pages,
2983
				pc, child, parent);
2984 2985
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2986

2987
	if (nr_pages > 1)
2988
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2989
	putback_lru_page(page);
2990
put:
2991
	put_page(page);
2992
out:
2993 2994 2995
	return ret;
}

2996 2997 2998 2999 3000 3001 3002
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3003
				gfp_t gfp_mask, enum charge_type ctype)
3004
{
3005
	struct mem_cgroup *memcg = NULL;
3006
	unsigned int nr_pages = 1;
3007
	bool oom = true;
3008
	int ret;
A
Andrea Arcangeli 已提交
3009

A
Andrea Arcangeli 已提交
3010
	if (PageTransHuge(page)) {
3011
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3012
		VM_BUG_ON(!PageTransHuge(page));
3013 3014 3015 3016 3017
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3018
	}
3019

3020
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3021
	if (ret == -ENOMEM)
3022
		return ret;
3023
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3024 3025 3026
	return 0;
}

3027 3028
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3029
{
3030
	if (mem_cgroup_disabled())
3031
		return 0;
3032 3033 3034
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3035
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3036
					MEM_CGROUP_CHARGE_TYPE_ANON);
3037 3038
}

3039 3040 3041
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3042
 * struct page_cgroup is acquired. This refcnt will be consumed by
3043 3044
 * "commit()" or removed by "cancel()"
 */
3045 3046 3047 3048
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3049
{
3050
	struct mem_cgroup *memcg;
3051
	struct page_cgroup *pc;
3052
	int ret;
3053

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3064 3065
	if (!do_swap_account)
		goto charge_cur_mm;
3066 3067
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3068
		goto charge_cur_mm;
3069 3070
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3071
	css_put(&memcg->css);
3072 3073
	if (ret == -EINTR)
		ret = 0;
3074
	return ret;
3075
charge_cur_mm:
3076 3077 3078 3079
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3080 3081
}

3082 3083 3084 3085 3086 3087
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3102 3103 3104
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3105 3106 3107 3108 3109 3110 3111 3112 3113
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3114
static void
3115
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3116
					enum charge_type ctype)
3117
{
3118
	if (mem_cgroup_disabled())
3119
		return;
3120
	if (!memcg)
3121
		return;
3122

3123
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3124 3125 3126
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3127 3128 3129
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3130
	 */
3131
	if (do_swap_account && PageSwapCache(page)) {
3132
		swp_entry_t ent = {.val = page_private(page)};
3133
		mem_cgroup_uncharge_swap(ent);
3134
	}
3135 3136
}

3137 3138
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3139
{
3140
	__mem_cgroup_commit_charge_swapin(page, memcg,
3141
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3142 3143
}

3144 3145
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3146
{
3147 3148 3149 3150
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3151
	if (mem_cgroup_disabled())
3152 3153 3154 3155 3156 3157 3158
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3159 3160
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3161 3162 3163 3164
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3165 3166
}

3167
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3168 3169
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3170 3171 3172
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3173

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3185
		batch->memcg = memcg;
3186 3187
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3188
	 * In those cases, all pages freed continuously can be expected to be in
3189 3190 3191 3192 3193 3194 3195 3196
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3197
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3198 3199
		goto direct_uncharge;

3200 3201 3202 3203 3204
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3205
	if (batch->memcg != memcg)
3206 3207
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3208
	batch->nr_pages++;
3209
	if (uncharge_memsw)
3210
		batch->memsw_nr_pages++;
3211 3212
	return;
direct_uncharge:
3213
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3214
	if (uncharge_memsw)
3215 3216 3217
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3218
}
3219

3220
/*
3221
 * uncharge if !page_mapped(page)
3222
 */
3223
static struct mem_cgroup *
3224 3225
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3226
{
3227
	struct mem_cgroup *memcg = NULL;
3228 3229
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3230
	bool anon;
3231

3232
	if (mem_cgroup_disabled())
3233
		return NULL;
3234

3235
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3236

A
Andrea Arcangeli 已提交
3237
	if (PageTransHuge(page)) {
3238
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3239 3240
		VM_BUG_ON(!PageTransHuge(page));
	}
3241
	/*
3242
	 * Check if our page_cgroup is valid
3243
	 */
3244
	pc = lookup_page_cgroup(page);
3245
	if (unlikely(!PageCgroupUsed(pc)))
3246
		return NULL;
3247

3248
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3249

3250
	memcg = pc->mem_cgroup;
3251

K
KAMEZAWA Hiroyuki 已提交
3252 3253 3254
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3255 3256
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3257
	switch (ctype) {
3258
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3259 3260 3261 3262 3263
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3264 3265
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3266
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3267
		/* See mem_cgroup_prepare_migration() */
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3289
	}
K
KAMEZAWA Hiroyuki 已提交
3290

3291
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3292

3293
	ClearPageCgroupUsed(pc);
3294 3295 3296 3297 3298 3299
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3300

3301
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3302
	/*
3303
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3304 3305
	 * will never be freed.
	 */
3306
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3307
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3308 3309
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3310
	}
3311 3312 3313 3314 3315 3316
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3317
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3318

