memcontrol.c 182.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

131 132 133 134 135 136 137 138 139
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
140
	MEM_CGROUP_TARGET_NUMAINFO,
141 142
	MEM_CGROUP_NTARGETS,
};
143 144 145
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
146

147
struct mem_cgroup_stat_cpu {
148
	long count[MEM_CGROUP_STAT_NSTATS];
149
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
150
	unsigned long nr_page_events;
151
	unsigned long targets[MEM_CGROUP_NTARGETS];
152 153
};

154
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
155 156 157 158
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
159
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
160 161
	unsigned long last_dead_count;

162 163 164 165
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

166 167 168 169
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
170
	struct lruvec		lruvec;
171
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
172

173 174
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

175 176 177 178
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
179
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
180
						/* use container_of	   */
181 182 183 184 185 186 187
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
188
	struct mem_cgroup_per_node *nodeinfo[0];
189 190
};

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

211 212 213 214 215
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
216
/* For threshold */
217
struct mem_cgroup_threshold_ary {
218
	/* An array index points to threshold just below or equal to usage. */
219
	int current_threshold;
220 221 222 223 224
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
225 226 227 228 229 230 231 232 233 234 235 236

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
237 238 239 240 241
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
242

243 244
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
245

B
Balbir Singh 已提交
246 247 248 249 250 251 252
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
253 254 255
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
256 257 258 259 260 261 262
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
281 282
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
283 284 285 286
		 */
		struct work_struct work_freeing;
	};

287 288 289 290
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
291 292 293 294
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
295
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
296 297 298 299

	bool		oom_lock;
	atomic_t	under_oom;

300
	atomic_t	refcnt;
301

302
	int	swappiness;
303 304
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
305

306 307 308
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

309 310 311 312
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
313
	struct mem_cgroup_thresholds thresholds;
314

315
	/* thresholds for mem+swap usage. RCU-protected */
316
	struct mem_cgroup_thresholds memsw_thresholds;
317

K
KAMEZAWA Hiroyuki 已提交
318 319
	/* For oom notifier event fd */
	struct list_head oom_notify;
320

321 322 323 324 325
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
326 327 328 329
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
330 331
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
332
	/*
333
	 * percpu counter.
334
	 */
335
	struct mem_cgroup_stat_cpu __percpu *stat;
336 337 338 339 340 341
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
342

M
Michal Hocko 已提交
343
	atomic_t	dead_count;
M
Michal Hocko 已提交
344
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
345 346
	struct tcp_memcontrol tcp_mem;
#endif
347 348 349 350 351 352 353 354
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 *
	 * WARNING: This has to be the last element of the struct. Don't
	 * add new fields after this point.
	 */
	struct mem_cgroup_lru_info info;
B
Balbir Singh 已提交
370 371
};

372 373 374 375 376 377
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

378 379 380
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
381
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
382
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
383 384
};

385 386 387
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
388 389 390 391 392 393

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
394 395 396 397 398 399

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

400 401 402 403 404
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

405 406 407 408 409
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

410 411 412 413 414 415 416 417 418 419 420
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
421 422
#endif

423 424
/* Stuffs for move charges at task migration. */
/*
425 426
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
427 428
 */
enum move_type {
429
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
430
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
431 432 433
	NR_MOVE_TYPE,
};

434 435
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
436
	spinlock_t	  lock; /* for from, to */
437 438
	struct mem_cgroup *from;
	struct mem_cgroup *to;
439
	unsigned long immigrate_flags;
440
	unsigned long precharge;
441
	unsigned long moved_charge;
442
	unsigned long moved_swap;
443 444 445
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
446
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
447 448
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
449

D
Daisuke Nishimura 已提交
450 451
static bool move_anon(void)
{
452
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
453 454
}

455 456
static bool move_file(void)
{
457
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
458 459
}

460 461 462 463
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
464 465
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
466

467 468
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
469
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
470
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
471
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
472 473 474
	NR_CHARGE_TYPE,
};

475
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
476 477 478 479
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
480
	_KMEM,
G
Glauber Costa 已提交
481 482
};

483 484
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
485
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
486 487
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
488

489 490 491 492 493 494 495 496
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

497 498 499 500 501 502 503
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

504 505
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
506

507 508 509 510 511 512
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

513 514 515 516 517
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
518
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
519
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
520 521 522

void sock_update_memcg(struct sock *sk)
{
523
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
524
		struct mem_cgroup *memcg;
525
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
526 527 528

		BUG_ON(!sk->sk_prot->proto_cgroup);

