memcontrol.c 143.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129 130 131 132
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

133 134 135 136
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
137
	struct lruvec		lruvec;
138
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139

140 141
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
142
	struct zone_reclaim_stat reclaim_stat;
143 144 145 146
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
147
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
148
						/* use container_of	   */
149 150 151 152 153 154 155 156 157 158
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

179 180 181 182 183
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
184
/* For threshold */
185 186
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
187
	int current_threshold;
188 189 190 191 192
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
193 194 195 196 197 198 199 200 201 202 203 204

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
205 206 207 208 209
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
210

211 212
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
213

B
Balbir Singh 已提交
214 215 216 217 218 219 220
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
221 222 223
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
224 225 226 227 228 229 230
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
		 * But when using vfree(), that cannot be done at
		 * interrupt time, so we must then queue the work.
		 */
		struct work_struct work_freeing;
	};

255 256 257 258
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
259
	struct mem_cgroup_lru_info info;
260 261 262
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
263 264
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
265
#endif
266 267 268 269
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
270 271 272 273

	bool		oom_lock;
	atomic_t	under_oom;

274
	atomic_t	refcnt;
275

276
	int	swappiness;
277 278
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
279

280 281 282
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

283 284 285 286
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
287
	struct mem_cgroup_thresholds thresholds;
288

289
	/* thresholds for mem+swap usage. RCU-protected */
290
	struct mem_cgroup_thresholds memsw_thresholds;
291

K
KAMEZAWA Hiroyuki 已提交
292 293
	/* For oom notifier event fd */
	struct list_head oom_notify;
294

295 296 297 298 299
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
300
	/*
301
	 * percpu counter.
302
	 */
303
	struct mem_cgroup_stat_cpu *stat;
304 305 306 307 308 309
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
310 311 312 313

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
314 315
};

316 317 318 319 320 321
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
322
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
323
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
324 325 326
	NR_MOVE_TYPE,
};

327 328
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
329
	spinlock_t	  lock; /* for from, to */
330 331 332
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
333
	unsigned long moved_charge;
334
	unsigned long moved_swap;
335 336 337
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
338
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
339 340
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
341

D
Daisuke Nishimura 已提交
342 343 344 345 346 347
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

348 349 350 351 352 353
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

354 355 356 357 358 359 360
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

361 362 363
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
364
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
365
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
366
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
367
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
368 369 370
	NR_CHARGE_TYPE,
};

371
/* for encoding cft->private value on file */
372 373 374
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
375 376 377
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
378 379
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
380

381 382 383 384 385 386 387 388
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

389 390
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
391 392 393 394

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
395
#include <net/ip.h>
G
Glauber Costa 已提交
396 397 398 399

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
400
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
401 402 403 404
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

405 406 407 408 409 410 411 412 413 414 415 416 417 418
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
432
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
433 434 435 436 437 438
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
439

440
#ifdef CONFIG_INET
G
Glauber Costa 已提交
441 442 443 444 445 446 447 448
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
449 450 451
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

452
static void drain_all_stock_async(struct mem_cgroup *memcg);
453

454
static struct mem_cgroup_per_zone *
455
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
456
{
457
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
458 459
}

460
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
461
{
462
	return &memcg->css;
463 464
}

465
static struct mem_cgroup_per_zone *
466
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
467
{
468 469
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
470

471
	return mem_cgroup_zoneinfo(memcg, nid, zid);
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
490
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
491
				struct mem_cgroup_per_zone *mz,
492 493
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
494 495 496 497 498 499 500 501
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

502 503 504
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
521 522 523
}

static void
524
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
525 526 527 528 529 530 531 532 533
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

534
static void
535
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
536 537 538 539
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
540
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
541 542 543 544
	spin_unlock(&mctz->lock);
}


545
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
546
{
547
	unsigned long long excess;
548 549
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
550 551
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
552 553 554
	mctz = soft_limit_tree_from_page(page);

	/*
555 556
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
557
	 */
558 559 560
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
561 562 563 564
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
565
		if (excess || mz->on_tree) {
566 567 568
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
569
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
570
			/*
571 572
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
573
			 */
574
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
575 576
			spin_unlock(&mctz->lock);
		}
577 578 579
	}
}

580
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
581 582 583 584 585
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
586
	for_each_node(node) {
587
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
588
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
589
			mctz = soft_limit_tree_node_zone(node, zone);
590
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
591 592 593 594
		}
	}
}

595 596 597 598
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
599
	struct mem_cgroup_per_zone *mz;
600 601

retry:
602
	mz = NULL;
603 604 605 606 607 608 609 610 611 612
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
613 614 615
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
651
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
652
				 enum mem_cgroup_stat_index idx)
653
{
654
	long val = 0;
655 656
	int cpu;

657 658
	get_online_cpus();
	for_each_online_cpu(cpu)
659
		val += per_cpu(memcg->stat->count[idx], cpu);
660
#ifdef CONFIG_HOTPLUG_CPU
661 662 663
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
664 665
#endif
	put_online_cpus();
666 667 668
	return val;
}

669
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
670 671 672
					 bool charge)
{
	int val = (charge) ? 1 : -1;
673
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
674 675
}

676
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
677 678 679 680 681 682
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
683
		val += per_cpu(memcg->stat->events[idx], cpu);
684
#ifdef CONFIG_HOTPLUG_CPU
685 686 687
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
688 689 690 691
#endif
	return val;
}

692
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
693
					 bool file, int nr_pages)
694
{
695 696
	preempt_disable();

697
	if (file)
698 699
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
700
	else
701 702
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
703

704 705
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
706
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
707
	else {
708
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
709 710
		nr_pages = -nr_pages; /* for event */
	}
711

712
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
713

714
	preempt_enable();
715 716
}

717
unsigned long
718
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
719
			unsigned int lru_mask)
720 721
{
	struct mem_cgroup_per_zone *mz;
722 723 724
	enum lru_list l;
	unsigned long ret = 0;

725
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
726 727 728

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
729
			ret += mz->lru_size[l];
730 731 732 733 734
	}
	return ret;
}

static unsigned long
735
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
736 737
			int nid, unsigned int lru_mask)
{
738 739 740
	u64 total = 0;
	int zid;

741
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
742 743
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
744

745 746
	return total;
}
747

748
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
749
			unsigned int lru_mask)
750
{
751
	int nid;
752 753
	u64 total = 0;

754
	for_each_node_state(nid, N_HIGH_MEMORY)
755
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
756
	return total;
757 758
}

759 760
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
761 762 763
{
	unsigned long val, next;

764 765
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
766
	/* from time_after() in jiffies.h */
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
783
	}
784
	return false;
785 786 787 788 789 790
}

/*
 * Check events in order.
 *
 */
791
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
792
{
793
	preempt_disable();
794
	/* threshold event is triggered in finer grain than soft limit */
795 796
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
797 798
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
799 800 801 802 803 804 805 806 807

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

808
		mem_cgroup_threshold(memcg);
809
		if (unlikely(do_softlimit))
810
			mem_cgroup_update_tree(memcg, page);
811
#if MAX_NUMNODES > 1
812
		if (unlikely(do_numainfo))
813
			atomic_inc(&memcg->numainfo_events);
814
#endif
815 816
	} else
		preempt_enable();
817 818
}

G
Glauber Costa 已提交
819
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
820 821 822 823 824 825
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

826
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
827
{
828 829 830 831 832 833 834 835
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

836 837 838 839
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

840
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
841
{
842
	struct mem_cgroup *memcg = NULL;
843 844 845

	if (!mm)
		return NULL;
846 847 848 849 850 851 852
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
853 854
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
855
			break;
856
	} while (!css_tryget(&memcg->css));
857
	rcu_read_unlock();
858
	return memcg;
859 860
}

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
881
{
882 883
	struct mem_cgroup *memcg = NULL;
	int id = 0;
884

885 886 887
	if (mem_cgroup_disabled())
		return NULL;

888 889
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
890

891 892
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
893

894 895
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
896

897 898 899 900 901
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
902

903
	while (!memcg) {
904
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
905
		struct cgroup_subsys_state *css;
906

907 908 909 910 911 912 913 914 915 916 917
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
918

919 920 921 922 923 924 925 926
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
927 928
		rcu_read_unlock();

929 930 931 932 933 934 935
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
936 937 938 939 940

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
941
}
K
KAMEZAWA Hiroyuki 已提交
942

943 944 945 946 947 948 949
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
950 951 952 953 954 955
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
956

957 958 959 960 961 962
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
963
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
964
	     iter != NULL;				\
965
	     iter = mem_cgroup_iter(root, iter, NULL))
966

967
#define for_each_mem_cgroup(iter)			\
968
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
969
	     iter != NULL;				\
970
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
971

972
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
973
{
974
	return (memcg == root_mem_cgroup);
975 976
}

977 978
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
979
	struct mem_cgroup *memcg;
980 981 982 983 984

	if (!mm)
		return;

	rcu_read_lock();
985 986
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
987 988 989 990
		goto out;

	switch (idx) {
	case PGFAULT:
991 992 993 994
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
995 996 997 998 999 1000 1001 1002 1003
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1053 1054
{
	struct mem_cgroup_per_zone *mz;
1055 1056
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1057