3319
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3320 3321 3322

unlock_out:
	unlock_page_cgroup(pc);
3323
	return NULL;
3324 3325
}

3326 3327
void mem_cgroup_uncharge_page(struct page *page)
{
3328 3329 3330
	/* early check. */
	if (page_mapped(page))
		return;
3331
	VM_BUG_ON(page->mapping && !PageAnon(page));
3332 3333
	if (PageSwapCache(page))
		return;
3334
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3335 3336 3337 3338 3339
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3340
	VM_BUG_ON(page->mapping);
3341
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3342 3343
}

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3358 3359
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3380 3381 3382 3383 3384 3385
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3386
	memcg_oom_recover(batch->memcg);
3387 3388 3389 3390
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3391
#ifdef CONFIG_SWAP
3392
/*
3393
 * called after __delete_from_swap_cache() and drop "page" account.
3394 3395
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3396 3397
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3398 3399
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3400 3401 3402 3403 3404
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3405
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3406

K
KAMEZAWA Hiroyuki 已提交
3407 3408 3409 3410 3411
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3412
		swap_cgroup_record(ent, css_id(&memcg->css));
3413
}
3414
#endif
3415

A
Andrew Morton 已提交
3416
#ifdef CONFIG_MEMCG_SWAP
3417 3418 3419 3420 3421
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3422
{
3423
	struct mem_cgroup *memcg;
3424
	unsigned short id;
3425 3426 3427 3428

	if (!do_swap_account)
		return;

3429 3430 3431
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3432
	if (memcg) {
3433 3434 3435 3436
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3437
		if (!mem_cgroup_is_root(memcg))
3438
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3439
		mem_cgroup_swap_statistics(memcg, false);
3440 3441
		mem_cgroup_put(memcg);
	}
3442
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3443
}
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3460
				struct mem_cgroup *from, struct mem_cgroup *to)
3461 3462 3463 3464 3465 3466 3467 3468
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3469
		mem_cgroup_swap_statistics(to, true);
3470
		/*
3471 3472 3473 3474 3475 3476
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3477 3478 3479 3480 3481 3482 3483 3484
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3485
				struct mem_cgroup *from, struct mem_cgroup *to)
3486 3487 3488
{
	return -EINVAL;
}
3489
#endif
K
KAMEZAWA Hiroyuki 已提交
3490

3491
/*
3492 3493
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3494
 */
3495 3496
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3497
{
3498
	struct mem_cgroup *memcg = NULL;
3499
	unsigned int nr_pages = 1;
3500
	struct page_cgroup *pc;
3501
	enum charge_type ctype;
3502

3503
	*memcgp = NULL;
3504

3505
	if (mem_cgroup_disabled())
3506
		return;
3507

3508 3509 3510
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

3511 3512 3513
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3514 3515
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3547
	}
3548
	unlock_page_cgroup(pc);
3549 3550 3551 3552
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3553
	if (!memcg)
3554
		return;
3555

3556
	*memcgp = memcg;
3557 3558 3559 3560 3561 3562 3563
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3564
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3565
	else
3566
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3567 3568 3569 3570 3571
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3572
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
3573
}
3574

3575
/* remove redundant charge if migration failed*/
3576
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3577
	struct page *oldpage, struct page *newpage, bool migration_ok)
3578
{
3579
	struct page *used, *unused;
3580
	struct page_cgroup *pc;
3581
	bool anon;
3582

3583
	if (!memcg)
3584
		return;
3585

3586
	if (!migration_ok) {
3587 3588
		used = oldpage;
		unused = newpage;
3589
	} else {
3590
		used = newpage;
3591 3592
		unused = oldpage;
	}
3593
	anon = PageAnon(used);
3594 3595 3596 3597
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3598
	css_put(&memcg->css);
3599
	/*
3600 3601 3602
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3603
	 */
3604 3605 3606 3607 3608
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3609
	/*
3610 3611 3612 3613 3614 3615
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3616
	 */
3617
	if (anon)
3618
		mem_cgroup_uncharge_page(used);
3619
}
3620

3621 3622 3623 3624 3625 3626 3627 3628
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3629
	struct mem_cgroup *memcg = NULL;
3630 3631 3632 3633 3634 3635 3636 3637 3638
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3639 3640 3641 3642 3643
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3644 3645
	unlock_page_cgroup(pc);

3646 3647 3648 3649 3650 3651
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
3652 3653 3654 3655 3656
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3657
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3658 3659
}

3660 3661 3662 3663 3664 3665
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3666 3667 3668 3669 3670
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3690
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3691 3692 3693 3694 3695
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3696 3697
static DEFINE_MUTEX(set_limit_mutex);

3698
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3699
				unsigned long long val)
3700
{
3701
	int retry_count;
3702
	u64 memswlimit, memlimit;
3703
	int ret = 0;
3704 3705
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3706
	int enlarge;
3707 3708 3709 3710 3711 3712 3713 3714 3715

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3716

3717
	enlarge = 0;
3718
	while (retry_count) {
3719 3720 3721 3722
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3723 3724 3725
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3726
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3727 3728 3729 3730 3731 3732
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3733 3734
			break;
		}
3735 3736 3737 3738 3739

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3740
		ret = res_counter_set_limit(&memcg->res, val);
3741 3742 3743 3744 3745 3746
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3747 3748 3749 3750 3751
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3752 3753
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3754 3755 3756 3757 3758 3759
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3760
	}
3761 3762
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3763

