memcontrol.c 178.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130 131
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147 148 149 150 151 152
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

153 154 155 156
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
157
	struct lruvec		lruvec;
158
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
159

160 161
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

162 163 164 165
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
166
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
167
						/* use container_of	   */
168 169 170 171 172 173 174 175 176 177
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

198 199 200 201 202
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
203
/* For threshold */
204
struct mem_cgroup_threshold_ary {
205
	/* An array index points to threshold just below or equal to usage. */
206
	int current_threshold;
207 208 209 210 211
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
212 213 214 215 216 217 218 219 220 221 222 223

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
224 225 226 227 228
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
229

230 231
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
232

B
Balbir Singh 已提交
233 234 235 236 237 238 239
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 241 242
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
243 244 245 246 247 248 249
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
268 269
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
270 271 272 273
		 */
		struct work_struct work_freeing;
	};

274 275 276 277
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
278 279 280 281
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
282
	struct mem_cgroup_lru_info info;
283 284 285
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
286 287
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
288
#endif
289 290 291 292
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
293
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
294 295 296 297

	bool		oom_lock;
	atomic_t	under_oom;

298
	atomic_t	refcnt;
299

300
	int	swappiness;
301 302
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
303

304 305 306
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

307 308 309 310
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
311
	struct mem_cgroup_thresholds thresholds;
312

313
	/* thresholds for mem+swap usage. RCU-protected */
314
	struct mem_cgroup_thresholds memsw_thresholds;
315

K
KAMEZAWA Hiroyuki 已提交
316 317
	/* For oom notifier event fd */
	struct list_head oom_notify;
318

319 320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
324 325 326 327
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
328 329
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
330
	/*
331
	 * percpu counter.
332
	 */
333
	struct mem_cgroup_stat_cpu __percpu *stat;
334 335 336 337 338 339
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
340

M
Michal Hocko 已提交
341
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
342 343
	struct tcp_memcontrol tcp_mem;
#endif
344 345 346 347 348 349 350 351
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
B
Balbir Singh 已提交
352 353
};

354 355 356
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
357
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
358
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
359 360
};

361 362 363
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
364 365 366 367 368 369

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
370 371 372 373 374 375

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

376 377 378 379 380
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

381 382 383 384 385
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

386 387 388 389 390 391 392 393 394 395 396
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
397 398
#endif

399 400 401 402 403 404
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
405
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
406
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
407 408 409
	NR_MOVE_TYPE,
};

410 411
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
412
	spinlock_t	  lock; /* for from, to */
413 414 415
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
416
	unsigned long moved_charge;
417
	unsigned long moved_swap;
418 419 420
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
421
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
422 423
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
424

D
Daisuke Nishimura 已提交
425 426 427 428 429 430
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

431 432 433 434 435 436
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

437 438 439 440
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
441 442
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
443

444 445
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
446
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
447
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
448
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
449 450 451
	NR_CHARGE_TYPE,
};

452
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
453 454 455 456
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
457
	_KMEM,
G
Glauber Costa 已提交
458 459
};

460 461
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
462
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
463 464
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
465

466 467 468 469 470 471 472 473
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

474 475
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
476

477 478 479 480 481 482
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

483 484 485 486 487
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
488
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
489
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
490 491 492

void sock_update_memcg(struct sock *sk)
{
493
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
494
		struct mem_cgroup *memcg;
495
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
496 497 498

		BUG_ON(!sk->sk_prot->proto_cgroup);

499 500 501 502 503 504 505 506 507 508 509 510 511 512
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
513 514
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
515 516
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
517
			mem_cgroup_get(memcg);
518
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
519 520 521 522 523 524 525 526
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
527
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
528 529 530 531 532 533
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
534 535 536 537 538 539 540 541 542

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
543

544 545 546 547 548 549 550 551 552 553 554 555
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

556
#ifdef CONFIG_MEMCG_KMEM
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
575 576
int memcg_limited_groups_array_size;

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

592 593 594 595 596 597
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
598
struct static_key memcg_kmem_enabled_key;
599
EXPORT_SYMBOL(memcg_kmem_enabled_key);
600 601 602

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
603
	if (memcg_kmem_is_active(memcg)) {
604
		static_key_slow_dec(&memcg_kmem_enabled_key);
605 606
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
607 608 609 610 611
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
612 613 614 615 616 617 618 619 620 621 622 623 624
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

625
static void drain_all_stock_async(struct mem_cgroup *memcg);
626

627
static struct mem_cgroup_per_zone *
628
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
629
{
630
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
631 632
}

633
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
634
{
635
	return &memcg->css;
636 637
}

638
static struct mem_cgroup_per_zone *
639
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
640
{
641 642
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
643

644
	return mem_cgroup_zoneinfo(memcg, nid, zid);
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
663
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
664
				struct mem_cgroup_per_zone *mz,
665 666
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
667 668 669 670 671 672 673 674
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

675 676 677
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
694 695 696
}

static void
697
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
698 699 700 701 702 703 704 705 706
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

707
static void
708
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
709 710 711 712
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
713
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
714 715 716 717
	spin_unlock(&mctz->lock);
}


718
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
719
{
720
	unsigned long long excess;
721 722
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
723 724
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
725 726 727
	mctz = soft_limit_tree_from_page(page);

	/*
728 729
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
730
	 */
731 732 733
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
734 735 736 737
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
738
		if (excess || mz->on_tree) {
739 740 741
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
742
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
743
			/*
744 745
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
746
			 */
747
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
748 749
			spin_unlock(&mctz->lock);
		}
750 751 752
	}
}

753
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
754 755 756 757 758
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
759
	for_each_node(node) {
760
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
761
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
762
			mctz = soft_limit_tree_node_zone(node, zone);
763
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
764 765 766 767
		}
	}
}

768 769 770 771
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
772
	struct mem_cgroup_per_zone *mz;
773 774

retry:
775
	mz = NULL;
776 777 778 779 780 781 782 783 784 785
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
786 787 788
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
824
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
825
				 enum mem_cgroup_stat_index idx)
826
{
827
	long val = 0;
828 829
	int cpu;

830 831
	get_online_cpus();
	for_each_online_cpu(cpu)
832
		val += per_cpu(memcg->stat->count[idx], cpu);
833
#ifdef CONFIG_HOTPLUG_CPU
834 835 836
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
837 838
#endif
	put_online_cpus();
839 840 841
	return val;
}

842
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
843 844 845
					 bool charge)
{
	int val = (charge) ? 1 : -1;
846
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
847 848
}

849
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
850 851 852 853 854 855
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
856
		val += per_cpu(memcg->stat->events[idx], cpu);
857
#ifdef CONFIG_HOTPLUG_CPU
858 859 860
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
861 862 863 864
#endif
	return val;
}

865
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
866
					 bool anon, int nr_pages)
867
{
868 869
	preempt_disable();

870 871 872 873 874 875
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
876
				nr_pages);
877
	else
878
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
879
				nr_pages);
880

881 882
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
883
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
884
	else {
885
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
886 887
		nr_pages = -nr_pages; /* for event */
	}
888

889
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
890

891
	preempt_enable();
892 893
}

894
unsigned long
895
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
896 897 898 899 900 901 902 903
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
904
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
905
			unsigned int lru_mask)
906 907
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
908
	enum lru_list lru;
909 910
	unsigned long ret = 0;

911
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
912

H
Hugh Dickins 已提交
913 914 915
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
916 917 918 919 920
	}
	return ret;
}

static unsigned long
921
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
922 923
			int nid, unsigned int lru_mask)
{
924 925 926
	u64 total = 0;
	int zid;

927
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
928 929
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
930

931 932
	return total;
}
933

934
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
935
			unsigned int lru_mask)
936
{
937
	int nid;
938 939
	u64 total = 0;

940
	for_each_node_state(nid, N_MEMORY)
941
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
942
	return total;
943 944
}

945 946
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
947 948 949
{
	unsigned long val, next;

950
	val = __this_cpu_read(memcg->stat->nr_page_events);
951
	next = __this_cpu_read(memcg->stat->targets[target]);
952
	/* from time_after() in jiffies.h */
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
969
	}
970
	return false;
971 972 973 974 975 976
}

/*
 * Check events in order.
 *
 */
977
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
978
{
979
	preempt_disable();
980
	/* threshold event is triggered in finer grain than soft limit */
981 982
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
983 984
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
985 986 987 988 989 990 991 992 993

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

994
		mem_cgroup_threshold(memcg);
995
		if (unlikely(do_softlimit))
996
			mem_cgroup_update_tree(memcg, page);
997
#if MAX_NUMNODES > 1
998
		if (unlikely(do_numainfo))
999
			atomic_inc(&memcg->numainfo_events);
1000
#endif
1001 1002
	} else
		preempt_enable();
1003 1004
}

G
Glauber Costa 已提交
1005
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1006
{
1007 1008
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1009 1010
}

1011
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1012
{
1013 1014 1015 1016 1017 1018 1019 1020
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1021
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1022 1023
}

1024
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1025
{
1026
	struct mem_cgroup *memcg = NULL;
1027 1028 1029

	if (!mm)
		return NULL;
1030 1031 1032 1033 1034 1035 1036
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1037 1038
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1039
			break;
1040
	} while (!css_tryget(&memcg->css));
1041
	rcu_read_unlock();
1042
	return memcg;
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1065
{
1066 1067
	struct mem_cgroup *memcg = NULL;
	int id = 0;
1068

1069 1070 1071
	if (mem_cgroup_disabled())
		return NULL;

1072 1073
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1074

1075 1076
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1077

1078 1079
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1080

1081 1082 1083 1084 1085
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1086

1087
	while (!memcg) {
1088
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1089
		struct cgroup_subsys_state *css;
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
1102

1103 1104 1105 1106
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
1107
				memcg = mem_cgroup_from_css(css);
1108 1109
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
1110 1111
		rcu_read_unlock();

1112 1113 1114 1115 1116 1117 1118
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1119 1120 1121 1122 1123

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1124
}
K
KAMEZAWA Hiroyuki 已提交
1125

