memcontrol.c 184.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90 91 92 93 94 95
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
96
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
97
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
98
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_NSTATS,
};

102 103 104 105 106 107 108
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

109 110 111
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
112 113
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
114 115
	MEM_CGROUP_EVENTS_NSTATS,
};
116 117 118 119 120 121 122 123

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

124 125 126 127 128 129 130 131
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

132 133 134 135 136 137 138 139 140
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
141
	MEM_CGROUP_TARGET_NUMAINFO,
142 143
	MEM_CGROUP_NTARGETS,
};
144 145 146
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
147

148
struct mem_cgroup_stat_cpu {
149
	long count[MEM_CGROUP_STAT_NSTATS];
150
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
151
	unsigned long nr_page_events;
152
	unsigned long targets[MEM_CGROUP_NTARGETS];
153 154
};

155
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
156 157 158 159
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
160
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
161 162
	unsigned long last_dead_count;

163 164 165 166
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

167 168 169 170
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
171
	struct lruvec		lruvec;
172
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
173

174 175
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

176 177 178 179
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
180
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
181
						/* use container_of	   */
182 183 184 185 186 187 188
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
189
	struct mem_cgroup_per_node *nodeinfo[0];
190 191
};

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

212 213 214 215 216
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
217
/* For threshold */
218
struct mem_cgroup_threshold_ary {
219
	/* An array index points to threshold just below or equal to usage. */
220
	int current_threshold;
221 222 223 224 225
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
226 227 228 229 230 231 232 233 234 235 236 237

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
238 239 240 241 242
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
243

244 245
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
246

B
Balbir Singh 已提交
247 248 249 250 251 252 253
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
254 255 256
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
257 258 259 260 261 262 263
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
264

265 266 267
	/* vmpressure notifications */
	struct vmpressure vmpressure;

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
285 286
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
287 288 289 290
		 */
		struct work_struct work_freeing;
	};

291 292 293 294
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
295 296 297 298
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
299
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300 301 302 303

	bool		oom_lock;
	atomic_t	under_oom;

304
	atomic_t	refcnt;
305

306
	int	swappiness;
307 308
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
309

310 311 312
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

313 314 315 316
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
317
	struct mem_cgroup_thresholds thresholds;
318

319
	/* thresholds for mem+swap usage. RCU-protected */
320
	struct mem_cgroup_thresholds memsw_thresholds;
321

K
KAMEZAWA Hiroyuki 已提交
322 323
	/* For oom notifier event fd */
	struct list_head oom_notify;
324

325 326 327 328 329
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
330 331 332 333
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
334 335
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
336
	/*
337
	 * percpu counter.
338
	 */
339
	struct mem_cgroup_stat_cpu __percpu *stat;
340 341 342 343 344 345
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
346

M
Michal Hocko 已提交
347
	atomic_t	dead_count;
M
Michal Hocko 已提交
348
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
349 350
	struct tcp_memcontrol tcp_mem;
#endif
351 352 353 354 355 356 357 358
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
359 360 361 362 363 364 365

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
366

367 368 369 370 371 372 373 374
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 *
	 * WARNING: This has to be the last element of the struct. Don't
	 * add new fields after this point.
	 */
	struct mem_cgroup_lru_info info;
B
Balbir Singh 已提交
375 376
};

377 378 379 380 381 382
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

383 384 385
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
386
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
387
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
388 389
};

390 391 392
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
393 394 395 396 397 398

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
399 400 401 402 403 404

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

405 406 407 408 409
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

410 411 412 413 414
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

415 416 417 418 419 420 421 422 423 424 425
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
426 427
#endif

428 429
/* Stuffs for move charges at task migration. */
/*
430 431
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
432 433
 */
enum move_type {
434
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
435
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
436 437 438
	NR_MOVE_TYPE,
};

439 440
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
441
	spinlock_t	  lock; /* for from, to */
442 443
	struct mem_cgroup *from;
	struct mem_cgroup *to;
444
	unsigned long immigrate_flags;
445
	unsigned long precharge;
446
	unsigned long moved_charge;
447
	unsigned long moved_swap;
448 449 450
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
451
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
452 453
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
454

D
Daisuke Nishimura 已提交
455 456
static bool move_anon(void)
{
457
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
458 459
}

460 461
static bool move_file(void)
{
462
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
463 464
}

465 466 467 468
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
469 470
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
471

472 473
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
474
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
475
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
476
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
477 478 479
	NR_CHARGE_TYPE,
};

480
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
481 482 483 484
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
485
	_KMEM,
G
Glauber Costa 已提交
486 487
};

488 489
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
490
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
491 492
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
493

494 495 496 497 498 499 500 501
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

502 503 504 505 506 507 508
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

509 510
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
511

512 513 514 515 516 517
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

536 537 538 539 540
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
541
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
542
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
543 544 545

void sock_update_memcg(struct sock *sk)
{
546
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
547
		struct mem_cgroup *memcg;
548
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
549 550 551

		BUG_ON(!sk->sk_prot->proto_cgroup);

552 553 554 555 556 557 558 559 560 561 562 563 564 565
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
566 567
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
568 569
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
570
			mem_cgroup_get(memcg);
571
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
572 573 574 575 576 577 578 579
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
580
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
581 582 583 584 585 586
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
587 588 589 590 591 592 593 594 595

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
596

597 598 599 600 601 602 603 604 605 606 607 608
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

609
#ifdef CONFIG_MEMCG_KMEM
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
628 629
int memcg_limited_groups_array_size;

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

645 646 647 648 649 650
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
651
struct static_key memcg_kmem_enabled_key;
652
EXPORT_SYMBOL(memcg_kmem_enabled_key);
653 654 655

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
656
	if (memcg_kmem_is_active(memcg)) {
657
		static_key_slow_dec(&memcg_kmem_enabled_key);
658 659
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
660 661 662 663 664
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
665 666 667 668 669 670 671 672 673 674 675 676 677
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

678
static void drain_all_stock_async(struct mem_cgroup *memcg);
679

680
static struct mem_cgroup_per_zone *
681
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
682
{
683
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
684
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
685 686
}

687
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
688
{
689
	return &memcg->css;
690 691
}

692
static struct mem_cgroup_per_zone *
693
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
694
{
695 696
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
697

698
	return mem_cgroup_zoneinfo(memcg, nid, zid);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
717
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
718
				struct mem_cgroup_per_zone *mz,
719 720
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
721 722 723 724 725 726 727 728
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

729 730 731
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
748 749 750
}

static void
751
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
752 753 754 755 756 757 758 759 760
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

761
static void
762
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
763 764 765 766
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
767
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
768 769 770 771
	spin_unlock(&mctz->lock);
}


772
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
773
{
774
	unsigned long long excess;
775 776
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
777 778
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
779 780 781
	mctz = soft_limit_tree_from_page(page);

	/*
782 783
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
784
	 */
785 786 787
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
788 789 790 791
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
792
		if (excess || mz->on_tree) {
793 794 795
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
796
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
797
			/*
798 799
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
800
			 */
801
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
802 803
			spin_unlock(&mctz->lock);
		}
804 805 806
	}
}

807
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
808 809 810 811 812
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
813
	for_each_node(node) {
814
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
815
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
816
			mctz = soft_limit_tree_node_zone(node, zone);
817
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
818 819 820 821
		}
	}
}

822 823 824 825
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
826
	struct mem_cgroup_per_zone *mz;
827 828

retry:
829
	mz = NULL;
830 831 832 833 834 835 836 837 838 839
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
840 841 842
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
878
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
879
				 enum mem_cgroup_stat_index idx)
880
{
881
	long val = 0;
882 883
	int cpu;

884 885
	get_online_cpus();
	for_each_online_cpu(cpu)
886
		val += per_cpu(memcg->stat->count[idx], cpu);
887
#ifdef CONFIG_HOTPLUG_CPU
888 889 890
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
891 892
#endif
	put_online_cpus();
893 894 895
	return val;
}

896
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
897 898 899
					 bool charge)
{
	int val = (charge) ? 1 : -1;
900
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
901 902
}

903
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
904 905 906 907 908 909
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
910
		val += per_cpu(memcg->stat->events[idx], cpu);
911
#ifdef CONFIG_HOTPLUG_CPU
912 913 914
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
915 916 917 918
#endif
	return val;
}

919
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
920
					 bool anon, int nr_pages)
921
{
922 923
	preempt_disable();

924 925 926 927 928 929
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
930
				nr_pages);
931
	else
932
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
933
				nr_pages);
934

935 936
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
937
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
938
	else {
939
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
940 941
		nr_pages = -nr_pages; /* for event */
	}
942

943
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
944

945
	preempt_enable();
946 947
}

948
unsigned long
949
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
950 951 952 953 954 955 956 957
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
958
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
959
			unsigned int lru_mask)
960 961
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
962
	enum lru_list lru;
963 964
	unsigned long ret = 0;

965
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
966

H
Hugh Dickins 已提交
967 968 969
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
970 971 972 973 974
	}
	return ret;
}

static unsigned long
975
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
976 977
			int nid, unsigned int lru_mask)
{
978 979 980
	u64 total = 0;
	int zid;

981
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
982 983
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
984

985 986
	return total;
}
987

988
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
989
			unsigned int lru_mask)
990
{
991
	int nid;
992 993
	u64 total = 0;

994
	for_each_node_state(nid, N_MEMORY)
995
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
996
	return total;
997 998
}

999 1000
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
1001 1002 1003
{
	unsigned long val, next;

1004
	val = __this_cpu_read(memcg->stat->nr_page_events);
1005
	next = __this_cpu_read(memcg->stat->targets[target]);
1006
	/* from time_after() in jiffies.h */
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1023
	}
1024
	return false;
1025 1026 1027 1028 1029 1030
}

/*
 * Check events in order.
 *
 */
1031
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1032
{
1033
	preempt_disable();
1034
	/* threshold event is triggered in finer grain than soft limit */
1035 1036
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1037 1038
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1039 1040 1041 1042 1043 1044 1045 1046 1047

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1048
		mem_cgroup_threshold(memcg);
1049
		if (unlikely(do_softlimit))
1050
			mem_cgroup_update_tree(memcg, page);
1051
#if MAX_NUMNODES > 1
1052
		if (unlikely(do_numainfo))
1053
			atomic_inc(&memcg->numainfo_events);
1054
#endif
1055 1056
	} else
		preempt_enable();
1057 1058
}

G
Glauber Costa 已提交
1059
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1060
{
1061 1062
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1063 1064
}

1065
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1066
{
1067 1068 1069 1070 1071 1072 1073 1074
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1075
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1076 1077
}

