memcontrol.c 144.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
B
Balbir Singh 已提交
53

54 55
#include <asm/uaccess.h>

56 57
#include <trace/events/vmscan.h>

58 59
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
60
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
61

62
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
63
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64
int do_swap_account __read_mostly;
65 66 67 68 69 70 71 72

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

73 74 75 76 77
#else
#define do_swap_account		(0)
#endif


78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109 110
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
111
	MEM_CGROUP_TARGET_NUMAINFO,
112 113 114 115
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
116
#define NUMAINFO_EVENTS_TARGET	(1024)
117

118
struct mem_cgroup_stat_cpu {
119
	long count[MEM_CGROUP_STAT_NSTATS];
120
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121
	unsigned long targets[MEM_CGROUP_NTARGETS];
122 123
};

124 125 126 127
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
128 129 130
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
131 132
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
133 134

	struct zone_reclaim_stat reclaim_stat;
135 136 137 138
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
139 140
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
141 142 143 144 145 146 147 148 149 150 151 152
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

173 174 175 176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
178
/* For threshold */
179 180
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
181
	int current_threshold;
182 183 184 185 186
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
187 188 189 190 191 192 193 194 195 196 197 198

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
199 200 201 202 203
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
204

205 206
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
207

B
Balbir Singh 已提交
208 209 210 211 212 213 214
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
215 216 217
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
218 219 220 221 222 223 224
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
225 226 227 228
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
229 230 231 232
	/*
	 * the counter to account for kmem usage.
	 */
	struct res_counter kmem;
233 234 235 236
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
237
	struct mem_cgroup_lru_info info;
238
	/*
239
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
240
	 * reclaimed from.
241
	 */
K
KAMEZAWA Hiroyuki 已提交
242
	int last_scanned_child;
243 244 245
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
246 247
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
248
#endif
249 250 251 252
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
253 254 255 256

	bool		oom_lock;
	atomic_t	under_oom;

257
	atomic_t	refcnt;
258

259
	int	swappiness;
260 261
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
262

263 264 265
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

266 267 268 269
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
270
	struct mem_cgroup_thresholds thresholds;
271

272
	/* thresholds for mem+swap usage. RCU-protected */
273
	struct mem_cgroup_thresholds memsw_thresholds;
274

K
KAMEZAWA Hiroyuki 已提交
275 276
	/* For oom notifier event fd */
	struct list_head oom_notify;
277

278 279 280 281 282
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
283 284 285 286 287
	/*
	 * Should kernel memory limits be stabilished independently
	 * from user memory ?
	 */
	int		kmem_independent_accounting;
288
	/*
289
	 * percpu counter.
290
	 */
291
	struct mem_cgroup_stat_cpu *stat;
292 293 294 295 296 297
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
298 299
};

300 301 302 303 304 305
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
306
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
307
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
308 309 310
	NR_MOVE_TYPE,
};

311 312
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
313
	spinlock_t	  lock; /* for from, to */
314 315 316
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
317
	unsigned long moved_charge;
318
	unsigned long moved_swap;
319 320 321
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
322
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
323 324
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
325

D
Daisuke Nishimura 已提交
326 327 328 329 330 331
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

332 333 334 335 336 337
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

338 339 340 341 342 343 344
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

345 346 347
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
348
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
349
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
350
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
351
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
352 353 354
	NR_CHARGE_TYPE,
};

355
/* for encoding cft->private value on file */
356 357 358 359 360 361 362 363

enum mem_type {
	_MEM = 0,
	_MEMSWAP,
	_OOM_TYPE,
	_KMEM,
};

364 365 366
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
367 368
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
369

370 371 372 373 374 375 376
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
377 378
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
379

380 381 382 383
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
static void drain_all_stock_async(struct mem_cgroup *memcg);
384

385
static struct mem_cgroup_per_zone *
386
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
387
{
388
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
389 390
}

391
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
392
{
393
	return &memcg->css;
394 395
}

396
static struct mem_cgroup_per_zone *
397
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
398
{
399 400
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
401

402
	return mem_cgroup_zoneinfo(memcg, nid, zid);
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
421
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
422
				struct mem_cgroup_per_zone *mz,
423 424
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
425 426 427 428 429 430 431 432
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

433 434 435
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
452 453 454
}

static void
455
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
456 457 458 459 460 461 462 463 464
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

465
static void
466
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
467 468 469 470
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
471
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
472 473 474 475
	spin_unlock(&mctz->lock);
}


476
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
477
{
478
	unsigned long long excess;
479 480
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
481 482
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
483 484 485
	mctz = soft_limit_tree_from_page(page);

	/*
486 487
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
488
	 */
489 490 491
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
492 493 494 495
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
496
		if (excess || mz->on_tree) {
497 498 499
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
500
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
501
			/*
502 503
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
504
			 */
505
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
506 507
			spin_unlock(&mctz->lock);
		}
508 509 510
	}
}

511
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
512 513 514 515 516 517 518
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
519
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
520
			mctz = soft_limit_tree_node_zone(node, zone);
521
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
522 523 524 525
		}
	}
}

526 527 528 529
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
530
	struct mem_cgroup_per_zone *mz;
531 532

retry:
533
	mz = NULL;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
582
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
583
				 enum mem_cgroup_stat_index idx)
584
{
585
	long val = 0;
586 587
	int cpu;

588 589
	get_online_cpus();
	for_each_online_cpu(cpu)
590
		val += per_cpu(memcg->stat->count[idx], cpu);
591
#ifdef CONFIG_HOTPLUG_CPU
592 593 594
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
595 596
#endif
	put_online_cpus();
597 598 599
	return val;
}

600
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
601 602 603
					 bool charge)
{
	int val = (charge) ? 1 : -1;
604
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
605 606
}

607
void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
608
{
609
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
610 611
}

612
void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
613
{
614
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
615 616
}

617
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
618 619 620 621 622 623
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
624
		val += per_cpu(memcg->stat->events[idx], cpu);
625
#ifdef CONFIG_HOTPLUG_CPU
626 627 628
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
629 630 631 632
#endif
	return val;
}

633
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
634
					 bool file, int nr_pages)
635
{
636 637
	preempt_disable();

638
	if (file)
639 640
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
641
	else
642 643
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
644

645 646
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
647
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
648
	else {
649
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
650 651
		nr_pages = -nr_pages; /* for event */
	}
652

653
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
654

655
	preempt_enable();
656 657
}

658
unsigned long
659
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
660
			unsigned int lru_mask)
661 662
{
	struct mem_cgroup_per_zone *mz;
663 664 665
	enum lru_list l;
	unsigned long ret = 0;

666
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
667 668 669 670 671 672 673 674 675

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
676
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
677 678
			int nid, unsigned int lru_mask)
{
679 680 681
	u64 total = 0;
	int zid;

682
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
683 684
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
685

686 687
	return total;
}
688

689
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
690
			unsigned int lru_mask)
691
{
692
	int nid;
693 694
	u64 total = 0;

695
	for_each_node_state(nid, N_HIGH_MEMORY)
696
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
697
	return total;
698 699
}

700
static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
701 702 703
{
	unsigned long val, next;

704 705
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
706 707 708 709
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

710
static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
711
{
712
	unsigned long val, next;
713

714
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
715

716 717 718 719 720 721 722
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
723 724 725
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
726 727 728 729
	default:
		return;
	}

730
	__this_cpu_write(memcg->stat->targets[target], next);
731 732 733 734 735 736
}

/*
 * Check events in order.
 *
 */
737
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
738
{
739
	preempt_disable();
740
	/* threshold event is triggered in finer grain than soft limit */
741 742 743 744
	if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
		mem_cgroup_threshold(memcg);
		__mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(memcg,
745
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
746 747
			mem_cgroup_update_tree(memcg, page);
			__mem_cgroup_target_update(memcg,
748 749 750
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
751
		if (unlikely(__memcg_event_check(memcg,
752
			MEM_CGROUP_TARGET_NUMAINFO))) {
753 754
			atomic_inc(&memcg->numainfo_events);
			__mem_cgroup_target_update(memcg,
755
				MEM_CGROUP_TARGET_NUMAINFO);
756
		}
757
#endif
758
	}
759
	preempt_enable();
760 761
}

762
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
763 764 765 766 767 768
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

769
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
770
{
771 772 773 774 775 776 777 778
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

779 780 781 782
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

783
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
784
{
785
	struct mem_cgroup *memcg = NULL;
786 787 788

	if (!mm)
		return NULL;
789 790 791 792 793 794 795
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
796 797
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
798
			break;
799
	} while (!css_tryget(&memcg->css));
800
	rcu_read_unlock();
801
	return memcg;
802 803
}

K
KAMEZAWA Hiroyuki 已提交
804
/* The caller has to guarantee "mem" exists before calling this */
805
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
806
{
807 808 809
	struct cgroup_subsys_state *css;
	int found;

810
	if (!memcg) /* ROOT cgroup has the smallest ID */
811
		return root_mem_cgroup; /*css_put/get against root is ignored*/
812 813 814
	if (!memcg->use_hierarchy) {
		if (css_tryget(&memcg->css))
			return memcg;
815 816 817 818 819 820 821
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
822
	css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
823
	if (css && css_tryget(css))
824
		memcg = container_of(css, struct mem_cgroup, css);
825
	else
826
		memcg = NULL;
827
	rcu_read_unlock();
828
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
829 830 831 832 833 834 835 836 837
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
838 839
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
840
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
841