3764 3765 3766
	return ret;
}

L
Li Zefan 已提交
3767 3768
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3769
{
3770
	int retry_count;
3771
	u64 memlimit, memswlimit, oldusage, curusage;
3772 3773
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3774
	int enlarge = 0;
3775

3776 3777 3778
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3779 3780 3781 3782 3783 3784 3785 3786
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3787
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3788 3789 3790 3791 3792 3793 3794 3795
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3796 3797 3798
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3799
		ret = res_counter_set_limit(&memcg->memsw, val);
3800 3801 3802 3803 3804 3805
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3806 3807 3808 3809 3810
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3811 3812 3813
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3814
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3815
		/* Usage is reduced ? */
3816
		if (curusage >= oldusage)
3817
			retry_count--;
3818 3819
		else
			oldusage = curusage;
3820
	}
3821 3822
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3823 3824 3825
	return ret;
}

3826
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3827 3828
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3829 3830 3831 3832 3833 3834
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3835
	unsigned long long excess;
3836
	unsigned long nr_scanned;
3837 3838 3839 3840

	if (order > 0)
		return 0;

3841
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3855
		nr_scanned = 0;
3856
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3857
						    gfp_mask, &nr_scanned);
3858
		nr_reclaimed += reclaimed;
3859
		*total_scanned += nr_scanned;
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3882
				if (next_mz == mz)
3883
					css_put(&next_mz->memcg->css);
3884
				else /* next_mz == NULL or other memcg */
3885 3886 3887
					break;
			} while (1);
		}
3888 3889
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3890 3891 3892 3893 3894 3895 3896 3897
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3898
		/* If excess == 0, no tree ops */
3899
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3900
		spin_unlock(&mctz->lock);
3901
		css_put(&mz->memcg->css);
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3914
		css_put(&next_mz->memcg->css);
3915 3916 3917
	return nr_reclaimed;
}

3918 3919 3920 3921 3922 3923 3924
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
3925
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3926 3927
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
3928
 */
3929
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3930
				int node, int zid, enum lru_list lru)
3931
{
3932
	struct lruvec *lruvec;
3933
	unsigned long flags;
3934
	struct list_head *list;
3935 3936
	struct page *busy;
	struct zone *zone;
3937

K
KAMEZAWA Hiroyuki 已提交
3938
	zone = &NODE_DATA(node)->node_zones[zid];
3939 3940
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3941

3942
	busy = NULL;
3943
	do {
3944
		struct page_cgroup *pc;
3945 3946
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3947
		spin_lock_irqsave(&zone->lru_lock, flags);
3948
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3949
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3950
			break;
3951
		}
3952 3953 3954
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3955
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3956
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3957 3958
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3959
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3960

3961
		pc = lookup_page_cgroup(page);
3962

3963
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3964
			/* found lock contention or "pc" is obsolete. */
3965
			busy = page;
3966 3967 3968
			cond_resched();
		} else
			busy = NULL;
3969
	} while (!list_empty(list));
3970 3971 3972
}

/*
3973 3974
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
3975
 * This enables deleting this mem_cgroup.
3976 3977
 *
 * Caller is responsible for holding css reference on the memcg.
3978
 */
3979
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3980
{
3981
	int node, zid;
3982

3983
	do {
3984 3985
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3986 3987
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
3988
		for_each_node_state(node, N_MEMORY) {
3989
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3990 3991
				enum lru_list lru;
				for_each_lru(lru) {
3992
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3993
							node, zid, lru);
3994
				}
3995
			}
3996
		}
3997 3998
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3999
		cond_resched();
4000

4001 4002 4003 4004 4005 4006 4007 4008
		/*
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4021

4022
	/* returns EBUSY if there is a task or if we come here twice. */
4023 4024 4025
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4026 4027
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4028
	/* try to free all pages in this cgroup */
4029
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4030
		int progress;
4031

4032 4033 4034
		if (signal_pending(current))
			return -EINTR;

4035
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4036
						false);
4037
		if (!progress) {
4038
			nr_retries--;
4039
			/* maybe some writeback is necessary */
4040
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4041
		}
4042 4043

	}
K
KAMEZAWA Hiroyuki 已提交
4044
	lru_add_drain();
4045 4046 4047
	mem_cgroup_reparent_charges(memcg);

	return 0;
4048 4049
}

4050
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4051
{
4052 4053 4054
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4055 4056
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4057 4058 4059 4060 4061
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4062 4063 4064
}


4065 4066 4067 4068 4069 4070 4071 4072 4073
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4074
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4075
	struct cgroup *parent = cont->parent;
4076
	struct mem_cgroup *parent_memcg = NULL;
4077 4078

	if (parent)
4079
		parent_memcg = mem_cgroup_from_cont(parent);
4080 4081

	cgroup_lock();
4082 4083 4084 4085

	if (memcg->use_hierarchy == val)
		goto out;

4086
	/*
4087
	 * If parent's use_hierarchy is set, we can't make any modifications
4088 4089 4090 4091 4092 4093
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4094
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4095 4096
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
4097
			memcg->use_hierarchy = val;
4098 4099 4100 4101
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4102 4103

out:
4104 4105 4106 4107 4108
	cgroup_unlock();

	return retval;
}

4109

4110
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4111
					       enum mem_cgroup_stat_index idx)
4112
{
K
KAMEZAWA Hiroyuki 已提交
4113
	struct mem_cgroup *iter;
4114
	long val = 0;
4115