1078
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1079
{
1080
	struct mem_cgroup *memcg = NULL;
1081 1082 1083

	if (!mm)
		return NULL;
1084 1085 1086 1087 1088 1089 1090
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1091 1092
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1093
			break;
1094
	} while (!css_tryget(&memcg->css));
1095
	rcu_read_unlock();
1096
	return memcg;
1097 1098
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
		struct mem_cgroup *last_visited)
{
	struct cgroup *prev_cgroup, *next_cgroup;

	/*
	 * Root is not visited by cgroup iterators so it needs an
	 * explicit visit.
	 */
	if (!last_visited)
		return root;

	prev_cgroup = (last_visited == root) ? NULL
		: last_visited->css.cgroup;
skip_node:
	next_cgroup = cgroup_next_descendant_pre(
			prev_cgroup, root->css.cgroup);

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
	if (next_cgroup) {
		struct mem_cgroup *mem = mem_cgroup_from_cont(
				next_cgroup);
		if (css_tryget(&mem->css))
			return mem;
		else {
			prev_cgroup = next_cgroup;
			goto skip_node;
		}
	}

	return NULL;
}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1164
{
1165
	struct mem_cgroup *memcg = NULL;
1166
	struct mem_cgroup *last_visited = NULL;
M
Michal Hocko 已提交
1167
	unsigned long uninitialized_var(dead_count);
1168

1169 1170 1171
	if (mem_cgroup_disabled())
		return NULL;

1172 1173
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1174

1175
	if (prev && !reclaim)
1176
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1177

1178 1179
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1180
			goto out_css_put;
1181 1182
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1183

1184
	rcu_read_lock();
1185
	while (!memcg) {
1186
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1187

1188 1189 1190 1191 1192 1193 1194
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1195 1196
			last_visited = iter->last_visited;
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1197
				iter->last_visited = NULL;
1198 1199
				goto out_unlock;
			}
M
Michal Hocko 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

			/*
			 * If the dead_count mismatches, a destruction
			 * has happened or is happening concurrently.
			 * If the dead_count matches, a destruction
			 * might still happen concurrently, but since
			 * we checked under RCU, that destruction
			 * won't free the object until we release the
			 * RCU reader lock.  Thus, the dead_count
			 * check verifies the pointer is still valid,
			 * css_tryget() verifies the cgroup pointed to
			 * is alive.
			 */
			dead_count = atomic_read(&root->dead_count);
			smp_rmb();
			last_visited = iter->last_visited;
			if (last_visited) {
				if ((dead_count != iter->last_dead_count) ||
					!css_tryget(&last_visited->css)) {
					last_visited = NULL;
				}
			}
1222
		}
K
KAMEZAWA Hiroyuki 已提交
1223

1224
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1225

1226
		if (reclaim) {
1227 1228 1229
			if (last_visited)
				css_put(&last_visited->css);

M
Michal Hocko 已提交
1230
			iter->last_visited = memcg;
M
Michal Hocko 已提交
1231 1232
			smp_wmb();
			iter->last_dead_count = dead_count;
1233

M
Michal Hocko 已提交
1234
			if (!memcg)
1235 1236 1237 1238
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1239

M
Michal Hocko 已提交
1240
		if (prev && !memcg)
1241
			goto out_unlock;
1242
	}
1243 1244
out_unlock:
	rcu_read_unlock();
1245 1246 1247 1248
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1249
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1250
}
K
KAMEZAWA Hiroyuki 已提交
1251

1252 1253 1254 1255 1256 1257 1258
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1259 1260 1261 1262 1263 1264
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1265

1266 1267 1268 1269 1270 1271
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1272
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1273
	     iter != NULL;				\
1274
	     iter = mem_cgroup_iter(root, iter, NULL))
1275

1276
#define for_each_mem_cgroup(iter)			\
1277
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1278
	     iter != NULL;				\
1279
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1280

1281
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1282
{
1283
	struct mem_cgroup *memcg;
1284 1285

	rcu_read_lock();
1286 1287
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1288 1289 1290 1291
		goto out;

	switch (idx) {
	case PGFAULT:
1292 1293 1294 1295
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1296 1297 1298 1299 1300 1301 1302
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1303
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1304

1305 1306 1307
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1308
 * @memcg: memcg of the wanted lruvec
1309 1310 1311 1312 1313 1314 1315 1316 1317
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1318
	struct lruvec *lruvec;
1319

1320 1321 1322 1323
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1324 1325

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1336 1337
}

K
KAMEZAWA Hiroyuki 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1351

1352
/**
1353
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1354
 * @page: the page
1355
 * @zone: zone of the page
1356
 */
1357
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1358 1359
{
	struct mem_cgroup_per_zone *mz;
1360 1361
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1362
	struct lruvec *lruvec;
1363

1364 1365 1366 1367
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1368

K
KAMEZAWA Hiroyuki 已提交
1369
	pc = lookup_page_cgroup(page);
1370
	memcg = pc->mem_cgroup;
1371 1372

	/*
1373
	 * Surreptitiously switch any uncharged offlist page to root:
1374 1375 1376 1377 1378 1379 1380
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1381
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1382 1383
		pc->mem_cgroup = memcg = root_mem_cgroup;

1384
	mz = page_cgroup_zoneinfo(memcg, page);
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1395
}
1396

1397
/**
1398 1399 1400 1401
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1402
 *
1403 1404
 * This function must be called when a page is added to or removed from an
 * lru list.
1405
 */
1406 1407
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1408 1409
{
	struct mem_cgroup_per_zone *mz;
1410
	unsigned long *lru_size;
1411 1412 1413 1414

	if (mem_cgroup_disabled())
		return;

1415 1416 1417 1418
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1419
}
1420

1421
/*
1422
 * Checks whether given mem is same or in the root_mem_cgroup's
1423 1424
 * hierarchy subtree
 */
1425 1426
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1427
{
1428 1429
	if (root_memcg == memcg)
		return true;
1430
	if (!root_memcg->use_hierarchy || !memcg)
1431
		return false;
1432 1433 1434 1435 1436 1437 1438 1439
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1440
	rcu_read_lock();
1441
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1442 1443
	rcu_read_unlock();
	return ret;
1444 1445
}

1446
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1447 1448
{
	int ret;
1449
	struct mem_cgroup *curr = NULL;
1450
	struct task_struct *p;
1451

1452
	p = find_lock_task_mm(task);
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1468 1469
	if (!curr)
		return 0;
1470
	/*
1471
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1472
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1473 1474
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1475
	 */
1476
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1477
	css_put(&curr->css);
1478 1479 1480
	return ret;
}

1481
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1482
{
1483
	unsigned long inactive_ratio;
1484
	unsigned long inactive;
1485
	unsigned long active;
1486
	unsigned long gb;
1487

1488 1489
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1490

1491 1492 1493 1494 1495 1496
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1497
	return inactive * inactive_ratio < active;
1498 1499
}

1500 1501 1502
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1503
/**
1504
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1505
 * @memcg: the memory cgroup
1506
 *
1507
 * Returns the maximum amount of memory @mem can be charged with, in
1508
 * pages.
1509
 */
1510
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1511
{
1512 1513
	unsigned long long margin;

1514
	margin = res_counter_margin(&memcg->res);
1515
	if (do_swap_account)
1516
		margin = min(margin, res_counter_margin(&memcg->memsw));
1517
	return margin >> PAGE_SHIFT;
1518 1519
}

1520
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1521 1522 1523 1524 1525 1526 1527
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1528
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1529 1530
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1545 1546 1547 1548

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1549
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1550
{
1551
	atomic_inc(&memcg_moving);
1552
	atomic_inc(&memcg->moving_account);
1553 1554 1555
	synchronize_rcu();
}

1556
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1557
{
1558 1559 1560 1561
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1562 1563
	if (memcg) {
		atomic_dec(&memcg_moving);
1564
		atomic_dec(&memcg->moving_account);
1565
	}
1566
}
1567

1568 1569 1570
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1571 1572
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1573 1574 1575 1576 1577 1578 1579
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1580
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1581 1582
{
	VM_BUG_ON(!rcu_read_lock_held());
1583
	return atomic_read(&memcg->moving_account) > 0;
1584
}
1585

1586
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1587
{
1588 1589
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1590
	bool ret = false;
1591 1592 1593 1594 1595 1596 1597 1598 1599
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1600

1601 1602
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1603 1604
unlock:
	spin_unlock(&mc.lock);
1605 1606 1607
	return ret;
}

1608
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1609 1610
{
	if (mc.moving_task && current != mc.moving_task) {
1611
		if (mem_cgroup_under_move(memcg)) {
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1624 1625 1626 1627
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1628
 * see mem_cgroup_stolen(), too.
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1642
#define K(x) ((x) << (PAGE_SHIFT-10))
1643
/**
1644
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1662 1663
	struct mem_cgroup *iter;
	unsigned int i;
1664

1665
	if (!p)
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1684
	pr_info("Task in %s killed", memcg_name);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1697
	pr_cont(" as a result of limit of %s\n", memcg_name);
1698 1699
done:

1700
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1701 1702 1703
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1704
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1705 1706 1707
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1708
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1709 1710 1711
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1736 1737
}

1738 1739 1740 1741
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1742
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1743 1744
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1745 1746
	struct mem_cgroup *iter;

1747
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1748
		num++;
1749 1750 1751
	return num;
}

D
David Rientjes 已提交
1752 1753 1754
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1755
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1756 1757 1758
{
	u64 limit;

1759 1760
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1761
	/*
1762
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1763
	 */
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1778 1779
}

1780 1781
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1782 1783 1784 1785 1786 1787 1788
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1789
	/*
1790 1791 1792
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1793
	 */
1794
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1795 1796 1797 1798 1799
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1883 1884
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1885
 * @memcg: the target memcg
1886 1887 1888 1889 1890 1891 1892
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1893
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1894 1895
		int nid, bool noswap)
{
1896
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1897 1898 1899
		return true;
	if (noswap || !total_swap_pages)
		return false;
1900
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1901 1902 1903 1904
		return true;
	return false;

}
1905 1906 1907 1908 1909 1910 1911 1912
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1913
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1914 1915
{
	int nid;
1916 1917 1918 1919
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1920
	if (!atomic_read(&memcg->numainfo_events))
1921
		return;
1922
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1923 1924 1925
		return;

	/* make a nodemask where this memcg uses memory from */
1926
	memcg->scan_nodes = node_states[N_MEMORY];
1927

1928
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1929

1930 1931
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1932
	}
1933

1934 1935
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1950
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1951 1952 1953
{
	int node;