K
KAMEZAWA Hiroyuki 已提交
842
	css_put(&iter->css);
843 844
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
845
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
846

847 848 849
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
850 851
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
852
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
853 854 855

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
856
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
857
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
858
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
859
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
860
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
861
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
862

K
KAMEZAWA Hiroyuki 已提交
863
	return iter;
K
KAMEZAWA Hiroyuki 已提交
864
}
K
KAMEZAWA Hiroyuki 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

878 879 880
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
881

882
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
883
{
884
	return (memcg == root_mem_cgroup);
885 886
}

887 888
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
889
	struct mem_cgroup *memcg;
890 891 892 893 894

	if (!mm)
		return;

	rcu_read_lock();
895 896
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
897 898 899 900
		goto out;

	switch (idx) {
	case PGMAJFAULT:
901
		mem_cgroup_pgmajfault(memcg, 1);
902 903
		break;
	case PGFAULT:
904
		mem_cgroup_pgfault(memcg, 1);
905 906 907 908 909 910 911 912 913
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
927

K
KAMEZAWA Hiroyuki 已提交
928 929 930 931
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
932

933
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
934 935 936
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
937
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
938
		return;
939
	VM_BUG_ON(!pc->mem_cgroup);
940 941 942 943
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
944
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
945 946
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
947 948 949
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
950
	list_del_init(&pc->lru);
951 952
}

K
KAMEZAWA Hiroyuki 已提交
953
void mem_cgroup_del_lru(struct page *page)
954
{
K
KAMEZAWA Hiroyuki 已提交
955 956
	mem_cgroup_del_lru_list(page, page_lru(page));
}
957

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
980
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
981 982 983
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
984 985 986 987
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
988

989
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
990
		return;
991

K
KAMEZAWA Hiroyuki 已提交
992
	pc = lookup_page_cgroup(page);
993
	/* unused or root page is not rotated. */
994 995 996 997 998
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
999
		return;
1000
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
1001
	list_move(&pc->lru, &mz->lists[lru]);
1002 1003
}

K
KAMEZAWA Hiroyuki 已提交
1004
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1005
{
K
KAMEZAWA Hiroyuki 已提交
1006 1007
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
1008

1009
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1010 1011
		return;
	pc = lookup_page_cgroup(page);
1012
	VM_BUG_ON(PageCgroupAcctLRU(pc));
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
K
KAMEZAWA Hiroyuki 已提交
1023
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
1024
		return;
1025 1026
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1027
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1028 1029
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1030 1031 1032
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1033 1034
	list_add(&pc->lru, &mz->lists[lru]);
}
1035

K
KAMEZAWA Hiroyuki 已提交
1036
/*
1037 1038 1039 1040
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1041
 */
1042
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1043
{
1044 1045 1046 1047
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1059 1060 1061 1062 1063 1064 1065 1066
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1067 1068
}

1069
static void mem_cgroup_lru_add_after_commit(struct page *page)
1070 1071 1072 1073
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
1084 1085 1086
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1087 1088
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1089
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1090 1091 1092 1093 1094
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1095 1096 1097
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1098
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1099 1100 1101
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1102 1103
}

1104
/*
1105
 * Checks whether given mem is same or in the root_mem_cgroup's
1106 1107
 * hierarchy subtree
 */
1108 1109
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1110
{
1111 1112 1113
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1114 1115 1116 1117 1118
	}

	return true;
}

1119
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1120 1121
{
	int ret;
1122
	struct mem_cgroup *curr = NULL;
1123
	struct task_struct *p;
1124

1125 1126 1127 1128 1129
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1130 1131
	if (!curr)
		return 0;
1132
	/*
1133
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1134
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1135 1136
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1137
	 */
1138
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1139
	css_put(&curr->css);
1140 1141 1142
	return ret;
}

1143
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1144
{
1145 1146 1147
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1148
	unsigned long inactive;
1149
	unsigned long active;
1150
	unsigned long gb;
1151

1152 1153 1154 1155
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1156

1157 1158 1159 1160 1161 1162
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1163
	return inactive * inactive_ratio < active;
1164 1165
}

1166
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1167 1168 1169
{
	unsigned long active;
	unsigned long inactive;
1170 1171
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1172

1173 1174 1175 1176
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1177 1178 1179 1180

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1181 1182 1183
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1184
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1201 1202
	if (!PageCgroupUsed(pc))
		return NULL;
1203 1204
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1205
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1206 1207 1208
	return &mz->reclaim_stat;
}

1209 1210 1211
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
1212 1213
					isolate_mode_t mode,
					struct zone *z,
1214
					struct mem_cgroup *mem_cont,
1215
					int active, int file)
1216 1217 1218 1219 1220 1221
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1222
	struct page_cgroup *pc, *tmp;
1223
	int nid = zone_to_nid(z);
1224 1225
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1226
	int lru = LRU_FILE * file + active;
1227
	int ret;
1228

1229
	BUG_ON(!mem_cont);
1230
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1231
	src = &mz->lists[lru];
1232

1233 1234
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1235
		if (scan >= nr_to_scan)
1236
			break;
K
KAMEZAWA Hiroyuki 已提交
1237

1238 1239
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1240

1241
		page = lookup_cgroup_page(pc);
1242

H
Hugh Dickins 已提交
1243
		if (unlikely(!PageLRU(page)))
1244 1245
			continue;

H
Hugh Dickins 已提交
1246
		scan++;
1247 1248 1249
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1250
			list_move(&page->lru, dst);
1251
			mem_cgroup_del_lru(page);
1252
			nr_taken += hpage_nr_pages(page);
1253 1254 1255 1256 1257 1258 1259
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1260 1261 1262 1263
		}
	}

	*scanned = scan;
1264 1265 1266 1267

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1268 1269 1270
	return nr_taken;
}

1271 1272 1273
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1274
/**
1275 1276
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1277
 *
1278
 * Returns the maximum amount of memory @mem can be charged with, in
1279
 * pages.
1280
 */
1281
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1282
{
1283 1284
	unsigned long long margin;

1285
	margin = res_counter_margin(&memcg->res);
1286
	if (do_swap_account)
1287
		margin = min(margin, res_counter_margin(&memcg->memsw));
1288
	return margin >> PAGE_SHIFT;
1289 1290
}

1291
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1292 1293 1294 1295 1296 1297 1298
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1299
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1300 1301
}

1302
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1303 1304
{
	int cpu;
1305 1306

	get_online_cpus();
1307
	spin_lock(&memcg->pcp_counter_lock);
1308
	for_each_online_cpu(cpu)
1309 1310 1311
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1312
	put_online_cpus();
1313 1314 1315 1316

	synchronize_rcu();
}

1317
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1318 1319 1320
{
	int cpu;

1321
	if (!memcg)
1322
		return;
1323
	get_online_cpus();
1324
	spin_lock(&memcg->pcp_counter_lock);
1325
	for_each_online_cpu(cpu)
1326 1327 1328
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1329
	put_online_cpus();
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1343
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1344 1345
{
	VM_BUG_ON(!rcu_read_lock_held());
1346
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1347
}
1348

1349
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1350
{
1351 1352
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1353
	bool ret = false;
1354 1355 1356 1357 1358 1359 1360 1361 1362
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1363

1364 1365
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1366 1367
unlock:
	spin_unlock(&mc.lock);
1368 1369 1370
	return ret;
}

1371
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1372 1373
{
	if (mc.moving_task && current != mc.moving_task) {
1374
		if (mem_cgroup_under_move(memcg)) {
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1387
/**
1388
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1407
	if (!memcg || !p)
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1454 1455 1456 1457
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1458
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1459 1460
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1461 1462
	struct mem_cgroup *iter;

1463
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1464
		num++;
1465 1466 1467
	return num;
}

D
David Rientjes 已提交
1468 1469 1470 1471 1472 1473 1474 1475
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1476 1477 1478
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1479 1480 1481 1482 1483 1484 1485 1486
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1487
/*
K
KAMEZAWA Hiroyuki 已提交
1488 1489 1490 1491 1492
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
1493
mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
K
KAMEZAWA Hiroyuki 已提交
1494 1495 1496 1497 1498
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

1499 1500 1501
	if (!root_memcg->use_hierarchy) {
		css_get(&root_memcg->css);
		ret = root_memcg;
K
KAMEZAWA Hiroyuki 已提交
1502 1503 1504 1505
	}

	while (!ret) {
		rcu_read_lock();
1506 1507
		nextid = root_memcg->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
K
KAMEZAWA Hiroyuki 已提交
1508 1509 1510 1511 1512 1513 1514 1515
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
1516
			root_memcg->last_scanned_child = 0;
K
KAMEZAWA Hiroyuki 已提交
1517
		} else
1518
			root_memcg->last_scanned_child = found;
K
KAMEZAWA Hiroyuki 已提交
1519 1520 1521 1522 1523
	}

	return ret;
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1534
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1535 1536
		int nid, bool noswap)
{
1537
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1538 1539 1540
		return true;
	if (noswap || !total_swap_pages)
		return false;
1541
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1542 1543 1544 1545
		return true;
	return false;

}
1546 1547 1548 1549 1550 1551 1552 1553
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1554
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1555 1556
{
	int nid;
1557 1558 1559 1560
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1561
	if (!atomic_read(&memcg->numainfo_events))
1562
		return;
1563
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1564 1565 1566
		return;