529 530 531 532 533 534 535 536 537 538 539 540 541 542
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
543 544
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
545 546
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
547
			mem_cgroup_get(memcg);
548
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
549 550 551 552 553 554 555 556
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
557
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
558 559 560 561 562 563
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
564 565 566 567 568 569 570 571 572

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
573

574 575 576 577 578 579 580 581 582 583 584 585
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

586
#ifdef CONFIG_MEMCG_KMEM
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
605 606
int memcg_limited_groups_array_size;

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

622 623 624 625 626 627
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
628
struct static_key memcg_kmem_enabled_key;
629
EXPORT_SYMBOL(memcg_kmem_enabled_key);
630 631 632

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
633
	if (memcg_kmem_is_active(memcg)) {
634
		static_key_slow_dec(&memcg_kmem_enabled_key);
635 636
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
637 638 639 640 641
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
642 643 644 645 646 647 648 649 650 651 652 653 654
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

655
static void drain_all_stock_async(struct mem_cgroup *memcg);
656

657
static struct mem_cgroup_per_zone *
658
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
659
{
660
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
661
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
662 663
}

664
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
665
{
666
	return &memcg->css;
667 668
}

669
static struct mem_cgroup_per_zone *
670
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
671
{
672 673
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
674

675
	return mem_cgroup_zoneinfo(memcg, nid, zid);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
694
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
695
				struct mem_cgroup_per_zone *mz,
696 697
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
698 699 700 701 702 703 704 705
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

706 707 708
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
725 726 727
}

static void
728
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
729 730 731 732 733 734 735 736 737
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

738
static void
739
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
740 741 742 743
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
744
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
745 746 747 748
	spin_unlock(&mctz->lock);
}


749
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
750
{
751
	unsigned long long excess;
752 753
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
754 755
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
756 757 758
	mctz = soft_limit_tree_from_page(page);

	/*
759 760
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
761
	 */
762 763 764
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
765 766 767 768
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
769
		if (excess || mz->on_tree) {
770 771 772
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
773
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
774
			/*
775 776
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
777
			 */
778
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
779 780
			spin_unlock(&mctz->lock);
		}
781 782 783
	}
}

784
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
785 786 787 788 789
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
790
	for_each_node(node) {
791
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
792
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
793
			mctz = soft_limit_tree_node_zone(node, zone);
794
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
795 796 797 798
		}
	}
}

799 800 801 802
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
803
	struct mem_cgroup_per_zone *mz;
804 805

retry:
806
	mz = NULL;
807 808 809 810 811 812 813 814 815 816
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
817 818 819
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
855
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
856
				 enum mem_cgroup_stat_index idx)
857
{
858
	long val = 0;
859 860
	int cpu;

861 862
	get_online_cpus();
	for_each_online_cpu(cpu)
863
		val += per_cpu(memcg->stat->count[idx], cpu);
864
#ifdef CONFIG_HOTPLUG_CPU
865 866 867
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
868 869
#endif
	put_online_cpus();
870 871 872
	return val;
}

873
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
874 875 876
					 bool charge)
{
	int val = (charge) ? 1 : -1;
877
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
878 879
}

880
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
881 882 883 884 885 886
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
887
		val += per_cpu(memcg->stat->events[idx], cpu);
888
#ifdef CONFIG_HOTPLUG_CPU
889 890 891
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
892 893 894 895
#endif
	return val;
}

896
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
897
					 bool anon, int nr_pages)
898
{
899 900
	preempt_disable();

901 902 903 904 905 906
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
907
				nr_pages);
908
	else
909
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
910
				nr_pages);
911

912 913
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
914
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
915
	else {
916
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
917 918
		nr_pages = -nr_pages; /* for event */
	}
919

920
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
921

922
	preempt_enable();
923 924
}

925
unsigned long
926
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
927 928 929 930 931 932 933 934
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
935
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
936
			unsigned int lru_mask)
937 938
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
939
	enum lru_list lru;
940 941
	unsigned long ret = 0;

942
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
943

H
Hugh Dickins 已提交
944 945 946
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
947 948 949 950 951
	}
	return ret;
}

static unsigned long
952
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
953 954
			int nid, unsigned int lru_mask)
{
955 956 957
	u64 total = 0;
	int zid;

958
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
959 960
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
961

962 963
	return total;
}
964

965
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
966
			unsigned int lru_mask)
967
{
968
	int nid;
969 970
	u64 total = 0;

971
	for_each_node_state(nid, N_MEMORY)
972
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
973
	return total;
974 975
}

976 977
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
978 979 980
{
	unsigned long val, next;