1954 1955
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1956

1957
	node = next_node(node, memcg->scan_nodes);
1958
	if (node == MAX_NUMNODES)
1959
		node = first_node(memcg->scan_nodes);
1960 1961 1962 1963 1964 1965 1966 1967 1968
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1969
	memcg->last_scanned_node = node;
1970 1971 1972
	return node;
}

1973 1974 1975 1976 1977 1978
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1979
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1980 1981 1982 1983 1984 1985 1986
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1987 1988
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1989
		     nid < MAX_NUMNODES;
1990
		     nid = next_node(nid, memcg->scan_nodes)) {
1991

1992
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1993 1994 1995 1996 1997 1998
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1999
	for_each_node_state(nid, N_MEMORY) {
2000
		if (node_isset(nid, memcg->scan_nodes))
2001
			continue;
2002
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2003 2004 2005 2006 2007
			return true;
	}
	return false;
}

2008
#else
2009
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2010 2011 2012
{
	return 0;
}
2013

2014
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2015
{
2016
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2017
}
2018 2019
#endif

2020 2021 2022 2023
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
2024
{
2025
	struct mem_cgroup *victim = NULL;
2026
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
2027
	int loop = 0;
2028
	unsigned long excess;
2029
	unsigned long nr_scanned;
2030 2031 2032 2033
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
2034

2035
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
2036

2037
	while (1) {
2038
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2039
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
2040
			loop++;
2041 2042 2043 2044 2045 2046
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
2047
				if (!total)
2048 2049
					break;
				/*
L
Lucas De Marchi 已提交
2050
				 * We want to do more targeted reclaim.
2051 2052 2053 2054 2055
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
2056
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2057 2058
					break;
			}
2059
			continue;
2060
		}
2061
		if (!mem_cgroup_reclaimable(victim, false))
2062
			continue;
2063 2064 2065 2066
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
2067
			break;
2068
	}
2069
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
2070
	return total;
2071 2072
}

K
KAMEZAWA Hiroyuki 已提交
2073 2074 2075
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2076
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2077
 */
2078
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2079
{
2080
	struct mem_cgroup *iter, *failed = NULL;
2081

2082
	for_each_mem_cgroup_tree(iter, memcg) {
2083
		if (iter->oom_lock) {
2084 2085 2086 2087 2088
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2089 2090
			mem_cgroup_iter_break(memcg, iter);
			break;
2091 2092
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2093
	}
K
KAMEZAWA Hiroyuki 已提交
2094

2095
	if (!failed)
2096
		return true;
2097 2098 2099 2100 2101

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2102
	for_each_mem_cgroup_tree(iter, memcg) {
2103
		if (iter == failed) {
2104 2105
			mem_cgroup_iter_break(memcg, iter);
			break;
2106 2107 2108
		}
		iter->oom_lock = false;
	}
2109
	return false;
2110
}
2111

2112
/*
2113
 * Has to be called with memcg_oom_lock
2114
 */
2115
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2116
{
K
KAMEZAWA Hiroyuki 已提交
2117 2118
	struct mem_cgroup *iter;

2119
	for_each_mem_cgroup_tree(iter, memcg)
2120 2121 2122 2123
		iter->oom_lock = false;
	return 0;
}

2124
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2125 2126 2127
{
	struct mem_cgroup *iter;

2128
	for_each_mem_cgroup_tree(iter, memcg)
2129 2130 2131
		atomic_inc(&iter->under_oom);
}

2132
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2133 2134 2135
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2136 2137 2138 2139 2140
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2141
	for_each_mem_cgroup_tree(iter, memcg)
2142
		atomic_add_unless(&iter->under_oom, -1, 0);
2143 2144
}

2145
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2146 2147
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2148
struct oom_wait_info {
2149
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2150 2151 2152 2153 2154 2155
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2156 2157
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2158 2159 2160
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2161
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2162 2163

	/*
2164
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2165 2166
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2167 2168
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2169 2170 2171 2172
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2173
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2174
{
2175 2176
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2177 2178
}

2179
static void memcg_oom_recover(struct mem_cgroup *memcg)
2180
{
2181 2182
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2183 2184
}

K
KAMEZAWA Hiroyuki 已提交
2185 2186 2187
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2188 2189
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2190
{
K
KAMEZAWA Hiroyuki 已提交
2191
	struct oom_wait_info owait;
2192
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2193

2194
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2195 2196 2197 2198
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2199
	need_to_kill = true;
2200
	mem_cgroup_mark_under_oom(memcg);
2201

2202
	/* At first, try to OOM lock hierarchy under memcg.*/
2203
	spin_lock(&memcg_oom_lock);
2204
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2205 2206 2207 2208 2209
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2210
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2211
	if (!locked || memcg->oom_kill_disable)
2212 2213
		need_to_kill = false;
	if (locked)
2214
		mem_cgroup_oom_notify(memcg);
2215
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2216

2217 2218
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2219
		mem_cgroup_out_of_memory(memcg, mask, order);
2220
	} else {
K
KAMEZAWA Hiroyuki 已提交
2221
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2222
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2223
	}
2224
	spin_lock(&memcg_oom_lock);
2225
	if (locked)
2226 2227
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2228
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2229

2230
	mem_cgroup_unmark_under_oom(memcg);
2231

K
KAMEZAWA Hiroyuki 已提交
2232 2233 2234
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2235
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2236
	return true;
2237 2238
}

2239 2240 2241
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2259 2260
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2261
 */
2262

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2276
	 * need to take move_lock_mem_cgroup(). Because we already hold
2277
	 * rcu_read_lock(), any calls to move_account will be delayed until
2278
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2279
	 */
2280
	if (!mem_cgroup_stolen(memcg))
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2298
	 * should take move_lock_mem_cgroup().
2299 2300 2301 2302
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2303 2304
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2305
{
2306
	struct mem_cgroup *memcg;
2307
	struct page_cgroup *pc = lookup_page_cgroup(page);
2308
	unsigned long uninitialized_var(flags);
2309

2310
	if (mem_cgroup_disabled())
2311
		return;
2312

2313 2314
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2315
		return;
2316 2317

	switch (idx) {
2318 2319
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2320 2321 2322
		break;
	default:
		BUG();
2323
	}
2324

2325
	this_cpu_add(memcg->stat->count[idx], val);
2326
}
2327

2328 2329 2330 2331
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2332
#define CHARGE_BATCH	32U
2333 2334
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2335
	unsigned int nr_pages;
2336
	struct work_struct work;
2337
	unsigned long flags;
2338
#define FLUSHING_CACHED_CHARGE	0
2339 2340
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2341
static DEFINE_MUTEX(percpu_charge_mutex);
2342

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2353
 */
2354
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2355 2356 2357 2358
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2359 2360 2361
	if (nr_pages > CHARGE_BATCH)
		return false;

2362
	stock = &get_cpu_var(memcg_stock);
2363 2364
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2378 2379 2380 2381
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2382
		if (do_swap_account)
2383 2384
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2397
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2398 2399
}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2411 2412
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2413
 * This will be consumed by consume_stock() function, later.
2414
 */
2415
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2416 2417 2418
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2419
	if (stock->cached != memcg) { /* reset if necessary */
2420
		drain_stock(stock);
2421
		stock->cached = memcg;
2422
	}
2423
	stock->nr_pages += nr_pages;
2424 2425 2426 2427
	put_cpu_var(memcg_stock);
}

/*
2428
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2429 2430
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2431
 */
2432
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2433
{
2434
	int cpu, curcpu;
2435

2436 2437
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2438
	curcpu = get_cpu();
2439 2440
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2441
		struct mem_cgroup *memcg;
2442

2443 2444
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2445
			continue;
2446
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2447
			continue;
2448 2449 2450 2451 2452 2453
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2454
	}
2455
	put_cpu();
2456 2457 2458 2459 2460 2461

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2462
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2463 2464 2465
			flush_work(&stock->work);
	}
out:
2466
 	put_online_cpus();
2467 2468 2469 2470 2471 2472 2473 2474
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2475
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2476
{
2477 2478 2479 2480 2481
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2482
	drain_all_stock(root_memcg, false);
2483
	mutex_unlock(&percpu_charge_mutex);
2484 2485 2486
}

/* This is a synchronous drain interface. */
2487
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2488 2489
{
	/* called when force_empty is called */
2490
	mutex_lock(&percpu_charge_mutex);
2491
	drain_all_stock(root_memcg, true);
2492
	mutex_unlock(&percpu_charge_mutex);
2493 2494
}

2495 2496 2497 2498
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2499
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2500 2501 2502
{
	int i;

2503
	spin_lock(&memcg->pcp_counter_lock);
2504
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2505
		long x = per_cpu(memcg->stat->count[i], cpu);
2506

2507 2508
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2509
	}
2510
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2511
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2512

2513 2514
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2515
	}
2516
	spin_unlock(&memcg->pcp_counter_lock);
2517 2518 2519
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2520 2521 2522 2523 2524
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2525
	struct mem_cgroup *iter;
2526

2527
	if (action == CPU_ONLINE)
2528 2529
		return NOTIFY_OK;

2530
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2531
		return NOTIFY_OK;
2532

2533
	for_each_mem_cgroup(iter)
2534 2535
		mem_cgroup_drain_pcp_counter(iter, cpu);

2536 2537 2538 2539 2540
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2551
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2552 2553
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2554
{
2555
	unsigned long csize = nr_pages * PAGE_SIZE;
2556 2557 2558 2559 2560
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2561
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2562 2563 2564 2565

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2566
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2567 2568 2569
		if (likely(!ret))
			return CHARGE_OK;

2570
		res_counter_uncharge(&memcg->res, csize);
2571 2572 2573 2574
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2575 2576 2577 2578
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2579
	if (nr_pages > min_pages)
2580 2581 2582 2583 2584
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2585 2586 2587
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2588
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2589
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2590
		return CHARGE_RETRY;
2591
	/*
2592 2593 2594 2595 2596 2597 2598
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2599
	 */
2600
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2614
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2615 2616 2617 2618 2619
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2620
/*
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2640
 */
2641
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2642
				   gfp_t gfp_mask,
2643
				   unsigned int nr_pages,
2644
				   struct mem_cgroup **ptr,
2645
				   bool oom)
2646
{
2647
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2648
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2649
	struct mem_cgroup *memcg = NULL;
2650
	int ret;
2651

K
KAMEZAWA Hiroyuki 已提交
2652 2653 2654 2655 2656 2657 2658 2659
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2660