1058
	if (mem_cgroup_disabled())
1059 1060
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1061
	pc = lookup_page_cgroup(page);
1062
	memcg = pc->mem_cgroup;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

	/*
	 * Surreptitiously switch any uncharged page to root:
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
	if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
		pc->mem_cgroup = memcg = root_mem_cgroup;

1076 1077
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
1078
	mz->lru_size[lru] += 1 << compound_order(page);
1079
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1080
}
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1091
 */
1092
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1093 1094
{
	struct mem_cgroup_per_zone *mz;
1095
	struct mem_cgroup *memcg;
1096 1097 1098 1099 1100 1101
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1102 1103
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1104 1105
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
1106 1107
	VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
	mz->lru_size[lru] -= 1 << compound_order(page);
1108 1109
}

1110
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1111
{
1112
	mem_cgroup_lru_del_list(page, page_lru(page));
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1133
{
1134 1135 1136
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1137
}
1138

1139
/*
1140
 * Checks whether given mem is same or in the root_mem_cgroup's
1141 1142
 * hierarchy subtree
 */
1143 1144
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1145
{
1146 1147 1148
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1149 1150 1151 1152 1153
	}

	return true;
}

1154
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1155 1156
{
	int ret;
1157
	struct mem_cgroup *curr = NULL;
1158
	struct task_struct *p;
1159

1160
	p = find_lock_task_mm(task);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1176 1177
	if (!curr)
		return 0;
1178
	/*
1179
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1180
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1181 1182
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1183
	 */
1184
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1185
	css_put(&curr->css);
1186 1187 1188
	return ret;
}

1189
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1190
{
1191 1192 1193
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1194
	unsigned long inactive;
1195
	unsigned long active;
1196
	unsigned long gb;
1197

1198 1199 1200 1201
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1202

1203 1204 1205 1206 1207 1208
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1209
	return inactive * inactive_ratio < active;
1210 1211
}

1212
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1213 1214 1215
{
	unsigned long active;
	unsigned long inactive;
1216 1217
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1218

1219 1220 1221 1222
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1223 1224 1225 1226

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1227 1228 1229
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1230
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1247 1248
	if (!PageCgroupUsed(pc))
		return NULL;
1249 1250
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1251
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1252 1253 1254
	return &mz->reclaim_stat;
}

1255 1256 1257
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1258
/**
1259 1260
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1261
 *
1262
 * Returns the maximum amount of memory @mem can be charged with, in
1263
 * pages.
1264
 */
1265
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1266
{
1267 1268
	unsigned long long margin;

1269
	margin = res_counter_margin(&memcg->res);
1270
	if (do_swap_account)
1271
		margin = min(margin, res_counter_margin(&memcg->memsw));
1272
	return margin >> PAGE_SHIFT;
1273 1274
}

1275
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1276 1277 1278 1279 1280 1281 1282
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1283
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1284 1285
}

1286
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1287 1288
{
	int cpu;
1289 1290

	get_online_cpus();
1291
	spin_lock(&memcg->pcp_counter_lock);
1292
	for_each_online_cpu(cpu)
1293 1294 1295
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1296
	put_online_cpus();
1297 1298 1299 1300

	synchronize_rcu();
}

1301
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1302 1303 1304
{
	int cpu;

1305
	if (!memcg)
1306
		return;
1307
	get_online_cpus();
1308
	spin_lock(&memcg->pcp_counter_lock);
1309
	for_each_online_cpu(cpu)
1310 1311 1312
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1313
	put_online_cpus();
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1327
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1328 1329
{
	VM_BUG_ON(!rcu_read_lock_held());
1330
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1331
}
1332

1333
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1334
{
1335 1336
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1337
	bool ret = false;
1338 1339 1340 1341 1342 1343 1344 1345 1346
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1347

1348 1349
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1350 1351
unlock:
	spin_unlock(&mc.lock);
1352 1353 1354
	return ret;
}

1355
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1356 1357
{
	if (mc.moving_task && current != mc.moving_task) {
1358
		if (mem_cgroup_under_move(memcg)) {
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1371
/**
1372
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1391
	if (!memcg || !p)
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1438 1439 1440 1441
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1442
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1443 1444
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1445 1446
	struct mem_cgroup *iter;

1447
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1448
		num++;
1449 1450 1451
	return num;
}

D
David Rientjes 已提交
1452 1453 1454 1455 1456 1457 1458 1459
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1460 1461 1462
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1463 1464 1465 1466 1467 1468 1469 1470
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1517
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1518 1519
		int nid, bool noswap)
{
1520
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1521 1522 1523
		return true;
	if (noswap || !total_swap_pages)
		return false;
1524
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1525 1526 1527 1528
		return true;
	return false;

}
1529 1530 1531 1532 1533 1534 1535 1536
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1537
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1538 1539
{
	int nid;
1540 1541 1542 1543
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1544
	if (!atomic_read(&memcg->numainfo_events))
1545
		return;
1546
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1547 1548 1549
		return;

	/* make a nodemask where this memcg uses memory from */
1550
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1551 1552 1553

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1554 1555
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1556
	}
1557

1558 1559
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1574
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1575 1576 1577
{
	int node;

1578 1579
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1580

1581
	node = next_node(node, memcg->scan_nodes);
1582
	if (node == MAX_NUMNODES)
1583
		node = first_node(memcg->scan_nodes);
1584 1585 1586 1587 1588 1589 1590 1591 1592
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1593
	memcg->last_scanned_node = node;
1594 1595 1596
	return node;
}

1597 1598 1599 1600 1601 1602
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1603
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1604 1605 1606 1607 1608 1609 1610
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1611 1612
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1613
		     nid < MAX_NUMNODES;
1614
		     nid = next_node(nid, memcg->scan_nodes)) {
1615

1616
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1617 1618 1619 1620 1621 1622 1623
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1624
		if (node_isset(nid, memcg->scan_nodes))
1625
			continue;
1626
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1627 1628 1629 1630 1631
			return true;
	}
	return false;
}

1632
#else
1633
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1634 1635 1636
{
	return 0;
}
1637

1638
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1639
{
1640
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1641
}
1642 1643
#endif

1644 1645 1646 1647
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1648
{
1649
	struct mem_cgroup *victim = NULL;
1650
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1651
	int loop = 0;
1652
	unsigned long excess;
1653
	unsigned long nr_scanned;
1654 1655 1656 1657
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1658

1659
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1660

1661
	while (1) {
1662
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1663
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1664
			loop++;
1665 1666 1667 1668 1669 1670
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1671
				if (!total)
1672 1673
					break;
				/*
L
Lucas De Marchi 已提交
1674
				 * We want to do more targeted reclaim.
1675 1676 1677 1678 1679
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1680
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1681 1682
					break;
			}
1683
			continue;
1684
		}
1685
		if (!mem_cgroup_reclaimable(victim, false))
1686
			continue;
1687 1688 1689 1690
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1691
			break;
1692
	}
1693
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1694
	return total;
1695 1696
}

K
KAMEZAWA Hiroyuki 已提交
1697 1698 1699
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1700
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1701
 */
1702
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1703
{
1704
	struct mem_cgroup *iter, *failed = NULL;
1705

1706
	for_each_mem_cgroup_tree(iter, memcg) {
1707
		if (iter->oom_lock) {
1708 1709 1710 1711 1712
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1713 1714
			mem_cgroup_iter_break(memcg, iter);
			break;
1715 1716
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1717
	}
K
KAMEZAWA Hiroyuki 已提交
1718

1719
	if (!failed)
1720
		return true;
1721 1722 1723 1724 1725

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1726
	for_each_mem_cgroup_tree(iter, memcg) {
1727
		if (iter == failed) {
1728 1729
			mem_cgroup_iter_break(memcg, iter);
			break;
1730 1731 1732
		}
		iter->oom_lock = false;
	}
1733
	return false;
1734
}
1735

1736
/*
1737
 * Has to be called with memcg_oom_lock
1738
 */
1739
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1740
{
K
KAMEZAWA Hiroyuki 已提交
1741 1742
	struct mem_cgroup *iter;

1743
	for_each_mem_cgroup_tree(iter, memcg)
1744 1745 1746 1747
		iter->oom_lock = false;
	return 0;
}

1748
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1749 1750 1751
{
	struct mem_cgroup *iter;

1752
	for_each_mem_cgroup_tree(iter, memcg)
1753 1754 1755
		atomic_inc(&iter->under_oom);
}

1756
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1757 1758 1759
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1760 1761 1762 1763 1764
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1765
	for_each_mem_cgroup_tree(iter, memcg)
1766
		atomic_add_unless(&iter->under_oom, -1, 0);
1767 1768
}

1769
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1770 1771
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1772
struct oom_wait_info {
1773
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1774 1775 1776 1777 1778 1779
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1780 1781
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1782 1783 1784
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1785
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1786 1787

	/*
1788
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1789 1790
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1791 1792
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1793 1794 1795 1796
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1797
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1798
{
1799 1800
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1801 1802
}