	/* make a nodemask where this memcg uses memory from */
1567
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1568 1569 1570

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1571 1572
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1573
	}
1574

1575 1576
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1591
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1592 1593 1594
{
	int node;

1595 1596
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1597

1598
	node = next_node(node, memcg->scan_nodes);
1599
	if (node == MAX_NUMNODES)
1600
		node = first_node(memcg->scan_nodes);
1601 1602 1603 1604 1605 1606 1607 1608 1609
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1610
	memcg->last_scanned_node = node;
1611 1612 1613
	return node;
}

1614 1615 1616 1617 1618 1619
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1620
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1621 1622 1623 1624 1625 1626 1627
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1628 1629
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1630
		     nid < MAX_NUMNODES;
1631
		     nid = next_node(nid, memcg->scan_nodes)) {
1632

1633
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1634 1635 1636 1637 1638 1639 1640
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1641
		if (node_isset(nid, memcg->scan_nodes))
1642
			continue;
1643
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1644 1645 1646 1647 1648
			return true;
	}
	return false;
}

1649
#else
1650
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1651 1652 1653
{
	return 0;
}
1654

1655
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1656
{
1657
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1658
}
1659 1660
#endif

K
KAMEZAWA Hiroyuki 已提交
1661 1662 1663 1664
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1665
 *
1666
 * root_memcg is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1667
 *
1668
 * We give up and return to the caller when we visit root_memcg twice.
K
KAMEZAWA Hiroyuki 已提交
1669
 * (other groups can be removed while we're walking....)
1670 1671
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1672
 */
1673
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1674
						struct zone *zone,
1675
						gfp_t gfp_mask,
1676 1677
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1678
{
K
KAMEZAWA Hiroyuki 已提交
1679 1680 1681
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1682 1683
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1684
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1685
	unsigned long excess;
1686
	unsigned long nr_scanned;
1687

1688
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1689

1690
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1691
	if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1692 1693
		noswap = true;

1694
	while (1) {
1695 1696
		victim = mem_cgroup_select_victim(root_memcg);
		if (victim == root_memcg) {
K
KAMEZAWA Hiroyuki 已提交
1697
			loop++;
1698 1699 1700 1701 1702 1703 1704
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1705
				drain_all_stock_async(root_memcg);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1717
				 * We want to do more targeted reclaim.
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1729
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1730 1731
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1732 1733
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1734
		/* we use swappiness of local cgroup */
1735
		if (check_soft) {
1736
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1737 1738
				noswap, zone, &nr_scanned);
			*total_scanned += nr_scanned;
1739
		} else
1740
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1741
						noswap);
K
KAMEZAWA Hiroyuki 已提交
1742
		css_put(&victim->css);
1743 1744 1745 1746 1747 1748 1749
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1750
		total += ret;
1751
		if (check_soft) {
1752
			if (!res_counter_soft_limit_excess(&root_memcg->res))
1753
				return total;
1754
		} else if (mem_cgroup_margin(root_memcg))
1755
			return total;
1756
	}
K
KAMEZAWA Hiroyuki 已提交
1757
	return total;
1758 1759
}

K
KAMEZAWA Hiroyuki 已提交
1760 1761 1762
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1763
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1764
 */
1765
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1766
{
1767 1768
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1769

1770
	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1771
		if (iter->oom_lock) {
1772 1773 1774 1775 1776 1777
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
			cond = false;
1778 1779
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1780
	}
K
KAMEZAWA Hiroyuki 已提交
1781

1782
	if (!failed)
1783
		return true;
1784 1785 1786 1787 1788 1789

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
1790
	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1791 1792 1793 1794 1795 1796
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
1797
	return false;
1798
}
1799

1800
/*
1801
 * Has to be called with memcg_oom_lock
1802
 */
1803
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1804
{
K
KAMEZAWA Hiroyuki 已提交
1805 1806
	struct mem_cgroup *iter;

1807
	for_each_mem_cgroup_tree(iter, memcg)
1808 1809 1810 1811
		iter->oom_lock = false;
	return 0;
}

1812
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1813 1814 1815
{
	struct mem_cgroup *iter;

1816
	for_each_mem_cgroup_tree(iter, memcg)
1817 1818 1819
		atomic_inc(&iter->under_oom);
}

1820
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1821 1822 1823
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1824 1825 1826 1827 1828
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1829
	for_each_mem_cgroup_tree(iter, memcg)
1830
		atomic_add_unless(&iter->under_oom, -1, 0);
1831 1832
}

1833
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1834 1835
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1836 1837 1838 1839 1840 1841 1842 1843
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1844 1845
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1846 1847 1848
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1849
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1850 1851 1852 1853 1854

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1855 1856
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1857 1858 1859 1860
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1861
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1862
{
1863 1864
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1865 1866
}

1867
static void memcg_oom_recover(struct mem_cgroup *memcg)
1868
{
1869 1870
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1871 1872
}

K
KAMEZAWA Hiroyuki 已提交
1873 1874 1875
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1876
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1877
{
K
KAMEZAWA Hiroyuki 已提交
1878
	struct oom_wait_info owait;
1879
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1880

1881
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1882 1883 1884 1885
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1886
	need_to_kill = true;
1887
	mem_cgroup_mark_under_oom(memcg);
1888

1889
	/* At first, try to OOM lock hierarchy under memcg.*/
1890
	spin_lock(&memcg_oom_lock);
1891
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1892 1893 1894 1895 1896
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1897
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1898
	if (!locked || memcg->oom_kill_disable)
1899 1900
		need_to_kill = false;
	if (locked)
1901
		mem_cgroup_oom_notify(memcg);
1902
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1903

1904 1905
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1906
		mem_cgroup_out_of_memory(memcg, mask);
1907
	} else {
K
KAMEZAWA Hiroyuki 已提交
1908
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1909
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1910
	}
1911
	spin_lock(&memcg_oom_lock);
1912
	if (locked)
1913 1914
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1915
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1916

1917
	mem_cgroup_unmark_under_oom(memcg);
1918

K
KAMEZAWA Hiroyuki 已提交
1919 1920 1921
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1922
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1923
	return true;
1924 1925
}

1926 1927 1928
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1948
 */
1949

1950 1951
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1952
{
1953
	struct mem_cgroup *memcg;
1954 1955
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1956
	unsigned long uninitialized_var(flags);
1957 1958 1959 1960

	if (unlikely(!pc))
		return;

1961
	rcu_read_lock();
1962 1963
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1964 1965
		goto out;
	/* pc->mem_cgroup is unstable ? */
1966
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1967
		/* take a lock against to access pc->mem_cgroup */
1968
		move_lock_page_cgroup(pc, &flags);
1969
		need_unlock = true;
1970 1971
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1972 1973
			goto out;
	}
1974 1975

	switch (idx) {
1976
	case MEMCG_NR_FILE_MAPPED:
1977 1978 1979
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1980
			ClearPageCgroupFileMapped(pc);
1981
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1982 1983 1984
		break;
	default:
		BUG();
1985
	}
1986

1987
	this_cpu_add(memcg->stat->count[idx], val);
1988

1989 1990
out:
	if (unlikely(need_unlock))
1991
		move_unlock_page_cgroup(pc, &flags);
1992 1993
	rcu_read_unlock();
	return;
1994
}
1995
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1996

1997 1998 1999 2000
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2001
#define CHARGE_BATCH	32U
2002 2003
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2004
	unsigned int nr_pages;
2005
	struct work_struct work;
2006 2007
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2008 2009
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2010
static DEFINE_MUTEX(percpu_charge_mutex);
2011 2012

/*
2013
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2014 2015 2016 2017
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2018
static bool consume_stock(struct mem_cgroup *memcg)
2019 2020 2021 2022 2023
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2024
	if (memcg == stock->cached && stock->nr_pages)
2025
		stock->nr_pages--;
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2039 2040 2041 2042
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2043
		if (do_swap_account)
2044 2045
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2058
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2059 2060 2061 2062
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2063
 * This will be consumed by consume_stock() function, later.
2064
 */
2065
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2066 2067 2068
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2069
	if (stock->cached != memcg) { /* reset if necessary */
2070
		drain_stock(stock);
2071
		stock->cached = memcg;
2072
	}
2073
	stock->nr_pages += nr_pages;
2074 2075 2076 2077
	put_cpu_var(memcg_stock);
}

/*
2078
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2079 2080
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2081
 */
2082
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2083
{
2084
	int cpu, curcpu;
2085

2086 2087
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2088
	curcpu = get_cpu();
2089 2090
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2091
		struct mem_cgroup *memcg;
2092

2093 2094
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2095
			continue;
2096
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2097
			continue;
2098 2099 2100 2101 2102 2103
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2104
	}
2105
	put_cpu();
2106 2107 2108 2109 2110 2111

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2112
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2113 2114 2115
			flush_work(&stock->work);
	}
out:
2116
 	put_online_cpus();
2117 2118 2119 2120 2121 2122 2123 2124
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2125
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2126
{
2127 2128 2129 2130 2131
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2132
	drain_all_stock(root_memcg, false);
2133
	mutex_unlock(&percpu_charge_mutex);
2134 2135 2136
}

/* This is a synchronous drain interface. */
2137
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2138 2139
{
	/* called when force_empty is called */
2140
	mutex_lock(&percpu_charge_mutex);
2141
	drain_all_stock(root_memcg, true);
2142
	mutex_unlock(&percpu_charge_mutex);
2143 2144
}