1126 1127 1128 1129 1130 1131 1132
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1133 1134 1135 1136 1137 1138
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1139

1140 1141 1142 1143 1144 1145
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1146
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1147
	     iter != NULL;				\
1148
	     iter = mem_cgroup_iter(root, iter, NULL))
1149

1150
#define for_each_mem_cgroup(iter)			\
1151
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1152
	     iter != NULL;				\
1153
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1154

1155
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1156
{
1157
	struct mem_cgroup *memcg;
1158 1159

	rcu_read_lock();
1160 1161
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1162 1163 1164 1165
		goto out;

	switch (idx) {
	case PGFAULT:
1166 1167 1168 1169
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1170 1171 1172 1173 1174 1175 1176
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1177
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1178

1179 1180 1181
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1182
 * @memcg: memcg of the wanted lruvec
1183 1184 1185 1186 1187 1188 1189 1190 1191
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1192
	struct lruvec *lruvec;
1193

1194 1195 1196 1197
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1198 1199

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1210 1211
}

K
KAMEZAWA Hiroyuki 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1225

1226
/**
1227
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1228
 * @page: the page
1229
 * @zone: zone of the page
1230
 */
1231
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1232 1233
{
	struct mem_cgroup_per_zone *mz;
1234 1235
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1236
	struct lruvec *lruvec;
1237

1238 1239 1240 1241
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1242

K
KAMEZAWA Hiroyuki 已提交
1243
	pc = lookup_page_cgroup(page);
1244
	memcg = pc->mem_cgroup;
1245 1246

	/*
1247
	 * Surreptitiously switch any uncharged offlist page to root:
1248 1249 1250 1251 1252 1253 1254
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1255
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1256 1257
		pc->mem_cgroup = memcg = root_mem_cgroup;

1258
	mz = page_cgroup_zoneinfo(memcg, page);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1269
}
1270

1271
/**
1272 1273 1274 1275
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1276
 *
1277 1278
 * This function must be called when a page is added to or removed from an
 * lru list.
1279
 */
1280 1281
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1282 1283
{
	struct mem_cgroup_per_zone *mz;
1284
	unsigned long *lru_size;
1285 1286 1287 1288

	if (mem_cgroup_disabled())
		return;

1289 1290 1291 1292
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1293
}
1294

1295
/*
1296
 * Checks whether given mem is same or in the root_mem_cgroup's
1297 1298
 * hierarchy subtree
 */
1299 1300
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1301
{
1302 1303
	if (root_memcg == memcg)
		return true;
1304
	if (!root_memcg->use_hierarchy || !memcg)
1305
		return false;
1306 1307 1308 1309 1310 1311 1312 1313
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1314
	rcu_read_lock();
1315
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1316 1317
	rcu_read_unlock();
	return ret;
1318 1319
}

1320
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1321 1322
{
	int ret;
1323
	struct mem_cgroup *curr = NULL;
1324
	struct task_struct *p;
1325

1326
	p = find_lock_task_mm(task);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1342 1343
	if (!curr)
		return 0;
1344
	/*
1345
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1346
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1347 1348
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1349
	 */
1350
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1351
	css_put(&curr->css);
1352 1353 1354
	return ret;
}

1355
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1356
{
1357
	unsigned long inactive_ratio;
1358
	unsigned long inactive;
1359
	unsigned long active;
1360
	unsigned long gb;
1361

1362 1363
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1364

1365 1366 1367 1368 1369 1370
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1371
	return inactive * inactive_ratio < active;
1372 1373
}

1374
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1375 1376 1377 1378
{
	unsigned long active;
	unsigned long inactive;

1379 1380
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1381 1382 1383 1384

	return (active > inactive);
}

1385 1386 1387
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1388
/**
1389
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1390
 * @memcg: the memory cgroup
1391
 *
1392
 * Returns the maximum amount of memory @mem can be charged with, in
1393
 * pages.
1394
 */
1395
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1396
{
1397 1398
	unsigned long long margin;

1399
	margin = res_counter_margin(&memcg->res);
1400
	if (do_swap_account)
1401
		margin = min(margin, res_counter_margin(&memcg->memsw));
1402
	return margin >> PAGE_SHIFT;
1403 1404
}

1405
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1406 1407 1408 1409 1410 1411 1412
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1413
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1414 1415
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1430 1431 1432 1433

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1434
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1435
{
1436
	atomic_inc(&memcg_moving);
1437
	atomic_inc(&memcg->moving_account);
1438 1439 1440
	synchronize_rcu();
}

1441
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1442
{
1443 1444 1445 1446
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1447 1448
	if (memcg) {
		atomic_dec(&memcg_moving);
1449
		atomic_dec(&memcg->moving_account);
1450
	}
1451
}
1452

1453 1454 1455
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1456 1457
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1458 1459 1460 1461 1462 1463 1464
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1465
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1466 1467
{
	VM_BUG_ON(!rcu_read_lock_held());
1468
	return atomic_read(&memcg->moving_account) > 0;
1469
}
1470

1471
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1472
{
1473 1474
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1475
	bool ret = false;
1476 1477 1478 1479 1480 1481 1482 1483 1484
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1485

1486 1487
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1488 1489
unlock:
	spin_unlock(&mc.lock);
1490 1491 1492
	return ret;
}

1493
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1494 1495
{
	if (mc.moving_task && current != mc.moving_task) {
1496
		if (mem_cgroup_under_move(memcg)) {
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1509 1510 1511 1512
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1513
 * see mem_cgroup_stolen(), too.
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1527
/**
1528
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1547
	if (!memcg || !p)
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1591 1592 1593 1594
	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1595 1596
}

1597 1598 1599 1600
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1601
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1602 1603
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1604 1605
	struct mem_cgroup *iter;

1606
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1607
		num++;
1608 1609 1610
	return num;
}

D
David Rientjes 已提交
1611 1612 1613
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1614
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1615 1616 1617
{
	u64 limit;

1618 1619
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1620
	/*
1621
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1622
	 */
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1637 1638
}

1639 1640
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1641 1642 1643 1644 1645 1646 1647
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1742 1743
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1744
 * @memcg: the target memcg
1745 1746 1747 1748 1749 1750 1751
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1752
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1753 1754
		int nid, bool noswap)
{
1755
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1756 1757 1758
		return true;
	if (noswap || !total_swap_pages)
		return false;
1759
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1760 1761 1762 1763
		return true;
	return false;

}
1764 1765 1766 1767 1768 1769 1770 1771
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1772
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1773 1774
{
	int nid;
1775 1776 1777 1778
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1779
	if (!atomic_read(&memcg->numainfo_events))
1780
		return;
1781
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1782 1783 1784
		return;

	/* make a nodemask where this memcg uses memory from */
1785
	memcg->scan_nodes = node_states[N_MEMORY];
1786

1787
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1788

1789 1790
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1791
	}
1792

1793 1794
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1809
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1810 1811 1812
{
	int node;

1813 1814
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1815

1816
	node = next_node(node, memcg->scan_nodes);
1817
	if (node == MAX_NUMNODES)
1818
		node = first_node(memcg->scan_nodes);
1819 1820 1821 1822 1823 1824 1825 1826 1827
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1828
	memcg->last_scanned_node = node;
1829 1830 1831
	return node;
}

1832 1833 1834 1835 1836 1837
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1838
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1839 1840 1841 1842 1843 1844 1845
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1846 1847
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1848
		     nid < MAX_NUMNODES;
1849
		     nid = next_node(nid, memcg->scan_nodes)) {
1850

1851
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1852 1853 1854 1855 1856 1857
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1858
	for_each_node_state(nid, N_MEMORY) {
1859
		if (node_isset(nid, memcg->scan_nodes))
1860
			continue;
1861
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1862 1863 1864 1865 1866
			return true;
	}
	return false;
}

1867
#else
1868
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1869 1870 1871
{
	return 0;
}
1872

1873
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1874
{
1875
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1876
}
1877 1878
#endif

1879 1880 1881 1882
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1883
{
1884
	struct mem_cgroup *victim = NULL;
1885
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1886
	int loop = 0;
1887
	unsigned long excess;
1888
	unsigned long nr_scanned;
1889 1890 1891 1892
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1893

1894
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1895

1896
	while (1) {
1897
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1898
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1899
			loop++;
1900 1901 1902 1903 1904 1905
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1906
				if (!total)
1907 1908
					break;
				/*
L
Lucas De Marchi 已提交
1909
				 * We want to do more targeted reclaim.
1910 1911 1912 1913 1914
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1915
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1916 1917
					break;
			}
1918
			continue;
1919
		}
1920
		if (!mem_cgroup_reclaimable(victim, false))
1921
			continue;
1922 1923 1924 1925
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1926
			break;
1927
	}
1928
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1929
	return total;
1930 1931
}

K
KAMEZAWA Hiroyuki 已提交
1932 1933 1934
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1935
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1936
 */
1937
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1938
{
1939
	struct mem_cgroup *iter, *failed = NULL;
1940

1941
	for_each_mem_cgroup_tree(iter, memcg) {
1942
		if (iter->oom_lock) {
1943 1944 1945 1946 1947
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1948 1949
			mem_cgroup_iter_break(memcg, iter);
			break;
1950 1951
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1952
	}
K
KAMEZAWA Hiroyuki 已提交
1953

1954
	if (!failed)
1955
		return true;
1956 1957 1958 1959 1960

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1961
	for_each_mem_cgroup_tree(iter, memcg) {
1962
		if (iter == failed) {
1963 1964
			mem_cgroup_iter_break(memcg, iter);
			break;
1965 1966 1967
		}
		iter->oom_lock = false;
	}
1968
	return false;
1969
}
1970

1971
/*
1972
 * Has to be called with memcg_oom_lock
1973
 */
1974
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1975
{
K
KAMEZAWA Hiroyuki 已提交
1976 1977
	struct mem_cgroup *iter;

1978
	for_each_mem_cgroup_tree(iter, memcg)
1979 1980 1981 1982
		iter->oom_lock = false;
	return 0;
}