1803
static void memcg_oom_recover(struct mem_cgroup *memcg)
1804
{
1805 1806
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1807 1808
}

K
KAMEZAWA Hiroyuki 已提交
1809 1810 1811
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1812
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1813
{
K
KAMEZAWA Hiroyuki 已提交
1814
	struct oom_wait_info owait;
1815
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1816

1817
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1818 1819 1820 1821
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1822
	need_to_kill = true;
1823
	mem_cgroup_mark_under_oom(memcg);
1824

1825
	/* At first, try to OOM lock hierarchy under memcg.*/
1826
	spin_lock(&memcg_oom_lock);
1827
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1828 1829 1830 1831 1832
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1833
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1834
	if (!locked || memcg->oom_kill_disable)
1835 1836
		need_to_kill = false;
	if (locked)
1837
		mem_cgroup_oom_notify(memcg);
1838
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1839

1840 1841
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1842
		mem_cgroup_out_of_memory(memcg, mask, order);
1843
	} else {
K
KAMEZAWA Hiroyuki 已提交
1844
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1845
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1846
	}
1847
	spin_lock(&memcg_oom_lock);
1848
	if (locked)
1849 1850
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1851
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1852

1853
	mem_cgroup_unmark_under_oom(memcg);
1854

K
KAMEZAWA Hiroyuki 已提交
1855 1856 1857
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1858
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1859
	return true;
1860 1861
}

1862 1863 1864
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1884
 */
1885

1886 1887
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1888
{
1889
	struct mem_cgroup *memcg;
1890 1891
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1892
	unsigned long uninitialized_var(flags);
1893

1894
	if (mem_cgroup_disabled())
1895 1896
		return;

1897
	rcu_read_lock();
1898 1899
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1900 1901
		goto out;
	/* pc->mem_cgroup is unstable ? */
1902
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1903
		/* take a lock against to access pc->mem_cgroup */
1904
		move_lock_page_cgroup(pc, &flags);
1905
		need_unlock = true;
1906 1907
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1908 1909
			goto out;
	}
1910 1911

	switch (idx) {
1912
	case MEMCG_NR_FILE_MAPPED:
1913 1914 1915
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1916
			ClearPageCgroupFileMapped(pc);
1917
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1918 1919 1920
		break;
	default:
		BUG();
1921
	}
1922

1923
	this_cpu_add(memcg->stat->count[idx], val);
1924

1925 1926
out:
	if (unlikely(need_unlock))
1927
		move_unlock_page_cgroup(pc, &flags);
1928 1929
	rcu_read_unlock();
	return;
1930
}
1931
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1932

1933 1934 1935 1936
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1937
#define CHARGE_BATCH	32U
1938 1939
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1940
	unsigned int nr_pages;
1941
	struct work_struct work;
1942 1943
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1944 1945
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1946
static DEFINE_MUTEX(percpu_charge_mutex);
1947 1948

/*
1949
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1950 1951 1952 1953
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
1954
static bool consume_stock(struct mem_cgroup *memcg)
1955 1956 1957 1958 1959
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1960
	if (memcg == stock->cached && stock->nr_pages)
1961
		stock->nr_pages--;
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1975 1976 1977 1978
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1979
		if (do_swap_account)
1980 1981
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
1994
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1995 1996 1997 1998
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1999
 * This will be consumed by consume_stock() function, later.
2000
 */
2001
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2002 2003 2004
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2005
	if (stock->cached != memcg) { /* reset if necessary */
2006
		drain_stock(stock);
2007
		stock->cached = memcg;
2008
	}
2009
	stock->nr_pages += nr_pages;
2010 2011 2012 2013
	put_cpu_var(memcg_stock);
}

/*
2014
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2015 2016
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2017
 */
2018
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2019
{
2020
	int cpu, curcpu;
2021

2022 2023
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2024
	curcpu = get_cpu();
2025 2026
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2027
		struct mem_cgroup *memcg;
2028

2029 2030
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2031
			continue;
2032
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2033
			continue;
2034 2035 2036 2037 2038 2039
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2040
	}
2041
	put_cpu();
2042 2043 2044 2045 2046 2047

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2048
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2049 2050 2051
			flush_work(&stock->work);
	}
out:
2052
 	put_online_cpus();
2053 2054 2055 2056 2057 2058 2059 2060
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2061
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2062
{
2063 2064 2065 2066 2067
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2068
	drain_all_stock(root_memcg, false);
2069
	mutex_unlock(&percpu_charge_mutex);
2070 2071 2072
}

/* This is a synchronous drain interface. */
2073
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2074 2075
{
	/* called when force_empty is called */
2076
	mutex_lock(&percpu_charge_mutex);
2077
	drain_all_stock(root_memcg, true);
2078
	mutex_unlock(&percpu_charge_mutex);
2079 2080
}

2081 2082 2083 2084
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2085
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2086 2087 2088
{
	int i;

2089
	spin_lock(&memcg->pcp_counter_lock);
2090
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2091
		long x = per_cpu(memcg->stat->count[i], cpu);
2092

2093 2094
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2095
	}
2096
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2097
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2098

2099 2100
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2101
	}
2102
	/* need to clear ON_MOVE value, works as a kind of lock. */
2103 2104
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2105 2106
}

2107
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2108 2109 2110
{
	int idx = MEM_CGROUP_ON_MOVE;

2111 2112 2113
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2114 2115 2116
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2117 2118 2119 2120 2121
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2122
	struct mem_cgroup *iter;
2123

2124
	if ((action == CPU_ONLINE)) {
2125
		for_each_mem_cgroup(iter)
2126 2127 2128 2129
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2130
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2131
		return NOTIFY_OK;
2132

2133
	for_each_mem_cgroup(iter)
2134 2135
		mem_cgroup_drain_pcp_counter(iter, cpu);

2136 2137 2138 2139 2140
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2151
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2152
				unsigned int nr_pages, bool oom_check)
2153
{
2154
	unsigned long csize = nr_pages * PAGE_SIZE;
2155 2156 2157 2158 2159
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2160
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2161 2162 2163 2164

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2165
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2166 2167 2168
		if (likely(!ret))
			return CHARGE_OK;

2169
		res_counter_uncharge(&memcg->res, csize);
2170 2171 2172 2173
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2174
	/*
2175 2176
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2177 2178 2179 2180
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2181
	if (nr_pages == CHARGE_BATCH)
2182 2183 2184 2185 2186
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2187
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2188
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2189
		return CHARGE_RETRY;
2190
	/*
2191 2192 2193 2194 2195 2196 2197
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2198
	 */
2199
	if (nr_pages == 1 && ret)
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2213
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2214 2215 2216 2217 2218
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2219
/*
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2239
 */
2240
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2241
				   gfp_t gfp_mask,
2242
				   unsigned int nr_pages,
2243
				   struct mem_cgroup **ptr,
2244
				   bool oom)
2245
{
2246
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2247
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2248
	struct mem_cgroup *memcg = NULL;
2249
	int ret;
2250

K
KAMEZAWA Hiroyuki 已提交
2251 2252 2253 2254 2255 2256 2257 2258
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2259

2260
	/*
2261 2262
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2263 2264 2265
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2266
	if (!*ptr && !mm)
2267
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2268
again:
2269 2270 2271 2272
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2273
			goto done;
2274
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2275
			goto done;
2276
		css_get(&memcg->css);
2277
	} else {
K
KAMEZAWA Hiroyuki 已提交
2278
		struct task_struct *p;
2279

K
KAMEZAWA Hiroyuki 已提交
2280 2281 2282
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2283
		 * Because we don't have task_lock(), "p" can exit.
2284
		 * In that case, "memcg" can point to root or p can be NULL with
2285 2286 2287 2288 2289 2290
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2291
		 */
2292
		memcg = mem_cgroup_from_task(p);
2293 2294 2295
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2296 2297 2298
			rcu_read_unlock();
			goto done;
		}
2299
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2312
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2313 2314 2315 2316 2317
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2318

2319 2320
	do {
		bool oom_check;
2321

2322
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2323
		if (fatal_signal_pending(current)) {
2324
			css_put(&memcg->css);
2325
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2326
		}
2327

2328 2329 2330 2331
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2332
		}
2333

2334
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2335 2336 2337 2338
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2339
			batch = nr_pages;
2340 2341
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2342
			goto again;
2343
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2344
			css_put(&memcg->css);
2345 2346
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2347
			if (!oom) {
2348
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2349
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2350
			}
2351 2352 2353 2354
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2355
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2356
			goto bypass;
2357
		}
2358 2359
	} while (ret != CHARGE_OK);

2360
	if (batch > nr_pages)
2361 2362
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2363
done:
2364
	*ptr = memcg;
2365 2366
	return 0;
nomem:
2367
	*ptr = NULL;
2368
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2369
bypass:
2370 2371
	*ptr = root_mem_cgroup;
	return -EINTR;
2372
}
2373

2374 2375 2376 2377 2378
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2379
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2380
				       unsigned int nr_pages)
2381
{
2382
	if (!mem_cgroup_is_root(memcg)) {
2383 2384
		unsigned long bytes = nr_pages * PAGE_SIZE;

