memcontrol.c 145.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
B
Balbir Singh 已提交
53

54 55
#include <asm/uaccess.h>

56 57
#include <trace/events/vmscan.h>

58 59
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
60
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
61

62
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
63
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64
int do_swap_account __read_mostly;
65 66 67 68 69 70 71 72

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

73 74 75 76 77
#else
#define do_swap_account		(0)
#endif


78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109 110
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
111
	MEM_CGROUP_TARGET_NUMAINFO,
112 113 114 115
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
116
#define NUMAINFO_EVENTS_TARGET	(1024)
117

118
struct mem_cgroup_stat_cpu {
119
	long count[MEM_CGROUP_STAT_NSTATS];
120
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121
	unsigned long targets[MEM_CGROUP_NTARGETS];
122 123
};

124 125 126 127
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
128 129 130
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
131 132
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
133 134

	struct zone_reclaim_stat reclaim_stat;
135 136 137 138
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
139 140
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
141 142 143 144 145 146 147 148 149 150 151 152
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

173 174 175 176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
178
/* For threshold */
179 180
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
181
	int current_threshold;
182 183 184 185 186
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
187 188 189 190 191 192 193 194 195 196 197 198

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
199 200 201 202 203
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
204

205 206
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
207

B
Balbir Singh 已提交
208 209 210 211 212 213 214
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
215 216 217
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
218 219 220 221 222 223 224
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
225 226 227 228
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
229 230 231 232
	/*
	 * the counter to account for kmem usage.
	 */
	struct res_counter kmem;
233 234 235 236
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
237
	struct mem_cgroup_lru_info info;
238
	/*
239
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
240
	 * reclaimed from.
241
	 */
K
KAMEZAWA Hiroyuki 已提交
242
	int last_scanned_child;
243 244 245
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
246 247
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
248
#endif
249 250 251 252
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
253 254 255 256

	bool		oom_lock;
	atomic_t	under_oom;

257
	atomic_t	refcnt;
258

259
	int	swappiness;
260 261
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
262

263 264 265
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

266 267 268 269
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
270
	struct mem_cgroup_thresholds thresholds;
271

272
	/* thresholds for mem+swap usage. RCU-protected */
273
	struct mem_cgroup_thresholds memsw_thresholds;
274

K
KAMEZAWA Hiroyuki 已提交
275 276
	/* For oom notifier event fd */
	struct list_head oom_notify;
277

278 279 280 281 282
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
283 284 285 286 287
	/*
	 * Should kernel memory limits be stabilished independently
	 * from user memory ?
	 */
	int		kmem_independent_accounting;
288
	/*
289
	 * percpu counter.
290
	 */
291
	struct mem_cgroup_stat_cpu *stat;
292 293 294 295 296 297
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
298 299
};

300 301 302 303 304 305
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
306
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
307
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
308 309 310
	NR_MOVE_TYPE,
};

311 312
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
313
	spinlock_t	  lock; /* for from, to */
314 315 316
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
317
	unsigned long moved_charge;
318
	unsigned long moved_swap;
319 320 321
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
322
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
323 324
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
325

D
Daisuke Nishimura 已提交
326 327 328 329 330 331
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

332 333 334 335 336 337
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

338 339 340 341 342 343 344
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

345 346 347
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
348
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
349
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
350
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
351
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
352 353 354
	NR_CHARGE_TYPE,
};

355
/* for encoding cft->private value on file */
356 357 358 359 360 361 362 363

enum mem_type {
	_MEM = 0,
	_MEMSWAP,
	_OOM_TYPE,
	_KMEM,
};

364 365 366
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
367 368
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
369

370 371 372 373 374 375 376
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
377 378
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
379

380 381
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#ifdef CONFIG_INET
#include <net/sock.h>

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
	/* A socket spends its whole life in the same cgroup */
	if (sk->sk_cgrp) {
		WARN_ON(1);
		return;
	}
	if (static_branch(&memcg_socket_limit_enabled)) {
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

424
static void drain_all_stock_async(struct mem_cgroup *memcg);
425

426
static struct mem_cgroup_per_zone *
427
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
428
{
429
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
430 431
}

432
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
433
{
434
	return &memcg->css;
435 436
}

437
static struct mem_cgroup_per_zone *
438
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
439
{
440 441
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
442

443
	return mem_cgroup_zoneinfo(memcg, nid, zid);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
462
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
463
				struct mem_cgroup_per_zone *mz,
464 465
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
466 467 468 469 470 471 472 473
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

474 475 476
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
493 494 495
}

static void
496
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
497 498 499 500 501 502 503 504 505
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

506
static void
507
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
508 509 510 511
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
512
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
513 514 515 516
	spin_unlock(&mctz->lock);
}


517
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
518
{
519
	unsigned long long excess;
520 521
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
522 523
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
524 525 526
	mctz = soft_limit_tree_from_page(page);

	/*
527 528
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
529
	 */
530 531 532
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
533 534 535 536
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
537
		if (excess || mz->on_tree) {
538 539 540
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
541
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
542
			/*
543 544
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
545
			 */
546
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
547 548
			spin_unlock(&mctz->lock);
		}
549 550 551
	}
}

552
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
553 554 555 556 557 558 559
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
560
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
561
			mctz = soft_limit_tree_node_zone(node, zone);
562
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
563 564 565 566
		}
	}
}

567 568 569 570
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
571
	struct mem_cgroup_per_zone *mz;
572 573

retry:
574
	mz = NULL;
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
623
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
624
				 enum mem_cgroup_stat_index idx)
625
{
626
	long val = 0;
627 628
	int cpu;

629 630
	get_online_cpus();
	for_each_online_cpu(cpu)
631
		val += per_cpu(memcg->stat->count[idx], cpu);
632
#ifdef CONFIG_HOTPLUG_CPU
633 634 635
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
636 637
#endif
	put_online_cpus();
638 639 640
	return val;
}

641
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
642 643 644
					 bool charge)
{
	int val = (charge) ? 1 : -1;
645
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
646 647
}

648
void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
649
{
650
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
651 652
}

653
void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
654
{
655
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
656 657
}

658
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 660 661 662 663 664
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
665
		val += per_cpu(memcg->stat->events[idx], cpu);
666
#ifdef CONFIG_HOTPLUG_CPU
667 668 669
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
670 671 672 673
#endif
	return val;
}

674
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675
					 bool file, int nr_pages)
676
{
677 678
	preempt_disable();

679
	if (file)
680 681
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
682
	else
683 684
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
685

686 687
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
688
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689
	else {
690
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 692
		nr_pages = -nr_pages; /* for event */
	}
693

694
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695

696
	preempt_enable();
697 698
}

699
unsigned long
700
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701
			unsigned int lru_mask)
702 703
{
	struct mem_cgroup_per_zone *mz;
704 705 706
	enum lru_list l;
	unsigned long ret = 0;

707
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708 709 710 711 712 713 714 715 716

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
717
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 719
			int nid, unsigned int lru_mask)
{
720 721 722
	u64 total = 0;
	int zid;

723
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 725
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
726

727 728
	return total;
}
729

730
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731
			unsigned int lru_mask)
732
{
733
	int nid;
734 735
	u64 total = 0;

736
	for_each_node_state(nid, N_HIGH_MEMORY)
737
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738
	return total;
739 740
}

741
static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
742 743 744
{
	unsigned long val, next;

745 746
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
747 748 749 750
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

751
static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
752
{
753
	unsigned long val, next;
754

755
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
756

757 758 759 760 761 762 763
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
764 765 766
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
767 768 769 770
	default:
		return;
	}

771
	__this_cpu_write(memcg->stat->targets[target], next);
772 773 774 775 776 777
}

/*
 * Check events in order.
 *
 */
778
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
779
{
780
	preempt_disable();
781
	/* threshold event is triggered in finer grain than soft limit */
782 783 784 785
	if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
		mem_cgroup_threshold(memcg);
		__mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(memcg,
786
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
787 788
			mem_cgroup_update_tree(memcg, page);
			__mem_cgroup_target_update(memcg,
789 790 791
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
792
		if (unlikely(__memcg_event_check(memcg,
793
			MEM_CGROUP_TARGET_NUMAINFO))) {
794 795
			atomic_inc(&memcg->numainfo_events);
			__mem_cgroup_target_update(memcg,
796
				MEM_CGROUP_TARGET_NUMAINFO);
797
		}
798
#endif
799
	}
800
	preempt_enable();
801 802
}

803
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
804 805 806 807 808 809
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

810
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
811
{
812 813 814 815 816 817 818 819
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

820 821 822 823
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

824
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
825
{
826
	struct mem_cgroup *memcg = NULL;
827 828 829

	if (!mm)
		return NULL;
830 831 832 833 834 835 836
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
837 838
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
839
			break;
840
	} while (!css_tryget(&memcg->css));
841
	rcu_read_unlock();
842
	return memcg;
843 844
}

K
KAMEZAWA Hiroyuki 已提交
845
/* The caller has to guarantee "mem" exists before calling this */
846
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
847
{
848 849 850
	struct cgroup_subsys_state *css;
	int found;

851
	if (!memcg) /* ROOT cgroup has the smallest ID */
852
		return root_mem_cgroup; /*css_put/get against root is ignored*/
853 854 855
	if (!memcg->use_hierarchy) {
		if (css_tryget(&memcg->css))
			return memcg;
856 857 858 859 860 861 862
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
863
	css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
864
	if (css && css_tryget(css))
865
		memcg = container_of(css, struct mem_cgroup, css);
866
	else
867
		memcg = NULL;
868
	rcu_read_unlock();
869
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
870 871 872 873 874 875 876 877 878
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
879 880
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
881
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
882