2661
	/*
2662 2663
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2664
	 * thread group leader migrates. It's possible that mm is not
2665
	 * set, if so charge the root memcg (happens for pagecache usage).
2666
	 */
2667
	if (!*ptr && !mm)
2668
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2669
again:
2670 2671 2672
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2673
			goto done;
2674
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2675
			goto done;
2676
		css_get(&memcg->css);
2677
	} else {
K
KAMEZAWA Hiroyuki 已提交
2678
		struct task_struct *p;
2679

K
KAMEZAWA Hiroyuki 已提交
2680 2681 2682
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2683
		 * Because we don't have task_lock(), "p" can exit.
2684
		 * In that case, "memcg" can point to root or p can be NULL with
2685 2686 2687 2688 2689 2690
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2691
		 */
2692
		memcg = mem_cgroup_from_task(p);
2693 2694 2695
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2696 2697 2698
			rcu_read_unlock();
			goto done;
		}
2699
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2712
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2713 2714 2715 2716 2717
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2718

2719 2720
	do {
		bool oom_check;
2721

2722
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2723
		if (fatal_signal_pending(current)) {
2724
			css_put(&memcg->css);
2725
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2726
		}
2727

2728 2729 2730 2731
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2732
		}
2733

2734 2735
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2736 2737 2738 2739
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2740
			batch = nr_pages;
2741 2742
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2743
			goto again;
2744
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2745
			css_put(&memcg->css);
2746 2747
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2748
			if (!oom) {
2749
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2750
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2751
			}
2752 2753 2754 2755
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2756
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2757
			goto bypass;
2758
		}
2759 2760
	} while (ret != CHARGE_OK);

2761
	if (batch > nr_pages)
2762 2763
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2764
done:
2765
	*ptr = memcg;
2766 2767
	return 0;
nomem:
2768
	*ptr = NULL;
2769
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2770
bypass:
2771 2772
	*ptr = root_mem_cgroup;
	return -EINTR;
2773
}
2774

2775 2776 2777 2778 2779
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2780
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2781
				       unsigned int nr_pages)
2782
{
2783
	if (!mem_cgroup_is_root(memcg)) {
2784 2785
		unsigned long bytes = nr_pages * PAGE_SIZE;

2786
		res_counter_uncharge(&memcg->res, bytes);
2787
		if (do_swap_account)
2788
			res_counter_uncharge(&memcg->memsw, bytes);
2789
	}
2790 2791
}

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2810 2811
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2812 2813 2814
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2826
	return mem_cgroup_from_css(css);
2827 2828
}

2829
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2830
{
2831
	struct mem_cgroup *memcg = NULL;
2832
	struct page_cgroup *pc;
2833
	unsigned short id;
2834 2835
	swp_entry_t ent;

2836 2837 2838
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2839
	lock_page_cgroup(pc);
2840
	if (PageCgroupUsed(pc)) {
2841 2842 2843
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2844
	} else if (PageSwapCache(page)) {
2845
		ent.val = page_private(page);
2846
		id = lookup_swap_cgroup_id(ent);
2847
		rcu_read_lock();
2848 2849 2850
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2851
		rcu_read_unlock();
2852
	}
2853
	unlock_page_cgroup(pc);
2854
	return memcg;
2855 2856
}

2857
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2858
				       struct page *page,
2859
				       unsigned int nr_pages,
2860 2861
				       enum charge_type ctype,
				       bool lrucare)
2862
{
2863
	struct page_cgroup *pc = lookup_page_cgroup(page);
2864
	struct zone *uninitialized_var(zone);
2865
	struct lruvec *lruvec;
2866
	bool was_on_lru = false;
2867
	bool anon;
2868

2869
	lock_page_cgroup(pc);
2870
	VM_BUG_ON(PageCgroupUsed(pc));
2871 2872 2873 2874
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2875 2876 2877 2878 2879 2880 2881 2882 2883

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2884
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2885
			ClearPageLRU(page);
2886
			del_page_from_lru_list(page, lruvec, page_lru(page));
2887 2888 2889 2890
			was_on_lru = true;
		}
	}

2891
	pc->mem_cgroup = memcg;
2892 2893 2894 2895 2896 2897 2898
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2899
	smp_wmb();
2900
	SetPageCgroupUsed(pc);
2901

2902 2903
	if (lrucare) {
		if (was_on_lru) {
2904
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2905 2906
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2907
			add_page_to_lru_list(page, lruvec, page_lru(page));
2908 2909 2910 2911
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2912
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2913 2914 2915 2916 2917
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2918
	unlock_page_cgroup(pc);
2919

2920 2921 2922 2923 2924
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2925
	memcg_check_events(memcg, page);
2926
}
2927

2928 2929
static DEFINE_MUTEX(set_limit_mutex);

2930 2931 2932 2933 2934 2935 2936
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3024 3025 3026 3027 3028 3029 3030

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
3031 3032
}

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3116 3117
static void kmem_cache_destroy_work_func(struct work_struct *w);

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

3137 3138
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3171 3172
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3173 3174 3175 3176 3177 3178
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3179 3180 3181
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3182 3183 3184 3185
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

3186 3187
	INIT_WORK(&s->memcg_params->destroy,
			kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3188
	if (memcg) {
3189
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3190
		s->memcg_params->root_cache = root_cache;
3191 3192 3193
	} else
		s->memcg_params->is_root_cache = true;

3194 3195 3196 3197 3198
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3223
	mem_cgroup_put(memcg);
3224
out:
3225 3226 3227
	kfree(s->memcg_params);
}

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3259 3260 3261 3262 3263 3264 3265 3266 3267
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3289 3290 3291 3292 3293 3294 3295 3296
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3317 3318 3319 3320 3321 3322 3323
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3324 3325 3326 3327 3328 3329 3330 3331 3332
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3333

3334 3335 3336
/*
 * Called with memcg_cache_mutex held
 */
3337 3338 3339 3340
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3341
	static char *tmp_name = NULL;
3342

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3361

3362
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3363
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3364

3365 3366 3367
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
G
Glauber Costa 已提交
3393
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3445
		cancel_work_sync(&c->memcg_params->destroy);
3446 3447 3448 3449 3450
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3451 3452 3453 3454 3455 3456
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3488 3489
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3490 3491 3492 3493
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3494 3495
	if (cw == NULL) {
		css_put(&memcg->css);
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3546 3547 3548
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3549 3550 3551 3552
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3553
		goto out;
3554 3555 3556 3557 3558 3559 3560 3561

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3562 3563 3564
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3565 3566
	}

3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3594 3595 3596
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3692 3693 3694 3695
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3696 3697
#endif /* CONFIG_MEMCG_KMEM */

3698 3699
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3700
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3701 3702
/*
 * Because tail pages are not marked as "used", set it. We're under
3703 3704 3705
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3706
 */
3707
void mem_cgroup_split_huge_fixup(struct page *head)
3708 3709
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3710 3711
	struct page_cgroup *pc;
	int i;
3712

3713 3714
	if (mem_cgroup_disabled())
		return;
3715 3716 3717 3718 3719 3720
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3721
}
3722
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3723

3724
/**
3725
 * mem_cgroup_move_account - move account of the page
3726
 * @page: the page
3727
 * @nr_pages: number of regular pages (>1 for huge pages)
3728 3729 3730 3731 3732
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3733
 * - page is not on LRU (isolate_page() is useful.)
3734
 * - compound_lock is held when nr_pages > 1
3735
 *
3736 3737
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3738
 */
3739 3740 3741 3742
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3743
				   struct mem_cgroup *to)
3744
{
3745 3746
	unsigned long flags;
	int ret;
3747
	bool anon = PageAnon(page);
3748

3749
	VM_BUG_ON(from == to);
3750
	VM_BUG_ON(PageLRU(page));
3751 3752 3753 3754 3755 3756 3757
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3758
	if (nr_pages > 1 && !PageTransHuge(page))
3759 3760 3761 3762 3763 3764 3765 3766
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3767
	move_lock_mem_cgroup(from, &flags);
3768

3769
	if (!anon && page_mapped(page)) {
3770 3771 3772 3773 3774
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3775
	}
3776
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3777

3778
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3779
	pc->mem_cgroup = to;
3780
	mem_cgroup_charge_statistics(to, anon, nr_pages);
3781
	move_unlock_mem_cgroup(from, &flags);
3782 3783
	ret = 0;
unlock:
3784
	unlock_page_cgroup(pc);
3785 3786 3787
	/*
	 * check events
	 */
3788 3789
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3790
out:
3791 3792 3793
	return ret;
}

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3814
 */
3815 3816
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3817
				  struct mem_cgroup *child)
3818 3819
{
	struct mem_cgroup *parent;
3820
	unsigned int nr_pages;
3821
	unsigned long uninitialized_var(flags);
3822 3823
	int ret;

3824
	VM_BUG_ON(mem_cgroup_is_root(child));
3825

3826 3827 3828 3829 3830
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3831

3832
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3833

3834 3835 3836 3837 3838 3839
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3840

3841 3842
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3843
		flags = compound_lock_irqsave(page);
3844
	}
3845

3846
	ret = mem_cgroup_move_account(page, nr_pages,
3847
				pc, child, parent);
3848 3849
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3850

3851
	if (nr_pages > 1)
3852
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3853
	putback_lru_page(page);
3854
put:
3855
	put_page(page);
3856
out:
3857 3858 3859
	return ret;
}

3860 3861 3862 3863 3864 3865 3866
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3867
				gfp_t gfp_mask, enum charge_type ctype)
3868
{
3869
	struct mem_cgroup *memcg = NULL;
3870
	unsigned int nr_pages = 1;
3871
	bool oom = true;
3872
	int ret;
A
Andrea Arcangeli 已提交
3873

A
Andrea Arcangeli 已提交
3874
	if (PageTransHuge(page)) {
3875
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3876
		VM_BUG_ON(!PageTransHuge(page));
3877 3878 3879 3880 3881
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3882
	}
3883

3884
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3885
	if (ret == -ENOMEM)
3886
		return ret;
3887
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3888 3889 3890
	return 0;
}

3891 3892
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3893
{
3894
	if (mem_cgroup_disabled())
3895
		return 0;
3896 3897 3898
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3899
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3900
					MEM_CGROUP_CHARGE_TYPE_ANON);
3901 3902
}

3903 3904 3905
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3906
 * struct page_cgroup is acquired. This refcnt will be consumed by
3907 3908
 * "commit()" or removed by "cancel()"
 */
3909 3910 3911 3912
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3913
{
3914
	struct mem_cgroup *memcg;
3915
	struct page_cgroup *pc;
3916
	int ret;
3917