2385
		res_counter_uncharge(&memcg->res, bytes);
2386
		if (do_swap_account)
2387
			res_counter_uncharge(&memcg->memsw, bytes);
2388
	}
2389 2390
}

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2410
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2411
{
2412
	struct mem_cgroup *memcg = NULL;
2413
	struct page_cgroup *pc;
2414
	unsigned short id;
2415 2416
	swp_entry_t ent;

2417 2418 2419
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2420
	lock_page_cgroup(pc);
2421
	if (PageCgroupUsed(pc)) {
2422 2423 2424
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2425
	} else if (PageSwapCache(page)) {
2426
		ent.val = page_private(page);
2427
		id = lookup_swap_cgroup_id(ent);
2428
		rcu_read_lock();
2429 2430 2431
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2432
		rcu_read_unlock();
2433
	}
2434
	unlock_page_cgroup(pc);
2435
	return memcg;
2436 2437
}

2438
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2439
				       struct page *page,
2440
				       unsigned int nr_pages,
2441
				       struct page_cgroup *pc,
2442 2443
				       enum charge_type ctype,
				       bool lrucare)
2444
{
2445 2446 2447
	struct zone *uninitialized_var(zone);
	bool was_on_lru = false;

2448 2449 2450
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2451
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2452 2453 2454 2455 2456 2457
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
			ClearPageLRU(page);
			del_page_from_lru_list(zone, page, page_lru(page));
			was_on_lru = true;
		}
	}

2473
	pc->mem_cgroup = memcg;
2474 2475 2476 2477 2478 2479 2480
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2481
	smp_wmb();
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2495

2496 2497 2498 2499 2500 2501 2502 2503 2504
	if (lrucare) {
		if (was_on_lru) {
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
			add_page_to_lru_list(zone, page, page_lru(page));
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2505
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2506
	unlock_page_cgroup(pc);
2507

2508 2509 2510 2511 2512
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2513
	memcg_check_events(memcg, page);
2514
}
2515

2516 2517 2518
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2519
			(1 << PCG_MIGRATION))
2520 2521
/*
 * Because tail pages are not marked as "used", set it. We're under
2522 2523 2524
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2525
 */
2526
void mem_cgroup_split_huge_fixup(struct page *head)
2527 2528
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2529 2530
	struct page_cgroup *pc;
	int i;
2531

2532 2533
	if (mem_cgroup_disabled())
		return;
2534 2535 2536 2537 2538 2539
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2540
}
2541
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2542

2543
/**
2544
 * mem_cgroup_move_account - move account of the page
2545
 * @page: the page
2546
 * @nr_pages: number of regular pages (>1 for huge pages)
2547 2548 2549
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2550
 * @uncharge: whether we should call uncharge and css_put against @from.
2551 2552
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2553
 * - page is not on LRU (isolate_page() is useful.)
2554
 * - compound_lock is held when nr_pages > 1
2555
 *
2556
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2557
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2558 2559
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2560
 */
2561 2562 2563 2564 2565 2566
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2567
{
2568 2569
	unsigned long flags;
	int ret;
2570

2571
	VM_BUG_ON(from == to);
2572
	VM_BUG_ON(PageLRU(page));
2573 2574 2575 2576 2577 2578 2579
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2580
	if (nr_pages > 1 && !PageTransHuge(page))
2581 2582 2583 2584 2585 2586 2587 2588 2589
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2590

2591
	if (PageCgroupFileMapped(pc)) {
2592 2593 2594 2595 2596
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2597
	}
2598
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2599 2600
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2601
		__mem_cgroup_cancel_charge(from, nr_pages);
2602

2603
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2604
	pc->mem_cgroup = to;
2605
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2606 2607 2608
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2609
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2610
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2611
	 * status here.
2612
	 */
2613 2614 2615
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2616
	unlock_page_cgroup(pc);
2617 2618 2619
	/*
	 * check events
	 */
2620 2621
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2622
out:
2623 2624 2625 2626 2627 2628 2629
	return ret;
}

/*
 * move charges to its parent.
 */

2630 2631
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2632 2633 2634 2635 2636 2637
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2638
	unsigned int nr_pages;
2639
	unsigned long uninitialized_var(flags);
2640 2641 2642 2643 2644 2645
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2646 2647 2648 2649 2650
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2651

2652
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2653

2654
	parent = mem_cgroup_from_cont(pcg);
2655
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2656
	if (ret)
2657
		goto put_back;
2658

2659
	if (nr_pages > 1)
2660 2661
		flags = compound_lock_irqsave(page);

2662
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2663
	if (ret)
2664
		__mem_cgroup_cancel_charge(parent, nr_pages);
2665

2666
	if (nr_pages > 1)
2667
		compound_unlock_irqrestore(page, flags);
2668
put_back:
K
KAMEZAWA Hiroyuki 已提交
2669
	putback_lru_page(page);
2670
put:
2671
	put_page(page);
2672
out:
2673 2674 2675
	return ret;
}

2676 2677 2678 2679 2680 2681 2682
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2683
				gfp_t gfp_mask, enum charge_type ctype)
2684
{
2685
	struct mem_cgroup *memcg = NULL;
2686
	unsigned int nr_pages = 1;
2687
	struct page_cgroup *pc;
2688
	bool oom = true;
2689
	int ret;
A
Andrea Arcangeli 已提交
2690

A
Andrea Arcangeli 已提交
2691
	if (PageTransHuge(page)) {
2692
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2693
		VM_BUG_ON(!PageTransHuge(page));
2694 2695 2696 2697 2698
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2699
	}
2700 2701

	pc = lookup_page_cgroup(page);
2702
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2703
	if (ret == -ENOMEM)
2704
		return ret;
2705
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
2706 2707 2708
	return 0;
}

2709 2710
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2711
{
2712
	if (mem_cgroup_disabled())
2713
		return 0;
2714 2715 2716
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2717
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2718
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2719 2720
}

D
Daisuke Nishimura 已提交
2721 2722 2723 2724
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2725 2726
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2727
{
2728
	struct mem_cgroup *memcg = NULL;
2729
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2730 2731
	int ret;

2732
	if (mem_cgroup_disabled())
2733
		return 0;
2734 2735
	if (PageCompound(page))
		return 0;
2736

2737
	if (unlikely(!mm))
2738
		mm = &init_mm;
2739 2740
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2741

2742
	if (!PageSwapCache(page))
2743
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2744
	else { /* page is swapcache/shmem */
2745
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2746
		if (!ret)
2747 2748
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2749
	return ret;
2750 2751
}

2752 2753 2754
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2755
 * struct page_cgroup is acquired. This refcnt will be consumed by
2756 2757
 * "commit()" or removed by "cancel()"
 */
2758 2759
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2760
				 gfp_t mask, struct mem_cgroup **memcgp)
2761
{
2762
	struct mem_cgroup *memcg;
2763
	int ret;
2764

2765
	*memcgp = NULL;
2766

2767
	if (mem_cgroup_disabled())
2768 2769 2770 2771 2772 2773
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2774 2775 2776
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2777 2778
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2779
		goto charge_cur_mm;
2780 2781
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2782
		goto charge_cur_mm;
2783 2784
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2785
	css_put(&memcg->css);
2786 2787
	if (ret == -EINTR)
		ret = 0;
2788
	return ret;
2789 2790 2791
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2792 2793 2794 2795
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2796 2797
}

D
Daisuke Nishimura 已提交
2798
static void
2799
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2800
					enum charge_type ctype)
2801
{
2802 2803
	struct page_cgroup *pc;

2804
	if (mem_cgroup_disabled())
2805
		return;
2806
	if (!memcg)
2807
		return;
2808
	cgroup_exclude_rmdir(&memcg->css);
2809

2810 2811
	pc = lookup_page_cgroup(page);
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
2812 2813 2814
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2815 2816 2817
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2818
	 */
2819
	if (do_swap_account && PageSwapCache(page)) {
2820
		swp_entry_t ent = {.val = page_private(page)};
2821
		struct mem_cgroup *swap_memcg;
2822 2823 2824 2825
		unsigned short id;

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
2826 2827
		swap_memcg = mem_cgroup_lookup(id);
		if (swap_memcg) {
2828 2829 2830 2831
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2832 2833 2834 2835 2836
			if (!mem_cgroup_is_root(swap_memcg))
				res_counter_uncharge(&swap_memcg->memsw,
						     PAGE_SIZE);
			mem_cgroup_swap_statistics(swap_memcg, false);
			mem_cgroup_put(swap_memcg);
2837
		}
2838
		rcu_read_unlock();
2839
	}
2840 2841 2842 2843 2844
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2845
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2846 2847
}

2848 2849
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2850
{
2851 2852
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2853 2854
}

2855
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2856
{
2857
	if (mem_cgroup_disabled())
2858
		return;
2859
	if (!memcg)
2860
		return;
2861
	__mem_cgroup_cancel_charge(memcg, 1);
2862 2863
}

2864
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2865 2866
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2867 2868 2869
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2870