2145 2146 2147 2148
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2149
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2150 2151 2152
{
	int i;

2153
	spin_lock(&memcg->pcp_counter_lock);
2154
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2155
		long x = per_cpu(memcg->stat->count[i], cpu);
2156

2157 2158
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2159
	}
2160
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2161
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2162

2163 2164
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2165
	}
2166
	/* need to clear ON_MOVE value, works as a kind of lock. */
2167 2168
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2169 2170
}

2171
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2172 2173 2174
{
	int idx = MEM_CGROUP_ON_MOVE;

2175 2176 2177
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2178 2179 2180
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2181 2182 2183 2184 2185
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2186
	struct mem_cgroup *iter;
2187

2188 2189 2190 2191 2192 2193
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2194
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2195
		return NOTIFY_OK;
2196 2197 2198 2199

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2200 2201 2202 2203 2204
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2215
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2216
				unsigned int nr_pages, bool oom_check)
2217
{
2218
	unsigned long csize = nr_pages * PAGE_SIZE;
2219 2220 2221 2222 2223
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2224
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2225 2226 2227 2228

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2229
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2230 2231 2232
		if (likely(!ret))
			return CHARGE_OK;

2233
		res_counter_uncharge(&memcg->res, csize);
2234 2235 2236 2237
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2238
	/*
2239 2240
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2241 2242 2243 2244
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2245
	if (nr_pages == CHARGE_BATCH)
2246 2247 2248 2249 2250 2251
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2252
					      gfp_mask, flags, NULL);
2253
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2254
		return CHARGE_RETRY;
2255
	/*
2256 2257 2258 2259 2260 2261 2262
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2263
	 */
2264
	if (nr_pages == 1 && ret)
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2284 2285 2286
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2287
 */
2288
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2289
				   gfp_t gfp_mask,
2290
				   unsigned int nr_pages,
2291
				   struct mem_cgroup **ptr,
2292
				   bool oom)
2293
{
2294
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2295
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2296
	struct mem_cgroup *memcg = NULL;
2297
	int ret;
2298

K
KAMEZAWA Hiroyuki 已提交
2299 2300 2301 2302 2303 2304 2305 2306
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2307

2308
	/*
2309 2310
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2311 2312 2313
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2314
	if (!*ptr && !mm)
K
KAMEZAWA Hiroyuki 已提交
2315 2316
		goto bypass;
again:
2317 2318 2319 2320
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2321
			goto done;
2322
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2323
			goto done;
2324
		css_get(&memcg->css);
2325
	} else {
K
KAMEZAWA Hiroyuki 已提交
2326
		struct task_struct *p;
2327

K
KAMEZAWA Hiroyuki 已提交
2328 2329 2330
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2331
		 * Because we don't have task_lock(), "p" can exit.
2332
		 * In that case, "memcg" can point to root or p can be NULL with
2333 2334 2335 2336 2337 2338
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2339
		 */
2340 2341
		memcg = mem_cgroup_from_task(p);
		if (!memcg || mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2342 2343 2344
			rcu_read_unlock();
			goto done;
		}
2345
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2358
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2359 2360 2361 2362 2363
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2364

2365 2366
	do {
		bool oom_check;
2367

2368
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2369
		if (fatal_signal_pending(current)) {
2370
			css_put(&memcg->css);
2371
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2372
		}
2373

2374 2375 2376 2377
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2378
		}
2379

2380
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2381 2382 2383 2384
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2385
			batch = nr_pages;
2386 2387
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2388
			goto again;
2389
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2390
			css_put(&memcg->css);
2391 2392
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2393
			if (!oom) {
2394
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2395
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2396
			}
2397 2398 2399 2400
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2401
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2402
			goto bypass;
2403
		}
2404 2405
	} while (ret != CHARGE_OK);

2406
	if (batch > nr_pages)
2407 2408
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2409
done:
2410
	*ptr = memcg;
2411 2412
	return 0;
nomem:
2413
	*ptr = NULL;
2414
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2415
bypass:
2416
	*ptr = NULL;
K
KAMEZAWA Hiroyuki 已提交
2417
	return 0;
2418
}
2419

2420 2421 2422 2423 2424
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2425
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2426
				       unsigned int nr_pages)
2427
{
2428
	if (!mem_cgroup_is_root(memcg)) {
2429 2430
		unsigned long bytes = nr_pages * PAGE_SIZE;

2431
		res_counter_uncharge(&memcg->res, bytes);
2432
		if (do_swap_account)
2433
			res_counter_uncharge(&memcg->memsw, bytes);
2434
	}
2435 2436
}

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2456
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2457
{
2458
	struct mem_cgroup *memcg = NULL;
2459
	struct page_cgroup *pc;
2460
	unsigned short id;
2461 2462
	swp_entry_t ent;

2463 2464 2465
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2466
	lock_page_cgroup(pc);
2467
	if (PageCgroupUsed(pc)) {
2468 2469 2470
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2471
	} else if (PageSwapCache(page)) {
2472
		ent.val = page_private(page);
2473 2474
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
2475 2476 2477
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2478
		rcu_read_unlock();
2479
	}
2480
	unlock_page_cgroup(pc);
2481
	return memcg;
2482 2483
}

2484
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2485
				       struct page *page,
2486
				       unsigned int nr_pages,
2487
				       struct page_cgroup *pc,
2488
				       enum charge_type ctype)
2489
{
2490 2491 2492
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2493
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2494 2495 2496 2497 2498 2499
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2500
	pc->mem_cgroup = memcg;
2501 2502 2503 2504 2505 2506 2507
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2508
	smp_wmb();
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2522

2523
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2524
	unlock_page_cgroup(pc);
2525 2526 2527 2528 2529
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2530
	memcg_check_events(memcg, page);
2531
}
2532

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2547 2548
	if (mem_cgroup_disabled())
		return;
2549
	/*
2550
	 * We have no races with charge/uncharge but will have races with
2551 2552 2553 2554 2555 2556
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2567
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2568 2569
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2570 2571 2572 2573 2574
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2575
/**
2576
 * mem_cgroup_move_account - move account of the page
2577
 * @page: the page
2578
 * @nr_pages: number of regular pages (>1 for huge pages)
2579 2580 2581
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2582
 * @uncharge: whether we should call uncharge and css_put against @from.
2583 2584
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2585
 * - page is not on LRU (isolate_page() is useful.)
2586
 * - compound_lock is held when nr_pages > 1
2587
 *
2588
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2589
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2590 2591
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2592
 */
2593 2594 2595 2596 2597 2598
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2599
{
2600 2601
	unsigned long flags;
	int ret;
2602

2603
	VM_BUG_ON(from == to);
2604
	VM_BUG_ON(PageLRU(page));
2605 2606 2607 2608 2609 2610 2611
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2612
	if (nr_pages > 1 && !PageTransHuge(page))
2613 2614 2615 2616 2617 2618 2619 2620 2621
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2622

2623
	if (PageCgroupFileMapped(pc)) {
2624 2625 2626 2627 2628
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2629
	}
2630
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2631 2632
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2633
		__mem_cgroup_cancel_charge(from, nr_pages);
2634

2635
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2636
	pc->mem_cgroup = to;
2637
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2638 2639 2640
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2641
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2642
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2643
	 * status here.
2644
	 */
2645 2646 2647
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2648
	unlock_page_cgroup(pc);
2649 2650 2651
	/*
	 * check events
	 */
2652 2653
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2654
out:
2655 2656 2657 2658 2659 2660 2661
	return ret;
}

/*
 * move charges to its parent.
 */

2662 2663
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2664 2665 2666 2667 2668 2669
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2670
	unsigned int nr_pages;
2671
	unsigned long uninitialized_var(flags);
2672 2673 2674 2675 2676 2677
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2678 2679 2680 2681 2682
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2683

2684
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2685

2686
	parent = mem_cgroup_from_cont(pcg);
2687
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2688
	if (ret || !parent)
2689
		goto put_back;
2690

2691
	if (nr_pages > 1)
2692 2693
		flags = compound_lock_irqsave(page);

2694
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2695
	if (ret)
2696
		__mem_cgroup_cancel_charge(parent, nr_pages);
2697

2698
	if (nr_pages > 1)
2699
		compound_unlock_irqrestore(page, flags);
2700
put_back:
K
KAMEZAWA Hiroyuki 已提交
2701
	putback_lru_page(page);
2702
put:
2703
	put_page(page);
2704
out:
2705 2706 2707
	return ret;
}

2708 2709 2710 2711 2712 2713 2714
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2715
				gfp_t gfp_mask, enum charge_type ctype)
2716
{
2717
	struct mem_cgroup *memcg = NULL;
2718
	unsigned int nr_pages = 1;
2719
	struct page_cgroup *pc;
2720
	bool oom = true;
2721
	int ret;
A
Andrea Arcangeli 已提交
2722

A
Andrea Arcangeli 已提交
2723
	if (PageTransHuge(page)) {
2724
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2725
		VM_BUG_ON(!PageTransHuge(page));
2726 2727 2728 2729 2730
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2731
	}
2732 2733

	pc = lookup_page_cgroup(page);
2734
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2735

2736 2737
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
	if (ret || !memcg)
2738 2739
		return ret;

2740
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2741 2742 2743
	return 0;
}

2744 2745
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2746
{
2747
	if (mem_cgroup_disabled())
2748
		return 0;
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2760
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2761
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2762 2763
}