4116
	/* Per-cpu values can be negative, use a signed accumulator */
4117
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4118 4119 4120 4121 4122
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4123 4124
}

4125
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4126
{
K
KAMEZAWA Hiroyuki 已提交
4127
	u64 val;
4128

4129
	if (!mem_cgroup_is_root(memcg)) {
4130
		if (!swap)
4131
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4132
		else
4133
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4134 4135
	}

4136 4137
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4138

K
KAMEZAWA Hiroyuki 已提交
4139
	if (swap)
4140
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4141 4142 4143 4144

	return val << PAGE_SHIFT;
}

4145 4146 4147
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4148
{
4149
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4150
	char str[64];
4151
	u64 val;
G
Glauber Costa 已提交
4152 4153
	int name, len;
	enum res_type type;
4154 4155 4156

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4157 4158 4159 4160

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4161 4162
	switch (type) {
	case _MEM:
4163
		if (name == RES_USAGE)
4164
			val = mem_cgroup_usage(memcg, false);
4165
		else
4166
			val = res_counter_read_u64(&memcg->res, name);
4167 4168
		break;
	case _MEMSWAP:
4169
		if (name == RES_USAGE)
4170
			val = mem_cgroup_usage(memcg, true);
4171
		else
4172
			val = res_counter_read_u64(&memcg->memsw, name);
4173
		break;
4174 4175 4176
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4177 4178 4179
	default:
		BUG();
	}
4180 4181 4182

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4183
}
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 *
	 * Taking the cgroup_lock is really offensive, but it is so far the only
	 * way to guarantee that no children will appear. There are plenty of
	 * other offenders, and they should all go away. Fine grained locking
	 * is probably the way to go here. When we are fully hierarchical, we
	 * can also get rid of the use_hierarchy check.
	 */
	cgroup_lock();
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
						!list_empty(&cont->children))) {
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

		memcg_kmem_set_active(memcg);
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
	cgroup_unlock();
#endif
	return ret;
}

static void memcg_propagate_kmem(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
		return;
	memcg->kmem_account_flags = parent->kmem_account_flags;
}

4237 4238 4239 4240
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4241 4242
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
4243
{
4244
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4245 4246
	enum res_type type;
	int name;
4247 4248 4249
	unsigned long long val;
	int ret;

4250 4251
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4252 4253 4254 4255

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4256
	switch (name) {
4257
	case RES_LIMIT:
4258 4259 4260 4261
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4262 4263
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4264 4265 4266
		if (ret)
			break;
		if (type == _MEM)
4267
			ret = mem_cgroup_resize_limit(memcg, val);
4268
		else if (type == _MEMSWAP)
4269
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4270 4271 4272 4273
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
4274
		break;
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4289 4290 4291 4292 4293
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4294 4295
}

4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4323
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4324
{
4325
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4326 4327
	int name;
	enum res_type type;
4328

4329 4330
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4331 4332 4333 4334

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4335
	switch (name) {
4336
	case RES_MAX_USAGE:
4337
		if (type == _MEM)
4338
			res_counter_reset_max(&memcg->res);
4339
		else if (type == _MEMSWAP)
4340
			res_counter_reset_max(&memcg->memsw);
4341 4342 4343 4344
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
4345 4346
		break;
	case RES_FAILCNT:
4347
		if (type == _MEM)
4348
			res_counter_reset_failcnt(&memcg->res);
4349
		else if (type == _MEMSWAP)
4350
			res_counter_reset_failcnt(&memcg->memsw);
4351 4352 4353 4354
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
4355 4356
		break;
	}
4357

4358
	return 0;
4359 4360
}

4361 4362 4363 4364 4365 4366
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4367
#ifdef CONFIG_MMU
4368 4369 4370
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4371
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4372 4373 4374 4375 4376 4377 4378 4379 4380

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4381
	memcg->move_charge_at_immigrate = val;
4382 4383 4384 4385
	cgroup_unlock();

	return 0;
}
4386 4387 4388 4389 4390 4391 4392
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4393

4394
#ifdef CONFIG_NUMA
4395
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4396
				      struct seq_file *m)
4397 4398 4399 4400
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4401
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4402

4403
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4404
	seq_printf(m, "total=%lu", total_nr);
4405
	for_each_node_state(nid, N_MEMORY) {
4406
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4407 4408 4409 4410
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4411
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4412
	seq_printf(m, "file=%lu", file_nr);
4413
	for_each_node_state(nid, N_MEMORY) {
4414
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4415
				LRU_ALL_FILE);
4416 4417 4418 4419
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4420
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4421
	seq_printf(m, "anon=%lu", anon_nr);
4422
	for_each_node_state(nid, N_MEMORY) {
4423
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4424
				LRU_ALL_ANON);
4425 4426 4427 4428
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4429
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4430
	seq_printf(m, "unevictable=%lu", unevictable_nr);
4431
	for_each_node_state(nid, N_MEMORY) {
4432
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4433
				BIT(LRU_UNEVICTABLE));
4434 4435 4436 4437 4438 4439 4440
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4454
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4455
				 struct seq_file *m)
4456
{
4457
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4458 4459
	struct mem_cgroup *mi;
	unsigned int i;
4460

4461
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4462
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4463
			continue;
4464 4465
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4466
	}
L
Lee Schermerhorn 已提交
4467