K
KAMEZAWA Hiroyuki 已提交
883
	css_put(&iter->css);
884 885
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
886
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
887

888 889 890
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
891 892
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
893
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
894 895 896

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
897
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
898
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
899
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
900
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
901
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
902
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
903

K
KAMEZAWA Hiroyuki 已提交
904
	return iter;
K
KAMEZAWA Hiroyuki 已提交
905
}
K
KAMEZAWA Hiroyuki 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

919 920 921
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
922

923
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
924
{
925
	return (memcg == root_mem_cgroup);
926 927
}

928 929
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
930
	struct mem_cgroup *memcg;
931 932 933 934 935

	if (!mm)
		return;

	rcu_read_lock();
936 937
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
938 939 940 941
		goto out;

	switch (idx) {
	case PGMAJFAULT:
942
		mem_cgroup_pgmajfault(memcg, 1);
943 944
		break;
	case PGFAULT:
945
		mem_cgroup_pgfault(memcg, 1);
946 947 948 949 950 951 952 953 954
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
968

K
KAMEZAWA Hiroyuki 已提交
969 970 971 972
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
973

974
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
975 976 977
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
978
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
979
		return;
980
	VM_BUG_ON(!pc->mem_cgroup);
981 982 983 984
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
985
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
986 987
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
988 989 990
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
991
	list_del_init(&pc->lru);
992 993
}

K
KAMEZAWA Hiroyuki 已提交
994
void mem_cgroup_del_lru(struct page *page)
995
{
K
KAMEZAWA Hiroyuki 已提交
996 997
	mem_cgroup_del_lru_list(page, page_lru(page));
}
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
1021
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1022 1023 1024
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
1025 1026 1027 1028
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
1029

1030
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1031
		return;
1032

K
KAMEZAWA Hiroyuki 已提交
1033
	pc = lookup_page_cgroup(page);
1034
	/* unused or root page is not rotated. */
1035 1036 1037 1038 1039
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
1040
		return;
1041
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
1042
	list_move(&pc->lru, &mz->lists[lru]);
1043 1044
}

K
KAMEZAWA Hiroyuki 已提交
1045
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1046
{
K
KAMEZAWA Hiroyuki 已提交
1047 1048
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
1049

1050
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1051 1052
		return;
	pc = lookup_page_cgroup(page);
1053
	VM_BUG_ON(PageCgroupAcctLRU(pc));
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
K
KAMEZAWA Hiroyuki 已提交
1064
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
1065
		return;
1066 1067
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1068
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1069 1070
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1071 1072 1073
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1074 1075
	list_add(&pc->lru, &mz->lists[lru]);
}
1076

K
KAMEZAWA Hiroyuki 已提交
1077
/*
1078 1079 1080 1081
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1082
 */
1083
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1084
{
1085 1086 1087 1088
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1100 1101 1102 1103 1104 1105 1106 1107
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1108 1109
}

1110
static void mem_cgroup_lru_add_after_commit(struct page *page)
1111 1112 1113 1114
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
1125 1126 1127
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1128 1129
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1130
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1131 1132 1133 1134 1135
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1136 1137 1138
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1139
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1140 1141 1142
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1143 1144
}

1145
/*
1146
 * Checks whether given mem is same or in the root_mem_cgroup's
1147 1148
 * hierarchy subtree
 */
1149 1150
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1151
{
1152 1153 1154
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1155 1156 1157 1158 1159
	}

	return true;
}

1160
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1161 1162
{
	int ret;
1163
	struct mem_cgroup *curr = NULL;
1164
	struct task_struct *p;
1165

1166 1167 1168 1169 1170
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1171 1172
	if (!curr)
		return 0;
1173
	/*
1174
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1175
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1176 1177
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1178
	 */
1179
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1180
	css_put(&curr->css);
1181 1182 1183
	return ret;
}

1184
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1185
{
1186 1187 1188
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1189
	unsigned long inactive;
1190
	unsigned long active;
1191
	unsigned long gb;
1192

1193 1194 1195 1196
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1197

1198 1199 1200 1201 1202 1203
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1204
	return inactive * inactive_ratio < active;
1205 1206
}

1207
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1208 1209 1210
{
	unsigned long active;
	unsigned long inactive;
1211 1212
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1213

1214 1215 1216 1217
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1218 1219 1220 1221

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1222 1223 1224
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1225
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1242 1243
	if (!PageCgroupUsed(pc))
		return NULL;
1244 1245
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1246
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1247 1248 1249
	return &mz->reclaim_stat;
}

1250 1251 1252
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
1253 1254
					isolate_mode_t mode,
					struct zone *z,
1255
					struct mem_cgroup *mem_cont,
1256
					int active, int file)
1257 1258 1259 1260 1261 1262
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1263
	struct page_cgroup *pc, *tmp;
1264
	int nid = zone_to_nid(z);
1265 1266
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1267
	int lru = LRU_FILE * file + active;
1268
	int ret;
1269

1270
	BUG_ON(!mem_cont);
1271
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1272
	src = &mz->lists[lru];
1273

1274 1275
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1276
		if (scan >= nr_to_scan)
1277
			break;
K
KAMEZAWA Hiroyuki 已提交
1278

1279 1280
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1281

1282
		page = lookup_cgroup_page(pc);
1283

H
Hugh Dickins 已提交
1284
		if (unlikely(!PageLRU(page)))
1285 1286
			continue;

H
Hugh Dickins 已提交
1287
		scan++;
1288 1289 1290
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1291
			list_move(&page->lru, dst);
1292
			mem_cgroup_del_lru(page);
1293
			nr_taken += hpage_nr_pages(page);
1294 1295 1296 1297 1298 1299 1300
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1301 1302 1303 1304
		}
	}

	*scanned = scan;
1305 1306 1307 1308

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1309 1310 1311
	return nr_taken;
}

1312 1313 1314
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1315
/**
1316 1317
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1318
 *
1319
 * Returns the maximum amount of memory @mem can be charged with, in
1320
 * pages.
1321
 */
1322
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1323
{
1324 1325
	unsigned long long margin;

1326
	margin = res_counter_margin(&memcg->res);
1327
	if (do_swap_account)
1328
		margin = min(margin, res_counter_margin(&memcg->memsw));
1329
	return margin >> PAGE_SHIFT;
1330 1331
}

1332
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1333 1334 1335 1336 1337 1338 1339
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1340
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1341 1342
}

1343
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1344 1345
{
	int cpu;
1346 1347

	get_online_cpus();
1348
	spin_lock(&memcg->pcp_counter_lock);
1349
	for_each_online_cpu(cpu)
1350 1351 1352
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1353
	put_online_cpus();
1354 1355 1356 1357

	synchronize_rcu();
}

1358
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1359 1360 1361
{
	int cpu;

1362
	if (!memcg)
1363
		return;
1364
	get_online_cpus();
1365
	spin_lock(&memcg->pcp_counter_lock);
1366
	for_each_online_cpu(cpu)
1367 1368 1369
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1370
	put_online_cpus();
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1384
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1385 1386
{
	VM_BUG_ON(!rcu_read_lock_held());
1387
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1388
}
1389

1390
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1391
{
1392 1393
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1394
	bool ret = false;
1395 1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1404

1405 1406
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1407 1408
unlock:
	spin_unlock(&mc.lock);
1409 1410 1411
	return ret;
}

1412
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1413 1414
{
	if (mc.moving_task && current != mc.moving_task) {
1415
		if (mem_cgroup_under_move(memcg)) {
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1428
/**
1429
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1448
	if (!memcg || !p)
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1495 1496 1497 1498
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1499
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1500 1501
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1502 1503
	struct mem_cgroup *iter;

1504
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1505
		num++;
1506 1507 1508
	return num;
}

D
David Rientjes 已提交
1509 1510 1511 1512 1513 1514 1515 1516
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1517 1518 1519
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1520 1521 1522 1523 1524 1525 1526 1527
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1528
/*
K
KAMEZAWA Hiroyuki 已提交
1529 1530 1531 1532 1533
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
1534
mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
K
KAMEZAWA Hiroyuki 已提交
1535 1536 1537 1538 1539
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

1540 1541 1542
	if (!root_memcg->use_hierarchy) {
		css_get(&root_memcg->css);
		ret = root_memcg;
K
KAMEZAWA Hiroyuki 已提交
1543 1544 1545 1546
	}

	while (!ret) {
		rcu_read_lock();
1547 1548
		nextid = root_memcg->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
K
KAMEZAWA Hiroyuki 已提交
1549 1550 1551 1552 1553 1554 1555 1556
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
1557
			root_memcg->last_scanned_child = 0;
K
KAMEZAWA Hiroyuki 已提交
1558
		} else
1559
			root_memcg->last_scanned_child = found;
K
KAMEZAWA Hiroyuki 已提交
1560 1561 1562 1563 1564
	}

	return ret;
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1575
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1576 1577
		int nid, bool noswap)
{
1578
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1579 1580 1581
		return true;
	if (noswap || !total_swap_pages)
		return false;
1582
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1583 1584 1585 1586
		return true;
	return false;

}
1587 1588 1589 1590 1591 1592 1593 1594
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1595
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1596 1597
{
	int nid;
1598 1599 1600 1601
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1602
	if (!atomic_read(&memcg->numainfo_events))
1603
		return;
1604
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1605 1606 1607
		return;