D
Daisuke Nishimura 已提交
2764 2765 2766 2767
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2768
static void
2769
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2770 2771 2772 2773 2774 2775 2776 2777 2778
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
2779
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2780 2781 2782 2783
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2784 2785
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2786
{
2787
	struct mem_cgroup *memcg = NULL;
2788 2789
	int ret;

2790
	if (mem_cgroup_disabled())
2791
		return 0;
2792 2793
	if (PageCompound(page))
		return 0;
2794

2795
	if (unlikely(!mm))
2796
		mm = &init_mm;
2797

2798
	if (page_is_file_cache(page)) {
2799 2800
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
		if (ret || !memcg)
2801
			return ret;
2802

2803 2804 2805 2806 2807
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
2808
		__mem_cgroup_commit_charge_lrucare(page, memcg,
2809 2810 2811
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2812 2813
	/* shmem */
	if (PageSwapCache(page)) {
2814
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2815
		if (!ret)
2816
			__mem_cgroup_commit_charge_swapin(page, memcg,
D
Daisuke Nishimura 已提交
2817 2818 2819
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2820
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2821 2822

	return ret;
2823 2824
}

2825 2826 2827
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2828
 * struct page_cgroup is acquired. This refcnt will be consumed by
2829 2830
 * "commit()" or removed by "cancel()"
 */
2831 2832 2833 2834
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
2835
	struct mem_cgroup *memcg;
2836
	int ret;
2837

2838 2839
	*ptr = NULL;

2840
	if (mem_cgroup_disabled())
2841 2842 2843 2844 2845 2846
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2847 2848 2849
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2850 2851
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2852
		goto charge_cur_mm;
2853 2854
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2855
		goto charge_cur_mm;
2856
	*ptr = memcg;
2857
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2858
	css_put(&memcg->css);
2859
	return ret;
2860 2861 2862
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2863
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2864 2865
}

D
Daisuke Nishimura 已提交
2866 2867 2868
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2869
{
2870
	if (mem_cgroup_disabled())
2871 2872 2873
		return;
	if (!ptr)
		return;
2874
	cgroup_exclude_rmdir(&ptr->css);
2875 2876

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2877 2878 2879
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2880 2881 2882
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2883
	 */
2884
	if (do_swap_account && PageSwapCache(page)) {
2885
		swp_entry_t ent = {.val = page_private(page)};
2886
		unsigned short id;
2887
		struct mem_cgroup *memcg;
2888 2889 2890 2891

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2892
		if (memcg) {
2893 2894 2895 2896
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2897
			if (!mem_cgroup_is_root(memcg))
2898
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2899
			mem_cgroup_swap_statistics(memcg, false);
2900 2901
			mem_cgroup_put(memcg);
		}
2902
		rcu_read_unlock();
2903
	}
2904 2905 2906 2907 2908 2909
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2910 2911
}

D
Daisuke Nishimura 已提交
2912 2913 2914 2915 2916 2917
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2918
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2919
{
2920
	if (mem_cgroup_disabled())
2921
		return;
2922
	if (!memcg)
2923
		return;
2924
	__mem_cgroup_cancel_charge(memcg, 1);
2925 2926
}

2927
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2928 2929
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2930 2931 2932
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2933

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2945
		batch->memcg = memcg;
2946 2947
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2948
	 * In those cases, all pages freed continuously can be expected to be in
2949 2950 2951 2952 2953 2954 2955 2956
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2957
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2958 2959
		goto direct_uncharge;

2960 2961 2962 2963 2964
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2965
	if (batch->memcg != memcg)
2966 2967
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2968
	batch->nr_pages++;
2969
	if (uncharge_memsw)
2970
		batch->memsw_nr_pages++;
2971 2972
	return;
direct_uncharge:
2973
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2974
	if (uncharge_memsw)
2975 2976 2977
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2978 2979
	return;
}
2980

2981
/*
2982
 * uncharge if !page_mapped(page)
2983
 */
2984
static struct mem_cgroup *
2985
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2986
{
2987
	struct mem_cgroup *memcg = NULL;
2988 2989
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2990

2991
	if (mem_cgroup_disabled())
2992
		return NULL;
2993

K
KAMEZAWA Hiroyuki 已提交
2994
	if (PageSwapCache(page))
2995
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2996

A
Andrea Arcangeli 已提交
2997
	if (PageTransHuge(page)) {
2998
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2999 3000
		VM_BUG_ON(!PageTransHuge(page));
	}
3001
	/*
3002
	 * Check if our page_cgroup is valid
3003
	 */
3004 3005
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3006
		return NULL;
3007

3008
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3009

3010
	memcg = pc->mem_cgroup;
3011

K
KAMEZAWA Hiroyuki 已提交
3012 3013 3014 3015 3016
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3017
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3018 3019
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3031
	}
K
KAMEZAWA Hiroyuki 已提交
3032

3033
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3034

3035
	ClearPageCgroupUsed(pc);
3036 3037 3038 3039 3040 3041
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3042

3043
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3044
	/*
3045
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3046 3047
	 * will never be freed.
	 */
3048
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3049
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3050 3051
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3052
	}
3053 3054
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3055

3056
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3057 3058 3059

unlock_out:
	unlock_page_cgroup(pc);
3060
	return NULL;
3061 3062
}

3063 3064
void mem_cgroup_uncharge_page(struct page *page)
{
3065 3066 3067 3068 3069
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3070 3071 3072 3073 3074 3075
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3076
	VM_BUG_ON(page->mapping);
3077 3078 3079
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3094 3095
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3116 3117 3118 3119 3120 3121
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3122
	memcg_oom_recover(batch->memcg);
3123 3124 3125 3126
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3127
#ifdef CONFIG_SWAP
3128
/*
3129
 * called after __delete_from_swap_cache() and drop "page" account.
3130 3131
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3132 3133
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3134 3135
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3136 3137 3138 3139 3140 3141
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3142

K
KAMEZAWA Hiroyuki 已提交
3143 3144 3145 3146 3147
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3148
		swap_cgroup_record(ent, css_id(&memcg->css));
3149
}
3150
#endif
3151 3152 3153 3154 3155 3156 3157

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3158
{
3159
	struct mem_cgroup *memcg;
3160
	unsigned short id;
3161 3162 3163 3164

	if (!do_swap_account)
		return;

3165 3166 3167
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3168
	if (memcg) {
3169 3170 3171 3172
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3173
		if (!mem_cgroup_is_root(memcg))
3174
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3175
		mem_cgroup_swap_statistics(memcg, false);
3176 3177
		mem_cgroup_put(memcg);
	}
3178
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3179
}
3180 3181 3182 3183 3184 3185

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3186
 * @need_fixup: whether we should fixup res_counters and refcounts.
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3197
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3198 3199 3200 3201 3202 3203 3204 3205
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3206
		mem_cgroup_swap_statistics(to, true);
3207
		/*
3208 3209 3210 3211 3212 3213
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3214 3215
		 */
		mem_cgroup_get(to);
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3227 3228 3229 3230 3231 3232
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3233
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3234 3235 3236
{
	return -EINVAL;
}
3237
#endif
K
KAMEZAWA Hiroyuki 已提交
3238

3239
/*
3240 3241
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3242
 */
3243
int mem_cgroup_prepare_migration(struct page *page,
3244
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3245
{
3246
	struct mem_cgroup *memcg = NULL;
3247
	struct page_cgroup *pc;
3248
	enum charge_type ctype;
3249
	int ret = 0;
3250

3251 3252
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3253
	VM_BUG_ON(PageTransHuge(page));
3254
	if (mem_cgroup_disabled())
3255 3256
		return 0;

3257 3258 3259
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3260 3261
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3293
	}
3294
	unlock_page_cgroup(pc);
3295 3296 3297 3298
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3299
	if (!memcg)
3300
		return 0;
3301

3302
	*ptr = memcg;
3303
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3304
	css_put(&memcg->css);/* drop extra refcnt */
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3316
	}
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3330
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3331
	return ret;
3332
}
3333

3334
/* remove redundant charge if migration failed*/
3335
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3336
	struct page *oldpage, struct page *newpage, bool migration_ok)
3337
{
3338
	struct page *used, *unused;
3339 3340
	struct page_cgroup *pc;

3341
	if (!memcg)
3342
		return;
3343
	/* blocks rmdir() */
3344
	cgroup_exclude_rmdir(&memcg->css);
3345
	if (!migration_ok) {
3346 3347
		used = oldpage;
		unused = newpage;
3348
	} else {
3349
		used = newpage;
3350 3351
		unused = oldpage;
	}
3352
	/*
3353 3354 3355
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3356
	 */
3357 3358 3359 3360
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3361

3362 3363
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3364
	/*
3365 3366 3367 3368 3369 3370
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3371
	 */
3372 3373
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3374
	/*
3375 3376
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3377 3378 3379
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3380
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3381
}
3382

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3429 3430
static DEFINE_MUTEX(set_limit_mutex);

3431
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3432
				unsigned long long val)
3433
{
3434
	int retry_count;
3435
	u64 memswlimit, memlimit;
3436
	int ret = 0;
3437 3438
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3439
	int enlarge;
3440 3441 3442 3443 3444 3445 3446 3447 3448

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3449

3450
	enlarge = 0;
3451
	while (retry_count) {
3452 3453 3454 3455
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3456 3457 3458
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3459
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3460 3461 3462 3463 3464 3465
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3466 3467
			break;
		}
3468 3469 3470 3471 3472