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3928 3929
	if (!do_swap_account)
		goto charge_cur_mm;
3930 3931
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3932
		goto charge_cur_mm;
3933 3934
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3935
	css_put(&memcg->css);
3936 3937
	if (ret == -EINTR)
		ret = 0;
3938
	return ret;
3939
charge_cur_mm:
3940 3941 3942 3943
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3944 3945
}

3946 3947 3948 3949 3950 3951
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3966 3967 3968
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3969 3970 3971 3972 3973 3974 3975 3976 3977
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3978
static void
3979
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3980
					enum charge_type ctype)
3981
{
3982
	if (mem_cgroup_disabled())
3983
		return;
3984
	if (!memcg)
3985
		return;
3986

3987
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3988 3989 3990
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3991 3992 3993
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3994
	 */
3995
	if (do_swap_account && PageSwapCache(page)) {
3996
		swp_entry_t ent = {.val = page_private(page)};
3997
		mem_cgroup_uncharge_swap(ent);
3998
	}
3999 4000
}

4001 4002
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4003
{
4004
	__mem_cgroup_commit_charge_swapin(page, memcg,
4005
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4006 4007
}

4008 4009
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4010
{
4011 4012 4013 4014
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4015
	if (mem_cgroup_disabled())
4016 4017 4018 4019 4020 4021 4022
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4023 4024
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4025 4026 4027 4028
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4029 4030
}

4031
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4032 4033
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4034 4035 4036
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4037

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4049
		batch->memcg = memcg;
4050 4051
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4052
	 * In those cases, all pages freed continuously can be expected to be in
4053 4054 4055 4056 4057 4058 4059 4060
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4061
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4062 4063
		goto direct_uncharge;

4064 4065 4066 4067 4068
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4069
	if (batch->memcg != memcg)
4070 4071
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4072
	batch->nr_pages++;
4073
	if (uncharge_memsw)
4074
		batch->memsw_nr_pages++;
4075 4076
	return;
direct_uncharge:
4077
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4078
	if (uncharge_memsw)
4079 4080 4081
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4082
}
4083

4084
/*
4085
 * uncharge if !page_mapped(page)
4086
 */
4087
static struct mem_cgroup *
4088 4089
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4090
{
4091
	struct mem_cgroup *memcg = NULL;
4092 4093
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4094
	bool anon;
4095

4096
	if (mem_cgroup_disabled())
4097
		return NULL;
4098

4099
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
4100

A
Andrea Arcangeli 已提交
4101
	if (PageTransHuge(page)) {
4102
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4103 4104
		VM_BUG_ON(!PageTransHuge(page));
	}
4105
	/*
4106
	 * Check if our page_cgroup is valid
4107
	 */
4108
	pc = lookup_page_cgroup(page);
4109
	if (unlikely(!PageCgroupUsed(pc)))
4110
		return NULL;
4111

4112
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4113

4114
	memcg = pc->mem_cgroup;
4115

K
KAMEZAWA Hiroyuki 已提交
4116 4117 4118
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4119 4120
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4121
	switch (ctype) {
4122
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4123 4124 4125 4126 4127
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4128 4129
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4130
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4131
		/* See mem_cgroup_prepare_migration() */
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4153
	}
K
KAMEZAWA Hiroyuki 已提交
4154

4155
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4156

4157
	ClearPageCgroupUsed(pc);
4158 4159 4160 4161 4162 4163
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4164

4165
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4166
	/*
4167
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4168 4169
	 * will never be freed.
	 */
4170
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4171
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4172 4173
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4174
	}
4175 4176 4177 4178 4179 4180
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4181
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4182

4183
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4184 4185 4186

unlock_out:
	unlock_page_cgroup(pc);
4187
	return NULL;
4188 4189
}

4190 4191
void mem_cgroup_uncharge_page(struct page *page)
{
4192 4193 4194
	/* early check. */
	if (page_mapped(page))
		return;
4195
	VM_BUG_ON(page->mapping && !PageAnon(page));
4196 4197
	if (PageSwapCache(page))
		return;
4198
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4199 4200 4201 4202 4203
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4204
	VM_BUG_ON(page->mapping);
4205
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4206 4207
}

4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4222 4223
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4244 4245 4246 4247 4248 4249
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4250
	memcg_oom_recover(batch->memcg);
4251 4252 4253 4254
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4255
#ifdef CONFIG_SWAP
4256
/*
4257
 * called after __delete_from_swap_cache() and drop "page" account.
4258 4259
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4260 4261
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4262 4263
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4264 4265 4266 4267 4268
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4269
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4270

K
KAMEZAWA Hiroyuki 已提交
4271 4272 4273 4274 4275
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4276
		swap_cgroup_record(ent, css_id(&memcg->css));
4277
}
4278
#endif
4279

A
Andrew Morton 已提交
4280
#ifdef CONFIG_MEMCG_SWAP
4281 4282 4283 4284 4285
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4286
{
4287
	struct mem_cgroup *memcg;
4288
	unsigned short id;
4289 4290 4291 4292

	if (!do_swap_account)
		return;

4293 4294 4295
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4296
	if (memcg) {
4297 4298 4299 4300
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4301
		if (!mem_cgroup_is_root(memcg))
4302
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4303
		mem_cgroup_swap_statistics(memcg, false);
4304 4305
		mem_cgroup_put(memcg);
	}
4306
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4307
}
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4324
				struct mem_cgroup *from, struct mem_cgroup *to)
4325 4326 4327 4328 4329 4330 4331 4332
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4333
		mem_cgroup_swap_statistics(to, true);
4334
		/*
4335 4336 4337 4338 4339 4340
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4341 4342 4343 4344 4345 4346 4347 4348
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4349
				struct mem_cgroup *from, struct mem_cgroup *to)
4350 4351 4352
{
	return -EINVAL;
}
4353
#endif
K
KAMEZAWA Hiroyuki 已提交
4354

4355
/*
4356 4357
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4358
 */
4359 4360
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4361
{
4362
	struct mem_cgroup *memcg = NULL;
4363
	unsigned int nr_pages = 1;
4364
	struct page_cgroup *pc;
4365
	enum charge_type ctype;
4366

4367
	*memcgp = NULL;
4368

4369
	if (mem_cgroup_disabled())
4370
		return;
4371

4372 4373 4374
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4375 4376 4377
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4378 4379
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4411
	}
4412
	unlock_page_cgroup(pc);
4413 4414 4415 4416
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4417
	if (!memcg)
4418
		return;
4419

4420
	*memcgp = memcg;
4421 4422 4423 4424 4425 4426 4427
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4428
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4429
	else
4430
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4431 4432 4433 4434 4435
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4436
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4437
}
4438

4439
/* remove redundant charge if migration failed*/
4440
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4441
	struct page *oldpage, struct page *newpage, bool migration_ok)
4442
{
4443
	struct page *used, *unused;
4444
	struct page_cgroup *pc;
4445
	bool anon;
4446

4447
	if (!memcg)
4448
		return;
4449

4450
	if (!migration_ok) {
4451 4452
		used = oldpage;
		unused = newpage;
4453
	} else {
4454
		used = newpage;
4455 4456
		unused = oldpage;
	}
4457
	anon = PageAnon(used);
4458 4459 4460 4461
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4462
	css_put(&memcg->css);
4463
	/*
4464 4465 4466
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4467
	 */
4468 4469 4470 4471 4472
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4473
	/*
4474 4475 4476 4477 4478 4479
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4480
	 */
4481
	if (anon)
4482
		mem_cgroup_uncharge_page(used);
4483
}
4484

4485 4486 4487 4488 4489 4490 4491 4492
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4493
	struct mem_cgroup *memcg = NULL;
4494 4495 4496 4497 4498 4499 4500 4501 4502
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4503 4504 4505 4506 4507
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
4508 4509
	unlock_page_cgroup(pc);

4510 4511 4512 4513 4514 4515
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4516 4517 4518 4519 4520
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4521
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4522 4523
}

4524 4525 4526 4527 4528 4529
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4530 4531 4532 4533 4534
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4554 4555
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4556 4557 4558 4559
	}
}
#endif

4560
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4561
				unsigned long long val)
4562
{
4563
	int retry_count;
4564
	u64 memswlimit, memlimit;
4565
	int ret = 0;
4566 4567
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4568
	int enlarge;
4569 4570 4571 4572 4573 4574 4575 4576 4577

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4578

4579
	enlarge = 0;
4580
	while (retry_count) {
4581 4582 4583 4584
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4585 4586 4587
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4588
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4589 4590 4591 4592 4593 4594
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4595 4596
			break;
		}
4597 4598 4599 4600 4601

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4602
		ret = res_counter_set_limit(&memcg->res, val);
4603 4604 4605 4606 4607 4608
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4609 4610 4611 4612 4613
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4614 4615
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4616 4617 4618 4619 4620 4621
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4622
	}
4623 4624
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4625

4626 4627 4628
	return ret;
}

L
Li Zefan 已提交
4629 4630
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4631
{
4632
	int retry_count;
4633
	u64 memlimit, memswlimit, oldusage, curusage;
4634 4635
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4636
	int enlarge = 0;
4637

4638 4639 4640
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4641 4642 4643 4644 4645 4646 4647 4648
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4649
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4650 4651 4652 4653 4654 4655 4656 4657
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4658 4659 4660
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4661
		ret = res_counter_set_limit(&memcg->memsw, val);
4662 4663 4664 4665 4666 4667
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4668 4669 4670 4671 4672
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4673 4674 4675
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4676
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4677
		/* Usage is reduced ? */
4678
		if (curusage >= oldusage)
4679
			retry_count--;
4680 4681
		else
			oldusage = curusage;
4682
	}
4683 4684
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4685 4686 4687
	return ret;
}

4688
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4689 4690
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4691 4692 4693 4694 4695 4696
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4697
	unsigned long long excess;
4698
	unsigned long nr_scanned;
4699 4700 4701 4702

	if (order > 0)
		return 0;

4703
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4717
		nr_scanned = 0;
4718
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4719
						    gfp_mask, &nr_scanned);
4720
		nr_reclaimed += reclaimed;
4721
		*total_scanned += nr_scanned;
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4744
				if (next_mz == mz)
4745
					css_put(&next_mz->memcg->css);
4746
				else /* next_mz == NULL or other memcg */
4747 4748 4749
					break;
			} while (1);
		}
4750 4751
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4752 4753 4754 4755 4756 4757 4758 4759
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4760
		/* If excess == 0, no tree ops */
4761
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4762
		spin_unlock(&mctz->lock);
4763
		css_put(&mz->memcg->css);
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4776
		css_put(&next_mz->memcg->css);
4777 4778 4779
	return nr_reclaimed;
}