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2882
		batch->memcg = memcg;
2883 2884
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2885
	 * In those cases, all pages freed continuously can be expected to be in
2886 2887 2888 2889 2890 2891 2892 2893
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2894
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2895 2896
		goto direct_uncharge;

2897 2898 2899 2900 2901
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2902
	if (batch->memcg != memcg)
2903 2904
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2905
	batch->nr_pages++;
2906
	if (uncharge_memsw)
2907
		batch->memsw_nr_pages++;
2908 2909
	return;
direct_uncharge:
2910
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2911
	if (uncharge_memsw)
2912 2913 2914
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2915 2916
	return;
}
2917

2918
/*
2919
 * uncharge if !page_mapped(page)
2920
 */
2921
static struct mem_cgroup *
2922
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2923
{
2924
	struct mem_cgroup *memcg = NULL;
2925 2926
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2927

2928
	if (mem_cgroup_disabled())
2929
		return NULL;
2930

K
KAMEZAWA Hiroyuki 已提交
2931
	if (PageSwapCache(page))
2932
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2933

A
Andrea Arcangeli 已提交
2934
	if (PageTransHuge(page)) {
2935
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2936 2937
		VM_BUG_ON(!PageTransHuge(page));
	}
2938
	/*
2939
	 * Check if our page_cgroup is valid
2940
	 */
2941
	pc = lookup_page_cgroup(page);
2942
	if (unlikely(!PageCgroupUsed(pc)))
2943
		return NULL;
2944

2945
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2946

2947
	memcg = pc->mem_cgroup;
2948

K
KAMEZAWA Hiroyuki 已提交
2949 2950 2951 2952 2953
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2954
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2955 2956
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2968
	}
K
KAMEZAWA Hiroyuki 已提交
2969

2970
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2971

2972
	ClearPageCgroupUsed(pc);
2973 2974 2975 2976 2977 2978
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2979

2980
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2981
	/*
2982
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
2983 2984
	 * will never be freed.
	 */
2985
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
2986
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2987 2988
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
2989
	}
2990 2991
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2992

2993
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
2994 2995 2996

unlock_out:
	unlock_page_cgroup(pc);
2997
	return NULL;
2998 2999
}

3000 3001
void mem_cgroup_uncharge_page(struct page *page)
{
3002 3003 3004
	/* early check. */
	if (page_mapped(page))
		return;
3005
	VM_BUG_ON(page->mapping && !PageAnon(page));
3006 3007 3008 3009 3010 3011
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3012
	VM_BUG_ON(page->mapping);
3013 3014 3015
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3030 3031
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3052 3053 3054 3055 3056 3057
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3058
	memcg_oom_recover(batch->memcg);
3059 3060 3061 3062
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3063
#ifdef CONFIG_SWAP
3064
/*
3065
 * called after __delete_from_swap_cache() and drop "page" account.
3066 3067
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3068 3069
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3070 3071
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3072 3073 3074 3075 3076 3077
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3078

K
KAMEZAWA Hiroyuki 已提交
3079 3080 3081 3082 3083
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3084
		swap_cgroup_record(ent, css_id(&memcg->css));
3085
}
3086
#endif
3087 3088 3089 3090 3091 3092 3093

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3094
{
3095
	struct mem_cgroup *memcg;
3096
	unsigned short id;
3097 3098 3099 3100

	if (!do_swap_account)
		return;

3101 3102 3103
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3104
	if (memcg) {
3105 3106 3107 3108
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3109
		if (!mem_cgroup_is_root(memcg))
3110
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3111
		mem_cgroup_swap_statistics(memcg, false);
3112 3113
		mem_cgroup_put(memcg);
	}
3114
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3115
}
3116 3117 3118 3119 3120 3121

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3122
 * @need_fixup: whether we should fixup res_counters and refcounts.
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3133
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3134 3135 3136 3137 3138 3139 3140 3141
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3142
		mem_cgroup_swap_statistics(to, true);
3143
		/*
3144 3145 3146 3147 3148 3149
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3150 3151
		 */
		mem_cgroup_get(to);
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3163 3164 3165 3166 3167 3168
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3169
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3170 3171 3172
{
	return -EINVAL;
}
3173
#endif
K
KAMEZAWA Hiroyuki 已提交
3174

3175
/*
3176 3177
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3178
 */
3179
int mem_cgroup_prepare_migration(struct page *page,
3180
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3181
{
3182
	struct mem_cgroup *memcg = NULL;
3183
	struct page_cgroup *pc;
3184
	enum charge_type ctype;
3185
	int ret = 0;
3186

3187
	*memcgp = NULL;
3188

A
Andrea Arcangeli 已提交
3189
	VM_BUG_ON(PageTransHuge(page));
3190
	if (mem_cgroup_disabled())
3191 3192
		return 0;

3193 3194 3195
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3196 3197
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3229
	}
3230
	unlock_page_cgroup(pc);
3231 3232 3233 3234
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3235
	if (!memcg)
3236
		return 0;
3237

3238 3239
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3240
	css_put(&memcg->css);/* drop extra refcnt */
3241
	if (ret) {
3242 3243 3244 3245 3246 3247 3248 3249 3250
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3251
		/* we'll need to revisit this error code (we have -EINTR) */
3252
		return -ENOMEM;
3253
	}
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3267
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
3268
	return ret;
3269
}
3270

3271
/* remove redundant charge if migration failed*/
3272
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3273
	struct page *oldpage, struct page *newpage, bool migration_ok)
3274
{
3275
	struct page *used, *unused;
3276 3277
	struct page_cgroup *pc;

3278
	if (!memcg)
3279
		return;
3280
	/* blocks rmdir() */
3281
	cgroup_exclude_rmdir(&memcg->css);
3282
	if (!migration_ok) {
3283 3284
		used = oldpage;
		unused = newpage;
3285
	} else {
3286
		used = newpage;
3287 3288
		unused = oldpage;
	}
3289
	/*
3290 3291 3292
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3293
	 */
3294 3295 3296 3297
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3298

3299 3300
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3301
	/*
3302 3303 3304 3305 3306 3307
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3308
	 */
3309 3310
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3311
	/*
3312 3313
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3314 3315 3316
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3317
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3318
}
3319

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3351
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
3352 3353
}

3354 3355 3356 3357 3358 3359
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3360 3361 3362 3363 3364
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3384
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3385 3386 3387 3388 3389
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3390 3391
static DEFINE_MUTEX(set_limit_mutex);

3392
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3393
				unsigned long long val)
3394
{
3395
	int retry_count;
3396
	u64 memswlimit, memlimit;
3397
	int ret = 0;
3398 3399
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3400
	int enlarge;
3401 3402 3403 3404 3405 3406 3407 3408 3409

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3410

3411
	enlarge = 0;
3412
	while (retry_count) {
3413 3414 3415 3416
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3417 3418 3419
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3420
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3421 3422 3423 3424 3425 3426
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3427 3428
			break;
		}
3429 3430 3431 3432 3433

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3434
		ret = res_counter_set_limit(&memcg->res, val);
3435 3436 3437 3438 3439 3440
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3441 3442 3443 3444 3445
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3446 3447
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3448 3449 3450 3451 3452 3453
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3454
	}
3455 3456
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3457

3458 3459 3460
	return ret;
}

L
Li Zefan 已提交
3461 3462
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3463
{
3464
	int retry_count;
3465
	u64 memlimit, memswlimit, oldusage, curusage;
3466 3467
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3468
	int enlarge = 0;
3469

3470 3471 3472
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3473 3474 3475 3476 3477 3478 3479 3480
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3481
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3482 3483 3484 3485 3486 3487 3488 3489
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3490 3491 3492
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3493
		ret = res_counter_set_limit(&memcg->memsw, val);
3494 3495 3496 3497 3498 3499
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3500 3501 3502 3503 3504
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3505 3506 3507
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3508
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3509
		/* Usage is reduced ? */
3510
		if (curusage >= oldusage)
3511
			retry_count--;
3512 3513
		else
			oldusage = curusage;
3514
	}
3515 3516
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3517 3518 3519
	return ret;
}

3520
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3521 3522
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3523 3524 3525 3526 3527 3528
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3529
	unsigned long long excess;
3530
	unsigned long nr_scanned;
3531 3532 3533 3534

	if (order > 0)
		return 0;

3535
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3549
		nr_scanned = 0;
3550
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3551
						    gfp_mask, &nr_scanned);
3552
		nr_reclaimed += reclaimed;
3553
		*total_scanned += nr_scanned;
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3576
				if (next_mz == mz)
3577
					css_put(&next_mz->memcg->css);
3578
				else /* next_mz == NULL or other memcg */
3579 3580 3581
					break;
			} while (1);
		}
3582 3583
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3584 3585 3586 3587 3588 3589 3590 3591
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3592
		/* If excess == 0, no tree ops */
3593
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3594
		spin_unlock(&mctz->lock);
3595
		css_put(&mz->memcg->css);
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3608
		css_put(&next_mz->memcg->css);
3609 3610 3611
	return nr_reclaimed;
}