1983
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1984 1985 1986
{
	struct mem_cgroup *iter;

1987
	for_each_mem_cgroup_tree(iter, memcg)
1988 1989 1990
		atomic_inc(&iter->under_oom);
}

1991
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1992 1993 1994
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1995 1996 1997 1998 1999
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2000
	for_each_mem_cgroup_tree(iter, memcg)
2001
		atomic_add_unless(&iter->under_oom, -1, 0);
2002 2003
}

2004
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2005 2006
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2007
struct oom_wait_info {
2008
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2009 2010 2011 2012 2013 2014
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2015 2016
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2017 2018 2019
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2020
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2021 2022

	/*
2023
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2024 2025
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2026 2027
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2028 2029 2030 2031
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2032
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2033
{
2034 2035
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2036 2037
}

2038
static void memcg_oom_recover(struct mem_cgroup *memcg)
2039
{
2040 2041
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2042 2043
}

K
KAMEZAWA Hiroyuki 已提交
2044 2045 2046
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2047 2048
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2049
{
K
KAMEZAWA Hiroyuki 已提交
2050
	struct oom_wait_info owait;
2051
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2052

2053
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2054 2055 2056 2057
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2058
	need_to_kill = true;
2059
	mem_cgroup_mark_under_oom(memcg);
2060

2061
	/* At first, try to OOM lock hierarchy under memcg.*/
2062
	spin_lock(&memcg_oom_lock);
2063
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2064 2065 2066 2067 2068
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2069
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2070
	if (!locked || memcg->oom_kill_disable)
2071 2072
		need_to_kill = false;
	if (locked)
2073
		mem_cgroup_oom_notify(memcg);
2074
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2075

2076 2077
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2078
		mem_cgroup_out_of_memory(memcg, mask, order);
2079
	} else {
K
KAMEZAWA Hiroyuki 已提交
2080
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2081
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2082
	}
2083
	spin_lock(&memcg_oom_lock);
2084
	if (locked)
2085 2086
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2087
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2088

2089
	mem_cgroup_unmark_under_oom(memcg);
2090

K
KAMEZAWA Hiroyuki 已提交
2091 2092 2093
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2094
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2095
	return true;
2096 2097
}

2098 2099 2100
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2118 2119
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2120
 */
2121

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2135
	 * need to take move_lock_mem_cgroup(). Because we already hold
2136
	 * rcu_read_lock(), any calls to move_account will be delayed until
2137
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2138
	 */
2139
	if (!mem_cgroup_stolen(memcg))
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2157
	 * should take move_lock_mem_cgroup().
2158 2159 2160 2161
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2162 2163
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2164
{
2165
	struct mem_cgroup *memcg;
2166
	struct page_cgroup *pc = lookup_page_cgroup(page);
2167
	unsigned long uninitialized_var(flags);
2168

2169
	if (mem_cgroup_disabled())
2170
		return;
2171

2172 2173
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2174
		return;
2175 2176

	switch (idx) {
2177 2178
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2179 2180 2181
		break;
	default:
		BUG();
2182
	}
2183

2184
	this_cpu_add(memcg->stat->count[idx], val);
2185
}
2186

2187 2188 2189 2190
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2191
#define CHARGE_BATCH	32U
2192 2193
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2194
	unsigned int nr_pages;
2195
	struct work_struct work;
2196
	unsigned long flags;
2197
#define FLUSHING_CACHED_CHARGE	0
2198 2199
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2200
static DEFINE_MUTEX(percpu_charge_mutex);
2201

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2212
 */
2213
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2214 2215 2216 2217
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2218 2219 2220
	if (nr_pages > CHARGE_BATCH)
		return false;

2221
	stock = &get_cpu_var(memcg_stock);
2222 2223
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2237 2238 2239 2240
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2241
		if (do_swap_account)
2242 2243
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2256
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2257 2258 2259 2260
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2261
 * This will be consumed by consume_stock() function, later.
2262
 */
2263
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2264 2265 2266
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2267
	if (stock->cached != memcg) { /* reset if necessary */
2268
		drain_stock(stock);
2269
		stock->cached = memcg;
2270
	}
2271
	stock->nr_pages += nr_pages;
2272 2273 2274 2275
	put_cpu_var(memcg_stock);
}

/*
2276
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2277 2278
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2279
 */
2280
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2281
{
2282
	int cpu, curcpu;
2283

2284 2285
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2286
	curcpu = get_cpu();
2287 2288
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2289
		struct mem_cgroup *memcg;
2290

2291 2292
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2293
			continue;
2294
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2295
			continue;
2296 2297 2298 2299 2300 2301
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2302
	}
2303
	put_cpu();
2304 2305 2306 2307 2308 2309

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2310
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2311 2312 2313
			flush_work(&stock->work);
	}
out:
2314
 	put_online_cpus();
2315 2316 2317 2318 2319 2320 2321 2322
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2323
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2324
{
2325 2326 2327 2328 2329
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2330
	drain_all_stock(root_memcg, false);
2331
	mutex_unlock(&percpu_charge_mutex);
2332 2333 2334
}

/* This is a synchronous drain interface. */
2335
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2336 2337
{
	/* called when force_empty is called */
2338
	mutex_lock(&percpu_charge_mutex);
2339
	drain_all_stock(root_memcg, true);
2340
	mutex_unlock(&percpu_charge_mutex);
2341 2342
}

2343 2344 2345 2346
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2347
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2348 2349 2350
{
	int i;

2351
	spin_lock(&memcg->pcp_counter_lock);
2352
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2353
		long x = per_cpu(memcg->stat->count[i], cpu);
2354

2355 2356
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2357
	}
2358
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2359
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2360

2361 2362
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2363
	}
2364
	spin_unlock(&memcg->pcp_counter_lock);
2365 2366 2367
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2368 2369 2370 2371 2372
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2373
	struct mem_cgroup *iter;
2374

2375
	if (action == CPU_ONLINE)
2376 2377
		return NOTIFY_OK;

2378
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2379
		return NOTIFY_OK;
2380

2381
	for_each_mem_cgroup(iter)
2382 2383
		mem_cgroup_drain_pcp_counter(iter, cpu);

2384 2385 2386 2387 2388
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2399
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2400 2401
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2402
{
2403
	unsigned long csize = nr_pages * PAGE_SIZE;
2404 2405 2406 2407 2408
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2409
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2410 2411 2412 2413

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2414
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2415 2416 2417
		if (likely(!ret))
			return CHARGE_OK;

2418
		res_counter_uncharge(&memcg->res, csize);
2419 2420 2421 2422
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2423 2424 2425 2426
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2427
	if (nr_pages > min_pages)
2428 2429 2430 2431 2432
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2433 2434 2435
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2436
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2437
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2438
		return CHARGE_RETRY;
2439
	/*
2440 2441 2442 2443 2444 2445 2446
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2447
	 */
2448
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2462
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2463 2464 2465 2466 2467
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2468
/*
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2488
 */
2489
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2490
				   gfp_t gfp_mask,
2491
				   unsigned int nr_pages,
2492
				   struct mem_cgroup **ptr,
2493
				   bool oom)
2494
{
2495
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2496
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2497
	struct mem_cgroup *memcg = NULL;
2498
	int ret;
2499

K
KAMEZAWA Hiroyuki 已提交
2500 2501 2502 2503 2504 2505 2506 2507
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2508

2509
	/*
2510 2511
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2512
	 * thread group leader migrates. It's possible that mm is not
2513
	 * set, if so charge the root memcg (happens for pagecache usage).
2514
	 */
2515
	if (!*ptr && !mm)
2516
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2517
again:
2518 2519 2520
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2521
			goto done;
2522
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2523
			goto done;
2524
		css_get(&memcg->css);
2525
	} else {
K
KAMEZAWA Hiroyuki 已提交
2526
		struct task_struct *p;
2527

K
KAMEZAWA Hiroyuki 已提交
2528 2529 2530
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2531
		 * Because we don't have task_lock(), "p" can exit.
2532
		 * In that case, "memcg" can point to root or p can be NULL with
2533 2534 2535 2536 2537 2538
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2539
		 */
2540
		memcg = mem_cgroup_from_task(p);
2541 2542 2543
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2544 2545 2546
			rcu_read_unlock();
			goto done;
		}
2547
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2560
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2561 2562 2563 2564 2565
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2566

2567 2568
	do {
		bool oom_check;
2569

2570
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2571
		if (fatal_signal_pending(current)) {
2572
			css_put(&memcg->css);
2573
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2574
		}
2575

2576 2577 2578 2579
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2580
		}
2581

2582 2583
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2584 2585 2586 2587
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2588
			batch = nr_pages;
2589 2590
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2591
			goto again;
2592
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2593
			css_put(&memcg->css);
2594 2595
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2596
			if (!oom) {
2597
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2598
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2599
			}
2600 2601 2602 2603
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2604
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2605
			goto bypass;
2606
		}
2607 2608
	} while (ret != CHARGE_OK);

2609
	if (batch > nr_pages)
2610 2611
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2612
done:
2613
	*ptr = memcg;
2614 2615
	return 0;
nomem:
2616
	*ptr = NULL;
2617
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2618
bypass:
2619 2620
	*ptr = root_mem_cgroup;
	return -EINTR;
2621
}
2622

2623 2624 2625 2626 2627
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2628
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2629
				       unsigned int nr_pages)
2630
{
2631
	if (!mem_cgroup_is_root(memcg)) {
2632 2633
		unsigned long bytes = nr_pages * PAGE_SIZE;

2634
		res_counter_uncharge(&memcg->res, bytes);
2635
		if (do_swap_account)
2636
			res_counter_uncharge(&memcg->memsw, bytes);
2637
	}
2638 2639
}

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2658 2659
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2660 2661 2662
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2674
	return mem_cgroup_from_css(css);
2675 2676
}

2677
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2678
{
2679
	struct mem_cgroup *memcg = NULL;
2680
	struct page_cgroup *pc;
2681
	unsigned short id;
2682 2683
	swp_entry_t ent;