4468 4469 4470 4471 4472 4473 4474 4475
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4476
	/* Hierarchical information */
4477 4478
	{
		unsigned long long limit, memsw_limit;
4479
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4480
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4481
		if (do_swap_account)
4482 4483
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4484
	}
K
KOSAKI Motohiro 已提交
4485

4486 4487 4488
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4489
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4490
			continue;
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4511
	}
K
KAMEZAWA Hiroyuki 已提交
4512

K
KOSAKI Motohiro 已提交
4513 4514 4515 4516
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4517
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4518 4519 4520 4521 4522
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4523
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4524
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4525

4526 4527 4528 4529
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4530
			}
4531 4532 4533 4534
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4535 4536 4537
	}
#endif

4538 4539 4540
	return 0;
}

K
KOSAKI Motohiro 已提交
4541 4542 4543 4544
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4545
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4546 4547 4548 4549 4550 4551 4552
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4553

K
KOSAKI Motohiro 已提交
4554 4555 4556 4557 4558 4559 4560
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4561 4562 4563

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4564 4565
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4566 4567
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4568
		return -EINVAL;
4569
	}
K
KOSAKI Motohiro 已提交
4570 4571 4572

	memcg->swappiness = val;

4573 4574
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4575 4576 4577
	return 0;
}

4578 4579 4580 4581 4582 4583 4584 4585
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4586
		t = rcu_dereference(memcg->thresholds.primary);
4587
	else
4588
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4589 4590 4591 4592 4593 4594 4595

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4596
	 * current_threshold points to threshold just below or equal to usage.
4597 4598 4599
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4600
	i = t->current_threshold;
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4624
	t->current_threshold = i - 1;
4625 4626 4627 4628 4629 4630
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4631 4632 4633 4634 4635 4636 4637
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4648
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4649 4650 4651
{
	struct mem_cgroup_eventfd_list *ev;

4652
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4653 4654 4655 4656
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4657
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4658
{
K
KAMEZAWA Hiroyuki 已提交
4659 4660
	struct mem_cgroup *iter;

4661
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4662
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4663 4664 4665 4666
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4667 4668
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4669 4670
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
4671
	enum res_type type = MEMFILE_TYPE(cft->private);
4672
	u64 threshold, usage;
4673
	int i, size, ret;
4674 4675 4676 4677 4678 4679

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4680

4681
	if (type == _MEM)
4682
		thresholds = &memcg->thresholds;
4683
	else if (type == _MEMSWAP)
4684
		thresholds = &memcg->memsw_thresholds;
4685 4686 4687 4688 4689 4690
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4691
	if (thresholds->primary)
4692 4693
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4694
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4695 4696

	/* Allocate memory for new array of thresholds */
4697
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4698
			GFP_KERNEL);
4699
	if (!new) {
4700 4701 4702
		ret = -ENOMEM;
		goto unlock;
	}
4703
	new->size = size;
4704 4705

	/* Copy thresholds (if any) to new array */
4706 4707
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4708
				sizeof(struct mem_cgroup_threshold));
4709 4710
	}

4711
	/* Add new threshold */
4712 4713
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4714 4715

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4716
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4717 4718 4719
			compare_thresholds, NULL);

	/* Find current threshold */
4720
	new->current_threshold = -1;
4721
	for (i = 0; i < size; i++) {
4722
		if (new->entries[i].threshold <= usage) {
4723
			/*
4724 4725
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4726 4727
			 * it here.
			 */
4728
			++new->current_threshold;
4729 4730
		} else
			break;
4731 4732
	}

4733 4734 4735 4736 4737
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4738

4739
	/* To be sure that nobody uses thresholds */
4740 4741 4742 4743 4744 4745 4746 4747
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4748
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4749
	struct cftype *cft, struct eventfd_ctx *eventfd)
4750 4751
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4752 4753
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
4754
	enum res_type type = MEMFILE_TYPE(cft->private);
4755
	u64 usage;
4756
	int i, j, size;
4757 4758 4759

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4760
		thresholds = &memcg->thresholds;
4761
	else if (type == _MEMSWAP)
4762
		thresholds = &memcg->memsw_thresholds;
4763 4764 4765
	else
		BUG();

4766 4767 4768
	if (!thresholds->primary)
		goto unlock;

4769 4770 4771 4772 4773 4774
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4775 4776 4777
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4778 4779 4780
			size++;
	}

4781
	new = thresholds->spare;
4782

4783 4784
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4785 4786
		kfree(new);
		new = NULL;
4787
		goto swap_buffers;
4788 4789
	}

4790
	new->size = size;
4791 4792

	/* Copy thresholds and find current threshold */
4793 4794 4795
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4796 4797
			continue;

4798
		new->entries[j] = thresholds->primary->entries[i];
4799
		if (new->entries[j].threshold <= usage) {
4800
			/*
4801
			 * new->current_threshold will not be used
4802 4803 4804
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4805
			++new->current_threshold;
4806 4807 4808 4809
		}
		j++;
	}

4810
swap_buffers:
4811 4812
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4813 4814 4815 4816 4817 4818
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4819
	rcu_assign_pointer(thresholds->primary, new);
4820

4821
	/* To be sure that nobody uses thresholds */
4822
	synchronize_rcu();
4823
unlock:
4824 4825
	mutex_unlock(&memcg->thresholds_lock);
}
4826