3612 3613 3614 3615
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3616
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3617
				int node, int zid, enum lru_list lru)
3618
{
K
KAMEZAWA Hiroyuki 已提交
3619 3620
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3621
	struct list_head *list;
3622 3623
	struct page *busy;
	struct zone *zone;
3624
	int ret = 0;
3625

K
KAMEZAWA Hiroyuki 已提交
3626
	zone = &NODE_DATA(node)->node_zones[zid];
3627
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3628
	list = &mz->lruvec.lists[lru];
3629

3630
	loop = mz->lru_size[lru];
3631 3632 3633 3634
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3635
		struct page_cgroup *pc;
3636 3637
		struct page *page;

3638
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3639
		spin_lock_irqsave(&zone->lru_lock, flags);
3640
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3641
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3642
			break;
3643
		}
3644 3645 3646
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3647
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3648
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3649 3650
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3651
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3652

3653
		pc = lookup_page_cgroup(page);
3654

3655
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3656
		if (ret == -ENOMEM || ret == -EINTR)
3657
			break;
3658 3659 3660

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3661
			busy = page;
3662 3663 3664
			cond_resched();
		} else
			busy = NULL;
3665
	}
K
KAMEZAWA Hiroyuki 已提交
3666

3667 3668 3669
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3670 3671 3672 3673 3674 3675
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3676
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3677
{
3678 3679 3680
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3681
	struct cgroup *cgrp = memcg->css.cgroup;
3682

3683
	css_get(&memcg->css);
3684 3685

	shrink = 0;
3686 3687 3688
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3689
move_account:
3690
	do {
3691
		ret = -EBUSY;
3692 3693 3694 3695
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3696
			goto out;
3697 3698
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3699
		drain_all_stock_sync(memcg);
3700
		ret = 0;
3701
		mem_cgroup_start_move(memcg);
3702
		for_each_node_state(node, N_HIGH_MEMORY) {
3703
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3704
				enum lru_list l;
3705
				for_each_lru(l) {
3706
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3707
							node, zid, l);
3708 3709 3710
					if (ret)
						break;
				}
3711
			}
3712 3713 3714
			if (ret)
				break;
		}
3715 3716
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3717 3718 3719
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3720
		cond_resched();
3721
	/* "ret" should also be checked to ensure all lists are empty. */
3722
	} while (memcg->res.usage > 0 || ret);
3723
out:
3724
	css_put(&memcg->css);
3725
	return ret;
3726 3727

try_to_free:
3728 3729
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3730 3731 3732
		ret = -EBUSY;
		goto out;
	}
3733 3734
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3735 3736
	/* try to free all pages in this cgroup */
	shrink = 1;
3737
	while (nr_retries && memcg->res.usage > 0) {
3738
		int progress;
3739 3740 3741 3742 3743

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3744
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3745
						false);
3746
		if (!progress) {
3747
			nr_retries--;
3748
			/* maybe some writeback is necessary */
3749
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3750
		}
3751 3752

	}
K
KAMEZAWA Hiroyuki 已提交
3753
	lru_add_drain();
3754
	/* try move_account...there may be some *locked* pages. */
3755
	goto move_account;
3756 3757
}

3758 3759 3760 3761 3762 3763
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3764 3765 3766 3767 3768 3769 3770 3771 3772
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3773
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3774
	struct cgroup *parent = cont->parent;
3775
	struct mem_cgroup *parent_memcg = NULL;
3776 3777

	if (parent)
3778
		parent_memcg = mem_cgroup_from_cont(parent);
3779 3780 3781

	cgroup_lock();
	/*
3782
	 * If parent's use_hierarchy is set, we can't make any modifications
3783 3784 3785 3786 3787 3788
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3789
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3790 3791
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3792
			memcg->use_hierarchy = val;
3793 3794 3795 3796 3797 3798 3799 3800 3801
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3802

3803
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3804
					       enum mem_cgroup_stat_index idx)
3805
{
K
KAMEZAWA Hiroyuki 已提交
3806
	struct mem_cgroup *iter;
3807
	long val = 0;
3808

3809
	/* Per-cpu values can be negative, use a signed accumulator */
3810
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3811 3812 3813 3814 3815
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3816 3817
}

3818
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3819
{
K
KAMEZAWA Hiroyuki 已提交
3820
	u64 val;
3821

3822
	if (!mem_cgroup_is_root(memcg)) {
3823
		if (!swap)
3824
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3825
		else
3826
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3827 3828
	}

3829 3830
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3831

K
KAMEZAWA Hiroyuki 已提交
3832
	if (swap)
3833
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3834 3835 3836 3837

	return val << PAGE_SHIFT;
}

3838
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3839
{
3840
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3841
	u64 val;
3842 3843 3844 3845 3846 3847
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3848
		if (name == RES_USAGE)
3849
			val = mem_cgroup_usage(memcg, false);
3850
		else
3851
			val = res_counter_read_u64(&memcg->res, name);
3852 3853
		break;
	case _MEMSWAP:
3854
		if (name == RES_USAGE)
3855
			val = mem_cgroup_usage(memcg, true);
3856
		else
3857
			val = res_counter_read_u64(&memcg->memsw, name);
3858 3859 3860 3861 3862 3863
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3864
}
3865 3866 3867 3868
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3869 3870
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3871
{
3872
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3873
	int type, name;
3874 3875 3876
	unsigned long long val;
	int ret;

3877 3878 3879
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3880
	case RES_LIMIT:
3881 3882 3883 3884
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3885 3886
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3887 3888 3889
		if (ret)
			break;
		if (type == _MEM)
3890
			ret = mem_cgroup_resize_limit(memcg, val);
3891 3892
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3893
		break;
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3908 3909 3910 3911 3912
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3913 3914
}

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3943
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3944
{
3945
	struct mem_cgroup *memcg;
3946
	int type, name;
3947

3948
	memcg = mem_cgroup_from_cont(cont);
3949 3950 3951
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3952
	case RES_MAX_USAGE:
3953
		if (type == _MEM)
3954
			res_counter_reset_max(&memcg->res);
3955
		else
3956
			res_counter_reset_max(&memcg->memsw);
3957 3958
		break;
	case RES_FAILCNT:
3959
		if (type == _MEM)
3960
			res_counter_reset_failcnt(&memcg->res);
3961
		else
3962
			res_counter_reset_failcnt(&memcg->memsw);
3963 3964
		break;
	}
3965

3966
	return 0;
3967 3968
}

3969 3970 3971 3972 3973 3974
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3975
#ifdef CONFIG_MMU
3976 3977 3978
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
3979
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3980 3981 3982 3983 3984 3985 3986 3987 3988

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
3989
	memcg->move_charge_at_immigrate = val;
3990 3991 3992 3993
	cgroup_unlock();

	return 0;
}
3994 3995 3996 3997 3998 3999 4000
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4001

K
KAMEZAWA Hiroyuki 已提交
4002 4003 4004 4005 4006

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4007
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4008 4009
	MCS_PGPGIN,
	MCS_PGPGOUT,
4010
	MCS_SWAP,
4011 4012
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4023 4024
};

K
KAMEZAWA Hiroyuki 已提交
4025 4026 4027 4028 4029 4030
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4031
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4032 4033
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4034
	{"swap", "total_swap"},
4035 4036
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4037 4038 4039 4040 4041 4042 4043 4044
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4045
static void
4046
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4047 4048 4049 4050
{
	s64 val;

	/* per cpu stat */
4051
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4052
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4053
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4054
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4055
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4056
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4057
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4058
	s->stat[MCS_PGPGIN] += val;
4059
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4060
	s->stat[MCS_PGPGOUT] += val;
4061
	if (do_swap_account) {
4062
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4063 4064
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4065
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4066
	s->stat[MCS_PGFAULT] += val;
4067
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4068
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4069 4070

	/* per zone stat */
4071
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4072
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4073
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4074
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4075
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4076
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4077
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4078
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4079
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4080 4081 4082 4083
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4084
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4085
{
K
KAMEZAWA Hiroyuki 已提交
4086 4087
	struct mem_cgroup *iter;

4088
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4089
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4090 4091
}

4092 4093 4094 4095 4096 4097 4098
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
4099
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4100

4101
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4102 4103
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4104
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4105 4106 4107 4108
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4109
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4110 4111
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4112
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4113
				LRU_ALL_FILE);
4114 4115 4116 4117
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4118
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4119 4120
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4121
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4122
				LRU_ALL_ANON);
4123 4124 4125 4126
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4127
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4128 4129
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4130
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4131
				BIT(LRU_UNEVICTABLE));
4132 4133 4134 4135 4136 4137 4138
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4139 4140
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4141
{
4142
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4143
	struct mcs_total_stat mystat;
4144 4145
	int i;

K
KAMEZAWA Hiroyuki 已提交
4146
	memset(&mystat, 0, sizeof(mystat));
4147
	mem_cgroup_get_local_stat(memcg, &mystat);
4148

4149

4150 4151 4152
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4153
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4154
	}
L
Lee Schermerhorn 已提交
4155

K
KAMEZAWA Hiroyuki 已提交
4156
	/* Hierarchical information */
4157 4158
	{
		unsigned long long limit, memsw_limit;
4159
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4160 4161 4162 4163
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4164