2684 2685 2686
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2687
	lock_page_cgroup(pc);
2688
	if (PageCgroupUsed(pc)) {
2689 2690 2691
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2692
	} else if (PageSwapCache(page)) {
2693
		ent.val = page_private(page);
2694
		id = lookup_swap_cgroup_id(ent);
2695
		rcu_read_lock();
2696 2697 2698
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2699
		rcu_read_unlock();
2700
	}
2701
	unlock_page_cgroup(pc);
2702
	return memcg;
2703 2704
}

2705
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2706
				       struct page *page,
2707
				       unsigned int nr_pages,
2708 2709
				       enum charge_type ctype,
				       bool lrucare)
2710
{
2711
	struct page_cgroup *pc = lookup_page_cgroup(page);
2712
	struct zone *uninitialized_var(zone);
2713
	struct lruvec *lruvec;
2714
	bool was_on_lru = false;
2715
	bool anon;
2716

2717
	lock_page_cgroup(pc);
2718
	VM_BUG_ON(PageCgroupUsed(pc));
2719 2720 2721 2722
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2723 2724 2725 2726 2727 2728 2729 2730 2731

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2732
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2733
			ClearPageLRU(page);
2734
			del_page_from_lru_list(page, lruvec, page_lru(page));
2735 2736 2737 2738
			was_on_lru = true;
		}
	}

2739
	pc->mem_cgroup = memcg;
2740 2741 2742 2743 2744 2745 2746
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2747
	smp_wmb();
2748
	SetPageCgroupUsed(pc);
2749

2750 2751
	if (lrucare) {
		if (was_on_lru) {
2752
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2753 2754
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2755
			add_page_to_lru_list(page, lruvec, page_lru(page));
2756 2757 2758 2759
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2760
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2761 2762 2763 2764 2765
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2766
	unlock_page_cgroup(pc);
2767

2768 2769 2770 2771 2772
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2773
	memcg_check_events(memcg, page);
2774
}
2775

2776 2777
static DEFINE_MUTEX(set_limit_mutex);

2778 2779 2780 2781 2782 2783 2784
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2872 2873 2874 2875 2876 2877 2878

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2879 2880
}

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

3015 3016 3017 3018 3019 3020 3021
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3022 3023 3024
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

	if (memcg)
		s->memcg_params->memcg = memcg;
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;
	mem_cgroup_put(memcg);

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

out:
3062 3063 3064
	kfree(s->memcg_params);
}

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3096 3097 3098 3099 3100 3101 3102 3103 3104
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3126 3127 3128 3129 3130 3131 3132 3133
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3154 3155 3156 3157 3158 3159 3160
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	char *name;
	struct dentry *dentry;

	rcu_read_lock();
	dentry = rcu_dereference(memcg->css.cgroup->dentry);
	rcu_read_unlock();

	BUG_ON(dentry == NULL);

	name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), dentry->d_name.name);

	return name;
}

static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	char *name;
	struct kmem_cache *new;

	name = memcg_cache_name(memcg, s);
	if (!name)
		return NULL;

	new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
				      (s->flags & ~SLAB_PANIC), s->ctor);

3191 3192 3193
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	kfree(name);
	return new;
}

/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
	new_cachep->memcg_params->root_cache = cachep;
G
Glauber Costa 已提交
3230
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3282
		cancel_work_sync(&c->memcg_params->destroy);
3283 3284 3285 3286 3287
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3288 3289 3290 3291 3292 3293
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		INIT_WORK(&cachep->memcg_params->destroy,
G
Glauber Costa 已提交
3307
				  kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3308 3309 3310 3311 3312
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 * Called with rcu_read_lock.
 */
3328 3329
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
	if (cw == NULL)
		return;

	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css)) {
		kfree(cw);
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3390 3391 3392
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
	rcu_read_unlock();

	if (!memcg_can_account_kmem(memcg))
		return cachep;

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
	if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
		/*
		 * If we are in a safe context (can wait, and not in interrupt
		 * context), we could be be predictable and return right away.
		 * This would guarantee that the allocation being performed
		 * already belongs in the new cache.
		 *
		 * However, there are some clashes that can arrive from locking.
		 * For instance, because we acquire the slab_mutex while doing
		 * kmem_cache_dup, this means no further allocation could happen
		 * with the slab_mutex held.
		 *
		 * Also, because cache creation issue get_online_cpus(), this
		 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
		 * that ends up reversed during cpu hotplug. (cpuset allocates
		 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
		 * better to defer everything.
		 */
		memcg_create_cache_enqueue(memcg, cachep);
		return cachep;
	}

	return cachep->memcg_params->memcg_caches[idx];
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3528 3529 3530 3531
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3532 3533
#endif /* CONFIG_MEMCG_KMEM */

3534 3535
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3536
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3537 3538
/*
 * Because tail pages are not marked as "used", set it. We're under
3539 3540 3541
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3542
 */
3543
void mem_cgroup_split_huge_fixup(struct page *head)
3544 3545
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3546 3547
	struct page_cgroup *pc;
	int i;
3548

3549 3550
	if (mem_cgroup_disabled())
		return;
3551 3552 3553 3554 3555 3556
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3557
}
3558
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3559

3560
/**
3561
 * mem_cgroup_move_account - move account of the page
3562
 * @page: the page
3563
 * @nr_pages: number of regular pages (>1 for huge pages)
3564 3565 3566 3567 3568
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3569
 * - page is not on LRU (isolate_page() is useful.)
3570
 * - compound_lock is held when nr_pages > 1
3571
 *
3572 3573
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3574
 */
3575 3576 3577 3578
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3579
				   struct mem_cgroup *to)
3580
{
3581 3582
	unsigned long flags;
	int ret;
3583
	bool anon = PageAnon(page);
3584

3585
	VM_BUG_ON(from == to);
3586
	VM_BUG_ON(PageLRU(page));
3587 3588 3589 3590 3591 3592 3593
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3594
	if (nr_pages > 1 && !PageTransHuge(page))
3595 3596 3597 3598 3599 3600 3601 3602
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3603
	move_lock_mem_cgroup(from, &flags);
3604

3605
	if (!anon && page_mapped(page)) {
3606 3607 3608 3609 3610
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3611
	}
3612
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3613

3614
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3615
	pc->mem_cgroup = to;
3616
	mem_cgroup_charge_statistics(to, anon, nr_pages);
3617
	move_unlock_mem_cgroup(from, &flags);
3618 3619
	ret = 0;
unlock:
3620
	unlock_page_cgroup(pc);
3621 3622 3623
	/*
	 * check events
	 */
3624 3625
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3626
out:
3627 3628 3629
	return ret;
}

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3650
 */
3651 3652
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3653
				  struct mem_cgroup *child)
3654 3655
{
	struct mem_cgroup *parent;
3656
	unsigned int nr_pages;
3657
	unsigned long uninitialized_var(flags);
3658 3659
	int ret;

3660
	VM_BUG_ON(mem_cgroup_is_root(child));
3661

3662 3663 3664 3665 3666
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3667

3668
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3669

3670 3671 3672 3673 3674 3675
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3676

3677 3678
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3679
		flags = compound_lock_irqsave(page);
3680
	}
3681

3682
	ret = mem_cgroup_move_account(page, nr_pages,
3683
				pc, child, parent);
3684 3685
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3686

3687
	if (nr_pages > 1)
3688
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3689
	putback_lru_page(page);
3690
put:
3691
	put_page(page);
3692
out:
3693 3694 3695
	return ret;
}

3696 3697 3698 3699 3700 3701 3702
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3703
				gfp_t gfp_mask, enum charge_type ctype)
3704
{
3705
	struct mem_cgroup *memcg = NULL;
3706
	unsigned int nr_pages = 1;
3707
	bool oom = true;
3708
	int ret;
A
Andrea Arcangeli 已提交
3709

A
Andrea Arcangeli 已提交
3710
	if (PageTransHuge(page)) {
3711
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3712
		VM_BUG_ON(!PageTransHuge(page));
3713 3714 3715 3716 3717
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3718
	}
3719

3720
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3721
	if (ret == -ENOMEM)
3722
		return ret;
3723
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3724 3725 3726
	return 0;
}

3727 3728
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3729
{
3730
	if (mem_cgroup_disabled())
3731
		return 0;
3732 3733 3734
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3735
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3736
					MEM_CGROUP_CHARGE_TYPE_ANON);
3737 3738
}

3739 3740 3741
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3742
 * struct page_cgroup is acquired. This refcnt will be consumed by
3743 3744
 * "commit()" or removed by "cancel()"
 */
3745 3746 3747 3748
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3749
{
3750
	struct mem_cgroup *memcg;
3751
	struct page_cgroup *pc;
3752
	int ret;
3753

3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3764 3765
	if (!do_swap_account)
		goto charge_cur_mm;
3766 3767
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3768
		goto charge_cur_mm;
3769 3770
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3771
	css_put(&memcg->css);
3772 3773
	if (ret == -EINTR)
		ret = 0;
3774
	return ret;
3775
charge_cur_mm:
3776 3777 3778 3779
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3780 3781
}

3782 3783 3784 3785 3786 3787
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3802 3803 3804
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3805 3806 3807 3808 3809 3810 3811 3812 3813
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3814
static void
3815
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3816
					enum charge_type ctype)
3817
{
3818
	if (mem_cgroup_disabled())
3819
		return;
3820
	if (!memcg)
3821
		return;
3822

3823
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3824 3825 3826
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3827 3828 3829
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3830
	 */
3831
	if (do_swap_account && PageSwapCache(page)) {
3832
		swp_entry_t ent = {.val = page_private(page)};
3833
		mem_cgroup_uncharge_swap(ent);
3834
	}
3835 3836
}

3837 3838
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3839
{
3840
	__mem_cgroup_commit_charge_swapin(page, memcg,
3841
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3842 3843
}

3844 3845
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3846
{
3847 3848 3849 3850
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3851
	if (mem_cgroup_disabled())
3852 3853 3854 3855 3856 3857 3858
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3859 3860
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3861 3862 3863 3864
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3865 3866
}