4780 4781 4782 4783 4784 4785 4786
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4787
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4788 4789
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4790
 */
4791
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4792
				int node, int zid, enum lru_list lru)
4793
{
4794
	struct lruvec *lruvec;
4795
	unsigned long flags;
4796
	struct list_head *list;
4797 4798
	struct page *busy;
	struct zone *zone;
4799

K
KAMEZAWA Hiroyuki 已提交
4800
	zone = &NODE_DATA(node)->node_zones[zid];
4801 4802
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4803

4804
	busy = NULL;
4805
	do {
4806
		struct page_cgroup *pc;
4807 4808
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4809
		spin_lock_irqsave(&zone->lru_lock, flags);
4810
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4811
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4812
			break;
4813
		}
4814 4815 4816
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4817
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4818
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4819 4820
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4821
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4822

4823
		pc = lookup_page_cgroup(page);
4824

4825
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4826
			/* found lock contention or "pc" is obsolete. */
4827
			busy = page;
4828 4829 4830
			cond_resched();
		} else
			busy = NULL;
4831
	} while (!list_empty(list));
4832 4833 4834
}

/*
4835 4836
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4837
 * This enables deleting this mem_cgroup.
4838 4839
 *
 * Caller is responsible for holding css reference on the memcg.
4840
 */
4841
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4842
{
4843
	int node, zid;
4844
	u64 usage;
4845

4846
	do {
4847 4848
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4849 4850
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4851
		for_each_node_state(node, N_MEMORY) {
4852
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4853 4854
				enum lru_list lru;
				for_each_lru(lru) {
4855
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4856
							node, zid, lru);
4857
				}
4858
			}
4859
		}
4860 4861
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4862
		cond_resched();
4863

4864
		/*
4865 4866 4867 4868 4869
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4870 4871 4872 4873 4874 4875
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4876 4877 4878
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4879 4880
}

4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
	struct cgroup *pos;

	/* bounce at first found */
	cgroup_for_each_child(pos, memcg->css.cgroup)
		return true;
	return false;
}

/*
4897 4898
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4899 4900 4901 4902 4903 4904 4905 4906 4907
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4918

4919
	/* returns EBUSY if there is a task or if we come here twice. */
4920 4921 4922
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4923 4924
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4925
	/* try to free all pages in this cgroup */
4926
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4927
		int progress;
4928

4929 4930 4931
		if (signal_pending(current))
			return -EINTR;

4932
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4933
						false);
4934
		if (!progress) {
4935
			nr_retries--;
4936
			/* maybe some writeback is necessary */
4937
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4938
		}
4939 4940

	}
K
KAMEZAWA Hiroyuki 已提交
4941
	lru_add_drain();
4942 4943 4944
	mem_cgroup_reparent_charges(memcg);

	return 0;
4945 4946
}

4947
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4948
{
4949 4950 4951
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4952 4953
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4954 4955 4956 4957 4958
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4959 4960 4961
}


4962 4963 4964 4965 4966 4967 4968 4969 4970
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4971
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4972
	struct cgroup *parent = cont->parent;
4973
	struct mem_cgroup *parent_memcg = NULL;
4974 4975

	if (parent)
4976
		parent_memcg = mem_cgroup_from_cont(parent);
4977

4978
	mutex_lock(&memcg_create_mutex);
4979 4980 4981 4982

	if (memcg->use_hierarchy == val)
		goto out;

4983
	/*
4984
	 * If parent's use_hierarchy is set, we can't make any modifications
4985 4986 4987 4988 4989 4990
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4991
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4992
				(val == 1 || val == 0)) {
4993
		if (!__memcg_has_children(memcg))
4994
			memcg->use_hierarchy = val;
4995 4996 4997 4998
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4999 5000

out:
5001
	mutex_unlock(&memcg_create_mutex);
5002 5003 5004 5005

	return retval;
}

5006

5007
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5008
					       enum mem_cgroup_stat_index idx)
5009
{
K
KAMEZAWA Hiroyuki 已提交
5010
	struct mem_cgroup *iter;
5011
	long val = 0;
5012

5013
	/* Per-cpu values can be negative, use a signed accumulator */
5014
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5015 5016 5017 5018 5019
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5020 5021
}

5022
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5023
{
K
KAMEZAWA Hiroyuki 已提交
5024
	u64 val;
5025

5026
	if (!mem_cgroup_is_root(memcg)) {
5027
		if (!swap)
5028
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5029
		else
5030
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5031 5032
	}

5033 5034
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5035

K
KAMEZAWA Hiroyuki 已提交
5036
	if (swap)
5037
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5038 5039 5040 5041

	return val << PAGE_SHIFT;
}

5042 5043 5044
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5045
{
5046
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5047
	char str[64];
5048
	u64 val;
G
Glauber Costa 已提交
5049 5050
	int name, len;
	enum res_type type;
5051 5052 5053

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5054

5055 5056
	switch (type) {
	case _MEM:
5057
		if (name == RES_USAGE)
5058
			val = mem_cgroup_usage(memcg, false);
5059
		else
5060
			val = res_counter_read_u64(&memcg->res, name);
5061 5062
		break;
	case _MEMSWAP:
5063
		if (name == RES_USAGE)
5064
			val = mem_cgroup_usage(memcg, true);
5065
		else
5066
			val = res_counter_read_u64(&memcg->memsw, name);
5067
		break;
5068 5069 5070
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5071 5072 5073
	default:
		BUG();
	}
5074 5075 5076

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5077
}
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5096
	mutex_lock(&memcg_create_mutex);
5097 5098
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5099
		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5100 5101 5102 5103 5104 5105
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5106 5107 5108 5109 5110
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5111 5112 5113 5114 5115 5116 5117
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);

5118 5119 5120 5121 5122 5123 5124
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
5125 5126 5127 5128
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5129
	mutex_unlock(&memcg_create_mutex);
5130 5131 5132 5133
#endif
	return ret;
}

5134
#ifdef CONFIG_MEMCG_KMEM
5135
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5136
{
5137
	int ret = 0;
5138 5139
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5140 5141
		goto out;

5142
	memcg->kmem_account_flags = parent->kmem_account_flags;
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5170
}
5171
#endif /* CONFIG_MEMCG_KMEM */
5172

5173 5174 5175 5176
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5177 5178
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5179
{
5180
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5181 5182
	enum res_type type;
	int name;
5183 5184 5185
	unsigned long long val;
	int ret;

5186 5187
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5188

5189
	switch (name) {
5190
	case RES_LIMIT:
5191 5192 5193 5194
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5195 5196
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5197 5198 5199
		if (ret)
			break;
		if (type == _MEM)
5200
			ret = mem_cgroup_resize_limit(memcg, val);
5201
		else if (type == _MEMSWAP)
5202
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5203 5204 5205 5206
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5207
		break;
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5222 5223 5224 5225 5226
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5227 5228
}

5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5256
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5257
{
5258
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5259 5260
	int name;
	enum res_type type;
5261

5262 5263
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5264

5265
	switch (name) {
5266
	case RES_MAX_USAGE:
5267
		if (type == _MEM)
5268
			res_counter_reset_max(&memcg->res);
5269
		else if (type == _MEMSWAP)
5270
			res_counter_reset_max(&memcg->memsw);
5271 5272 5273 5274
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5275 5276
		break;
	case RES_FAILCNT:
5277
		if (type == _MEM)
5278
			res_counter_reset_failcnt(&memcg->res);
5279
		else if (type == _MEMSWAP)
5280
			res_counter_reset_failcnt(&memcg->memsw);
5281 5282 5283 5284
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5285 5286
		break;
	}
5287

5288
	return 0;
5289 5290
}

5291 5292 5293 5294 5295 5296
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5297
#ifdef CONFIG_MMU
5298 5299 5300
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5301
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5302 5303 5304

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5305

5306
	/*
5307 5308 5309 5310
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5311
	 */
5312
	memcg->move_charge_at_immigrate = val;
5313 5314
	return 0;
}
5315 5316 5317 5318 5319 5320 5321
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5322

5323
#ifdef CONFIG_NUMA
5324
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5325
				      struct seq_file *m)
5326 5327 5328 5329
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5330
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5331

5332
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5333
	seq_printf(m, "total=%lu", total_nr);
5334
	for_each_node_state(nid, N_MEMORY) {
5335
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5336 5337 5338 5339
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5340
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5341
	seq_printf(m, "file=%lu", file_nr);
5342
	for_each_node_state(nid, N_MEMORY) {
5343
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5344
				LRU_ALL_FILE);
5345 5346 5347 5348
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5349
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5350
	seq_printf(m, "anon=%lu", anon_nr);
5351
	for_each_node_state(nid, N_MEMORY) {
5352
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5353
				LRU_ALL_ANON);
5354 5355 5356 5357
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5358
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5359
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5360
	for_each_node_state(nid, N_MEMORY) {
5361
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5362
				BIT(LRU_UNEVICTABLE));
5363 5364 5365 5366 5367 5368 5369
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5370 5371 5372 5373 5374
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5375
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5376
				 struct seq_file *m)
5377
{
5378
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5379 5380
	struct mem_cgroup *mi;
	unsigned int i;
5381

5382
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5383
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5384
			continue;
5385 5386
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5387
	}
L
Lee Schermerhorn 已提交
5388

5389 5390 5391 5392 5393 5394 5395 5396
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5397
	/* Hierarchical information */
5398 5399
	{
		unsigned long long limit, memsw_limit;
5400
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5401
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5402
		if (do_swap_account)
5403 5404
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5405
	}
K
KOSAKI Motohiro 已提交
5406

5407 5408 5409
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5410
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5411
			continue;
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5432
	}
K
KAMEZAWA Hiroyuki 已提交
5433

K
KOSAKI Motohiro 已提交
5434 5435 5436 5437
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5438
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5439 5440 5441 5442 5443
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5444
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5445
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5446

5447 5448 5449 5450
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5451
			}
5452 5453 5454 5455
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5456 5457 5458
	}
#endif

5459 5460 5461
	return 0;
}

K
KOSAKI Motohiro 已提交
5462 5463 5464 5465
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5466
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5467 5468 5469 5470 5471 5472 5473
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5474

K
KOSAKI Motohiro 已提交
5475 5476 5477 5478 5479 5480 5481
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5482