	/* make a nodemask where this memcg uses memory from */
1608
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1609 1610 1611

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1612 1613
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1614
	}
1615

1616 1617
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1632
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1633 1634 1635
{
	int node;

1636 1637
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1638

1639
	node = next_node(node, memcg->scan_nodes);
1640
	if (node == MAX_NUMNODES)
1641
		node = first_node(memcg->scan_nodes);
1642 1643 1644 1645 1646 1647 1648 1649 1650
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1651
	memcg->last_scanned_node = node;
1652 1653 1654
	return node;
}

1655 1656 1657 1658 1659 1660
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1661
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1662 1663 1664 1665 1666 1667 1668
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1669 1670
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1671
		     nid < MAX_NUMNODES;
1672
		     nid = next_node(nid, memcg->scan_nodes)) {
1673

1674
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1675 1676 1677 1678 1679 1680 1681
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1682
		if (node_isset(nid, memcg->scan_nodes))
1683
			continue;
1684
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1685 1686 1687 1688 1689
			return true;
	}
	return false;
}

1690
#else
1691
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1692 1693 1694
{
	return 0;
}
1695

1696
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1697
{
1698
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1699
}
1700 1701
#endif

K
KAMEZAWA Hiroyuki 已提交
1702 1703 1704 1705
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1706
 *
1707
 * root_memcg is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1708
 *
1709
 * We give up and return to the caller when we visit root_memcg twice.
K
KAMEZAWA Hiroyuki 已提交
1710
 * (other groups can be removed while we're walking....)
1711 1712
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1713
 */
1714
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1715
						struct zone *zone,
1716
						gfp_t gfp_mask,
1717 1718
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1719
{
K
KAMEZAWA Hiroyuki 已提交
1720 1721 1722
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1723 1724
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1725
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1726
	unsigned long excess;
1727
	unsigned long nr_scanned;
1728

1729
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1730

1731
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1732
	if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1733 1734
		noswap = true;

1735
	while (1) {
1736 1737
		victim = mem_cgroup_select_victim(root_memcg);
		if (victim == root_memcg) {
K
KAMEZAWA Hiroyuki 已提交
1738
			loop++;
1739 1740 1741 1742 1743 1744 1745
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1746
				drain_all_stock_async(root_memcg);
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1758
				 * We want to do more targeted reclaim.
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1770
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1771 1772
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1773 1774
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1775
		/* we use swappiness of local cgroup */
1776
		if (check_soft) {
1777
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1778 1779
				noswap, zone, &nr_scanned);
			*total_scanned += nr_scanned;
1780
		} else
1781
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1782
						noswap);
K
KAMEZAWA Hiroyuki 已提交
1783
		css_put(&victim->css);
1784 1785 1786 1787 1788 1789 1790
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1791
		total += ret;
1792
		if (check_soft) {
1793
			if (!res_counter_soft_limit_excess(&root_memcg->res))
1794
				return total;
1795
		} else if (mem_cgroup_margin(root_memcg))
1796
			return total;
1797
	}
K
KAMEZAWA Hiroyuki 已提交
1798
	return total;
1799 1800
}

K
KAMEZAWA Hiroyuki 已提交
1801 1802 1803
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1804
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1805
 */
1806
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1807
{
1808 1809
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1810

1811
	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1812
		if (iter->oom_lock) {
1813 1814 1815 1816 1817 1818
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
			cond = false;
1819 1820
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1821
	}
K
KAMEZAWA Hiroyuki 已提交
1822

1823
	if (!failed)
1824
		return true;
1825 1826 1827 1828 1829 1830

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
1831
	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1832 1833 1834 1835 1836 1837
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
1838
	return false;
1839
}
1840

1841
/*
1842
 * Has to be called with memcg_oom_lock
1843
 */
1844
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1845
{
K
KAMEZAWA Hiroyuki 已提交
1846 1847
	struct mem_cgroup *iter;

1848
	for_each_mem_cgroup_tree(iter, memcg)
1849 1850 1851 1852
		iter->oom_lock = false;
	return 0;
}

1853
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1854 1855 1856
{
	struct mem_cgroup *iter;

1857
	for_each_mem_cgroup_tree(iter, memcg)
1858 1859 1860
		atomic_inc(&iter->under_oom);
}

1861
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1862 1863 1864
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1865 1866 1867 1868 1869
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1870
	for_each_mem_cgroup_tree(iter, memcg)
1871
		atomic_add_unless(&iter->under_oom, -1, 0);
1872 1873
}

1874
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1875 1876
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1877 1878 1879 1880 1881 1882 1883 1884
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1885 1886
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1887 1888 1889
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1890
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1891 1892 1893 1894 1895

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1896 1897
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1898 1899 1900 1901
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1902
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1903
{
1904 1905
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1906 1907
}

1908
static void memcg_oom_recover(struct mem_cgroup *memcg)
1909
{
1910 1911
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1912 1913
}

K
KAMEZAWA Hiroyuki 已提交
1914 1915 1916
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1917
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1918
{
K
KAMEZAWA Hiroyuki 已提交
1919
	struct oom_wait_info owait;
1920
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1921

1922
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1923 1924 1925 1926
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1927
	need_to_kill = true;
1928
	mem_cgroup_mark_under_oom(memcg);
1929

1930
	/* At first, try to OOM lock hierarchy under memcg.*/
1931
	spin_lock(&memcg_oom_lock);
1932
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1933 1934 1935 1936 1937
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1938
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1939
	if (!locked || memcg->oom_kill_disable)
1940 1941
		need_to_kill = false;
	if (locked)
1942
		mem_cgroup_oom_notify(memcg);
1943
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1944

1945 1946
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1947
		mem_cgroup_out_of_memory(memcg, mask);
1948
	} else {
K
KAMEZAWA Hiroyuki 已提交
1949
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1950
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1951
	}
1952
	spin_lock(&memcg_oom_lock);
1953
	if (locked)
1954 1955
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1956
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1957

1958
	mem_cgroup_unmark_under_oom(memcg);
1959

K
KAMEZAWA Hiroyuki 已提交
1960 1961 1962
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1963
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1964
	return true;
1965 1966
}

1967 1968 1969
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1989
 */
1990

1991 1992
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1993
{
1994
	struct mem_cgroup *memcg;
1995 1996
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1997
	unsigned long uninitialized_var(flags);
1998 1999 2000 2001

	if (unlikely(!pc))
		return;

2002
	rcu_read_lock();
2003 2004
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2005 2006
		goto out;
	/* pc->mem_cgroup is unstable ? */
2007
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
2008
		/* take a lock against to access pc->mem_cgroup */
2009
		move_lock_page_cgroup(pc, &flags);
2010
		need_unlock = true;
2011 2012
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
2013 2014
			goto out;
	}
2015 2016

	switch (idx) {
2017
	case MEMCG_NR_FILE_MAPPED:
2018 2019 2020
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
2021
			ClearPageCgroupFileMapped(pc);
2022
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2023 2024 2025
		break;
	default:
		BUG();
2026
	}
2027

2028
	this_cpu_add(memcg->stat->count[idx], val);
2029

2030 2031
out:
	if (unlikely(need_unlock))
2032
		move_unlock_page_cgroup(pc, &flags);
2033 2034
	rcu_read_unlock();
	return;
2035
}
2036
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2037

2038 2039 2040 2041
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2042
#define CHARGE_BATCH	32U
2043 2044
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2045
	unsigned int nr_pages;
2046
	struct work_struct work;
2047 2048
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2049 2050
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2051
static DEFINE_MUTEX(percpu_charge_mutex);
2052 2053

/*
2054
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2055 2056 2057 2058
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2059
static bool consume_stock(struct mem_cgroup *memcg)
2060 2061 2062 2063 2064
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2065
	if (memcg == stock->cached && stock->nr_pages)
2066
		stock->nr_pages--;
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2080 2081 2082 2083
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2084
		if (do_swap_account)
2085 2086
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2099
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2100 2101 2102 2103
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2104
 * This will be consumed by consume_stock() function, later.
2105
 */
2106
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2107 2108 2109
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2110
	if (stock->cached != memcg) { /* reset if necessary */
2111
		drain_stock(stock);
2112
		stock->cached = memcg;
2113
	}
2114
	stock->nr_pages += nr_pages;
2115 2116 2117 2118
	put_cpu_var(memcg_stock);
}

/*
2119
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2120 2121
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2122
 */
2123
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2124
{
2125
	int cpu, curcpu;
2126

2127 2128
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2129
	curcpu = get_cpu();
2130 2131
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2132
		struct mem_cgroup *memcg;
2133

2134 2135
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2136
			continue;
2137
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2138
			continue;
2139 2140 2141 2142 2143 2144
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2145
	}
2146
	put_cpu();
2147 2148 2149 2150 2151 2152

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2153
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2154 2155 2156
			flush_work(&stock->work);
	}
out:
2157
 	put_online_cpus();
2158 2159 2160 2161 2162 2163 2164 2165
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2166
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2167
{
2168 2169 2170 2171 2172
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2173
	drain_all_stock(root_memcg, false);
2174
	mutex_unlock(&percpu_charge_mutex);
2175 2176 2177
}

/* This is a synchronous drain interface. */
2178
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2179 2180
{
	/* called when force_empty is called */
2181
	mutex_lock(&percpu_charge_mutex);
2182
	drain_all_stock(root_memcg, true);
2183
	mutex_unlock(&percpu_charge_mutex);
2184 2185
}