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3473
		ret = res_counter_set_limit(&memcg->res, val);
3474 3475 3476 3477 3478 3479
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3480 3481 3482 3483 3484
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3485
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3486 3487
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3488 3489 3490 3491 3492 3493
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3494
	}
3495 3496
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3497

3498 3499 3500
	return ret;
}

L
Li Zefan 已提交
3501 3502
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3503
{
3504
	int retry_count;
3505
	u64 memlimit, memswlimit, oldusage, curusage;
3506 3507
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3508
	int enlarge = 0;
3509

3510 3511 3512
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3513 3514 3515 3516 3517 3518 3519 3520
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3521
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3522 3523 3524 3525 3526 3527 3528 3529
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3530 3531 3532
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3533
		ret = res_counter_set_limit(&memcg->memsw, val);
3534 3535 3536 3537 3538 3539
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3540 3541 3542 3543 3544
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3545
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3546
						MEM_CGROUP_RECLAIM_NOSWAP |
3547 3548
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3549
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3550
		/* Usage is reduced ? */
3551
		if (curusage >= oldusage)
3552
			retry_count--;
3553 3554
		else
			oldusage = curusage;
3555
	}
3556 3557
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3558 3559 3560
	return ret;
}

3561
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3562 3563
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3564 3565 3566 3567 3568 3569
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3570
	unsigned long long excess;
3571
	unsigned long nr_scanned;
3572 3573 3574 3575

	if (order > 0)
		return 0;

3576
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3590
		nr_scanned = 0;
3591 3592
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3593 3594
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3595
		nr_reclaimed += reclaimed;
3596
		*total_scanned += nr_scanned;
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3619
				if (next_mz == mz)
3620
					css_put(&next_mz->mem->css);
3621
				else /* next_mz == NULL or other memcg */
3622 3623 3624 3625
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3626
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3627 3628 3629 3630 3631 3632 3633 3634
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3635 3636
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3655 3656 3657 3658
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3659
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3660
				int node, int zid, enum lru_list lru)
3661
{
K
KAMEZAWA Hiroyuki 已提交
3662 3663
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3664
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3665
	unsigned long flags, loop;
3666
	struct list_head *list;
3667
	int ret = 0;
3668

K
KAMEZAWA Hiroyuki 已提交
3669
	zone = &NODE_DATA(node)->node_zones[zid];
3670
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3671
	list = &mz->lists[lru];
3672

3673 3674 3675 3676 3677
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3678 3679
		struct page *page;

3680
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3681
		spin_lock_irqsave(&zone->lru_lock, flags);
3682
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3683
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3684
			break;
3685 3686 3687 3688
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3689
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3690
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3691 3692
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3693
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3694

3695
		page = lookup_cgroup_page(pc);
3696

3697
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3698
		if (ret == -ENOMEM)
3699
			break;
3700 3701 3702 3703 3704 3705 3706

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3707
	}
K
KAMEZAWA Hiroyuki 已提交
3708

3709 3710 3711
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3712 3713 3714 3715 3716 3717
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3718
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3719
{
3720 3721 3722
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3723
	struct cgroup *cgrp = memcg->css.cgroup;
3724

3725
	css_get(&memcg->css);
3726 3727

	shrink = 0;
3728 3729 3730
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3731
move_account:
3732
	do {
3733
		ret = -EBUSY;
3734 3735 3736 3737
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3738
			goto out;
3739 3740
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3741
		drain_all_stock_sync(memcg);
3742
		ret = 0;
3743
		mem_cgroup_start_move(memcg);
3744
		for_each_node_state(node, N_HIGH_MEMORY) {
3745
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3746
				enum lru_list l;
3747
				for_each_lru(l) {
3748
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3749
							node, zid, l);
3750 3751 3752
					if (ret)
						break;
				}
3753
			}
3754 3755 3756
			if (ret)
				break;
		}
3757 3758
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3759 3760 3761
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3762
		cond_resched();
3763
	/* "ret" should also be checked to ensure all lists are empty. */
3764
	} while (memcg->res.usage > 0 || ret);
3765
out:
3766
	css_put(&memcg->css);
3767
	return ret;
3768 3769

try_to_free:
3770 3771
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3772 3773 3774
		ret = -EBUSY;
		goto out;
	}
3775 3776
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3777 3778
	/* try to free all pages in this cgroup */
	shrink = 1;
3779
	while (nr_retries && memcg->res.usage > 0) {
3780
		int progress;
3781 3782 3783 3784 3785

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3786
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3787
						false);
3788
		if (!progress) {
3789
			nr_retries--;
3790
			/* maybe some writeback is necessary */
3791
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3792
		}
3793 3794

	}
K
KAMEZAWA Hiroyuki 已提交
3795
	lru_add_drain();
3796
	/* try move_account...there may be some *locked* pages. */
3797
	goto move_account;
3798 3799
}

3800 3801 3802 3803 3804 3805
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3806 3807 3808 3809 3810 3811 3812 3813 3814
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3815
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3816
	struct cgroup *parent = cont->parent;
3817
	struct mem_cgroup *parent_memcg = NULL;
3818 3819

	if (parent)
3820
		parent_memcg = mem_cgroup_from_cont(parent);
3821 3822 3823

	cgroup_lock();
	/*
3824
	 * If parent's use_hierarchy is set, we can't make any modifications
3825 3826 3827 3828 3829 3830
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3831
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3832 3833
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3834
			memcg->use_hierarchy = val;
3835 3836 3837 3838 3839 3840 3841 3842 3843
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3844

3845
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3846
					       enum mem_cgroup_stat_index idx)
3847
{
K
KAMEZAWA Hiroyuki 已提交
3848
	struct mem_cgroup *iter;
3849
	long val = 0;
3850

3851
	/* Per-cpu values can be negative, use a signed accumulator */
3852
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3853 3854 3855 3856 3857
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3858 3859
}

3860
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3861
{
K
KAMEZAWA Hiroyuki 已提交
3862
	u64 val;
3863

3864
	if (!mem_cgroup_is_root(memcg)) {
3865 3866 3867 3868 3869
		val = 0;
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
		if (!memcg->kmem_independent_accounting)
			val = res_counter_read_u64(&memcg->kmem, RES_USAGE);
#endif
3870
		if (!swap)
3871
			val += res_counter_read_u64(&memcg->res, RES_USAGE);
3872
		else
3873 3874 3875
			val += res_counter_read_u64(&memcg->memsw, RES_USAGE);

		return val;
3876 3877
	}

3878 3879
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3880

K
KAMEZAWA Hiroyuki 已提交
3881
	if (swap)
3882
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3883 3884 3885 3886

	return val << PAGE_SHIFT;
}

3887
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3888
{
3889
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3890
	u64 val;
3891 3892 3893 3894 3895 3896
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3897
		if (name == RES_USAGE)
3898
			val = mem_cgroup_usage(memcg, false);
3899
		else
3900
			val = res_counter_read_u64(&memcg->res, name);
3901 3902
		break;
	case _MEMSWAP:
3903
		if (name == RES_USAGE)
3904
			val = mem_cgroup_usage(memcg, true);
3905
		else
3906
			val = res_counter_read_u64(&memcg->memsw, name);
3907
		break;
3908 3909 3910 3911 3912
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
#endif
3913 3914 3915 3916 3917
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3918
}
3919 3920 3921 3922
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3923 3924
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3925
{
3926
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3927
	int type, name;
3928 3929 3930
	unsigned long long val;
	int ret;

3931 3932 3933
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3934
	case RES_LIMIT:
3935 3936 3937 3938
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3939 3940
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3941 3942 3943
		if (ret)
			break;
		if (type == _MEM)
3944
			ret = mem_cgroup_resize_limit(memcg, val);
3945 3946
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3947
		break;
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3962 3963 3964 3965 3966
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3967 3968
}

3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3997
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3998
{
3999
	struct mem_cgroup *memcg;
4000
	int type, name;
4001

4002
	memcg = mem_cgroup_from_cont(cont);
4003 4004 4005
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4006
	case RES_MAX_USAGE:
4007
		if (type == _MEM)
4008
			res_counter_reset_max(&memcg->res);
4009
		else
4010
			res_counter_reset_max(&memcg->memsw);
4011 4012
		break;
	case RES_FAILCNT:
4013
		if (type == _MEM)
4014
			res_counter_reset_failcnt(&memcg->res);
4015
		else
4016
			res_counter_reset_failcnt(&memcg->memsw);
4017 4018
		break;
	}
4019

4020
	return 0;
4021 4022
}

4023 4024 4025 4026 4027 4028
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4029
#ifdef CONFIG_MMU
4030 4031 4032
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4033
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4034 4035 4036 4037 4038 4039 4040 4041 4042

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4043
	memcg->move_charge_at_immigrate = val;
4044 4045 4046 4047
	cgroup_unlock();

	return 0;
}
4048 4049 4050 4051 4052 4053 4054
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4055

K
KAMEZAWA Hiroyuki 已提交
4056 4057 4058 4059 4060

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4061
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4062 4063
	MCS_PGPGIN,
	MCS_PGPGOUT,
4064
	MCS_SWAP,
4065 4066
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4077 4078
};