981
	val = __this_cpu_read(memcg->stat->nr_page_events);
982
	next = __this_cpu_read(memcg->stat->targets[target]);
983
	/* from time_after() in jiffies.h */
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1000
	}
1001
	return false;
1002 1003 1004 1005 1006 1007
}

/*
 * Check events in order.
 *
 */
1008
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1009
{
1010
	preempt_disable();
1011
	/* threshold event is triggered in finer grain than soft limit */
1012 1013
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1014 1015
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1016 1017 1018 1019 1020 1021 1022 1023 1024

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1025
		mem_cgroup_threshold(memcg);
1026
		if (unlikely(do_softlimit))
1027
			mem_cgroup_update_tree(memcg, page);
1028
#if MAX_NUMNODES > 1
1029
		if (unlikely(do_numainfo))
1030
			atomic_inc(&memcg->numainfo_events);
1031
#endif
1032 1033
	} else
		preempt_enable();
1034 1035
}

G
Glauber Costa 已提交
1036
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1037
{
1038 1039
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1040 1041
}

1042
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043
{
1044 1045 1046 1047 1048 1049 1050 1051
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1052
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1053 1054
}

1055
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1056
{
1057
	struct mem_cgroup *memcg = NULL;
1058 1059 1060

	if (!mm)
		return NULL;
1061 1062 1063 1064 1065 1066 1067
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1068 1069
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1070
			break;
1071
	} while (!css_tryget(&memcg->css));
1072
	rcu_read_unlock();
1073
	return memcg;
1074 1075
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1096
{
1097
	struct mem_cgroup *memcg = NULL;
1098
	struct mem_cgroup *last_visited = NULL;
M
Michal Hocko 已提交
1099
	unsigned long uninitialized_var(dead_count);
1100

1101 1102 1103
	if (mem_cgroup_disabled())
		return NULL;

1104 1105
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1106

1107
	if (prev && !reclaim)
1108
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1109

1110 1111
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1112
			goto out_css_put;
1113 1114
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1115

1116
	rcu_read_lock();
1117
	while (!memcg) {
1118
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1119
		struct cgroup_subsys_state *css = NULL;
1120

1121 1122 1123 1124 1125 1126 1127
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1128 1129
			last_visited = iter->last_visited;
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1130
				iter->last_visited = NULL;
1131 1132
				goto out_unlock;
			}
M
Michal Hocko 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

			/*
			 * If the dead_count mismatches, a destruction
			 * has happened or is happening concurrently.
			 * If the dead_count matches, a destruction
			 * might still happen concurrently, but since
			 * we checked under RCU, that destruction
			 * won't free the object until we release the
			 * RCU reader lock.  Thus, the dead_count
			 * check verifies the pointer is still valid,
			 * css_tryget() verifies the cgroup pointed to
			 * is alive.
			 */
			dead_count = atomic_read(&root->dead_count);
			smp_rmb();
			last_visited = iter->last_visited;
			if (last_visited) {
				if ((dead_count != iter->last_dead_count) ||
					!css_tryget(&last_visited->css)) {
					last_visited = NULL;
				}
			}
1155
		}
K
KAMEZAWA Hiroyuki 已提交
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		/*
		 * Root is not visited by cgroup iterators so it needs an
		 * explicit visit.
		 */
		if (!last_visited) {
			css = &root->css;
		} else {
			struct cgroup *prev_cgroup, *next_cgroup;

			prev_cgroup = (last_visited == root) ? NULL
				: last_visited->css.cgroup;
			next_cgroup = cgroup_next_descendant_pre(prev_cgroup,
					root->css.cgroup);
			if (next_cgroup)
				css = cgroup_subsys_state(next_cgroup,
						mem_cgroup_subsys_id);
		}

		/*
		 * Even if we found a group we have to make sure it is alive.
		 * css && !memcg means that the groups should be skipped and
		 * we should continue the tree walk.
		 * last_visited css is safe to use because it is protected by
		 * css_get and the tree walk is rcu safe.
		 */
		if (css == &root->css || (css && css_tryget(css)))
			memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1184

1185
		if (reclaim) {
1186 1187 1188 1189 1190 1191 1192 1193 1194
			struct mem_cgroup *curr = memcg;

			if (last_visited)
				css_put(&last_visited->css);

			if (css && !memcg)
				curr = mem_cgroup_from_css(css);

			iter->last_visited = curr;
M
Michal Hocko 已提交
1195 1196
			smp_wmb();
			iter->last_dead_count = dead_count;
1197