2186 2187 2188 2189
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2190
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2191 2192 2193
{
	int i;

2194
	spin_lock(&memcg->pcp_counter_lock);
2195
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2196
		long x = per_cpu(memcg->stat->count[i], cpu);
2197

2198 2199
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2200
	}
2201
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2202
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2203

2204 2205
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2206
	}
2207
	/* need to clear ON_MOVE value, works as a kind of lock. */
2208 2209
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2210 2211
}

2212
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2213 2214 2215
{
	int idx = MEM_CGROUP_ON_MOVE;

2216 2217 2218
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2219 2220 2221
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2222 2223 2224 2225 2226
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2227
	struct mem_cgroup *iter;
2228

2229 2230 2231 2232 2233 2234
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2235
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2236
		return NOTIFY_OK;
2237 2238 2239 2240

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2241 2242 2243 2244 2245
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2256
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2257
				unsigned int nr_pages, bool oom_check)
2258
{
2259
	unsigned long csize = nr_pages * PAGE_SIZE;
2260 2261 2262 2263 2264
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2265
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2266 2267 2268 2269

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2270
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2271 2272 2273
		if (likely(!ret))
			return CHARGE_OK;

2274
		res_counter_uncharge(&memcg->res, csize);
2275 2276 2277 2278
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2279
	/*
2280 2281
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2282 2283 2284 2285
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2286
	if (nr_pages == CHARGE_BATCH)
2287 2288 2289 2290 2291 2292
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2293
					      gfp_mask, flags, NULL);
2294
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2295
		return CHARGE_RETRY;
2296
	/*
2297 2298 2299 2300 2301 2302 2303
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2304
	 */
2305
	if (nr_pages == 1 && ret)
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2325 2326 2327
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2328
 */
2329
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2330
				   gfp_t gfp_mask,
2331
				   unsigned int nr_pages,
2332
				   struct mem_cgroup **ptr,
2333
				   bool oom)
2334
{
2335
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2336
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2337
	struct mem_cgroup *memcg = NULL;
2338
	int ret;
2339

K
KAMEZAWA Hiroyuki 已提交
2340 2341 2342 2343 2344 2345 2346 2347
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2348

2349
	/*
2350 2351
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2352 2353 2354
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2355
	if (!*ptr && !mm)
K
KAMEZAWA Hiroyuki 已提交
2356 2357
		goto bypass;
again:
2358 2359 2360 2361
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2362
			goto done;
2363
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2364
			goto done;
2365
		css_get(&memcg->css);
2366
	} else {
K
KAMEZAWA Hiroyuki 已提交
2367
		struct task_struct *p;
2368

K
KAMEZAWA Hiroyuki 已提交
2369 2370 2371
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2372
		 * Because we don't have task_lock(), "p" can exit.
2373
		 * In that case, "memcg" can point to root or p can be NULL with
2374 2375 2376 2377 2378 2379
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2380
		 */
2381 2382
		memcg = mem_cgroup_from_task(p);
		if (!memcg || mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2383 2384 2385
			rcu_read_unlock();
			goto done;
		}
2386
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2399
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2400 2401 2402 2403 2404
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2405

2406 2407
	do {
		bool oom_check;
2408

2409
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2410
		if (fatal_signal_pending(current)) {
2411
			css_put(&memcg->css);
2412
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2413
		}
2414

2415 2416 2417 2418
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2419
		}
2420

2421
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2422 2423 2424 2425
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2426
			batch = nr_pages;
2427 2428
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2429
			goto again;
2430
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2431
			css_put(&memcg->css);
2432 2433
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2434
			if (!oom) {
2435
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2436
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2437
			}
2438 2439 2440 2441
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2442
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2443
			goto bypass;
2444
		}
2445 2446
	} while (ret != CHARGE_OK);

2447
	if (batch > nr_pages)
2448 2449
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2450
done:
2451
	*ptr = memcg;
2452 2453
	return 0;
nomem:
2454
	*ptr = NULL;
2455
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2456
bypass:
2457
	*ptr = NULL;
K
KAMEZAWA Hiroyuki 已提交
2458
	return 0;
2459
}
2460

2461 2462 2463 2464 2465
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2466
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2467
				       unsigned int nr_pages)
2468
{
2469
	if (!mem_cgroup_is_root(memcg)) {
2470 2471
		unsigned long bytes = nr_pages * PAGE_SIZE;

2472
		res_counter_uncharge(&memcg->res, bytes);
2473
		if (do_swap_account)
2474
			res_counter_uncharge(&memcg->memsw, bytes);
2475
	}
2476 2477
}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2497
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2498
{
2499
	struct mem_cgroup *memcg = NULL;
2500
	struct page_cgroup *pc;
2501
	unsigned short id;
2502 2503
	swp_entry_t ent;

2504 2505 2506
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2507
	lock_page_cgroup(pc);
2508
	if (PageCgroupUsed(pc)) {
2509 2510 2511
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2512
	} else if (PageSwapCache(page)) {
2513
		ent.val = page_private(page);
2514 2515
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
2516 2517 2518
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2519
		rcu_read_unlock();
2520
	}
2521
	unlock_page_cgroup(pc);
2522
	return memcg;
2523 2524
}

2525
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2526
				       struct page *page,
2527
				       unsigned int nr_pages,
2528
				       struct page_cgroup *pc,
2529
				       enum charge_type ctype)
2530
{
2531 2532 2533
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2534
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2535 2536 2537 2538 2539 2540
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2541
	pc->mem_cgroup = memcg;
2542 2543 2544 2545 2546 2547 2548
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2549
	smp_wmb();
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2563

2564
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2565
	unlock_page_cgroup(pc);
2566 2567 2568 2569 2570
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2571
	memcg_check_events(memcg, page);
2572
}
2573

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2588 2589
	if (mem_cgroup_disabled())
		return;
2590
	/*
2591
	 * We have no races with charge/uncharge but will have races with
2592 2593 2594 2595 2596 2597
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2608
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2609 2610
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2611 2612 2613 2614 2615
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2616
/**
2617
 * mem_cgroup_move_account - move account of the page
2618
 * @page: the page
2619
 * @nr_pages: number of regular pages (>1 for huge pages)
2620 2621 2622
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2623
 * @uncharge: whether we should call uncharge and css_put against @from.
2624 2625
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2626
 * - page is not on LRU (isolate_page() is useful.)
2627
 * - compound_lock is held when nr_pages > 1
2628
 *
2629
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2630
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2631 2632
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2633
 */
2634 2635 2636 2637 2638 2639
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2640
{
2641 2642
	unsigned long flags;
	int ret;
2643

2644
	VM_BUG_ON(from == to);
2645
	VM_BUG_ON(PageLRU(page));
2646 2647 2648 2649 2650 2651 2652
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2653
	if (nr_pages > 1 && !PageTransHuge(page))
2654 2655 2656 2657 2658 2659 2660 2661 2662
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2663

2664
	if (PageCgroupFileMapped(pc)) {
2665 2666 2667 2668 2669
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2670
	}
2671
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2672 2673
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2674
		__mem_cgroup_cancel_charge(from, nr_pages);
2675

2676
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2677
	pc->mem_cgroup = to;
2678
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2679 2680 2681
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2682
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2683
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2684
	 * status here.
2685
	 */
2686 2687 2688
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2689
	unlock_page_cgroup(pc);
2690 2691 2692
	/*
	 * check events
	 */
2693 2694
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2695
out:
2696 2697 2698 2699 2700 2701 2702
	return ret;
}

/*
 * move charges to its parent.
 */

2703 2704
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2705 2706 2707 2708 2709 2710
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2711
	unsigned int nr_pages;
2712
	unsigned long uninitialized_var(flags);
2713 2714 2715 2716 2717 2718
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2719 2720 2721 2722 2723
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2724

2725
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2726

2727
	parent = mem_cgroup_from_cont(pcg);
2728
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2729
	if (ret || !parent)
2730
		goto put_back;
2731

2732
	if (nr_pages > 1)
2733 2734
		flags = compound_lock_irqsave(page);

2735
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2736
	if (ret)
2737
		__mem_cgroup_cancel_charge(parent, nr_pages);
2738

2739
	if (nr_pages > 1)
2740
		compound_unlock_irqrestore(page, flags);
2741
put_back:
K
KAMEZAWA Hiroyuki 已提交
2742
	putback_lru_page(page);
2743
put:
2744
	put_page(page);
2745
out:
2746 2747 2748
	return ret;
}

2749 2750 2751 2752 2753 2754 2755
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2756
				gfp_t gfp_mask, enum charge_type ctype)
2757
{
2758
	struct mem_cgroup *memcg = NULL;
2759
	unsigned int nr_pages = 1;
2760
	struct page_cgroup *pc;
2761
	bool oom = true;
2762
	int ret;
A
Andrea Arcangeli 已提交
2763

A
Andrea Arcangeli 已提交
2764
	if (PageTransHuge(page)) {
2765
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2766
		VM_BUG_ON(!PageTransHuge(page));
2767 2768 2769 2770 2771
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2772
	}
2773 2774

	pc = lookup_page_cgroup(page);
2775
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2776

2777 2778
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
	if (ret || !memcg)
2779 2780
		return ret;

2781
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2782 2783 2784
	return 0;
}

2785 2786
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2787
{
2788
	if (mem_cgroup_disabled())
2789
		return 0;
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2801
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2802
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2803 2804
}