K
KAMEZAWA Hiroyuki 已提交
4079 4080 4081 4082 4083 4084
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4085
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4086 4087
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4088
	{"swap", "total_swap"},
4089 4090
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4091 4092 4093 4094 4095 4096 4097 4098
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4099
static void
4100
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4101 4102 4103 4104
{
	s64 val;

	/* per cpu stat */
4105
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4106
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4107
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4108
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4109
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4110
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4111
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4112
	s->stat[MCS_PGPGIN] += val;
4113
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4114
	s->stat[MCS_PGPGOUT] += val;
4115
	if (do_swap_account) {
4116
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4117 4118
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4119
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4120
	s->stat[MCS_PGFAULT] += val;
4121
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4122
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4123 4124

	/* per zone stat */
4125
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4126
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4127
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4128
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4129
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4130
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4131
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4132
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4133
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4134 4135 4136 4137
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4138
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4139
{
K
KAMEZAWA Hiroyuki 已提交
4140 4141
	struct mem_cgroup *iter;

4142
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4143
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4144 4145
}

4146 4147 4148 4149 4150 4151 4152 4153 4154
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4155
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4156 4157
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4158
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4159 4160 4161 4162
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4163
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4164 4165
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4166 4167
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4168 4169 4170 4171
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4172
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4173 4174
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4175 4176
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4177 4178 4179 4180
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4181
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4182 4183
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4184 4185
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4186 4187 4188 4189 4190 4191 4192
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4193 4194
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4195 4196
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4197
	struct mcs_total_stat mystat;
4198 4199
	int i;

K
KAMEZAWA Hiroyuki 已提交
4200 4201
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4202

4203

4204 4205 4206
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4207
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4208
	}
L
Lee Schermerhorn 已提交
4209

K
KAMEZAWA Hiroyuki 已提交
4210
	/* Hierarchical information */
4211 4212 4213 4214 4215 4216 4217
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4218

K
KAMEZAWA Hiroyuki 已提交
4219 4220
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4221 4222 4223
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4224
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4225
	}
K
KAMEZAWA Hiroyuki 已提交
4226

K
KOSAKI Motohiro 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4254 4255 4256
	return 0;
}

K
KOSAKI Motohiro 已提交
4257 4258 4259 4260
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4261
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4262 4263 4264 4265 4266 4267 4268
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4269

K
KOSAKI Motohiro 已提交
4270 4271 4272 4273 4274 4275 4276
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4277 4278 4279

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4280 4281
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4282 4283
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4284
		return -EINVAL;
4285
	}
K
KOSAKI Motohiro 已提交
4286 4287 4288

	memcg->swappiness = val;

4289 4290
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4291 4292 4293
	return 0;
}

4294 4295 4296 4297 4298 4299 4300 4301
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4302
		t = rcu_dereference(memcg->thresholds.primary);
4303
	else
4304
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4316
	i = t->current_threshold;
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4340
	t->current_threshold = i - 1;
4341 4342 4343 4344 4345 4346
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4347 4348 4349 4350 4351 4352 4353
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4364
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4365 4366 4367
{
	struct mem_cgroup_eventfd_list *ev;

4368
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4369 4370 4371 4372
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4373
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4374
{
K
KAMEZAWA Hiroyuki 已提交
4375 4376
	struct mem_cgroup *iter;

4377
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4378
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4379 4380 4381 4382
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4383 4384
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4385 4386
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4387 4388
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4389
	int i, size, ret;
4390 4391 4392 4393 4394 4395

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4396

4397
	if (type == _MEM)
4398
		thresholds = &memcg->thresholds;
4399
	else if (type == _MEMSWAP)
4400
		thresholds = &memcg->memsw_thresholds;
4401 4402 4403 4404 4405 4406
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4407
	if (thresholds->primary)
4408 4409
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4410
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4411 4412

	/* Allocate memory for new array of thresholds */
4413
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4414
			GFP_KERNEL);
4415
	if (!new) {
4416 4417 4418
		ret = -ENOMEM;
		goto unlock;
	}
4419
	new->size = size;
4420 4421

	/* Copy thresholds (if any) to new array */
4422 4423
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4424
				sizeof(struct mem_cgroup_threshold));
4425 4426
	}

4427
	/* Add new threshold */
4428 4429
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4430 4431

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4432
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4433 4434 4435
			compare_thresholds, NULL);

	/* Find current threshold */
4436
	new->current_threshold = -1;
4437
	for (i = 0; i < size; i++) {
4438
		if (new->entries[i].threshold < usage) {
4439
			/*
4440 4441
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4442 4443
			 * it here.
			 */
4444
			++new->current_threshold;
4445 4446 4447
		}
	}

4448 4449 4450 4451 4452
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4453

4454
	/* To be sure that nobody uses thresholds */
4455 4456 4457 4458 4459 4460 4461 4462
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4463
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4464
	struct cftype *cft, struct eventfd_ctx *eventfd)
4465 4466
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4467 4468
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4469 4470
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4471
	int i, j, size;
4472 4473 4474

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4475
		thresholds = &memcg->thresholds;
4476
	else if (type == _MEMSWAP)
4477
		thresholds = &memcg->memsw_thresholds;
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4493 4494 4495
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4496 4497 4498
			size++;
	}

4499
	new = thresholds->spare;
4500

4501 4502
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4503 4504
		kfree(new);
		new = NULL;
4505
		goto swap_buffers;
4506 4507
	}

4508
	new->size = size;
4509 4510

	/* Copy thresholds and find current threshold */
4511 4512 4513
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4514 4515
			continue;

4516 4517
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4518
			/*
4519
			 * new->current_threshold will not be used
4520 4521 4522
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4523
			++new->current_threshold;
4524 4525 4526 4527
		}
		j++;
	}

4528
swap_buffers:
4529 4530 4531
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4532

4533
	/* To be sure that nobody uses thresholds */
4534 4535 4536 4537
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4538

K
KAMEZAWA Hiroyuki 已提交
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4551
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4552 4553 4554 4555 4556

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4557
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4558
		eventfd_signal(eventfd, 1);
4559
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4560 4561 4562 4563

	return 0;
}

4564
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4565 4566
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4567
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4568 4569 4570 4571 4572
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4573
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4574

4575
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4576 4577 4578 4579 4580 4581
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4582
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4583 4584
}

4585 4586 4587
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4588
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4589

4590
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4591

4592
	if (atomic_read(&memcg->under_oom))
4593 4594 4595 4596 4597 4598 4599 4600 4601
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4602
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4614
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4615 4616 4617
		cgroup_unlock();
		return -EINVAL;
	}
4618
	memcg->oom_kill_disable = val;
4619
	if (!val)
4620
		memcg_oom_recover(memcg);
4621 4622 4623 4624
	cgroup_unlock();
	return 0;
}

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static u64 kmem_limit_independent_read(struct cgroup *cgroup, struct cftype *cft)
{
	return mem_cgroup_from_cont(cgroup)->kmem_independent_accounting;
}

static int kmem_limit_independent_write(struct cgroup *cgroup, struct cftype *cft,
					u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);

	val = !!val;

	/*
	 * This follows the same hierarchy restrictions than
	 * mem_cgroup_hierarchy_write()
	 */
	if (!parent || !parent->use_hierarchy) {
		if (list_empty(&cgroup->children))
			memcg->kmem_independent_accounting = val;
		else
			return -EBUSY;
	}
	else
		return -EINVAL;

	return 0;
}
static struct cftype kmem_cgroup_files[] = {
	{
		.name = "independent_kmem_limit",
		.read_u64 = kmem_limit_independent_read,
		.write_u64 = kmem_limit_independent_write,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.read_u64 = mem_cgroup_read,
	},
};

static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	int ret = 0;

	ret = cgroup_add_files(cont, ss, kmem_cgroup_files,
			       ARRAY_SIZE(kmem_cgroup_files));
	return ret;
};

#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

B
Balbir Singh 已提交
4704 4705
static struct cftype mem_cgroup_files[] = {
	{
4706
		.name = "usage_in_bytes",
4707
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4708
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4709 4710
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4711
	},
4712 4713
	{
		.name = "max_usage_in_bytes",
4714
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4715
		.trigger = mem_cgroup_reset,
4716 4717
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4718
	{
4719
		.name = "limit_in_bytes",
4720
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4721
		.write_string = mem_cgroup_write,
4722
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4723
	},
4724 4725 4726 4727 4728 4729
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4730 4731
	{
		.name = "failcnt",
4732
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4733
		.trigger = mem_cgroup_reset,
4734
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4735
	},
4736 4737
	{
		.name = "stat",
4738
		.read_map = mem_control_stat_show,
4739
	},
4740 4741 4742 4743
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4744 4745 4746 4747 4748
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4749 4750 4751 4752 4753
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4754 4755 4756 4757 4758
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4759 4760
	{
		.name = "oom_control",
4761 4762
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4763 4764 4765 4766
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4767 4768 4769 4770
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4771
		.mode = S_IRUGO,
4772 4773
	},
#endif
B
Balbir Singh 已提交
4774 4775
};

4776 4777 4778 4779 4780 4781
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4782 4783
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4819
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4820 4821
{
	struct mem_cgroup_per_node *pn;
4822
	struct mem_cgroup_per_zone *mz;
4823
	enum lru_list l;
4824
	int zone, tmp = node;
4825 4826 4827 4828 4829 4830 4831 4832
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4833 4834
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4835
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4836 4837
	if (!pn)
		return 1;
4838 4839 4840