K
KAMEZAWA Hiroyuki 已提交
4827 4828 4829 4830 4831
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
4832
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
4833 4834 4835 4836 4837 4838

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4839
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4840 4841 4842 4843 4844

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4845
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4846
		eventfd_signal(eventfd, 1);
4847
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4848 4849 4850 4851

	return 0;
}

4852
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4853 4854
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4855
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4856
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
4857
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
4858 4859 4860

	BUG_ON(type != _OOM_TYPE);

4861
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4862

4863
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4864 4865 4866 4867 4868 4869
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4870
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4871 4872
}

4873 4874 4875
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4876
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4877

4878
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4879

4880
	if (atomic_read(&memcg->under_oom))
4881 4882 4883 4884 4885 4886 4887 4888 4889
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4890
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4902
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4903 4904 4905
		cgroup_unlock();
		return -EINVAL;
	}
4906
	memcg->oom_kill_disable = val;
4907
	if (!val)
4908
		memcg_oom_recover(memcg);
4909 4910 4911 4912
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
4913
#ifdef CONFIG_MEMCG_KMEM
4914
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4915
{
4916
	memcg_propagate_kmem(memcg);
4917
	return mem_cgroup_sockets_init(memcg, ss);
4918 4919
};

4920
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4921
{
4922
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4923
}
4924
#else
4925
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4926 4927 4928
{
	return 0;
}
G
Glauber Costa 已提交
4929

4930
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4931 4932
{
}
4933 4934
#endif

B
Balbir Singh 已提交
4935 4936
static struct cftype mem_cgroup_files[] = {
	{
4937
		.name = "usage_in_bytes",
4938
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4939
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4940 4941
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4942
	},
4943 4944
	{
		.name = "max_usage_in_bytes",
4945
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4946
		.trigger = mem_cgroup_reset,
4947
		.read = mem_cgroup_read,
4948
	},
B
Balbir Singh 已提交
4949
	{
4950
		.name = "limit_in_bytes",
4951
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4952
		.write_string = mem_cgroup_write,
4953
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4954
	},
4955 4956 4957 4958
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4959
		.read = mem_cgroup_read,
4960
	},
B
Balbir Singh 已提交
4961 4962
	{
		.name = "failcnt",
4963
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4964
		.trigger = mem_cgroup_reset,
4965
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4966
	},
4967 4968
	{
		.name = "stat",
4969
		.read_seq_string = memcg_stat_show,
4970
	},
4971 4972 4973 4974
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4975 4976 4977 4978 4979
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4980 4981 4982 4983 4984
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4985 4986 4987 4988 4989
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4990 4991
	{
		.name = "oom_control",
4992 4993
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4994 4995 4996 4997
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4998 4999 5000
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5001
		.read_seq_string = memcg_numa_stat_show,
5002 5003
	},
#endif
A
Andrew Morton 已提交
5004
#ifdef CONFIG_MEMCG_SWAP
5005 5006 5007
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5008
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5009 5010
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
5011 5012 5013 5014 5015
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
5016
		.read = mem_cgroup_read,
5017 5018 5019 5020 5021
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
5022
		.read = mem_cgroup_read,
5023 5024 5025 5026 5027
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
5028
		.read = mem_cgroup_read,
5029
	},
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
#endif
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5055
#endif
5056
	{ },	/* terminate */
5057
};
5058

5059
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5060 5061
{
	struct mem_cgroup_per_node *pn;
5062
	struct mem_cgroup_per_zone *mz;
5063
	int zone, tmp = node;
5064 5065 5066 5067 5068 5069 5070 5071
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5072 5073
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5074
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5075 5076
	if (!pn)
		return 1;
5077 5078 5079

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5080
		lruvec_init(&mz->lruvec);
5081
		mz->usage_in_excess = 0;
5082
		mz->on_tree = false;
5083
		mz->memcg = memcg;
5084
	}
5085
	memcg->info.nodeinfo[node] = pn;
5086 5087 5088
	return 0;
}

5089
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5090
{
5091
	kfree(memcg->info.nodeinfo[node]);
5092 5093
}

5094 5095
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5096
	struct mem_cgroup *memcg;
5097
	int size = sizeof(struct mem_cgroup);
5098

5099
	/* Can be very big if MAX_NUMNODES is very big */
5100
	if (size < PAGE_SIZE)
5101
		memcg = kzalloc(size, GFP_KERNEL);
5102
	else
5103
		memcg = vzalloc(size);
5104

5105
	if (!memcg)
5106 5107
		return NULL;

5108 5109
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5110
		goto out_free;
5111 5112
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5113 5114 5115

out_free:
	if (size < PAGE_SIZE)
5116
		kfree(memcg);
5117
	else
5118
		vfree(memcg);
5119
	return NULL;
5120 5121
}

5122
/*
5123
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
5124 5125 5126
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
5127
static void free_work(struct work_struct *work)
5128 5129
{
	struct mem_cgroup *memcg;
5130
	int size = sizeof(struct mem_cgroup);
5131 5132

	memcg = container_of(work, struct mem_cgroup, work_freeing);
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
5145 5146 5147 5148
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5149
}
5150 5151

static void free_rcu(struct rcu_head *rcu_head)
5152 5153 5154 5155
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
5156
	INIT_WORK(&memcg->work_freeing, free_work);
5157 5158 5159
	schedule_work(&memcg->work_freeing);
}