3867
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3868 3869
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3870 3871 3872
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3873

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3885
		batch->memcg = memcg;
3886 3887
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3888
	 * In those cases, all pages freed continuously can be expected to be in
3889 3890 3891 3892 3893 3894 3895 3896
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3897
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3898 3899
		goto direct_uncharge;

3900 3901 3902 3903 3904
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3905
	if (batch->memcg != memcg)
3906 3907
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3908
	batch->nr_pages++;
3909
	if (uncharge_memsw)
3910
		batch->memsw_nr_pages++;
3911 3912
	return;
direct_uncharge:
3913
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3914
	if (uncharge_memsw)
3915 3916 3917
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3918
}
3919

3920
/*
3921
 * uncharge if !page_mapped(page)
3922
 */
3923
static struct mem_cgroup *
3924 3925
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3926
{
3927
	struct mem_cgroup *memcg = NULL;
3928 3929
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3930
	bool anon;
3931

3932
	if (mem_cgroup_disabled())
3933
		return NULL;
3934

3935
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3936

A
Andrea Arcangeli 已提交
3937
	if (PageTransHuge(page)) {
3938
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3939 3940
		VM_BUG_ON(!PageTransHuge(page));
	}
3941
	/*
3942
	 * Check if our page_cgroup is valid
3943
	 */
3944
	pc = lookup_page_cgroup(page);
3945
	if (unlikely(!PageCgroupUsed(pc)))
3946
		return NULL;
3947

3948
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3949

3950
	memcg = pc->mem_cgroup;
3951

K
KAMEZAWA Hiroyuki 已提交
3952 3953 3954
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3955 3956
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3957
	switch (ctype) {
3958
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3959 3960 3961 3962 3963
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3964 3965
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3966
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3967
		/* See mem_cgroup_prepare_migration() */
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3989
	}
K
KAMEZAWA Hiroyuki 已提交
3990

3991
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3992

3993
	ClearPageCgroupUsed(pc);
3994 3995 3996 3997 3998 3999
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4000

4001
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4002
	/*
4003
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4004 4005
	 * will never be freed.
	 */
4006
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4007
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4008 4009
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4010
	}
4011 4012 4013 4014 4015 4016
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4017
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4018

4019
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4020 4021 4022

unlock_out:
	unlock_page_cgroup(pc);
4023
	return NULL;
4024 4025
}

4026 4027
void mem_cgroup_uncharge_page(struct page *page)
{
4028 4029 4030
	/* early check. */
	if (page_mapped(page))
		return;
4031
	VM_BUG_ON(page->mapping && !PageAnon(page));
4032 4033
	if (PageSwapCache(page))
		return;
4034
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4035 4036 4037 4038 4039
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4040
	VM_BUG_ON(page->mapping);
4041
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4042 4043
}

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4058 4059
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4080 4081 4082 4083 4084 4085
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4086
	memcg_oom_recover(batch->memcg);
4087 4088 4089 4090
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4091
#ifdef CONFIG_SWAP
4092
/*
4093
 * called after __delete_from_swap_cache() and drop "page" account.
4094 4095
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4096 4097
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4098 4099
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4100 4101 4102 4103 4104
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4105
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4106

K
KAMEZAWA Hiroyuki 已提交
4107 4108 4109 4110 4111
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4112
		swap_cgroup_record(ent, css_id(&memcg->css));
4113
}
4114
#endif
4115

A
Andrew Morton 已提交
4116
#ifdef CONFIG_MEMCG_SWAP
4117 4118 4119 4120 4121
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4122
{
4123
	struct mem_cgroup *memcg;
4124
	unsigned short id;
4125 4126 4127 4128

	if (!do_swap_account)
		return;

4129 4130 4131
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4132
	if (memcg) {
4133 4134 4135 4136
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4137
		if (!mem_cgroup_is_root(memcg))
4138
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4139
		mem_cgroup_swap_statistics(memcg, false);
4140 4141
		mem_cgroup_put(memcg);
	}
4142
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4143
}
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4160
				struct mem_cgroup *from, struct mem_cgroup *to)
4161 4162 4163 4164 4165 4166 4167 4168
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4169
		mem_cgroup_swap_statistics(to, true);
4170
		/*
4171 4172 4173 4174 4175 4176
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4177 4178 4179 4180 4181 4182 4183 4184
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4185
				struct mem_cgroup *from, struct mem_cgroup *to)
4186 4187 4188
{
	return -EINVAL;
}
4189
#endif
K
KAMEZAWA Hiroyuki 已提交
4190

4191
/*
4192 4193
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4194
 */
4195 4196
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4197
{
4198
	struct mem_cgroup *memcg = NULL;
4199
	unsigned int nr_pages = 1;
4200
	struct page_cgroup *pc;
4201
	enum charge_type ctype;
4202

4203
	*memcgp = NULL;
4204

4205
	if (mem_cgroup_disabled())
4206
		return;
4207

4208 4209 4210
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4211 4212 4213
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4214 4215
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4247
	}
4248
	unlock_page_cgroup(pc);
4249 4250 4251 4252
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4253
	if (!memcg)
4254
		return;
4255

4256
	*memcgp = memcg;
4257 4258 4259 4260 4261 4262 4263
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4264
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4265
	else
4266
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4267 4268 4269 4270 4271
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4272
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4273
}
4274

4275
/* remove redundant charge if migration failed*/
4276
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4277
	struct page *oldpage, struct page *newpage, bool migration_ok)
4278
{
4279
	struct page *used, *unused;
4280
	struct page_cgroup *pc;
4281
	bool anon;
4282

4283
	if (!memcg)
4284
		return;
4285

4286
	if (!migration_ok) {
4287 4288
		used = oldpage;
		unused = newpage;
4289
	} else {
4290
		used = newpage;
4291 4292
		unused = oldpage;
	}
4293
	anon = PageAnon(used);
4294 4295 4296 4297
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4298
	css_put(&memcg->css);
4299
	/*
4300 4301 4302
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4303
	 */
4304 4305 4306 4307 4308
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4309
	/*
4310 4311 4312 4313 4314 4315
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4316
	 */
4317
	if (anon)
4318
		mem_cgroup_uncharge_page(used);
4319
}
4320

4321 4322 4323 4324 4325 4326 4327 4328
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4329
	struct mem_cgroup *memcg = NULL;
4330 4331 4332 4333 4334 4335 4336 4337 4338
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4339 4340 4341 4342 4343
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
4344 4345
	unlock_page_cgroup(pc);

4346 4347 4348 4349 4350 4351
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4352 4353 4354 4355 4356
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4357
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4358 4359
}

4360 4361 4362 4363 4364 4365
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4366 4367 4368 4369 4370
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4390
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4391 4392 4393 4394 4395
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

4396
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4397
				unsigned long long val)
4398
{
4399
	int retry_count;
4400
	u64 memswlimit, memlimit;
4401
	int ret = 0;
4402 4403
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4404
	int enlarge;
4405 4406 4407 4408 4409 4410 4411 4412 4413

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4414

4415
	enlarge = 0;
4416
	while (retry_count) {
4417 4418 4419 4420
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4421 4422 4423
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4424
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4425 4426 4427 4428 4429 4430
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4431 4432
			break;
		}
4433 4434 4435 4436 4437

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4438
		ret = res_counter_set_limit(&memcg->res, val);
4439 4440 4441 4442 4443 4444
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4445 4446 4447 4448 4449
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4450 4451
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4452 4453 4454 4455 4456 4457
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4458
	}
4459 4460
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4461

4462 4463 4464
	return ret;
}

L
Li Zefan 已提交
4465 4466
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4467
{
4468
	int retry_count;
4469
	u64 memlimit, memswlimit, oldusage, curusage;
4470 4471
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4472
	int enlarge = 0;
4473

4474 4475 4476
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4477 4478 4479 4480 4481 4482 4483 4484
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4485
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4486 4487 4488 4489 4490 4491 4492 4493
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4494 4495 4496
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4497
		ret = res_counter_set_limit(&memcg->memsw, val);
4498 4499 4500 4501 4502 4503
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4504 4505 4506 4507 4508
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4509 4510 4511
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4512
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4513
		/* Usage is reduced ? */
4514
		if (curusage >= oldusage)
4515
			retry_count--;
4516 4517
		else
			oldusage = curusage;
4518
	}
4519 4520
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4521 4522 4523
	return ret;
}

4524
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4525 4526
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4527 4528 4529 4530 4531 4532
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4533
	unsigned long long excess;
4534
	unsigned long nr_scanned;
4535 4536 4537 4538

	if (order > 0)
		return 0;

4539
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4553
		nr_scanned = 0;
4554
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4555
						    gfp_mask, &nr_scanned);
4556
		nr_reclaimed += reclaimed;
4557
		*total_scanned += nr_scanned;
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4580
				if (next_mz == mz)
4581
					css_put(&next_mz->memcg->css);
4582
				else /* next_mz == NULL or other memcg */
4583 4584 4585
					break;
			} while (1);
		}
4586 4587
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4588 4589 4590 4591 4592 4593 4594 4595
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4596
		/* If excess == 0, no tree ops */
4597
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4598
		spin_unlock(&mctz->lock);
4599
		css_put(&mz->memcg->css);
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4612
		css_put(&next_mz->memcg->css);
4613 4614 4615
	return nr_reclaimed;
}

4616 4617 4618 4619 4620 4621 4622
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4623
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4624 4625
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4626
 */
4627
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4628
				int node, int zid, enum lru_list lru)
4629
{
4630
	struct lruvec *lruvec;
4631
	unsigned long flags;
4632
	struct list_head *list;
4633 4634
	struct page *busy;
	struct zone *zone;
4635

K
KAMEZAWA Hiroyuki 已提交
4636
	zone = &NODE_DATA(node)->node_zones[zid];
4637 4638
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4639

4640
	busy = NULL;
4641
	do {
4642
		struct page_cgroup *pc;
4643 4644
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4645
		spin_lock_irqsave(&zone->lru_lock, flags);
4646
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4647
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4648
			break;
4649
		}
4650 4651 4652
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4653
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4654
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4655 4656
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4657
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4658