5483
	mutex_lock(&memcg_create_mutex);
5484

K
KOSAKI Motohiro 已提交
5485
	/* If under hierarchy, only empty-root can set this value */
5486
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5487
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5488
		return -EINVAL;
5489
	}
K
KOSAKI Motohiro 已提交
5490 5491 5492

	memcg->swappiness = val;

5493
	mutex_unlock(&memcg_create_mutex);
5494

K
KOSAKI Motohiro 已提交
5495 5496 5497
	return 0;
}

5498 5499 5500 5501 5502 5503 5504 5505
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5506
		t = rcu_dereference(memcg->thresholds.primary);
5507
	else
5508
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5509 5510 5511 5512 5513 5514 5515

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5516
	 * current_threshold points to threshold just below or equal to usage.
5517 5518 5519
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5520
	i = t->current_threshold;
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5544
	t->current_threshold = i - 1;
5545 5546 5547 5548 5549 5550
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5551 5552 5553 5554 5555 5556 5557
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5568
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5569 5570 5571
{
	struct mem_cgroup_eventfd_list *ev;

5572
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5573 5574 5575 5576
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5577
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5578
{
K
KAMEZAWA Hiroyuki 已提交
5579 5580
	struct mem_cgroup *iter;

5581
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5582
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5583 5584 5585 5586
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5587 5588
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5589 5590
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5591
	enum res_type type = MEMFILE_TYPE(cft->private);
5592
	u64 threshold, usage;
5593
	int i, size, ret;
5594 5595 5596 5597 5598 5599

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5600

5601
	if (type == _MEM)
5602
		thresholds = &memcg->thresholds;
5603
	else if (type == _MEMSWAP)
5604
		thresholds = &memcg->memsw_thresholds;
5605 5606 5607 5608 5609 5610
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5611
	if (thresholds->primary)
5612 5613
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5614
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5615 5616

	/* Allocate memory for new array of thresholds */
5617
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5618
			GFP_KERNEL);
5619
	if (!new) {
5620 5621 5622
		ret = -ENOMEM;
		goto unlock;
	}
5623
	new->size = size;
5624 5625

	/* Copy thresholds (if any) to new array */
5626 5627
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5628
				sizeof(struct mem_cgroup_threshold));
5629 5630
	}

5631
	/* Add new threshold */
5632 5633
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5634 5635

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5636
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5637 5638 5639
			compare_thresholds, NULL);

	/* Find current threshold */
5640
	new->current_threshold = -1;
5641
	for (i = 0; i < size; i++) {
5642
		if (new->entries[i].threshold <= usage) {
5643
			/*
5644 5645
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5646 5647
			 * it here.
			 */
5648
			++new->current_threshold;
5649 5650
		} else
			break;
5651 5652
	}

5653 5654 5655 5656 5657
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5658

5659
	/* To be sure that nobody uses thresholds */
5660 5661 5662 5663 5664 5665 5666 5667
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5668
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5669
	struct cftype *cft, struct eventfd_ctx *eventfd)
5670 5671
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5672 5673
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5674
	enum res_type type = MEMFILE_TYPE(cft->private);
5675
	u64 usage;
5676
	int i, j, size;
5677 5678 5679

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5680
		thresholds = &memcg->thresholds;
5681
	else if (type == _MEMSWAP)
5682
		thresholds = &memcg->memsw_thresholds;
5683 5684 5685
	else
		BUG();

5686 5687 5688
	if (!thresholds->primary)
		goto unlock;

5689 5690 5691 5692 5693 5694
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5695 5696 5697
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5698 5699 5700
			size++;
	}

5701
	new = thresholds->spare;
5702

5703 5704
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5705 5706
		kfree(new);
		new = NULL;
5707
		goto swap_buffers;
5708 5709
	}

5710
	new->size = size;
5711 5712

	/* Copy thresholds and find current threshold */
5713 5714 5715
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5716 5717
			continue;

5718
		new->entries[j] = thresholds->primary->entries[i];
5719
		if (new->entries[j].threshold <= usage) {
5720
			/*
5721
			 * new->current_threshold will not be used
5722 5723 5724
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5725
			++new->current_threshold;
5726 5727 5728 5729
		}
		j++;
	}

5730
swap_buffers:
5731 5732
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5733 5734 5735 5736 5737 5738
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5739
	rcu_assign_pointer(thresholds->primary, new);
5740

5741
	/* To be sure that nobody uses thresholds */
5742
	synchronize_rcu();
5743
unlock:
5744 5745
	mutex_unlock(&memcg->thresholds_lock);
}
5746

K
KAMEZAWA Hiroyuki 已提交
5747 5748 5749 5750 5751
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5752
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5753 5754 5755 5756 5757 5758

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5759
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5760 5761 5762 5763 5764

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5765
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5766
		eventfd_signal(eventfd, 1);
5767
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5768 5769 5770 5771

	return 0;
}

5772
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5773 5774
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5775
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5776
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5777
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5778 5779 5780

	BUG_ON(type != _OOM_TYPE);

5781
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5782

5783
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5784 5785 5786 5787 5788 5789
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5790
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5791 5792
}

5793 5794 5795
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5796
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5797

5798
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5799

5800
	if (atomic_read(&memcg->under_oom))
5801 5802 5803 5804 5805 5806 5807 5808 5809
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5810
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5811 5812 5813 5814 5815 5816 5817 5818
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

5819
	mutex_lock(&memcg_create_mutex);
5820
	/* oom-kill-disable is a flag for subhierarchy. */
5821
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5822
		mutex_unlock(&memcg_create_mutex);
5823 5824
		return -EINVAL;
	}
5825
	memcg->oom_kill_disable = val;
5826
	if (!val)
5827
		memcg_oom_recover(memcg);
5828
	mutex_unlock(&memcg_create_mutex);
5829 5830 5831
	return 0;
}

A
Andrew Morton 已提交
5832
#ifdef CONFIG_MEMCG_KMEM
5833
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5834
{
5835 5836
	int ret;

5837
	memcg->kmemcg_id = -1;
5838 5839 5840
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5841

5842
	return mem_cgroup_sockets_init(memcg, ss);
5843
}
5844

5845
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5846
{
5847
	mem_cgroup_sockets_destroy(memcg);
5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5862
}
5863
#else
5864
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5865 5866 5867
{
	return 0;
}
G
Glauber Costa 已提交
5868

5869
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5870 5871
{
}
5872 5873
#endif

B
Balbir Singh 已提交
5874 5875
static struct cftype mem_cgroup_files[] = {
	{
5876
		.name = "usage_in_bytes",
5877
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5878
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5879 5880
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5881
	},
5882 5883
	{
		.name = "max_usage_in_bytes",
5884
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5885
		.trigger = mem_cgroup_reset,
5886
		.read = mem_cgroup_read,
5887
	},
B
Balbir Singh 已提交
5888
	{
5889
		.name = "limit_in_bytes",
5890
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5891
		.write_string = mem_cgroup_write,
5892
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5893
	},
5894 5895 5896 5897
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5898
		.read = mem_cgroup_read,
5899
	},
B
Balbir Singh 已提交
5900 5901
	{
		.name = "failcnt",
5902
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5903
		.trigger = mem_cgroup_reset,
5904
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5905
	},
5906 5907
	{
		.name = "stat",
5908
		.read_seq_string = memcg_stat_show,
5909
	},
5910 5911 5912 5913
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5914 5915
	{
		.name = "use_hierarchy",
5916
		.flags = CFTYPE_INSANE,
5917 5918 5919
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5920 5921 5922 5923 5924
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5925 5926 5927 5928 5929
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5930 5931
	{
		.name = "oom_control",
5932 5933
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5934 5935 5936 5937
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5938 5939 5940 5941 5942
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5943 5944 5945
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5946
		.read_seq_string = memcg_numa_stat_show,
5947 5948
	},
#endif
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5973 5974 5975 5976 5977 5978
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5979
#endif
5980
	{ },	/* terminate */
5981
};
5982

5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6013
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6014 6015
{
	struct mem_cgroup_per_node *pn;
6016
	struct mem_cgroup_per_zone *mz;
6017
	int zone, tmp = node;
6018 6019 6020 6021 6022 6023 6024 6025
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6026 6027
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6028
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6029 6030
	if (!pn)
		return 1;
6031 6032 6033

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6034
		lruvec_init(&mz->lruvec);
6035
		mz->usage_in_excess = 0;
6036
		mz->on_tree = false;
6037
		mz->memcg = memcg;
6038
	}
6039
	memcg->info.nodeinfo[node] = pn;
6040 6041 6042
	return 0;
}

6043
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6044
{
6045
	kfree(memcg->info.nodeinfo[node]);
6046 6047
}

6048 6049
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6050
	struct mem_cgroup *memcg;
6051
	size_t size = memcg_size();
6052

6053
	/* Can be very big if nr_node_ids is very big */
6054
	if (size < PAGE_SIZE)
6055
		memcg = kzalloc(size, GFP_KERNEL);
6056
	else
6057
		memcg = vzalloc(size);
6058

6059
	if (!memcg)
6060 6061
		return NULL;

6062 6063
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6064
		goto out_free;
6065 6066
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6067 6068 6069

out_free:
	if (size < PAGE_SIZE)
6070
		kfree(memcg);
6071
	else
6072
		vfree(memcg);
6073
	return NULL;
6074 6075
}

6076
/*
6077 6078 6079 6080 6081 6082 6083 6084
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6085
 */
6086 6087

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6088
{
6089
	int node;
6090
	size_t size = memcg_size();
6091

6092 6093 6094 6095 6096 6097 6098 6099
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6111
	disarm_static_keys(memcg);
6112 6113 6114 6115
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6116
}
6117

6118

6119
/*
6120 6121 6122
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
6123
 */
6124
static void free_work(struct work_struct *work)
6125
{
6126
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6127

6128 6129 6130
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
6131

6132 6133 6134
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6135

6136 6137 6138
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
6139 6140
}

6141
static void mem_cgroup_get(struct mem_cgroup *memcg)
6142
{
6143
	atomic_inc(&memcg->refcnt);
6144 6145
}

6146
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6147
{
6148 6149
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6150
		call_rcu(&memcg->rcu_freeing, free_rcu);
6151 6152 6153
		if (parent)
			mem_cgroup_put(parent);
	}
6154 6155
}

6156
static void mem_cgroup_put(struct mem_cgroup *memcg)
6157
{
6158
	__mem_cgroup_put(memcg, 1);
6159 6160
}

6161 6162 6163
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6164
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6165
{
6166
	if (!memcg->res.parent)
6167
		return NULL;
6168
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6169
}
G
Glauber Costa 已提交
6170
EXPORT_SYMBOL(parent_mem_cgroup);
6171