D
Daisuke Nishimura 已提交
2805 2806 2807 2808
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2809
static void
2810
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2811 2812 2813 2814 2815 2816 2817 2818 2819
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
2820
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2821 2822 2823 2824
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2825 2826
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2827
{
2828
	struct mem_cgroup *memcg = NULL;
2829 2830
	int ret;

2831
	if (mem_cgroup_disabled())
2832
		return 0;
2833 2834
	if (PageCompound(page))
		return 0;
2835

2836
	if (unlikely(!mm))
2837
		mm = &init_mm;
2838

2839
	if (page_is_file_cache(page)) {
2840 2841
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
		if (ret || !memcg)
2842
			return ret;
2843

2844 2845 2846 2847 2848
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
2849
		__mem_cgroup_commit_charge_lrucare(page, memcg,
2850 2851 2852
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2853 2854
	/* shmem */
	if (PageSwapCache(page)) {
2855
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2856
		if (!ret)
2857
			__mem_cgroup_commit_charge_swapin(page, memcg,
D
Daisuke Nishimura 已提交
2858 2859 2860
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2861
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2862 2863

	return ret;
2864 2865
}

2866 2867 2868
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2869
 * struct page_cgroup is acquired. This refcnt will be consumed by
2870 2871
 * "commit()" or removed by "cancel()"
 */
2872 2873 2874 2875
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
2876
	struct mem_cgroup *memcg;
2877
	int ret;
2878

2879 2880
	*ptr = NULL;

2881
	if (mem_cgroup_disabled())
2882 2883 2884 2885 2886 2887
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2888 2889 2890
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2891 2892
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2893
		goto charge_cur_mm;
2894 2895
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2896
		goto charge_cur_mm;
2897
	*ptr = memcg;
2898
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2899
	css_put(&memcg->css);
2900
	return ret;
2901 2902 2903
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2904
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2905 2906
}

D
Daisuke Nishimura 已提交
2907 2908 2909
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2910
{
2911
	if (mem_cgroup_disabled())
2912 2913 2914
		return;
	if (!ptr)
		return;
2915
	cgroup_exclude_rmdir(&ptr->css);
2916 2917

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2918 2919 2920
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2921 2922 2923
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2924
	 */
2925
	if (do_swap_account && PageSwapCache(page)) {
2926
		swp_entry_t ent = {.val = page_private(page)};
2927
		unsigned short id;
2928
		struct mem_cgroup *memcg;
2929 2930 2931 2932

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2933
		if (memcg) {
2934 2935 2936 2937
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2938
			if (!mem_cgroup_is_root(memcg))
2939
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2940
			mem_cgroup_swap_statistics(memcg, false);
2941 2942
			mem_cgroup_put(memcg);
		}
2943
		rcu_read_unlock();
2944
	}
2945 2946 2947 2948 2949 2950
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2951 2952
}

D
Daisuke Nishimura 已提交
2953 2954 2955 2956 2957 2958
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2959
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2960
{
2961
	if (mem_cgroup_disabled())
2962
		return;
2963
	if (!memcg)
2964
		return;
2965
	__mem_cgroup_cancel_charge(memcg, 1);
2966 2967
}

2968
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2969 2970
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2971 2972 2973
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2974

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2986
		batch->memcg = memcg;
2987 2988
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2989
	 * In those cases, all pages freed continuously can be expected to be in
2990 2991 2992 2993 2994 2995 2996 2997
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2998
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2999 3000
		goto direct_uncharge;

3001 3002 3003 3004 3005
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3006
	if (batch->memcg != memcg)
3007 3008
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3009
	batch->nr_pages++;
3010
	if (uncharge_memsw)
3011
		batch->memsw_nr_pages++;
3012 3013
	return;
direct_uncharge:
3014
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3015
	if (uncharge_memsw)
3016 3017 3018
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3019 3020
	return;
}
3021

3022
/*
3023
 * uncharge if !page_mapped(page)
3024
 */
3025
static struct mem_cgroup *
3026
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3027
{
3028
	struct mem_cgroup *memcg = NULL;
3029 3030
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3031

3032
	if (mem_cgroup_disabled())
3033
		return NULL;
3034

K
KAMEZAWA Hiroyuki 已提交
3035
	if (PageSwapCache(page))
3036
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
3037

A
Andrea Arcangeli 已提交
3038
	if (PageTransHuge(page)) {
3039
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3040 3041
		VM_BUG_ON(!PageTransHuge(page));
	}
3042
	/*
3043
	 * Check if our page_cgroup is valid
3044
	 */
3045 3046
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3047
		return NULL;
3048

3049
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3050

3051
	memcg = pc->mem_cgroup;
3052

K
KAMEZAWA Hiroyuki 已提交
3053 3054 3055 3056 3057
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3058
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3059 3060
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3072
	}
K
KAMEZAWA Hiroyuki 已提交
3073

3074
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3075

3076
	ClearPageCgroupUsed(pc);
3077 3078 3079 3080 3081 3082
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3083

3084
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3085
	/*
3086
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3087 3088
	 * will never be freed.
	 */
3089
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3090
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3091 3092
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3093
	}
3094 3095
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3096

3097
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3098 3099 3100

unlock_out:
	unlock_page_cgroup(pc);
3101
	return NULL;
3102 3103
}

3104 3105
void mem_cgroup_uncharge_page(struct page *page)
{
3106 3107 3108 3109 3110
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3111 3112 3113 3114 3115 3116
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3117
	VM_BUG_ON(page->mapping);
3118 3119 3120
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3135 3136
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3157 3158 3159 3160 3161 3162
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3163
	memcg_oom_recover(batch->memcg);
3164 3165 3166 3167
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3168
#ifdef CONFIG_SWAP
3169
/*
3170
 * called after __delete_from_swap_cache() and drop "page" account.
3171 3172
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3173 3174
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3175 3176
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3177 3178 3179 3180 3181 3182
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3183

K
KAMEZAWA Hiroyuki 已提交
3184 3185 3186 3187 3188
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3189
		swap_cgroup_record(ent, css_id(&memcg->css));
3190
}
3191
#endif
3192 3193 3194 3195 3196 3197 3198

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3199
{
3200
	struct mem_cgroup *memcg;
3201
	unsigned short id;
3202 3203 3204 3205

	if (!do_swap_account)
		return;

3206 3207 3208
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3209
	if (memcg) {
3210 3211 3212 3213
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3214
		if (!mem_cgroup_is_root(memcg))
3215
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3216
		mem_cgroup_swap_statistics(memcg, false);
3217 3218
		mem_cgroup_put(memcg);
	}
3219
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3220
}
3221 3222 3223 3224 3225 3226

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3227
 * @need_fixup: whether we should fixup res_counters and refcounts.
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3238
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3239 3240 3241 3242 3243 3244 3245 3246
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3247
		mem_cgroup_swap_statistics(to, true);
3248
		/*
3249 3250 3251 3252 3253 3254
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3255 3256
		 */
		mem_cgroup_get(to);
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3268 3269 3270 3271 3272 3273
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3274
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3275 3276 3277
{
	return -EINVAL;
}
3278
#endif
K
KAMEZAWA Hiroyuki 已提交
3279

3280
/*
3281 3282
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3283
 */
3284
int mem_cgroup_prepare_migration(struct page *page,
3285
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3286
{
3287
	struct mem_cgroup *memcg = NULL;
3288
	struct page_cgroup *pc;
3289
	enum charge_type ctype;
3290
	int ret = 0;
3291

3292 3293
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3294
	VM_BUG_ON(PageTransHuge(page));
3295
	if (mem_cgroup_disabled())
3296 3297
		return 0;

3298 3299 3300
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3301 3302
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3334
	}
3335
	unlock_page_cgroup(pc);
3336 3337 3338 3339
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3340
	if (!memcg)
3341
		return 0;
3342

3343
	*ptr = memcg;
3344
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3345
	css_put(&memcg->css);/* drop extra refcnt */
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3357
	}
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3371
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3372
	return ret;
3373
}
3374

3375
/* remove redundant charge if migration failed*/
3376
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3377
	struct page *oldpage, struct page *newpage, bool migration_ok)
3378
{
3379
	struct page *used, *unused;
3380 3381
	struct page_cgroup *pc;

3382
	if (!memcg)
3383
		return;
3384
	/* blocks rmdir() */
3385
	cgroup_exclude_rmdir(&memcg->css);
3386
	if (!migration_ok) {
3387 3388
		used = oldpage;
		unused = newpage;
3389
	} else {
3390
		used = newpage;
3391 3392
		unused = oldpage;
	}
3393
	/*
3394 3395 3396
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3397
	 */
3398 3399 3400 3401
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3402

3403 3404
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3405
	/*
3406 3407 3408 3409 3410 3411
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3412
	 */
3413 3414
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3415
	/*
3416 3417
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3418 3419 3420
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3421
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3422
}
3423

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3470 3471
static DEFINE_MUTEX(set_limit_mutex);

3472
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3473
				unsigned long long val)
3474
{
3475
	int retry_count;
3476
	u64 memswlimit, memlimit;
3477
	int ret = 0;
3478 3479
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3480
	int enlarge;
3481 3482 3483 3484 3485 3486 3487 3488 3489

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3490

3491
	enlarge = 0;
3492
	while (retry_count) {
3493 3494 3495 3496
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3497 3498 3499
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3500
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3501 3502 3503 3504 3505 3506
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3507 3508
			break;
		}
3509 3510 3511 3512 3513