1198 1199 1200 1201
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
1202 1203
		} else if (css && !memcg) {
			last_visited = mem_cgroup_from_css(css);
1204
		}
1205 1206

		if (prev && !css)
1207
			goto out_unlock;
1208
	}
1209 1210
out_unlock:
	rcu_read_unlock();
1211 1212 1213 1214
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1215
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1216
}
K
KAMEZAWA Hiroyuki 已提交
1217

1218 1219 1220 1221 1222 1223 1224
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1225 1226 1227 1228 1229 1230
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1231

1232 1233 1234 1235 1236 1237
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1238
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1239
	     iter != NULL;				\
1240
	     iter = mem_cgroup_iter(root, iter, NULL))
1241

1242
#define for_each_mem_cgroup(iter)			\
1243
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1244
	     iter != NULL;				\
1245
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1246

1247
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1248
{
1249
	struct mem_cgroup *memcg;
1250 1251

	rcu_read_lock();
1252 1253
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1254 1255 1256 1257
		goto out;

	switch (idx) {
	case PGFAULT:
1258 1259 1260 1261
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1262 1263 1264 1265 1266 1267 1268
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1269
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1270

1271 1272 1273
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1274
 * @memcg: memcg of the wanted lruvec
1275 1276 1277 1278 1279 1280 1281 1282 1283
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1284
	struct lruvec *lruvec;
1285

1286 1287 1288 1289
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1290 1291

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1302 1303
}

K
KAMEZAWA Hiroyuki 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1317

1318
/**
1319
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1320
 * @page: the page
1321
 * @zone: zone of the page
1322
 */
1323
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1324 1325
{
	struct mem_cgroup_per_zone *mz;
1326 1327
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1328
	struct lruvec *lruvec;
1329

1330 1331 1332 1333
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1334

K
KAMEZAWA Hiroyuki 已提交
1335
	pc = lookup_page_cgroup(page);
1336
	memcg = pc->mem_cgroup;
1337 1338

	/*
1339
	 * Surreptitiously switch any uncharged offlist page to root:
1340 1341 1342 1343 1344 1345 1346
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1347
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1348 1349
		pc->mem_cgroup = memcg = root_mem_cgroup;

1350
	mz = page_cgroup_zoneinfo(memcg, page);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1361
}
1362

1363
/**
1364 1365 1366 1367
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1368
 *
1369 1370
 * This function must be called when a page is added to or removed from an
 * lru list.
1371
 */
1372 1373
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1374 1375
{
	struct mem_cgroup_per_zone *mz;
1376
	unsigned long *lru_size;
1377 1378 1379 1380

	if (mem_cgroup_disabled())
		return;

1381 1382 1383 1384
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1385
}
1386

1387
/*
1388
 * Checks whether given mem is same or in the root_mem_cgroup's
1389 1390
 * hierarchy subtree
 */
1391 1392
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1393
{
1394 1395
	if (root_memcg == memcg)
		return true;
1396
	if (!root_memcg->use_hierarchy || !memcg)
1397
		return false;
1398 1399 1400 1401 1402 1403 1404 1405
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1406
	rcu_read_lock();
1407
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1408 1409
	rcu_read_unlock();
	return ret;
1410 1411
}

1412
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1413 1414
{
	int ret;
1415
	struct mem_cgroup *curr = NULL;
1416
	struct task_struct *p;
1417

1418
	p = find_lock_task_mm(task);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1434 1435
	if (!curr)
		return 0;
1436
	/*
1437
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1438
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1439 1440
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1441
	 */
1442
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1443
	css_put(&curr->css);
1444 1445 1446
	return ret;
}

1447
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1448
{
1449
	unsigned long inactive_ratio;
1450
	unsigned long inactive;
1451
	unsigned long active;
1452
	unsigned long gb;
1453

1454 1455
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1456

1457 1458 1459 1460 1461 1462
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1463
	return inactive * inactive_ratio < active;
1464 1465
}

1466 1467 1468
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1469
/**
1470
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1471
 * @memcg: the memory cgroup
1472
 *
1473
 * Returns the maximum amount of memory @mem can be charged with, in
1474
 * pages.
1475
 */
1476
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1477
{
1478 1479
	unsigned long long margin;

1480
	margin = res_counter_margin(&memcg->res);
1481
	if (do_swap_account)
1482
		margin = min(margin, res_counter_margin(&memcg->memsw));
1483
	return margin >> PAGE_SHIFT;
1484 1485
}

1486
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1487 1488 1489 1490 1491 1492 1493
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1494
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1495 1496
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1511 1512 1513 1514