5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

5171
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5172
{
K
KAMEZAWA Hiroyuki 已提交
5173 5174
	int node;

5175 5176
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
5177

B
Bob Liu 已提交
5178
	for_each_node(node)
5179
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
5180

5181
	free_percpu(memcg->stat);
5182
	call_rcu(&memcg->rcu_freeing, free_rcu);
5183 5184
}

5185
static void mem_cgroup_get(struct mem_cgroup *memcg)
5186
{
5187
	atomic_inc(&memcg->refcnt);
5188 5189
}

5190
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
5191
{
5192 5193 5194
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
5195 5196 5197
		if (parent)
			mem_cgroup_put(parent);
	}
5198 5199
}

5200
static void mem_cgroup_put(struct mem_cgroup *memcg)
5201
{
5202
	__mem_cgroup_put(memcg, 1);
5203 5204
}

5205 5206 5207
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5208
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5209
{
5210
	if (!memcg->res.parent)
5211
		return NULL;
5212
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5213
}
G
Glauber Costa 已提交
5214
EXPORT_SYMBOL(parent_mem_cgroup);
5215

A
Andrew Morton 已提交
5216
#ifdef CONFIG_MEMCG_SWAP
5217 5218
static void __init enable_swap_cgroup(void)
{
5219
	if (!mem_cgroup_disabled() && really_do_swap_account)
5220 5221 5222 5223 5224 5225 5226 5227
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5228 5229 5230 5231 5232 5233
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
5234
	for_each_node(node) {
5235 5236 5237 5238 5239
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
5240
			goto err_cleanup;
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
5251 5252

err_cleanup:
B
Bob Liu 已提交
5253
	for_each_node(node) {
5254 5255 5256 5257 5258 5259 5260
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

5261 5262
}

L
Li Zefan 已提交
5263
static struct cgroup_subsys_state * __ref
5264
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
5265
{
5266
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
5267
	long error = -ENOMEM;
5268
	int node;
B
Balbir Singh 已提交
5269

5270 5271
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5272
		return ERR_PTR(error);
5273

B
Bob Liu 已提交
5274
	for_each_node(node)
5275
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5276
			goto free_out;
5277

5278
	/* root ? */
5279
	if (cont->parent == NULL) {
5280
		int cpu;
5281
		enable_swap_cgroup();
5282
		parent = NULL;
5283 5284
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5285
		root_mem_cgroup = memcg;
5286 5287 5288 5289 5290
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5291
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5292
	} else {
5293
		parent = mem_cgroup_from_cont(cont->parent);
5294 5295
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5296
	}
5297

5298
	if (parent && parent->use_hierarchy) {
5299 5300
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5301
		res_counter_init(&memcg->kmem, &parent->kmem);
5302 5303 5304 5305 5306 5307 5308
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5309
	} else {
5310 5311
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5312
		res_counter_init(&memcg->kmem, NULL);
5313 5314 5315 5316 5317 5318 5319
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
5320
	}
5321 5322
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5323

K
KOSAKI Motohiro 已提交
5324
	if (parent)
5325 5326 5327 5328
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5329
	spin_lock_init(&memcg->move_lock);
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5341
	return &memcg->css;
5342
free_out:
5343
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5344
	return ERR_PTR(error);
B
Balbir Singh 已提交
5345 5346
}

5347
static void mem_cgroup_css_offline(struct cgroup *cont)
5348
{
5349
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5350

5351
	mem_cgroup_reparent_charges(memcg);
5352 5353
}

5354
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
5355
{
5356
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5357

5358
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5359

5360
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5361 5362
}

5363
#ifdef CONFIG_MMU
5364
/* Handlers for move charge at task migration. */
5365 5366
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5367
{
5368 5369
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5370
	struct mem_cgroup *memcg = mc.to;
5371

5372
	if (mem_cgroup_is_root(memcg)) {
5373 5374 5375 5376 5377 5378 5379 5380
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5381
		 * "memcg" cannot be under rmdir() because we've already checked
5382 5383 5384 5385
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5386
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5387
			goto one_by_one;
5388
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5389
						PAGE_SIZE * count, &dummy)) {
5390
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5407 5408
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5409
		if (ret)
5410
			/* mem_cgroup_clear_mc() will do uncharge later */
5411
			return ret;
5412 5413
		mc.precharge++;
	}
5414 5415 5416 5417
	return ret;
}

/**
5418
 * get_mctgt_type - get target type of moving charge
5419 5420 5421
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5422
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5423 5424 5425 5426 5427 5428
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5429 5430 5431
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5432 5433 5434 5435 5436
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5437
	swp_entry_t	ent;
5438 5439 5440
};

enum mc_target_type {
5441
	MC_TARGET_NONE = 0,
5442
	MC_TARGET_PAGE,
5443
	MC_TARGET_SWAP,
5444 5445
};

D
Daisuke Nishimura 已提交
5446 5447
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5448
{
D
Daisuke Nishimura 已提交
5449
	struct page *page = vm_normal_page(vma, addr, ptent);
5450

D
Daisuke Nishimura 已提交
5451 5452 5453 5454
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5455
		if (!move_anon())
D
Daisuke Nishimura 已提交
5456
			return NULL;
5457 5458
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5459 5460 5461 5462 5463 5464 5465
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5466
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5467 5468 5469 5470 5471 5472 5473 5474
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5475 5476 5477 5478 5479
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5480 5481 5482 5483 5484
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5485 5486 5487 5488 5489 5490 5491
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5492