4659
		pc = lookup_page_cgroup(page);
4660

4661
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4662
			/* found lock contention or "pc" is obsolete. */
4663
			busy = page;
4664 4665 4666
			cond_resched();
		} else
			busy = NULL;
4667
	} while (!list_empty(list));
4668 4669 4670
}

/*
4671 4672
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4673
 * This enables deleting this mem_cgroup.
4674 4675
 *
 * Caller is responsible for holding css reference on the memcg.
4676
 */
4677
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4678
{
4679
	int node, zid;
4680
	u64 usage;
4681

4682
	do {
4683 4684
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4685 4686
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4687
		for_each_node_state(node, N_MEMORY) {
4688
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4689 4690
				enum lru_list lru;
				for_each_lru(lru) {
4691
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4692
							node, zid, lru);
4693
				}
4694
			}
4695
		}
4696 4697
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4698
		cond_resched();
4699

4700
		/*
4701 4702 4703 4704 4705
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4706 4707 4708 4709 4710 4711
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4712 4713 4714
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4727

4728
	/* returns EBUSY if there is a task or if we come here twice. */
4729 4730 4731
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4732 4733
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4734
	/* try to free all pages in this cgroup */
4735
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4736
		int progress;
4737

4738 4739 4740
		if (signal_pending(current))
			return -EINTR;

4741
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4742
						false);
4743
		if (!progress) {
4744
			nr_retries--;
4745
			/* maybe some writeback is necessary */
4746
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4747
		}
4748 4749

	}
K
KAMEZAWA Hiroyuki 已提交
4750
	lru_add_drain();
4751 4752 4753
	mem_cgroup_reparent_charges(memcg);

	return 0;
4754 4755
}

4756
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4757
{
4758 4759 4760
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4761 4762
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4763 4764 4765 4766 4767
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4768 4769 4770
}


4771 4772 4773 4774 4775 4776 4777 4778 4779
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4780
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4781
	struct cgroup *parent = cont->parent;
4782
	struct mem_cgroup *parent_memcg = NULL;
4783 4784

	if (parent)
4785
		parent_memcg = mem_cgroup_from_cont(parent);
4786 4787

	cgroup_lock();
4788 4789 4790 4791

	if (memcg->use_hierarchy == val)
		goto out;

4792
	/*
4793
	 * If parent's use_hierarchy is set, we can't make any modifications
4794 4795 4796 4797 4798 4799
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4800
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4801 4802
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
4803
			memcg->use_hierarchy = val;
4804 4805 4806 4807
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4808 4809

out:
4810 4811 4812 4813 4814
	cgroup_unlock();

	return retval;
}

4815

4816
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4817
					       enum mem_cgroup_stat_index idx)
4818
{
K
KAMEZAWA Hiroyuki 已提交
4819
	struct mem_cgroup *iter;
4820
	long val = 0;
4821

4822
	/* Per-cpu values can be negative, use a signed accumulator */
4823
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4824 4825 4826 4827 4828
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4829 4830
}

4831
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4832
{
K
KAMEZAWA Hiroyuki 已提交
4833
	u64 val;
4834

4835
	if (!mem_cgroup_is_root(memcg)) {
4836
		if (!swap)
4837
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4838
		else
4839
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4840 4841
	}

4842 4843
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4844

K
KAMEZAWA Hiroyuki 已提交
4845
	if (swap)
4846
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4847 4848 4849 4850

	return val << PAGE_SHIFT;
}

4851 4852 4853
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4854
{
4855
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4856
	char str[64];
4857
	u64 val;
G
Glauber Costa 已提交
4858 4859
	int name, len;
	enum res_type type;
4860 4861 4862

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4863 4864 4865 4866

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4867 4868
	switch (type) {
	case _MEM:
4869
		if (name == RES_USAGE)
4870
			val = mem_cgroup_usage(memcg, false);
4871
		else
4872
			val = res_counter_read_u64(&memcg->res, name);
4873 4874
		break;
	case _MEMSWAP:
4875
		if (name == RES_USAGE)
4876
			val = mem_cgroup_usage(memcg, true);
4877
		else
4878
			val = res_counter_read_u64(&memcg->memsw, name);
4879
		break;
4880 4881 4882
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4883 4884 4885
	default:
		BUG();
	}
4886 4887 4888

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4889
}
4890 4891 4892 4893 4894

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4895 4896
	bool must_inc_static_branch = false;

4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 *
	 * Taking the cgroup_lock is really offensive, but it is so far the only
	 * way to guarantee that no children will appear. There are plenty of
	 * other offenders, and they should all go away. Fine grained locking
	 * is probably the way to go here. When we are fully hierarchical, we
	 * can also get rid of the use_hierarchy check.
	 */
	cgroup_lock();
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
						!list_empty(&cont->children))) {
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4927 4928 4929 4930 4931
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
4932
		must_inc_static_branch = true;
4933 4934 4935 4936 4937 4938 4939
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
4940 4941 4942 4943 4944
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
	cgroup_unlock();
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965

	/*
	 * We are by now familiar with the fact that we can't inc the static
	 * branch inside cgroup_lock. See disarm functions for details. A
	 * worker here is overkill, but also wrong: After the limit is set, we
	 * must start accounting right away. Since this operation can't fail,
	 * we can safely defer it to here - no rollback will be needed.
	 *
	 * The boolean used to control this is also safe, because
	 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
	 * able to set it to true;
	 */
	if (must_inc_static_branch) {
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
	}

4966 4967 4968 4969
#endif
	return ret;
}

4970
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4971
{
4972
	int ret = 0;
4973 4974
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
4975 4976
		goto out;

4977
	memcg->kmem_account_flags = parent->kmem_account_flags;
4978
#ifdef CONFIG_MEMCG_KMEM
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
5004
#endif
5005 5006
out:
	return ret;
5007 5008
}

5009 5010 5011 5012
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5013 5014
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5015
{
5016
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5017 5018
	enum res_type type;
	int name;
5019 5020 5021
	unsigned long long val;
	int ret;

5022 5023
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5024 5025 5026 5027

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5028
	switch (name) {
5029
	case RES_LIMIT:
5030 5031 5032 5033
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5034 5035
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5036 5037 5038
		if (ret)
			break;
		if (type == _MEM)
5039
			ret = mem_cgroup_resize_limit(memcg, val);
5040
		else if (type == _MEMSWAP)
5041
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5042 5043 5044 5045
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5046
		break;
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5061 5062 5063 5064 5065
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5066 5067
}

5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5095
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5096
{
5097
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5098 5099
	int name;
	enum res_type type;
5100

5101 5102
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5103 5104 5105 5106

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5107
	switch (name) {
5108
	case RES_MAX_USAGE:
5109
		if (type == _MEM)
5110
			res_counter_reset_max(&memcg->res);
5111
		else if (type == _MEMSWAP)
5112
			res_counter_reset_max(&memcg->memsw);
5113 5114 5115 5116
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5117 5118
		break;
	case RES_FAILCNT:
5119
		if (type == _MEM)
5120
			res_counter_reset_failcnt(&memcg->res);
5121
		else if (type == _MEMSWAP)
5122
			res_counter_reset_failcnt(&memcg->memsw);
5123 5124 5125 5126
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5127 5128
		break;
	}
5129

5130
	return 0;
5131 5132
}

5133 5134 5135 5136 5137 5138
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5139
#ifdef CONFIG_MMU
5140 5141 5142
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5143
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5144 5145 5146 5147 5148 5149 5150 5151 5152

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
5153
	memcg->move_charge_at_immigrate = val;
5154 5155 5156 5157
	cgroup_unlock();

	return 0;
}
5158 5159 5160 5161 5162 5163 5164
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5165

5166
#ifdef CONFIG_NUMA
5167
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5168
				      struct seq_file *m)
5169 5170 5171 5172
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5173
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5174

5175
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5176
	seq_printf(m, "total=%lu", total_nr);
5177
	for_each_node_state(nid, N_MEMORY) {
5178
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5179 5180 5181 5182
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5183
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5184
	seq_printf(m, "file=%lu", file_nr);
5185
	for_each_node_state(nid, N_MEMORY) {
5186
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5187
				LRU_ALL_FILE);
5188 5189 5190 5191
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5192
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5193
	seq_printf(m, "anon=%lu", anon_nr);
5194
	for_each_node_state(nid, N_MEMORY) {
5195
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5196
				LRU_ALL_ANON);
5197 5198 5199 5200
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5201
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5202
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5203
	for_each_node_state(nid, N_MEMORY) {
5204
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5205
				BIT(LRU_UNEVICTABLE));
5206 5207 5208 5209 5210 5211 5212
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5226
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5227
				 struct seq_file *m)
5228
{
5229
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5230 5231
	struct mem_cgroup *mi;
	unsigned int i;
5232

5233
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5234
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5235
			continue;
5236 5237
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5238
	}
L
Lee Schermerhorn 已提交
5239

5240 5241 5242 5243 5244 5245 5246 5247
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5248
	/* Hierarchical information */
5249 5250
	{
		unsigned long long limit, memsw_limit;
5251
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5252
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5253
		if (do_swap_account)
5254 5255
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5256
	}
K
KOSAKI Motohiro 已提交
5257

5258 5259 5260
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5261
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5262
			continue;
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5283
	}
K
KAMEZAWA Hiroyuki 已提交
5284

K
KOSAKI Motohiro 已提交
5285 5286 5287 5288
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5289
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5290 5291 5292 5293 5294
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5295
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5296
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5297

5298 5299 5300 5301
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5302
			}
5303 5304 5305 5306
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5307 5308 5309
	}
#endif

5310 5311 5312
	return 0;
}

K
KOSAKI Motohiro 已提交
5313 5314 5315 5316
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5317
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5318 5319 5320 5321 5322 5323 5324
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5325

K
KOSAKI Motohiro 已提交
5326 5327 5328 5329 5330 5331 5332
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5333 5334 5335

	cgroup_lock();