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3514
		ret = res_counter_set_limit(&memcg->res, val);
3515 3516 3517 3518 3519 3520
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3521 3522 3523 3524 3525
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3526
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3527 3528
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3529 3530 3531 3532 3533 3534
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3535
	}
3536 3537
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3538

3539 3540 3541
	return ret;
}

L
Li Zefan 已提交
3542 3543
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3544
{
3545
	int retry_count;
3546
	u64 memlimit, memswlimit, oldusage, curusage;
3547 3548
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3549
	int enlarge = 0;
3550

3551 3552 3553
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3554 3555 3556 3557 3558 3559 3560 3561
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3562
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3563 3564 3565 3566 3567 3568 3569 3570
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3571 3572 3573
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3574
		ret = res_counter_set_limit(&memcg->memsw, val);
3575 3576 3577 3578 3579 3580
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3581 3582 3583 3584 3585
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3586
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3587
						MEM_CGROUP_RECLAIM_NOSWAP |
3588 3589
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3590
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3591
		/* Usage is reduced ? */
3592
		if (curusage >= oldusage)
3593
			retry_count--;
3594 3595
		else
			oldusage = curusage;
3596
	}
3597 3598
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3599 3600 3601
	return ret;
}

3602
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3603 3604
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3605 3606 3607 3608 3609 3610
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3611
	unsigned long long excess;
3612
	unsigned long nr_scanned;
3613 3614 3615 3616

	if (order > 0)
		return 0;

3617
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3631
		nr_scanned = 0;
3632 3633
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3634 3635
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3636
		nr_reclaimed += reclaimed;
3637
		*total_scanned += nr_scanned;
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3660
				if (next_mz == mz)
3661
					css_put(&next_mz->mem->css);
3662
				else /* next_mz == NULL or other memcg */
3663 3664 3665 3666
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3667
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3668 3669 3670 3671 3672 3673 3674 3675
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3676 3677
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3696 3697 3698 3699
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3700
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3701
				int node, int zid, enum lru_list lru)
3702
{
K
KAMEZAWA Hiroyuki 已提交
3703 3704
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3705
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3706
	unsigned long flags, loop;
3707
	struct list_head *list;
3708
	int ret = 0;
3709

K
KAMEZAWA Hiroyuki 已提交
3710
	zone = &NODE_DATA(node)->node_zones[zid];
3711
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3712
	list = &mz->lists[lru];
3713

3714 3715 3716 3717 3718
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3719 3720
		struct page *page;

3721
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3722
		spin_lock_irqsave(&zone->lru_lock, flags);
3723
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3724
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3725
			break;
3726 3727 3728 3729
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3730
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3731
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3732 3733
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3734
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3735

3736
		page = lookup_cgroup_page(pc);
3737

3738
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3739
		if (ret == -ENOMEM)
3740
			break;
3741 3742 3743 3744 3745 3746 3747

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3748
	}
K
KAMEZAWA Hiroyuki 已提交
3749

3750 3751 3752
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3753 3754 3755 3756 3757 3758
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3759
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3760
{
3761 3762 3763
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3764
	struct cgroup *cgrp = memcg->css.cgroup;
3765

3766
	css_get(&memcg->css);
3767 3768

	shrink = 0;
3769 3770 3771
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3772
move_account:
3773
	do {
3774
		ret = -EBUSY;
3775 3776 3777 3778
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3779
			goto out;
3780 3781
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3782
		drain_all_stock_sync(memcg);
3783
		ret = 0;
3784
		mem_cgroup_start_move(memcg);
3785
		for_each_node_state(node, N_HIGH_MEMORY) {
3786
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3787
				enum lru_list l;
3788
				for_each_lru(l) {
3789
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3790
							node, zid, l);
3791 3792 3793
					if (ret)
						break;
				}
3794
			}
3795 3796 3797
			if (ret)
				break;
		}
3798 3799
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3800 3801 3802
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3803
		cond_resched();
3804
	/* "ret" should also be checked to ensure all lists are empty. */
3805
	} while (memcg->res.usage > 0 || ret);
3806
out:
3807
	css_put(&memcg->css);
3808
	return ret;
3809 3810

try_to_free:
3811 3812
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3813 3814 3815
		ret = -EBUSY;
		goto out;
	}
3816 3817
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3818 3819
	/* try to free all pages in this cgroup */
	shrink = 1;
3820
	while (nr_retries && memcg->res.usage > 0) {
3821
		int progress;
3822 3823 3824 3825 3826

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3827
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3828
						false);
3829
		if (!progress) {
3830
			nr_retries--;
3831
			/* maybe some writeback is necessary */
3832
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3833
		}
3834 3835

	}
K
KAMEZAWA Hiroyuki 已提交
3836
	lru_add_drain();
3837
	/* try move_account...there may be some *locked* pages. */
3838
	goto move_account;
3839 3840
}

3841 3842 3843 3844 3845 3846
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3847 3848 3849 3850 3851 3852 3853 3854 3855
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3856
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3857
	struct cgroup *parent = cont->parent;
3858
	struct mem_cgroup *parent_memcg = NULL;
3859 3860

	if (parent)
3861
		parent_memcg = mem_cgroup_from_cont(parent);
3862 3863 3864

	cgroup_lock();
	/*
3865
	 * If parent's use_hierarchy is set, we can't make any modifications
3866 3867 3868 3869 3870 3871
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3872
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3873 3874
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3875
			memcg->use_hierarchy = val;
3876 3877 3878 3879 3880 3881 3882 3883 3884
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3885

3886
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3887
					       enum mem_cgroup_stat_index idx)
3888
{
K
KAMEZAWA Hiroyuki 已提交
3889
	struct mem_cgroup *iter;
3890
	long val = 0;
3891

3892
	/* Per-cpu values can be negative, use a signed accumulator */
3893
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3894 3895 3896 3897 3898
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3899 3900
}

3901
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3902
{
K
KAMEZAWA Hiroyuki 已提交
3903
	u64 val;
3904

3905
	if (!mem_cgroup_is_root(memcg)) {
3906 3907 3908 3909 3910
		val = 0;
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
		if (!memcg->kmem_independent_accounting)
			val = res_counter_read_u64(&memcg->kmem, RES_USAGE);
#endif
3911
		if (!swap)
3912
			val += res_counter_read_u64(&memcg->res, RES_USAGE);
3913
		else
3914 3915 3916
			val += res_counter_read_u64(&memcg->memsw, RES_USAGE);

		return val;
3917 3918
	}

3919 3920
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3921

K
KAMEZAWA Hiroyuki 已提交
3922
	if (swap)
3923
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3924 3925 3926 3927

	return val << PAGE_SHIFT;
}

3928
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3929
{
3930
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3931
	u64 val;
3932 3933 3934 3935 3936 3937
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3938
		if (name == RES_USAGE)
3939
			val = mem_cgroup_usage(memcg, false);
3940
		else
3941
			val = res_counter_read_u64(&memcg->res, name);
3942 3943
		break;
	case _MEMSWAP:
3944
		if (name == RES_USAGE)
3945
			val = mem_cgroup_usage(memcg, true);
3946
		else
3947
			val = res_counter_read_u64(&memcg->memsw, name);
3948
		break;
3949 3950 3951 3952 3953
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
#endif
3954 3955 3956 3957 3958
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3959
}
3960 3961 3962 3963
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3964 3965
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3966
{
3967
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3968
	int type, name;
3969 3970 3971
	unsigned long long val;
	int ret;

3972 3973 3974
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3975
	case RES_LIMIT:
3976 3977 3978 3979
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3980 3981
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3982 3983 3984
		if (ret)
			break;
		if (type == _MEM)
3985
			ret = mem_cgroup_resize_limit(memcg, val);
3986 3987
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3988
		break;
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4003 4004 4005 4006 4007
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4008 4009
}

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4038
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4039
{
4040
	struct mem_cgroup *memcg;
4041
	int type, name;
4042

4043
	memcg = mem_cgroup_from_cont(cont);
4044 4045 4046
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4047
	case RES_MAX_USAGE:
4048
		if (type == _MEM)
4049
			res_counter_reset_max(&memcg->res);
4050
		else
4051
			res_counter_reset_max(&memcg->memsw);
4052 4053
		break;
	case RES_FAILCNT:
4054
		if (type == _MEM)
4055
			res_counter_reset_failcnt(&memcg->res);
4056
		else
4057
			res_counter_reset_failcnt(&memcg->memsw);
4058 4059
		break;
	}
4060

4061
	return 0;
4062 4063
}

4064 4065 4066 4067 4068 4069
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4070
#ifdef CONFIG_MMU
4071 4072 4073
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4074
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4075 4076 4077 4078 4079 4080 4081 4082 4083

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4084
	memcg->move_charge_at_immigrate = val;
4085 4086 4087 4088
	cgroup_unlock();

	return 0;
}
4089 4090 4091 4092 4093 4094 4095
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4096

K
KAMEZAWA Hiroyuki 已提交
4097 4098 4099 4100 4101

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4102
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4103 4104
	MCS_PGPGIN,
	MCS_PGPGOUT,
4105
	MCS_SWAP,
4106 4107
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4118 4119
};

K
KAMEZAWA Hiroyuki 已提交
4120 4121 4122 4123 4124 4125
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4126
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4127 4128
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4129
	{"swap", "total_swap"},
4130 4131
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4132 4133 4134 4135 4136 4137 4138 4139
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4140
static void
4141
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4142 4143 4144 4145
{
	s64 val;