6172
static void __init mem_cgroup_soft_limit_tree_init(void)
6173 6174 6175 6176 6177
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6178
	for_each_node(node) {
6179 6180 6181 6182
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6183
		BUG_ON(!rtpn);
6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6195
static struct cgroup_subsys_state * __ref
6196
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6197
{
6198
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6199
	long error = -ENOMEM;
6200
	int node;
B
Balbir Singh 已提交
6201

6202 6203
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6204
		return ERR_PTR(error);
6205

B
Bob Liu 已提交
6206
	for_each_node(node)
6207
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6208
			goto free_out;
6209

6210
	/* root ? */
6211
	if (cont->parent == NULL) {
6212
		root_mem_cgroup = memcg;
6213 6214 6215
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6216
	}
6217

6218 6219 6220 6221 6222 6223
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6224
	vmpressure_init(&memcg->vmpressure);
6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
mem_cgroup_css_online(struct cgroup *cont)
{
	struct mem_cgroup *memcg, *parent;
	int error = 0;

	if (!cont->parent)
		return 0;

6242
	mutex_lock(&memcg_create_mutex);
6243 6244 6245 6246 6247 6248 6249 6250
	memcg = mem_cgroup_from_cont(cont);
	parent = mem_cgroup_from_cont(cont->parent);

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6251 6252
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6253
		res_counter_init(&memcg->kmem, &parent->kmem);
6254

6255 6256 6257 6258 6259 6260 6261
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6262
	} else {
6263 6264
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6265
		res_counter_init(&memcg->kmem, NULL);
6266 6267 6268 6269 6270
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6271
		if (parent != root_mem_cgroup)
6272
			mem_cgroup_subsys.broken_hierarchy = true;
6273
	}
6274 6275

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6276
	mutex_unlock(&memcg_create_mutex);
6277 6278 6279 6280 6281 6282 6283
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
6284 6285
		if (parent->use_hierarchy)
			mem_cgroup_put(parent);
6286
	}
6287
	return error;
B
Balbir Singh 已提交
6288 6289
}

M
Michal Hocko 已提交
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
		atomic_inc(&parent->dead_count);

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
		atomic_inc(&root_mem_cgroup->dead_count);
}

6308
static void mem_cgroup_css_offline(struct cgroup *cont)
6309
{
6310
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6311

M
Michal Hocko 已提交
6312
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6313
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6314
	mem_cgroup_destroy_all_caches(memcg);
6315 6316
}

6317
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6318
{
6319
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6320

6321
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6322

6323
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6324 6325
}

6326
#ifdef CONFIG_MMU
6327
/* Handlers for move charge at task migration. */
6328 6329
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6330
{
6331 6332
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6333
	struct mem_cgroup *memcg = mc.to;
6334

6335
	if (mem_cgroup_is_root(memcg)) {
6336 6337 6338 6339 6340 6341 6342 6343
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6344
		 * "memcg" cannot be under rmdir() because we've already checked
6345 6346 6347 6348
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6349
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6350
			goto one_by_one;
6351
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6352
						PAGE_SIZE * count, &dummy)) {
6353
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6370 6371
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6372
		if (ret)
6373
			/* mem_cgroup_clear_mc() will do uncharge later */
6374
			return ret;
6375 6376
		mc.precharge++;
	}
6377 6378 6379 6380
	return ret;
}

/**
6381
 * get_mctgt_type - get target type of moving charge
6382 6383 6384
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6385
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6386 6387 6388 6389 6390 6391
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6392 6393 6394
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6395 6396 6397 6398 6399
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6400
	swp_entry_t	ent;
6401 6402 6403
};

enum mc_target_type {
6404
	MC_TARGET_NONE = 0,
6405
	MC_TARGET_PAGE,
6406
	MC_TARGET_SWAP,
6407 6408
};

D
Daisuke Nishimura 已提交
6409 6410
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6411
{
D
Daisuke Nishimura 已提交
6412
	struct page *page = vm_normal_page(vma, addr, ptent);
6413

D
Daisuke Nishimura 已提交
6414 6415 6416 6417
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6418
		if (!move_anon())
D
Daisuke Nishimura 已提交
6419
			return NULL;
6420 6421
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6422 6423 6424 6425 6426 6427 6428
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6429
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6430 6431 6432 6433 6434 6435 6436 6437
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6438 6439 6440 6441
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6442
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6443 6444 6445 6446 6447
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6448 6449 6450 6451 6452 6453 6454
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6455

6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6475 6476 6477 6478 6479 6480
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6481
		if (do_swap_account)
6482
			*entry = swap;
6483
		page = find_get_page(swap_address_space(swap), swap.val);
6484
	}
6485
#endif
6486 6487 6488
	return page;
}

6489
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6490 6491 6492 6493
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6494
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6495 6496 6497 6498 6499 6500
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6501 6502
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6503 6504

	if (!page && !ent.val)
6505
		return ret;
6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6521 6522
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6523
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6524 6525 6526
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6527 6528 6529 6530
	}
	return ret;
}

6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6566 6567 6568 6569 6570 6571 6572 6573
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6574 6575 6576 6577
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6578
		return 0;
6579
	}
6580

6581 6582
	if (pmd_trans_unstable(pmd))
		return 0;
6583 6584
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6585
		if (get_mctgt_type(vma, addr, *pte, NULL))
6586 6587 6588 6589
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6590 6591 6592
	return 0;
}

6593 6594 6595 6596 6597
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6598
	down_read(&mm->mmap_sem);
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6610
	up_read(&mm->mmap_sem);
6611 6612 6613 6614 6615 6616 6617 6618 6619

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6620 6621 6622 6623 6624
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6625 6626
}

6627 6628
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6629
{
6630 6631 6632
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6633
	/* we must uncharge all the leftover precharges from mc.to */
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6645
	}
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6680
	spin_lock(&mc.lock);
6681 6682
	mc.from = NULL;
	mc.to = NULL;
6683
	spin_unlock(&mc.lock);
6684
	mem_cgroup_end_move(from);
6685 6686
}

6687 6688
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6689
{
6690
	struct task_struct *p = cgroup_taskset_first(tset);
6691
	int ret = 0;
6692
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6693
	unsigned long move_charge_at_immigrate;
6694

6695 6696 6697 6698 6699 6700 6701
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6702 6703 6704
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6705
		VM_BUG_ON(from == memcg);
6706 6707 6708 6709 6710

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6711 6712 6713 6714
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6715
			VM_BUG_ON(mc.moved_charge);
6716
			VM_BUG_ON(mc.moved_swap);
6717
			mem_cgroup_start_move(from);
6718
			spin_lock(&mc.lock);
6719
			mc.from = from;
6720
			mc.to = memcg;
6721
			mc.immigrate_flags = move_charge_at_immigrate;
6722
			spin_unlock(&mc.lock);
6723
			/* We set mc.moving_task later */
6724 6725 6726 6727

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6728 6729
		}
		mmput(mm);
6730 6731 6732 6733
	}
	return ret;
}

6734 6735
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6736
{
6737
	mem_cgroup_clear_mc();
6738 6739
}

6740 6741 6742
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6743
{
6744 6745 6746 6747
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6748 6749 6750 6751
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6752

6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6764
		if (mc.precharge < HPAGE_PMD_NR) {
6765 6766 6767 6768 6769 6770 6771 6772 6773
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6774
							pc, mc.from, mc.to)) {
6775 6776 6777 6778 6779 6780 6781 6782
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6783
		return 0;
6784 6785
	}

6786 6787
	if (pmd_trans_unstable(pmd))
		return 0;
6788 6789 6790 6791
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6792
		swp_entry_t ent;
6793 6794 6795 6796

		if (!mc.precharge)
			break;

6797
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6798 6799 6800 6801 6802
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6803
			if (!mem_cgroup_move_account(page, 1, pc,
6804
						     mc.from, mc.to)) {
6805
				mc.precharge--;
6806 6807
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6808 6809
			}
			putback_lru_page(page);
6810
put:			/* get_mctgt_type() gets the page */
6811 6812
			put_page(page);
			break;
6813 6814
		case MC_TARGET_SWAP:
			ent = target.ent;
6815
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6816
				mc.precharge--;
6817 6818 6819
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6820
			break;
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6835
		ret = mem_cgroup_do_precharge(1);
6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6879
	up_read(&mm->mmap_sem);
6880 6881
}

6882 6883
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6884
{
6885
	struct task_struct *p = cgroup_taskset_first(tset);
6886
	struct mm_struct *mm = get_task_mm(p);
6887 6888

	if (mm) {
6889 6890
		if (mc.to)
			mem_cgroup_move_charge(mm);
6891 6892
		mmput(mm);
	}
6893 6894
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6895
}
6896
#else	/* !CONFIG_MMU */
6897 6898
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6899 6900 6901
{
	return 0;
}
6902 6903
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6904 6905
{
}
6906 6907
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6908 6909 6910
{
}
#endif
B
Balbir Singh 已提交
6911

6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
static void mem_cgroup_bind(struct cgroup *root)
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
	if (cgroup_sane_behavior(root))
		mem_cgroup_from_cont(root)->use_hierarchy = true;
}

B
Balbir Singh 已提交
6927 6928 6929
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6930
	.css_alloc = mem_cgroup_css_alloc,
6931
	.css_online = mem_cgroup_css_online,
6932 6933
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6934 6935
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6936
	.attach = mem_cgroup_move_task,
6937
	.bind = mem_cgroup_bind,
6938
	.base_cftypes = mem_cgroup_files,
6939
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6940
	.use_id = 1,
B
Balbir Singh 已提交
6941
};
6942

A
Andrew Morton 已提交
6943
#ifdef CONFIG_MEMCG_SWAP
6944 6945 6946
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6947
	if (!strcmp(s, "1"))
6948
		really_do_swap_account = 1;
6949
	else if (!strcmp(s, "0"))
6950 6951 6952
		really_do_swap_account = 0;
	return 1;
}
6953
__setup("swapaccount=", enable_swap_account);
6954

6955 6956
static void __init memsw_file_init(void)
{
6957 6958 6959 6960 6961 6962 6963 6964 6965
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6966
}
6967

6968
#else
6969
static void __init enable_swap_cgroup(void)
6970 6971
{
}
6972
#endif
6973 6974

/*
6975 6976 6977 6978 6979 6980
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6981 6982 6983 6984
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6985
	enable_swap_cgroup();
6986
	mem_cgroup_soft_limit_tree_init();
6987
	memcg_stock_init();
6988 6989 6990
	return 0;
}
subsys_initcall(mem_cgroup_init);