K
KOSAKI Motohiro 已提交
5336 5337
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
5338 5339
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
5340
		return -EINVAL;
5341
	}
K
KOSAKI Motohiro 已提交
5342 5343 5344

	memcg->swappiness = val;

5345 5346
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
5347 5348 5349
	return 0;
}

5350 5351 5352 5353 5354 5355 5356 5357
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5358
		t = rcu_dereference(memcg->thresholds.primary);
5359
	else
5360
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5361 5362 5363 5364 5365 5366 5367

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5368
	 * current_threshold points to threshold just below or equal to usage.
5369 5370 5371
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5372
	i = t->current_threshold;
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5396
	t->current_threshold = i - 1;
5397 5398 5399 5400 5401 5402
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5403 5404 5405 5406 5407 5408 5409
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5420
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5421 5422 5423
{
	struct mem_cgroup_eventfd_list *ev;

5424
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5425 5426 5427 5428
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5429
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5430
{
K
KAMEZAWA Hiroyuki 已提交
5431 5432
	struct mem_cgroup *iter;

5433
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5434
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5435 5436 5437 5438
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5439 5440
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5441 5442
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5443
	enum res_type type = MEMFILE_TYPE(cft->private);
5444
	u64 threshold, usage;
5445
	int i, size, ret;
5446 5447 5448 5449 5450 5451

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5452

5453
	if (type == _MEM)
5454
		thresholds = &memcg->thresholds;
5455
	else if (type == _MEMSWAP)
5456
		thresholds = &memcg->memsw_thresholds;
5457 5458 5459 5460 5461 5462
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5463
	if (thresholds->primary)
5464 5465
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5466
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5467 5468

	/* Allocate memory for new array of thresholds */
5469
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5470
			GFP_KERNEL);
5471
	if (!new) {
5472 5473 5474
		ret = -ENOMEM;
		goto unlock;
	}
5475
	new->size = size;
5476 5477

	/* Copy thresholds (if any) to new array */
5478 5479
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5480
				sizeof(struct mem_cgroup_threshold));
5481 5482
	}

5483
	/* Add new threshold */
5484 5485
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5486 5487

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5488
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5489 5490 5491
			compare_thresholds, NULL);

	/* Find current threshold */
5492
	new->current_threshold = -1;
5493
	for (i = 0; i < size; i++) {
5494
		if (new->entries[i].threshold <= usage) {
5495
			/*
5496 5497
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5498 5499
			 * it here.
			 */
5500
			++new->current_threshold;
5501 5502
		} else
			break;
5503 5504
	}

5505 5506 5507 5508 5509
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5510

5511
	/* To be sure that nobody uses thresholds */
5512 5513 5514 5515 5516 5517 5518 5519
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5520
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5521
	struct cftype *cft, struct eventfd_ctx *eventfd)
5522 5523
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5524 5525
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5526
	enum res_type type = MEMFILE_TYPE(cft->private);
5527
	u64 usage;
5528
	int i, j, size;
5529 5530 5531

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5532
		thresholds = &memcg->thresholds;
5533
	else if (type == _MEMSWAP)
5534
		thresholds = &memcg->memsw_thresholds;
5535 5536 5537
	else
		BUG();

5538 5539 5540
	if (!thresholds->primary)
		goto unlock;

5541 5542 5543 5544 5545 5546
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5547 5548 5549
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5550 5551 5552
			size++;
	}

5553
	new = thresholds->spare;
5554

5555 5556
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5557 5558
		kfree(new);
		new = NULL;
5559
		goto swap_buffers;
5560 5561
	}

5562
	new->size = size;
5563 5564

	/* Copy thresholds and find current threshold */
5565 5566 5567
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5568 5569
			continue;

5570
		new->entries[j] = thresholds->primary->entries[i];
5571
		if (new->entries[j].threshold <= usage) {
5572
			/*
5573
			 * new->current_threshold will not be used
5574 5575 5576
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5577
			++new->current_threshold;
5578 5579 5580 5581
		}
		j++;
	}

5582
swap_buffers:
5583 5584
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5585 5586 5587 5588 5589 5590
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5591
	rcu_assign_pointer(thresholds->primary, new);
5592

5593
	/* To be sure that nobody uses thresholds */
5594
	synchronize_rcu();
5595
unlock:
5596 5597
	mutex_unlock(&memcg->thresholds_lock);
}
5598

K
KAMEZAWA Hiroyuki 已提交
5599 5600 5601 5602 5603
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5604
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5605 5606 5607 5608 5609 5610

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5611
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5612 5613 5614 5615 5616

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5617
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5618
		eventfd_signal(eventfd, 1);
5619
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5620 5621 5622 5623

	return 0;
}

5624
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5625 5626
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5627
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5628
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5629
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5630 5631 5632

	BUG_ON(type != _OOM_TYPE);

5633
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5634

5635
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5636 5637 5638 5639 5640 5641
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5642
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5643 5644
}

5645 5646 5647
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5648
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5649

5650
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5651

5652
	if (atomic_read(&memcg->under_oom))
5653 5654 5655 5656 5657 5658 5659 5660 5661
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5662
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
5674
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5675 5676 5677
		cgroup_unlock();
		return -EINVAL;
	}
5678
	memcg->oom_kill_disable = val;
5679
	if (!val)
5680
		memcg_oom_recover(memcg);
5681 5682 5683 5684
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
5685
#ifdef CONFIG_MEMCG_KMEM
5686
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5687
{
5688 5689
	int ret;

5690
	memcg->kmemcg_id = -1;
5691 5692 5693
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5694

5695
	return mem_cgroup_sockets_init(memcg, ss);
5696 5697
};

5698
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5699
{
5700
	mem_cgroup_sockets_destroy(memcg);
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5715
}
5716
#else
5717
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5718 5719 5720
{
	return 0;
}
G
Glauber Costa 已提交
5721

5722
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5723 5724
{
}
5725 5726
#endif

B
Balbir Singh 已提交
5727 5728
static struct cftype mem_cgroup_files[] = {
	{
5729
		.name = "usage_in_bytes",
5730
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5731
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5732 5733
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5734
	},
5735 5736
	{
		.name = "max_usage_in_bytes",
5737
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5738
		.trigger = mem_cgroup_reset,
5739
		.read = mem_cgroup_read,
5740
	},
B
Balbir Singh 已提交
5741
	{
5742
		.name = "limit_in_bytes",
5743
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5744
		.write_string = mem_cgroup_write,
5745
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5746
	},
5747 5748 5749 5750
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5751
		.read = mem_cgroup_read,
5752
	},
B
Balbir Singh 已提交
5753 5754
	{
		.name = "failcnt",
5755
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5756
		.trigger = mem_cgroup_reset,
5757
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5758
	},
5759 5760
	{
		.name = "stat",
5761
		.read_seq_string = memcg_stat_show,
5762
	},
5763 5764 5765 5766
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5767 5768 5769 5770 5771
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5772 5773 5774 5775 5776
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5777 5778 5779 5780 5781
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5782 5783
	{
		.name = "oom_control",
5784 5785
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5786 5787 5788 5789
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5790 5791 5792
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5793
		.read_seq_string = memcg_numa_stat_show,
5794 5795
	},
#endif
A
Andrew Morton 已提交
5796
#ifdef CONFIG_MEMCG_SWAP
5797 5798 5799
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5800
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5801 5802
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
5803 5804 5805 5806 5807
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
5808
		.read = mem_cgroup_read,
5809 5810 5811 5812 5813
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
5814
		.read = mem_cgroup_read,
5815 5816 5817 5818 5819
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
5820
		.read = mem_cgroup_read,
5821
	},
5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
#endif
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5847 5848 5849 5850 5851 5852
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5853
#endif
5854
	{ },	/* terminate */
5855
};
5856

5857
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5858 5859
{
	struct mem_cgroup_per_node *pn;
5860
	struct mem_cgroup_per_zone *mz;
5861
	int zone, tmp = node;
5862 5863 5864 5865 5866 5867 5868 5869
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5870 5871
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5872
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5873 5874
	if (!pn)
		return 1;
5875 5876 5877

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5878
		lruvec_init(&mz->lruvec);
5879
		mz->usage_in_excess = 0;
5880
		mz->on_tree = false;
5881
		mz->memcg = memcg;
5882
	}
5883
	memcg->info.nodeinfo[node] = pn;
5884 5885 5886
	return 0;
}

5887
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5888
{
5889
	kfree(memcg->info.nodeinfo[node]);
5890 5891
}

5892 5893
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5894
	struct mem_cgroup *memcg;
5895
	int size = sizeof(struct mem_cgroup);
5896

5897
	/* Can be very big if MAX_NUMNODES is very big */
5898
	if (size < PAGE_SIZE)
5899
		memcg = kzalloc(size, GFP_KERNEL);
5900
	else
5901
		memcg = vzalloc(size);
5902

5903
	if (!memcg)
5904 5905
		return NULL;

5906 5907
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5908
		goto out_free;
5909 5910
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5911 5912 5913

out_free:
	if (size < PAGE_SIZE)
5914
		kfree(memcg);
5915
	else
5916
		vfree(memcg);
5917
	return NULL;
5918 5919
}

5920
/*
5921 5922 5923 5924 5925 5926 5927 5928
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5929
 */
5930 5931

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5932
{
5933
	int node;
5934
	int size = sizeof(struct mem_cgroup);
5935

5936 5937 5938 5939 5940 5941 5942 5943
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5955
	disarm_static_keys(memcg);
5956 5957 5958 5959
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5960
}
5961

5962

5963
/*
5964 5965 5966
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
5967
 */
5968
static void free_work(struct work_struct *work)
5969
{
5970
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5971

5972 5973 5974
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
5975

5976 5977 5978
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5979

5980 5981 5982
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
5983 5984
}

5985
static void mem_cgroup_get(struct mem_cgroup *memcg)
5986
{
5987
	atomic_inc(&memcg->refcnt);
5988 5989
}