K
KAMEZAWA Hiroyuki 已提交
4165
	memset(&mystat, 0, sizeof(mystat));
4166
	mem_cgroup_get_total_stat(memcg, &mystat);
4167 4168 4169
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4170
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4171
	}
K
KAMEZAWA Hiroyuki 已提交
4172

K
KOSAKI Motohiro 已提交
4173 4174 4175 4176 4177 4178 4179 4180 4181
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4182
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
K
KOSAKI Motohiro 已提交
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4200 4201 4202
	return 0;
}

K
KOSAKI Motohiro 已提交
4203 4204 4205 4206
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4207
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4208 4209 4210 4211 4212 4213 4214
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4215

K
KOSAKI Motohiro 已提交
4216 4217 4218 4219 4220 4221 4222
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4223 4224 4225

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4226 4227
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4228 4229
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4230
		return -EINVAL;
4231
	}
K
KOSAKI Motohiro 已提交
4232 4233 4234

	memcg->swappiness = val;

4235 4236
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4237 4238 4239
	return 0;
}

4240 4241 4242 4243 4244 4245 4246 4247
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4248
		t = rcu_dereference(memcg->thresholds.primary);
4249
	else
4250
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4262
	i = t->current_threshold;
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4286
	t->current_threshold = i - 1;
4287 4288 4289 4290 4291 4292
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4293 4294 4295 4296 4297 4298 4299
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4310
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4311 4312 4313
{
	struct mem_cgroup_eventfd_list *ev;

4314
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4315 4316 4317 4318
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4319
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4320
{
K
KAMEZAWA Hiroyuki 已提交
4321 4322
	struct mem_cgroup *iter;

4323
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4324
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4325 4326 4327 4328
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4329 4330
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4331 4332
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4333 4334
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4335
	int i, size, ret;
4336 4337 4338 4339 4340 4341

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4342

4343
	if (type == _MEM)
4344
		thresholds = &memcg->thresholds;
4345
	else if (type == _MEMSWAP)
4346
		thresholds = &memcg->memsw_thresholds;
4347 4348 4349 4350 4351 4352
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4353
	if (thresholds->primary)
4354 4355
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4356
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4357 4358

	/* Allocate memory for new array of thresholds */
4359
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4360
			GFP_KERNEL);
4361
	if (!new) {
4362 4363 4364
		ret = -ENOMEM;
		goto unlock;
	}
4365
	new->size = size;
4366 4367

	/* Copy thresholds (if any) to new array */
4368 4369
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4370
				sizeof(struct mem_cgroup_threshold));
4371 4372
	}

4373
	/* Add new threshold */
4374 4375
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4376 4377

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4378
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4379 4380 4381
			compare_thresholds, NULL);

	/* Find current threshold */
4382
	new->current_threshold = -1;
4383
	for (i = 0; i < size; i++) {
4384
		if (new->entries[i].threshold < usage) {
4385
			/*
4386 4387
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4388 4389
			 * it here.
			 */
4390
			++new->current_threshold;
4391 4392 4393
		}
	}

4394 4395 4396 4397 4398
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4399

4400
	/* To be sure that nobody uses thresholds */
4401 4402 4403 4404 4405 4406 4407 4408
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4409
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4410
	struct cftype *cft, struct eventfd_ctx *eventfd)
4411 4412
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4413 4414
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4415 4416
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4417
	int i, j, size;
4418 4419 4420

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4421
		thresholds = &memcg->thresholds;
4422
	else if (type == _MEMSWAP)
4423
		thresholds = &memcg->memsw_thresholds;
4424 4425 4426 4427 4428 4429 4430 4431 4432
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

4433 4434 4435
	if (!thresholds->primary)
		goto unlock;

4436 4437 4438 4439 4440 4441
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4442 4443 4444
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4445 4446 4447
			size++;
	}

4448
	new = thresholds->spare;
4449

4450 4451
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4452 4453
		kfree(new);
		new = NULL;
4454
		goto swap_buffers;
4455 4456
	}

4457
	new->size = size;
4458 4459

	/* Copy thresholds and find current threshold */
4460 4461 4462
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4463 4464
			continue;

4465 4466
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4467
			/*
4468
			 * new->current_threshold will not be used
4469 4470 4471
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4472
			++new->current_threshold;
4473 4474 4475 4476
		}
		j++;
	}

4477
swap_buffers:
4478 4479 4480
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4481

4482
	/* To be sure that nobody uses thresholds */
4483
	synchronize_rcu();
4484
unlock:
4485 4486
	mutex_unlock(&memcg->thresholds_lock);
}
4487

K
KAMEZAWA Hiroyuki 已提交
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4500
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4501 4502 4503 4504 4505

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4506
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4507
		eventfd_signal(eventfd, 1);
4508
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4509 4510 4511 4512

	return 0;
}

4513
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4514 4515
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4516
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4517 4518 4519 4520 4521
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4522
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4523

4524
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4525 4526 4527 4528 4529 4530
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4531
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4532 4533
}

4534 4535 4536
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4537
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4538

4539
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4540

4541
	if (atomic_read(&memcg->under_oom))
4542 4543 4544 4545 4546 4547 4548 4549 4550
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4551
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4563
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4564 4565 4566
		cgroup_unlock();
		return -EINVAL;
	}
4567
	memcg->oom_kill_disable = val;
4568
	if (!val)
4569
		memcg_oom_recover(memcg);
4570 4571 4572 4573
	cgroup_unlock();
	return 0;
}

4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4590 4591 4592
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4593 4594 4595 4596 4597 4598 4599
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4600
	return mem_cgroup_sockets_init(cont, ss);
4601 4602
};

4603
static void kmem_cgroup_destroy(struct cgroup *cont)
G
Glauber Costa 已提交
4604
{
4605
	mem_cgroup_sockets_destroy(cont);
G
Glauber Costa 已提交
4606
}
4607 4608 4609 4610 4611
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4612

4613
static void kmem_cgroup_destroy(struct cgroup *cont)
G
Glauber Costa 已提交
4614 4615
{
}
4616 4617
#endif

B
Balbir Singh 已提交
4618 4619
static struct cftype mem_cgroup_files[] = {
	{
4620
		.name = "usage_in_bytes",
4621
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4622
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4623 4624
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4625
	},
4626 4627
	{
		.name = "max_usage_in_bytes",
4628
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4629
		.trigger = mem_cgroup_reset,
4630 4631
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4632
	{
4633
		.name = "limit_in_bytes",
4634
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4635
		.write_string = mem_cgroup_write,
4636
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4637
	},
4638 4639 4640 4641 4642 4643
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4644 4645
	{
		.name = "failcnt",
4646
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4647
		.trigger = mem_cgroup_reset,
4648
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4649
	},
4650 4651
	{
		.name = "stat",
4652
		.read_map = mem_control_stat_show,
4653
	},
4654 4655 4656 4657
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4658 4659 4660 4661 4662
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4663 4664 4665 4666 4667
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4668 4669 4670 4671 4672
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4673 4674
	{
		.name = "oom_control",
4675 4676
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4677 4678 4679 4680
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4681 4682 4683 4684
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4685
		.mode = S_IRUGO,
4686 4687
	},
#endif
B
Balbir Singh 已提交
4688 4689
};

4690 4691 4692 4693 4694 4695
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4696 4697
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4733
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4734 4735
{
	struct mem_cgroup_per_node *pn;
4736
	struct mem_cgroup_per_zone *mz;
4737
	enum lru_list l;
4738
	int zone, tmp = node;
4739 4740 4741 4742 4743 4744 4745 4746
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4747 4748
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4749
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4750 4751
	if (!pn)
		return 1;
4752 4753 4754

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4755
		for_each_lru(l)
4756
			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4757
		mz->usage_in_excess = 0;
4758
		mz->on_tree = false;
4759
		mz->memcg = memcg;
4760
	}
4761
	memcg->info.nodeinfo[node] = pn;
4762 4763 4764
	return 0;
}

4765
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4766
{
4767
	kfree(memcg->info.nodeinfo[node]);
4768 4769
}

4770 4771
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4772
	struct mem_cgroup *memcg;
4773
	int size = sizeof(struct mem_cgroup);
4774

4775
	/* Can be very big if MAX_NUMNODES is very big */
4776
	if (size < PAGE_SIZE)
4777
		memcg = kzalloc(size, GFP_KERNEL);
4778
	else
4779
		memcg = vzalloc(size);
4780

4781
	if (!memcg)
4782 4783
		return NULL;

4784 4785
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4786
		goto out_free;
4787 4788
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4789 4790 4791

out_free:
	if (size < PAGE_SIZE)
4792
		kfree(memcg);
4793
	else
4794
		vfree(memcg);
4795
	return NULL;
4796 4797
}

4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
/*
 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
static void vfree_work(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, work_freeing);
	vfree(memcg);
}
static void vfree_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, vfree_work);
	schedule_work(&memcg->work_freeing);
}

4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4830
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4831
{
K
KAMEZAWA Hiroyuki 已提交
4832 4833
	int node;