5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5512 5513 5514 5515 5516 5517
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5518
		if (do_swap_account)
5519 5520
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5521
	}
5522
#endif
5523 5524 5525
	return page;
}

5526
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5527 5528 5529 5530
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5531
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5532 5533 5534 5535 5536 5537
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5538 5539
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5540 5541

	if (!page && !ent.val)
5542
		return ret;
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5558 5559
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5560
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5561 5562 5563
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5564 5565 5566 5567
	}
	return ret;
}

5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5603 5604 5605 5606 5607 5608 5609 5610
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5611 5612 5613 5614
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5615
		return 0;
5616
	}
5617

5618 5619
	if (pmd_trans_unstable(pmd))
		return 0;
5620 5621
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5622
		if (get_mctgt_type(vma, addr, *pte, NULL))
5623 5624 5625 5626
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5627 5628 5629
	return 0;
}

5630 5631 5632 5633 5634
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5635
	down_read(&mm->mmap_sem);
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5647
	up_read(&mm->mmap_sem);
5648 5649 5650 5651 5652 5653 5654 5655 5656

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5657 5658 5659 5660 5661
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5662 5663
}

5664 5665
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5666
{
5667 5668 5669
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5670
	/* we must uncharge all the leftover precharges from mc.to */
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5682
	}
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5717
	spin_lock(&mc.lock);
5718 5719
	mc.from = NULL;
	mc.to = NULL;
5720
	spin_unlock(&mc.lock);
5721
	mem_cgroup_end_move(from);
5722 5723
}

5724 5725
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5726
{
5727
	struct task_struct *p = cgroup_taskset_first(tset);
5728
	int ret = 0;
5729
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5730

5731
	if (memcg->move_charge_at_immigrate) {
5732 5733 5734
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5735
		VM_BUG_ON(from == memcg);
5736 5737 5738 5739 5740

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5741 5742 5743 5744
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5745
			VM_BUG_ON(mc.moved_charge);
5746
			VM_BUG_ON(mc.moved_swap);
5747
			mem_cgroup_start_move(from);
5748
			spin_lock(&mc.lock);
5749
			mc.from = from;
5750
			mc.to = memcg;
5751
			spin_unlock(&mc.lock);
5752
			/* We set mc.moving_task later */
5753 5754 5755 5756

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5757 5758
		}
		mmput(mm);
5759 5760 5761 5762
	}
	return ret;
}

5763 5764
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5765
{
5766
	mem_cgroup_clear_mc();
5767 5768
}

5769 5770 5771
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5772
{
5773 5774 5775 5776
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5777 5778 5779 5780
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5781

5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5793
		if (mc.precharge < HPAGE_PMD_NR) {
5794 5795 5796 5797 5798 5799 5800 5801 5802
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5803
							pc, mc.from, mc.to)) {
5804 5805 5806 5807 5808 5809 5810 5811
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5812
		return 0;
5813 5814
	}

5815 5816
	if (pmd_trans_unstable(pmd))
		return 0;
5817 5818 5819 5820
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5821
		swp_entry_t ent;
5822 5823 5824 5825

		if (!mc.precharge)
			break;

5826
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5827 5828 5829 5830 5831
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5832
			if (!mem_cgroup_move_account(page, 1, pc,
5833
						     mc.from, mc.to)) {
5834
				mc.precharge--;
5835 5836
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5837 5838
			}
			putback_lru_page(page);
5839
put:			/* get_mctgt_type() gets the page */
5840 5841
			put_page(page);
			break;
5842 5843
		case MC_TARGET_SWAP:
			ent = target.ent;
5844
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5845
				mc.precharge--;
5846 5847 5848
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5849
			break;
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5864
		ret = mem_cgroup_do_precharge(1);
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5908
	up_read(&mm->mmap_sem);
5909 5910
}

5911 5912
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5913
{
5914
	struct task_struct *p = cgroup_taskset_first(tset);
5915
	struct mm_struct *mm = get_task_mm(p);
5916 5917

	if (mm) {
5918 5919
		if (mc.to)
			mem_cgroup_move_charge(mm);
5920 5921
		mmput(mm);
	}
5922 5923
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5924
}
5925
#else	/* !CONFIG_MMU */
5926 5927
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5928 5929 5930
{
	return 0;
}
5931 5932
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5933 5934
{
}
5935 5936
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5937 5938 5939
{
}
#endif
B
Balbir Singh 已提交
5940

B
Balbir Singh 已提交
5941 5942 5943
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
5944 5945 5946
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5947 5948
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5949
	.attach = mem_cgroup_move_task,
5950
	.base_cftypes = mem_cgroup_files,
5951
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5952
	.use_id = 1,
B
Balbir Singh 已提交
5953
};
5954

A
Andrew Morton 已提交
5955
#ifdef CONFIG_MEMCG_SWAP
5956 5957 5958
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5959
	if (!strcmp(s, "1"))
5960
		really_do_swap_account = 1;
5961
	else if (!strcmp(s, "0"))
5962 5963 5964
		really_do_swap_account = 0;
	return 1;
}
5965
__setup("swapaccount=", enable_swap_account);
5966 5967

#endif