5990
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
5991
{
5992 5993
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5994
		call_rcu(&memcg->rcu_freeing, free_rcu);
5995 5996 5997
		if (parent)
			mem_cgroup_put(parent);
	}
5998 5999
}

6000
static void mem_cgroup_put(struct mem_cgroup *memcg)
6001
{
6002
	__mem_cgroup_put(memcg, 1);
6003 6004
}

6005 6006 6007
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6008
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6009
{
6010
	if (!memcg->res.parent)
6011
		return NULL;
6012
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6013
}
G
Glauber Costa 已提交
6014
EXPORT_SYMBOL(parent_mem_cgroup);
6015

A
Andrew Morton 已提交
6016
#ifdef CONFIG_MEMCG_SWAP
6017 6018
static void __init enable_swap_cgroup(void)
{
6019
	if (!mem_cgroup_disabled() && really_do_swap_account)
6020 6021 6022 6023 6024 6025 6026 6027
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

6028 6029 6030 6031 6032 6033
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6034
	for_each_node(node) {
6035 6036 6037 6038 6039
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
6040
			goto err_cleanup;
6041 6042 6043 6044 6045 6046 6047 6048 6049 6050

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
6051 6052

err_cleanup:
B
Bob Liu 已提交
6053
	for_each_node(node) {
6054 6055 6056 6057 6058 6059 6060
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

6061 6062
}

L
Li Zefan 已提交
6063
static struct cgroup_subsys_state * __ref
6064
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6065
{
6066
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
6067
	long error = -ENOMEM;
6068
	int node;
B
Balbir Singh 已提交
6069

6070 6071
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6072
		return ERR_PTR(error);
6073

B
Bob Liu 已提交
6074
	for_each_node(node)
6075
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6076
			goto free_out;
6077

6078
	/* root ? */
6079
	if (cont->parent == NULL) {
6080
		int cpu;
6081
		enable_swap_cgroup();
6082
		parent = NULL;
6083 6084
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
6085
		root_mem_cgroup = memcg;
6086 6087 6088 6089 6090
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
6091
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6092
	} else {
6093
		parent = mem_cgroup_from_cont(cont->parent);
6094 6095
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
6096
	}
6097

6098
	if (parent && parent->use_hierarchy) {
6099 6100
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6101
		res_counter_init(&memcg->kmem, &parent->kmem);
6102

6103 6104 6105 6106 6107 6108 6109
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6110
	} else {
6111 6112
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6113
		res_counter_init(&memcg->kmem, NULL);
6114 6115 6116 6117 6118 6119 6120
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
6121
	}
6122 6123
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
6124

K
KOSAKI Motohiro 已提交
6125
	if (parent)
6126 6127 6128 6129
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
6130
	spin_lock_init(&memcg->move_lock);
6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
6142
	return &memcg->css;
6143
free_out:
6144
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
6145
	return ERR_PTR(error);
B
Balbir Singh 已提交
6146 6147
}

6148
static void mem_cgroup_css_offline(struct cgroup *cont)
6149
{
6150
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6151

6152
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6153
	mem_cgroup_destroy_all_caches(memcg);
6154 6155
}

6156
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6157
{
6158
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6159

6160
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6161

6162
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6163 6164
}

6165
#ifdef CONFIG_MMU
6166
/* Handlers for move charge at task migration. */
6167 6168
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6169
{
6170 6171
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6172
	struct mem_cgroup *memcg = mc.to;
6173

6174
	if (mem_cgroup_is_root(memcg)) {
6175 6176 6177 6178 6179 6180 6181 6182
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6183
		 * "memcg" cannot be under rmdir() because we've already checked
6184 6185 6186 6187
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6188
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6189
			goto one_by_one;
6190
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6191
						PAGE_SIZE * count, &dummy)) {
6192
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6209 6210
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6211
		if (ret)
6212
			/* mem_cgroup_clear_mc() will do uncharge later */
6213
			return ret;
6214 6215
		mc.precharge++;
	}
6216 6217 6218 6219
	return ret;
}

/**
6220
 * get_mctgt_type - get target type of moving charge
6221 6222 6223
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6224
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6225 6226 6227 6228 6229 6230
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6231 6232 6233
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6234 6235 6236 6237 6238
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6239
	swp_entry_t	ent;
6240 6241 6242
};

enum mc_target_type {
6243
	MC_TARGET_NONE = 0,
6244
	MC_TARGET_PAGE,
6245
	MC_TARGET_SWAP,
6246 6247
};

D
Daisuke Nishimura 已提交
6248 6249
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6250
{
D
Daisuke Nishimura 已提交
6251
	struct page *page = vm_normal_page(vma, addr, ptent);
6252

D
Daisuke Nishimura 已提交
6253 6254 6255 6256
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6257
		if (!move_anon())
D
Daisuke Nishimura 已提交
6258
			return NULL;
6259 6260
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6261 6262 6263 6264 6265 6266 6267
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6268
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6269 6270 6271 6272 6273 6274 6275 6276
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6277 6278 6279 6280 6281
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
6282 6283 6284 6285 6286
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6287 6288 6289 6290 6291 6292 6293
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6294

6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6314 6315 6316 6317 6318 6319
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6320
		if (do_swap_account)
6321 6322
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
6323
	}
6324
#endif
6325 6326 6327
	return page;
}

6328
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6329 6330 6331 6332
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6333
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6334 6335 6336 6337 6338 6339
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6340 6341
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6342 6343

	if (!page && !ent.val)
6344
		return ret;
6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6360 6361
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6362
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6363 6364 6365
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6366 6367 6368 6369
	}
	return ret;
}

6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6405 6406 6407 6408 6409 6410 6411 6412
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6413 6414 6415 6416
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6417
		return 0;
6418
	}
6419

6420 6421
	if (pmd_trans_unstable(pmd))
		return 0;
6422 6423
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6424
		if (get_mctgt_type(vma, addr, *pte, NULL))
6425 6426 6427 6428
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6429 6430 6431
	return 0;
}

6432 6433 6434 6435 6436
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6437
	down_read(&mm->mmap_sem);
6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6449
	up_read(&mm->mmap_sem);
6450 6451 6452 6453 6454 6455 6456 6457 6458

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6459 6460 6461 6462 6463
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6464 6465
}

6466 6467
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6468
{
6469 6470 6471
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6472
	/* we must uncharge all the leftover precharges from mc.to */
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6484
	}
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6519
	spin_lock(&mc.lock);
6520 6521
	mc.from = NULL;
	mc.to = NULL;
6522
	spin_unlock(&mc.lock);
6523
	mem_cgroup_end_move(from);
6524 6525
}

6526 6527
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6528
{
6529
	struct task_struct *p = cgroup_taskset_first(tset);
6530
	int ret = 0;
6531
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6532

6533
	if (memcg->move_charge_at_immigrate) {
6534 6535 6536
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6537
		VM_BUG_ON(from == memcg);
6538 6539 6540 6541 6542

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6543 6544 6545 6546
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6547
			VM_BUG_ON(mc.moved_charge);
6548
			VM_BUG_ON(mc.moved_swap);
6549
			mem_cgroup_start_move(from);
6550
			spin_lock(&mc.lock);
6551
			mc.from = from;
6552
			mc.to = memcg;
6553
			spin_unlock(&mc.lock);
6554
			/* We set mc.moving_task later */
6555 6556 6557 6558

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6559 6560
		}
		mmput(mm);
6561 6562 6563 6564
	}
	return ret;
}

6565 6566
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6567
{
6568
	mem_cgroup_clear_mc();
6569 6570
}

6571 6572 6573
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6574
{
6575 6576 6577 6578
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6579 6580 6581 6582
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6583

6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6595
		if (mc.precharge < HPAGE_PMD_NR) {
6596 6597 6598 6599 6600 6601 6602 6603 6604
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6605
							pc, mc.from, mc.to)) {
6606 6607 6608 6609 6610 6611 6612 6613
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6614
		return 0;
6615 6616
	}

6617 6618
	if (pmd_trans_unstable(pmd))
		return 0;
6619 6620 6621 6622
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6623
		swp_entry_t ent;
6624 6625 6626 6627

		if (!mc.precharge)
			break;

6628
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6629 6630 6631 6632 6633
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6634
			if (!mem_cgroup_move_account(page, 1, pc,
6635
						     mc.from, mc.to)) {
6636
				mc.precharge--;
6637 6638
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6639 6640
			}
			putback_lru_page(page);
6641
put:			/* get_mctgt_type() gets the page */
6642 6643
			put_page(page);
			break;
6644 6645
		case MC_TARGET_SWAP:
			ent = target.ent;
6646
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6647
				mc.precharge--;
6648 6649 6650
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6651
			break;
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6666
		ret = mem_cgroup_do_precharge(1);
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6710
	up_read(&mm->mmap_sem);
6711 6712
}

6713 6714
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6715
{
6716
	struct task_struct *p = cgroup_taskset_first(tset);
6717
	struct mm_struct *mm = get_task_mm(p);
6718 6719

	if (mm) {
6720 6721
		if (mc.to)
			mem_cgroup_move_charge(mm);
6722 6723
		mmput(mm);
	}
6724 6725
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6726
}
6727
#else	/* !CONFIG_MMU */
6728 6729
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6730 6731 6732
{
	return 0;
}
6733 6734
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6735 6736
{
}
6737 6738
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6739 6740 6741
{
}
#endif
B
Balbir Singh 已提交
6742

B
Balbir Singh 已提交
6743 6744 6745
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6746 6747 6748
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6749 6750
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6751
	.attach = mem_cgroup_move_task,
6752
	.base_cftypes = mem_cgroup_files,
6753
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6754
	.use_id = 1,
B
Balbir Singh 已提交
6755
};
6756

A
Andrew Morton 已提交
6757
#ifdef CONFIG_MEMCG_SWAP
6758 6759 6760
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6761
	if (!strcmp(s, "1"))
6762
		really_do_swap_account = 1;
6763
	else if (!strcmp(s, "0"))
6764 6765 6766
		really_do_swap_account = 0;
	return 1;
}
6767
__setup("swapaccount=", enable_swap_account);
6768 6769

#endif