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4841 4842
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4843
		mz->usage_in_excess = 0;
4844
		mz->on_tree = false;
4845
		mz->mem = memcg;
4846
	}
4847
	memcg->info.nodeinfo[node] = pn;
4848 4849 4850
	return 0;
}

4851
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4852
{
4853
	kfree(memcg->info.nodeinfo[node]);
4854 4855
}

4856 4857 4858
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4859
	int size = sizeof(struct mem_cgroup);
4860

4861
	/* Can be very big if MAX_NUMNODES is very big */
4862
	if (size < PAGE_SIZE)
4863
		mem = kzalloc(size, GFP_KERNEL);
4864
	else
4865
		mem = vzalloc(size);
4866

4867 4868 4869
	if (!mem)
		return NULL;

4870
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4871 4872
	if (!mem->stat)
		goto out_free;
4873
	spin_lock_init(&mem->pcp_counter_lock);
4874
	return mem;
4875 4876 4877 4878 4879 4880 4881

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4882 4883
}

4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4895
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4896
{
K
KAMEZAWA Hiroyuki 已提交
4897 4898
	int node;

4899 4900
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4901

K
KAMEZAWA Hiroyuki 已提交
4902
	for_each_node_state(node, N_POSSIBLE)
4903
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4904

4905
	free_percpu(memcg->stat);
4906
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4907
		kfree(memcg);
4908
	else
4909
		vfree(memcg);
4910 4911
}

4912
static void mem_cgroup_get(struct mem_cgroup *memcg)
4913
{
4914
	atomic_inc(&memcg->refcnt);
4915 4916
}

4917
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4918
{
4919 4920 4921
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4922 4923 4924
		if (parent)
			mem_cgroup_put(parent);
	}
4925 4926
}

4927
static void mem_cgroup_put(struct mem_cgroup *memcg)
4928
{
4929
	__mem_cgroup_put(memcg, 1);
4930 4931
}

4932 4933 4934
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
4935
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4936
{
4937
	if (!memcg->res.parent)
4938
		return NULL;
4939
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4940
}
4941

4942 4943 4944
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4945
	if (!mem_cgroup_disabled() && really_do_swap_account)
4946 4947 4948 4949 4950 4951 4952 4953
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4979
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4980 4981
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4982
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4983
	long error = -ENOMEM;
4984
	int node;
B
Balbir Singh 已提交
4985

4986 4987
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4988
		return ERR_PTR(error);
4989

4990
	for_each_node_state(node, N_POSSIBLE)
4991
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4992
			goto free_out;
4993

4994
	/* root ? */
4995
	if (cont->parent == NULL) {
4996
		int cpu;
4997
		enable_swap_cgroup();
4998
		parent = NULL;
4999
		root_mem_cgroup = memcg;
5000 5001
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5002 5003 5004 5005 5006
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5007
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5008
	} else {
5009
		parent = mem_cgroup_from_cont(cont->parent);
5010 5011
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5012
	}
5013

5014
	if (parent && parent->use_hierarchy) {
5015 5016
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5017
		res_counter_init(&memcg->kmem, &parent->kmem);
5018 5019 5020 5021 5022 5023 5024
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5025
	} else {
5026 5027
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5028
		res_counter_init(&memcg->kmem, NULL);
5029
	}
5030 5031 5032
	memcg->last_scanned_child = 0;
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5033

K
KOSAKI Motohiro 已提交
5034
	if (parent)
5035 5036 5037 5038 5039
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
5040
free_out:
5041
	__mem_cgroup_free(memcg);
5042
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
5043
	return ERR_PTR(error);
B
Balbir Singh 已提交
5044 5045
}

5046
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5047 5048
					struct cgroup *cont)
{
5049
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5050

5051
	return mem_cgroup_force_empty(memcg, false);
5052 5053
}

B
Balbir Singh 已提交
5054 5055 5056
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5057
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5058

5059
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5060 5061 5062 5063 5064
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5065 5066 5067 5068 5069 5070 5071
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
5072 5073 5074 5075

	if (!ret)
		ret = register_kmem_files(cont, ss);

5076
	return ret;
B
Balbir Singh 已提交
5077 5078
}

5079
#ifdef CONFIG_MMU
5080
/* Handlers for move charge at task migration. */
5081 5082
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5083
{
5084 5085
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5086
	struct mem_cgroup *memcg = mc.to;
5087

5088
	if (mem_cgroup_is_root(memcg)) {
5089 5090 5091 5092 5093 5094 5095 5096
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5097
		 * "memcg" cannot be under rmdir() because we've already checked
5098 5099 5100 5101
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5102
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5103
			goto one_by_one;
5104
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5105
						PAGE_SIZE * count, &dummy)) {
5106
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5123 5124 5125
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
		if (ret || !memcg)
5126 5127 5128 5129
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5130 5131 5132 5133 5134 5135 5136 5137
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5138
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5139 5140 5141 5142 5143 5144
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5145 5146 5147
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5148 5149 5150 5151 5152
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5153
	swp_entry_t	ent;
5154 5155 5156 5157 5158
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5159
	MC_TARGET_SWAP,
5160 5161
};

D
Daisuke Nishimura 已提交
5162 5163
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5164
{
D
Daisuke Nishimura 已提交
5165
	struct page *page = vm_normal_page(vma, addr, ptent);
5166

D
Daisuke Nishimura 已提交
5167 5168 5169 5170 5171 5172
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5173 5174
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5193 5194
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5195
		return NULL;
5196
	}
D
Daisuke Nishimura 已提交
5197 5198 5199 5200 5201 5202
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5224 5225 5226 5227 5228 5229
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5230
		if (do_swap_account)
5231 5232
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5233
	}
5234
#endif
5235 5236 5237
	return page;
}

D
Daisuke Nishimura 已提交
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5250 5251
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5252 5253 5254

	if (!page && !ent.val)
		return 0;
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5270 5271
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5272 5273 5274 5275
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5288 5289
	split_huge_page_pmd(walk->mm, pmd);

5290 5291 5292 5293 5294 5295 5296
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5297 5298 5299
	return 0;
}

5300 5301 5302 5303 5304
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5305
	down_read(&mm->mmap_sem);
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5317
	up_read(&mm->mmap_sem);
5318 5319 5320 5321 5322 5323 5324 5325 5326

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5327 5328 5329 5330 5331
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5332 5333
}

5334 5335
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5336
{
5337 5338 5339
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5340
	/* we must uncharge all the leftover precharges from mc.to */
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5352
	}
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5387
	spin_lock(&mc.lock);
5388 5389
	mc.from = NULL;
	mc.to = NULL;
5390
	spin_unlock(&mc.lock);
5391
	mem_cgroup_end_move(from);
5392 5393
}

5394 5395
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5396
				struct task_struct *p)
5397 5398
{
	int ret = 0;
5399
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5400

5401
	if (memcg->move_charge_at_immigrate) {
5402 5403 5404
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5405
		VM_BUG_ON(from == memcg);
5406 5407 5408 5409 5410

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5411 5412 5413 5414
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5415
			VM_BUG_ON(mc.moved_charge);
5416
			VM_BUG_ON(mc.moved_swap);
5417
			mem_cgroup_start_move(from);
5418
			spin_lock(&mc.lock);
5419
			mc.from = from;
5420
			mc.to = memcg;
5421
			spin_unlock(&mc.lock);
5422
			/* We set mc.moving_task later */
5423 5424 5425 5426

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5427 5428
		}
		mmput(mm);
5429 5430 5431 5432 5433 5434
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5435
				struct task_struct *p)
5436
{
5437
	mem_cgroup_clear_mc();
5438 5439
}

5440 5441 5442
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5443
{
5444 5445 5446 5447 5448
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5449
	split_huge_page_pmd(walk->mm, pmd);
5450 5451 5452 5453 5454 5455 5456 5457
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5458
		swp_entry_t ent;
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5470 5471
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5472
				mc.precharge--;
5473 5474
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5475 5476 5477 5478 5479
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5480 5481
		case MC_TARGET_SWAP:
			ent = target.ent;
5482 5483
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5484
				mc.precharge--;
5485 5486 5487
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5488
			break;
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5503
		ret = mem_cgroup_do_precharge(1);
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5547
	up_read(&mm->mmap_sem);
5548 5549
}

B
Balbir Singh 已提交
5550 5551 5552
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5553
				struct task_struct *p)
B
Balbir Singh 已提交
5554
{
5555
	struct mm_struct *mm = get_task_mm(p);
5556 5557

	if (mm) {
5558 5559 5560
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5561 5562
		mmput(mm);
	}
5563 5564
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5565
}
5566 5567 5568
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5569
				struct task_struct *p)
5570 5571 5572 5573 5574
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5575
				struct task_struct *p)
5576 5577 5578 5579 5580
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5581
				struct task_struct *p)
5582 5583 5584
{
}
#endif
B
Balbir Singh 已提交
5585

B
Balbir Singh 已提交
5586 5587 5588 5589
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5590
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5591 5592
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5593 5594
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5595
	.attach = mem_cgroup_move_task,
5596
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5597
	.use_id = 1,
B
Balbir Singh 已提交
5598
};
5599 5600

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5601 5602 5603
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5604
	if (!strcmp(s, "1"))
5605
		really_do_swap_account = 1;
5606
	else if (!strcmp(s, "0"))
5607 5608 5609
		really_do_swap_account = 0;
	return 1;
}
5610
__setup("swapaccount=", enable_swap_account);
5611 5612

#endif