4834 4835
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4836

B
Bob Liu 已提交
4837
	for_each_node(node)
4838
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4839

4840
	free_percpu(memcg->stat);
4841
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4842
		kfree_rcu(memcg, rcu_freeing);
4843
	else
4844
		call_rcu(&memcg->rcu_freeing, vfree_rcu);
4845 4846
}

4847
static void mem_cgroup_get(struct mem_cgroup *memcg)
4848
{
4849
	atomic_inc(&memcg->refcnt);
4850 4851
}

4852
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4853
{
4854 4855 4856
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4857 4858 4859
		if (parent)
			mem_cgroup_put(parent);
	}
4860 4861
}

4862
static void mem_cgroup_put(struct mem_cgroup *memcg)
4863
{
4864
	__mem_cgroup_put(memcg, 1);
4865 4866
}

4867 4868 4869
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4870
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4871
{
4872
	if (!memcg->res.parent)
4873
		return NULL;
4874
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4875
}
G
Glauber Costa 已提交
4876
EXPORT_SYMBOL(parent_mem_cgroup);
4877

4878 4879 4880
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4881
	if (!mem_cgroup_disabled() && really_do_swap_account)
4882 4883 4884 4885 4886 4887 4888 4889
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4890 4891 4892 4893 4894 4895
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4896
	for_each_node(node) {
4897 4898 4899 4900 4901
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4902
			goto err_cleanup;
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4913 4914

err_cleanup:
B
Bob Liu 已提交
4915
	for_each_node(node) {
4916 4917 4918 4919 4920 4921 4922
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4923 4924
}

L
Li Zefan 已提交
4925
static struct cgroup_subsys_state * __ref
4926
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4927
{
4928
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4929
	long error = -ENOMEM;
4930
	int node;
B
Balbir Singh 已提交
4931

4932 4933
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4934
		return ERR_PTR(error);
4935

B
Bob Liu 已提交
4936
	for_each_node(node)
4937
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4938
			goto free_out;
4939

4940
	/* root ? */
4941
	if (cont->parent == NULL) {
4942
		int cpu;
4943
		enable_swap_cgroup();
4944
		parent = NULL;
4945 4946
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4947
		root_mem_cgroup = memcg;
4948 4949 4950 4951 4952
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4953
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4954
	} else {
4955
		parent = mem_cgroup_from_cont(cont->parent);
4956 4957
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4958
	}
4959

4960
	if (parent && parent->use_hierarchy) {
4961 4962
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4963 4964 4965 4966 4967 4968 4969
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4970
	} else {
4971 4972
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4973
	}
4974 4975
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4976

K
KOSAKI Motohiro 已提交
4977
	if (parent)
4978 4979 4980 4981 4982
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
4983
free_out:
4984
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4985
	return ERR_PTR(error);
B
Balbir Singh 已提交
4986 4987
}

4988
static int mem_cgroup_pre_destroy(struct cgroup *cont)
4989
{
4990
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4991

4992
	return mem_cgroup_force_empty(memcg, false);
4993 4994
}

4995
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
4996
{
4997
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4998

4999
	kmem_cgroup_destroy(cont);
G
Glauber Costa 已提交
5000

5001
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5002 5003 5004 5005 5006
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5007 5008 5009 5010 5011 5012 5013
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
5014 5015 5016 5017

	if (!ret)
		ret = register_kmem_files(cont, ss);

5018
	return ret;
B
Balbir Singh 已提交
5019 5020
}

5021
#ifdef CONFIG_MMU
5022
/* Handlers for move charge at task migration. */
5023 5024
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5025
{
5026 5027
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5028
	struct mem_cgroup *memcg = mc.to;
5029

5030
	if (mem_cgroup_is_root(memcg)) {
5031 5032 5033 5034 5035 5036 5037 5038
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5039
		 * "memcg" cannot be under rmdir() because we've already checked
5040 5041 5042 5043
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5044
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5045
			goto one_by_one;
5046
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5047
						PAGE_SIZE * count, &dummy)) {
5048
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5065 5066
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5067
		if (ret)
5068
			/* mem_cgroup_clear_mc() will do uncharge later */
5069
			return ret;
5070 5071
		mc.precharge++;
	}
5072 5073 5074 5075 5076 5077 5078 5079
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5080
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5081 5082 5083 5084 5085 5086
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5087 5088 5089
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5090 5091 5092 5093 5094
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5095
	swp_entry_t	ent;
5096 5097 5098 5099 5100
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5101
	MC_TARGET_SWAP,
5102 5103
};

D
Daisuke Nishimura 已提交
5104 5105
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5106
{
D
Daisuke Nishimura 已提交
5107
	struct page *page = vm_normal_page(vma, addr, ptent);
5108

D
Daisuke Nishimura 已提交
5109 5110 5111 5112
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5113
		if (!move_anon() || page_mapcount(page) > 2)
D
Daisuke Nishimura 已提交
5114
			return NULL;
5115 5116
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5135 5136
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5137
		return NULL;
5138
	}
D
Daisuke Nishimura 已提交
5139 5140 5141 5142 5143 5144
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5166 5167 5168 5169 5170 5171
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5172
		if (do_swap_account)
5173 5174
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5175
	}
5176
#endif
5177 5178 5179
	return page;
}

D
Daisuke Nishimura 已提交
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5192 5193
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5194 5195 5196

	if (!page && !ent.val)
		return 0;
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5212 5213
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5214
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5215 5216 5217
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5230
	split_huge_page_pmd(walk->mm, pmd);
5231 5232
	if (pmd_trans_unstable(pmd))
		return 0;
5233

5234 5235 5236 5237 5238 5239 5240
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5241 5242 5243
	return 0;
}

5244 5245 5246 5247 5248
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5249
	down_read(&mm->mmap_sem);
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5261
	up_read(&mm->mmap_sem);
5262 5263 5264 5265 5266 5267 5268 5269 5270

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5271 5272 5273 5274 5275
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5276 5277
}

5278 5279
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5280
{
5281 5282 5283
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5284
	/* we must uncharge all the leftover precharges from mc.to */
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5296
	}
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5331
	spin_lock(&mc.lock);
5332 5333
	mc.from = NULL;
	mc.to = NULL;
5334
	spin_unlock(&mc.lock);
5335
	mem_cgroup_end_move(from);
5336 5337
}

5338 5339
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5340
{
5341
	struct task_struct *p = cgroup_taskset_first(tset);
5342
	int ret = 0;
5343
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5344

5345
	if (memcg->move_charge_at_immigrate) {
5346 5347 5348
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5349
		VM_BUG_ON(from == memcg);
5350 5351 5352 5353 5354

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5355 5356 5357 5358
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5359
			VM_BUG_ON(mc.moved_charge);
5360
			VM_BUG_ON(mc.moved_swap);
5361
			mem_cgroup_start_move(from);
5362
			spin_lock(&mc.lock);
5363
			mc.from = from;
5364
			mc.to = memcg;
5365
			spin_unlock(&mc.lock);
5366
			/* We set mc.moving_task later */
5367 5368 5369 5370

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5371 5372
		}
		mmput(mm);
5373 5374 5375 5376
	}
	return ret;
}

5377 5378
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5379
{
5380
	mem_cgroup_clear_mc();
5381 5382
}

5383 5384 5385
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5386
{
5387 5388 5389 5390 5391
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5392
	split_huge_page_pmd(walk->mm, pmd);
5393 5394
	if (pmd_trans_unstable(pmd))
		return 0;
5395 5396 5397 5398 5399 5400 5401 5402
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5403
		swp_entry_t ent;
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5415 5416
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5417
				mc.precharge--;
5418 5419
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5420 5421 5422 5423 5424
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5425 5426
		case MC_TARGET_SWAP:
			ent = target.ent;
5427 5428
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5429
				mc.precharge--;
5430 5431 5432
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5433
			break;
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5448
		ret = mem_cgroup_do_precharge(1);
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5492
	up_read(&mm->mmap_sem);
5493 5494
}

5495 5496
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5497
{
5498
	struct task_struct *p = cgroup_taskset_first(tset);
5499
	struct mm_struct *mm = get_task_mm(p);
5500 5501

	if (mm) {
5502 5503 5504
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5505 5506
		mmput(mm);
	}
5507 5508
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5509
}
5510
#else	/* !CONFIG_MMU */
5511 5512
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5513 5514 5515
{
	return 0;
}
5516 5517
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5518 5519
{
}
5520 5521
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5522 5523 5524
{
}
#endif
B
Balbir Singh 已提交
5525

B
Balbir Singh 已提交
5526 5527 5528 5529
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5530
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5531 5532
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5533 5534
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5535
	.attach = mem_cgroup_move_task,
5536
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5537
	.use_id = 1,
B
Balbir Singh 已提交
5538
};
5539 5540

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5541 5542 5543
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5544
	if (!strcmp(s, "1"))
5545
		really_do_swap_account = 1;
5546
	else if (!strcmp(s, "0"))
5547 5548 5549
		really_do_swap_account = 0;
	return 1;
}
5550
__setup("swapaccount=", enable_swap_account);
5551 5552

#endif