	/* per cpu stat */
4146
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4147
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4148
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4149
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4150
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4151
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4152
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4153
	s->stat[MCS_PGPGIN] += val;
4154
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4155
	s->stat[MCS_PGPGOUT] += val;
4156
	if (do_swap_account) {
4157
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4158 4159
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4160
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4161
	s->stat[MCS_PGFAULT] += val;
4162
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4163
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4164 4165

	/* per zone stat */
4166
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4167
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4168
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4169
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4170
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4171
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4172
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4173
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4174
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4175 4176 4177 4178
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4179
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4180
{
K
KAMEZAWA Hiroyuki 已提交
4181 4182
	struct mem_cgroup *iter;

4183
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4184
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4185 4186
}

4187 4188 4189 4190 4191 4192 4193 4194 4195
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4196
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4197 4198
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4199
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4200 4201 4202 4203
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4204
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4205 4206
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4207 4208
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4209 4210 4211 4212
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4213
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4214 4215
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4216 4217
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4218 4219 4220 4221
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4222
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4223 4224
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4225 4226
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4227 4228 4229 4230 4231 4232 4233
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4234 4235
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4236 4237
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4238
	struct mcs_total_stat mystat;
4239 4240
	int i;

K
KAMEZAWA Hiroyuki 已提交
4241 4242
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4243

4244

4245 4246 4247
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4248
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4249
	}
L
Lee Schermerhorn 已提交
4250

K
KAMEZAWA Hiroyuki 已提交
4251
	/* Hierarchical information */
4252 4253 4254 4255 4256 4257 4258
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4259

K
KAMEZAWA Hiroyuki 已提交
4260 4261
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4262 4263 4264
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4265
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4266
	}
K
KAMEZAWA Hiroyuki 已提交
4267

K
KOSAKI Motohiro 已提交
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4295 4296 4297
	return 0;
}

K
KOSAKI Motohiro 已提交
4298 4299 4300 4301
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4302
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4303 4304 4305 4306 4307 4308 4309
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4310

K
KOSAKI Motohiro 已提交
4311 4312 4313 4314 4315 4316 4317
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4318 4319 4320

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4321 4322
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4323 4324
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4325
		return -EINVAL;
4326
	}
K
KOSAKI Motohiro 已提交
4327 4328 4329

	memcg->swappiness = val;

4330 4331
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4332 4333 4334
	return 0;
}

4335 4336 4337 4338 4339 4340 4341 4342
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4343
		t = rcu_dereference(memcg->thresholds.primary);
4344
	else
4345
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4357
	i = t->current_threshold;
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4381
	t->current_threshold = i - 1;
4382 4383 4384 4385 4386 4387
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4388 4389 4390 4391 4392 4393 4394
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4405
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4406 4407 4408
{
	struct mem_cgroup_eventfd_list *ev;

4409
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4410 4411 4412 4413
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4414
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4415
{
K
KAMEZAWA Hiroyuki 已提交
4416 4417
	struct mem_cgroup *iter;

4418
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4419
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4420 4421 4422 4423
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4424 4425
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4426 4427
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4428 4429
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4430
	int i, size, ret;
4431 4432 4433 4434 4435 4436

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4437

4438
	if (type == _MEM)
4439
		thresholds = &memcg->thresholds;
4440
	else if (type == _MEMSWAP)
4441
		thresholds = &memcg->memsw_thresholds;
4442 4443 4444 4445 4446 4447
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4448
	if (thresholds->primary)
4449 4450
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4451
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4452 4453

	/* Allocate memory for new array of thresholds */
4454
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4455
			GFP_KERNEL);
4456
	if (!new) {
4457 4458 4459
		ret = -ENOMEM;
		goto unlock;
	}
4460
	new->size = size;
4461 4462

	/* Copy thresholds (if any) to new array */
4463 4464
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4465
				sizeof(struct mem_cgroup_threshold));
4466 4467
	}

4468
	/* Add new threshold */
4469 4470
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4471 4472

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4473
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4474 4475 4476
			compare_thresholds, NULL);

	/* Find current threshold */
4477
	new->current_threshold = -1;
4478
	for (i = 0; i < size; i++) {
4479
		if (new->entries[i].threshold < usage) {
4480
			/*
4481 4482
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4483 4484
			 * it here.
			 */
4485
			++new->current_threshold;
4486 4487 4488
		}
	}

4489 4490 4491 4492 4493
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4494

4495
	/* To be sure that nobody uses thresholds */
4496 4497 4498 4499 4500 4501 4502 4503
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4504
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4505
	struct cftype *cft, struct eventfd_ctx *eventfd)
4506 4507
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4508 4509
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4510 4511
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4512
	int i, j, size;
4513 4514 4515

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4516
		thresholds = &memcg->thresholds;
4517
	else if (type == _MEMSWAP)
4518
		thresholds = &memcg->memsw_thresholds;
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4534 4535 4536
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4537 4538 4539
			size++;
	}

4540
	new = thresholds->spare;
4541

4542 4543
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4544 4545
		kfree(new);
		new = NULL;
4546
		goto swap_buffers;
4547 4548
	}

4549
	new->size = size;
4550 4551

	/* Copy thresholds and find current threshold */
4552 4553 4554
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4555 4556
			continue;

4557 4558
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4559
			/*
4560
			 * new->current_threshold will not be used
4561 4562 4563
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4564
			++new->current_threshold;
4565 4566 4567 4568
		}
		j++;
	}

4569
swap_buffers:
4570 4571 4572
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4573

4574
	/* To be sure that nobody uses thresholds */
4575 4576 4577 4578
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4579

K
KAMEZAWA Hiroyuki 已提交
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4592
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4593 4594 4595 4596 4597

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4598
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4599
		eventfd_signal(eventfd, 1);
4600
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4601 4602 4603 4604

	return 0;
}

4605
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4606 4607
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4608
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4609 4610 4611 4612 4613
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4614
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4615

4616
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4617 4618 4619 4620 4621 4622
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4623
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4624 4625
}

4626 4627 4628
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4629
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4630

4631
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4632

4633
	if (atomic_read(&memcg->under_oom))
4634 4635 4636 4637 4638 4639 4640 4641 4642
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4643
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4655
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4656 4657 4658
		cgroup_unlock();
		return -EINVAL;
	}
4659
	memcg->oom_kill_disable = val;
4660
	if (!val)
4661
		memcg_oom_recover(memcg);
4662 4663 4664 4665
	cgroup_unlock();
	return 0;
}

4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static u64 kmem_limit_independent_read(struct cgroup *cgroup, struct cftype *cft)
{
	return mem_cgroup_from_cont(cgroup)->kmem_independent_accounting;
}

static int kmem_limit_independent_write(struct cgroup *cgroup, struct cftype *cft,
					u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);

	val = !!val;

	/*
	 * This follows the same hierarchy restrictions than
	 * mem_cgroup_hierarchy_write()
	 */
	if (!parent || !parent->use_hierarchy) {
		if (list_empty(&cgroup->children))
			memcg->kmem_independent_accounting = val;
		else
			return -EBUSY;
	}
	else
		return -EINVAL;

	return 0;
}
static struct cftype kmem_cgroup_files[] = {
	{
		.name = "independent_kmem_limit",
		.read_u64 = kmem_limit_independent_read,
		.write_u64 = kmem_limit_independent_write,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.read_u64 = mem_cgroup_read,
	},
};

static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	int ret = 0;

	ret = cgroup_add_files(cont, ss, kmem_cgroup_files,
			       ARRAY_SIZE(kmem_cgroup_files));
	return ret;
};

#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

B
Balbir Singh 已提交
4745 4746
static struct cftype mem_cgroup_files[] = {
	{
4747
		.name = "usage_in_bytes",
4748
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4749
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4750 4751
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4752
	},
4753 4754
	{
		.name = "max_usage_in_bytes",
4755
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4756
		.trigger = mem_cgroup_reset,
4757 4758
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4759
	{
4760
		.name = "limit_in_bytes",
4761
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4762
		.write_string = mem_cgroup_write,
4763
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4764
	},
4765 4766 4767 4768 4769 4770
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4771 4772
	{
		.name = "failcnt",
4773
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4774
		.trigger = mem_cgroup_reset,
4775
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4776
	},
4777 4778
	{
		.name = "stat",
4779
		.read_map = mem_control_stat_show,
4780
	},
4781 4782 4783 4784
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4785 4786 4787 4788 4789
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4790 4791 4792 4793 4794
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4795 4796 4797 4798 4799
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4800 4801
	{
		.name = "oom_control",
4802 4803
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4804 4805 4806 4807
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4808 4809 4810 4811
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4812
		.mode = S_IRUGO,
4813 4814
	},
#endif
B
Balbir Singh 已提交
4815 4816
};

4817 4818 4819 4820 4821 4822
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4823 4824
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4860
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4861 4862
{
	struct mem_cgroup_per_node *pn;
4863
	struct mem_cgroup_per_zone *mz;
4864
	enum lru_list l;
4865
	int zone, tmp = node;
4866 4867 4868 4869 4870 4871 4872 4873
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4874 4875
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4876
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4877 4878
	if (!pn)
		return 1;
4879 4880 4881

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4882 4883
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4884
		mz->usage_in_excess = 0;
4885
		mz->on_tree = false;
4886
		mz->mem = memcg;
4887
	}
4888
	memcg->info.nodeinfo[node] = pn;
4889 4890 4891
	return 0;
}

4892
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4893
{
4894
	kfree(memcg->info.nodeinfo[node]);
4895 4896
}

4897 4898 4899
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4900
	int size = sizeof(struct mem_cgroup);
4901

4902
	/* Can be very big if MAX_NUMNODES is very big */
4903
	if (size < PAGE_SIZE)
4904
		mem = kzalloc(size, GFP_KERNEL);
4905
	else
4906
		mem = vzalloc(size);
4907

4908 4909 4910
	if (!mem)
		return NULL;

4911
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4912 4913
	if (!mem->stat)
		goto out_free;
4914
	spin_lock_init(&mem->pcp_counter_lock);
4915
	return mem;
4916 4917 4918 4919 4920 4921 4922

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4923 4924
}

4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4936
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4937
{
K
KAMEZAWA Hiroyuki 已提交
4938 4939
	int node;

4940 4941
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4942

K
KAMEZAWA Hiroyuki 已提交
4943
	for_each_node_state(node, N_POSSIBLE)
4944
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4945

4946
	free_percpu(memcg->stat);
4947
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4948
		kfree(memcg);
4949
	else
4950
		vfree(memcg);
4951 4952
}

4953
static void mem_cgroup_get(struct mem_cgroup *memcg)
4954
{
4955
	atomic_inc(&memcg->refcnt);
4956 4957
}

4958
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4959
{
4960 4961 4962
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4963 4964 4965
		if (parent)
			mem_cgroup_put(parent);
	}
4966 4967
}

4968
static void mem_cgroup_put(struct mem_cgroup *memcg)
4969
{
4970
	__mem_cgroup_put(memcg, 1);
4971 4972
}

4973 4974 4975
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4976
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4977
{
4978
	if (!memcg->res.parent)
4979
		return NULL;
4980
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4981
}
G
Glauber Costa 已提交
4982
EXPORT_SYMBOL(parent_mem_cgroup);
4983

4984 4985 4986
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4987
	if (!mem_cgroup_disabled() && really_do_swap_account)
4988 4989 4990 4991 4992 4993 4994 4995
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
5021
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
5022 5023
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
5024
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
5025
	long error = -ENOMEM;
5026
	int node;
B
Balbir Singh 已提交
5027

5028 5029
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5030
		return ERR_PTR(error);
5031

5032
	for_each_node_state(node, N_POSSIBLE)
5033
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5034
			goto free_out;
5035

5036
	/* root ? */
5037
	if (cont->parent == NULL) {
5038
		int cpu;
5039
		enable_swap_cgroup();
5040
		parent = NULL;
5041
		root_mem_cgroup = memcg;
5042 5043
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5044 5045 5046 5047 5048
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5049
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5050
	} else {
5051
		parent = mem_cgroup_from_cont(cont->parent);
5052 5053
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5054
	}
5055

5056
	if (parent && parent->use_hierarchy) {
5057 5058
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5059
		res_counter_init(&memcg->kmem, &parent->kmem);
5060 5061 5062 5063 5064 5065 5066
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5067
	} else {
5068 5069
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5070
		res_counter_init(&memcg->kmem, NULL);
5071
	}
5072 5073 5074
	memcg->last_scanned_child = 0;
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5075

K
KOSAKI Motohiro 已提交
5076
	if (parent)
5077 5078 5079 5080 5081
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
5082
free_out:
5083
	__mem_cgroup_free(memcg);
5084
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
5085
	return ERR_PTR(error);
B
Balbir Singh 已提交
5086 5087
}

5088
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5089 5090
					struct cgroup *cont)
{
5091
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5092

5093
	return mem_cgroup_force_empty(memcg, false);
5094 5095
}

B
Balbir Singh 已提交
5096 5097 5098
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5099
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5100

5101
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5102 5103 5104 5105 5106
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5107 5108 5109 5110 5111 5112 5113
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
5114 5115 5116 5117

	if (!ret)
		ret = register_kmem_files(cont, ss);

5118
	return ret;
B
Balbir Singh 已提交
5119 5120
}

5121
#ifdef CONFIG_MMU
5122
/* Handlers for move charge at task migration. */
5123 5124
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5125
{
5126 5127
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5128
	struct mem_cgroup *memcg = mc.to;
5129

5130
	if (mem_cgroup_is_root(memcg)) {
5131 5132 5133 5134 5135 5136 5137 5138
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5139
		 * "memcg" cannot be under rmdir() because we've already checked
5140 5141 5142 5143
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5144
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5145
			goto one_by_one;
5146
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5147
						PAGE_SIZE * count, &dummy)) {
5148
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5165 5166 5167
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
		if (ret || !memcg)
5168 5169 5170 5171
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5172 5173 5174 5175 5176 5177 5178 5179
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5180
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5181 5182 5183 5184 5185 5186
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5187 5188 5189
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5190 5191 5192 5193 5194
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5195
	swp_entry_t	ent;
5196 5197 5198 5199 5200
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5201
	MC_TARGET_SWAP,
5202 5203
};

D
Daisuke Nishimura 已提交
5204 5205
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5206
{
D
Daisuke Nishimura 已提交
5207
	struct page *page = vm_normal_page(vma, addr, ptent);
5208

D
Daisuke Nishimura 已提交
5209 5210 5211 5212 5213 5214
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5215 5216
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5235 5236
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5237
		return NULL;
5238
	}
D
Daisuke Nishimura 已提交
5239 5240 5241 5242 5243 5244
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5266 5267 5268 5269 5270 5271
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5272
		if (do_swap_account)
5273 5274
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5275
	}
5276
#endif
5277 5278 5279
	return page;
}

D
Daisuke Nishimura 已提交
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5292 5293
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5294 5295 5296

	if (!page && !ent.val)
		return 0;
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5312 5313
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5314 5315 5316 5317
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5330 5331
	split_huge_page_pmd(walk->mm, pmd);

5332 5333 5334 5335 5336 5337 5338
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5339 5340 5341
	return 0;
}

5342 5343 5344 5345 5346
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5347
	down_read(&mm->mmap_sem);
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5359
	up_read(&mm->mmap_sem);
5360 5361 5362 5363 5364 5365 5366 5367 5368

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5369 5370 5371 5372 5373
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5374 5375
}

5376 5377
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5378
{
5379 5380 5381
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5382
	/* we must uncharge all the leftover precharges from mc.to */
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5394
	}
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5429
	spin_lock(&mc.lock);
5430 5431
	mc.from = NULL;
	mc.to = NULL;
5432
	spin_unlock(&mc.lock);
5433
	mem_cgroup_end_move(from);
5434 5435
}

5436 5437
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5438
				struct task_struct *p)
5439 5440
{
	int ret = 0;
5441
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5442

5443
	if (memcg->move_charge_at_immigrate) {
5444 5445 5446
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5447
		VM_BUG_ON(from == memcg);
5448 5449 5450 5451 5452

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5453 5454 5455 5456
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5457
			VM_BUG_ON(mc.moved_charge);
5458
			VM_BUG_ON(mc.moved_swap);
5459
			mem_cgroup_start_move(from);
5460
			spin_lock(&mc.lock);
5461
			mc.from = from;
5462
			mc.to = memcg;
5463
			spin_unlock(&mc.lock);
5464
			/* We set mc.moving_task later */
5465 5466 5467 5468

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5469 5470
		}
		mmput(mm);
5471 5472 5473 5474 5475 5476
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5477
				struct task_struct *p)
5478
{
5479
	mem_cgroup_clear_mc();
5480 5481
}

5482 5483 5484
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5485
{
5486 5487 5488 5489 5490
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5491
	split_huge_page_pmd(walk->mm, pmd);
5492 5493 5494 5495 5496 5497 5498 5499
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5500
		swp_entry_t ent;
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5512 5513
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5514
				mc.precharge--;
5515 5516
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5517 5518 5519 5520 5521
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5522 5523
		case MC_TARGET_SWAP:
			ent = target.ent;
5524 5525
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5526
				mc.precharge--;
5527 5528 5529
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5530
			break;
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5545
		ret = mem_cgroup_do_precharge(1);
5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5589
	up_read(&mm->mmap_sem);
5590 5591
}

B
Balbir Singh 已提交
5592 5593 5594
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5595
				struct task_struct *p)
B
Balbir Singh 已提交
5596
{
5597
	struct mm_struct *mm = get_task_mm(p);
5598 5599

	if (mm) {
5600 5601 5602
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5603 5604
		mmput(mm);
	}
5605 5606
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5607
}
5608 5609 5610
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5611
				struct task_struct *p)
5612 5613 5614 5615 5616
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5617
				struct task_struct *p)
5618 5619 5620 5621 5622
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5623
				struct task_struct *p)
5624 5625 5626
{
}
#endif
B
Balbir Singh 已提交
5627

B
Balbir Singh 已提交
5628 5629 5630 5631
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5632
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5633 5634
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5635 5636
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5637
	.attach = mem_cgroup_move_task,
5638
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5639
	.use_id = 1,
B
Balbir Singh 已提交
5640
};
5641 5642

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5643 5644 5645
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5646
	if (!strcmp(s, "1"))
5647
		really_do_swap_account = 1;
5648
	else if (!strcmp(s, "0"))
5649 5650 5651
		really_do_swap_account = 0;
	return 1;
}
5652
__setup("swapaccount=", enable_swap_account);
5653 5654

#endif