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1515
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1516
{
1517
	atomic_inc(&memcg_moving);
1518
	atomic_inc(&memcg->moving_account);
1519 1520 1521
	synchronize_rcu();
}

1522
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1523
{
1524 1525 1526 1527
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1528 1529
	if (memcg) {
		atomic_dec(&memcg_moving);
1530
		atomic_dec(&memcg->moving_account);
1531
	}
1532
}
1533

1534 1535 1536
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1537 1538
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1539 1540 1541 1542 1543 1544 1545
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1546
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1547 1548
{
	VM_BUG_ON(!rcu_read_lock_held());
1549
	return atomic_read(&memcg->moving_account) > 0;
1550
}
1551

1552
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1553
{
1554 1555
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1556
	bool ret = false;
1557 1558 1559 1560 1561 1562 1563 1564 1565
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1566

1567 1568
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1569 1570
unlock:
	spin_unlock(&mc.lock);
1571 1572 1573
	return ret;
}

1574
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1575 1576
{
	if (mc.moving_task && current != mc.moving_task) {
1577
		if (mem_cgroup_under_move(memcg)) {
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1590 1591 1592 1593
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1594
 * see mem_cgroup_stolen(), too.
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1608
#define K(x) ((x) << (PAGE_SHIFT-10))
1609
/**
1610
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1628 1629
	struct mem_cgroup *iter;
	unsigned int i;
1630

1631
	if (!p)
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1650
	pr_info("Task in %s killed", memcg_name);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1663
	pr_cont(" as a result of limit of %s\n", memcg_name);
1664 1665
done:

1666
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1667 1668 1669
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1670
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1671 1672 1673
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1674
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1675 1676 1677
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1702 1703
}

1704 1705 1706 1707
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1708
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1709 1710
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1711 1712
	struct mem_cgroup *iter;

1713
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1714
		num++;
1715 1716 1717
	return num;
}

D
David Rientjes 已提交
1718 1719 1720
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1721
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1722 1723 1724
{
	u64 limit;

1725 1726
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1727
	/*
1728
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1729
	 */
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1744 1745
}

1746 1747
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1748 1749 1750 1751 1752 1753 1754
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1849 1850
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1851
 * @memcg: the target memcg
1852 1853 1854 1855 1856 1857 1858
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1859
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1860 1861
		int nid, bool noswap)
{
1862
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1863 1864 1865
		return true;
	if (noswap || !total_swap_pages)
		return false;
1866
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1867 1868 1869 1870
		return true;
	return false;

}
1871 1872 1873 1874 1875 1876 1877 1878
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1879
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1880 1881
{
	int nid;
1882 1883 1884 1885
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1886
	if (!atomic_read(&memcg->numainfo_events))
1887
		return;
1888
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1889 1890 1891
		return;

	/* make a nodemask where this memcg uses memory from */
1892
	memcg->scan_nodes = node_states[N_MEMORY];
1893

1894
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1895

1896 1897
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1898
	}
1899

1900 1901
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1916
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1917 1918 1919
{
	int node;

1920 1921
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1922

1923
	node = next_node(node, memcg->scan_nodes);
1924
	if (node == MAX_NUMNODES)
1925
		node = first_node(memcg->scan_nodes);
1926 1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1935
	memcg->last_scanned_node = node;
1936 1937 1938
	return node;
}

1939 1940 1941 1942 1943 1944
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1945
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1946 1947 1948 1949 1950 1951 1952
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1953 1954
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1955
		     nid < MAX_NUMNODES;
1956
		     nid = next_node(nid, memcg->scan_nodes)) {
1957

1958
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1959 1960 1961 1962 1963 1964
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1965
	for_each_node_state(nid, N_MEMORY) {
1966
		if (node_isset(nid, memcg->scan_nodes))
1967
			continue;
1968
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1969 1970 1971 1972 1973
			return true;
	}
	return false;
}

1974
#else
1975
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1976 1977 1978
{
	return 0;
}
1979

1980
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1981
{
1982
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1983
}
1984 1985
#endif

1986 1987 1988 1989
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1990
{
1991
	struct mem_cgroup *victim = NULL;
1992
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1993
	int loop = 0;
1994
	unsigned long excess;
1995
	unsigned long nr_scanned;
1996 1997 1998 1999
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
2000

2001
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
2002

2003
	while (1) {
2004
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2005
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
2006
			loop++;
2007 2008 2009 2010 2011 2012
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
2013
				if (!total)
2014 2015
					break;
				/*
L
Lucas De Marchi 已提交
2016
				 * We want to do more targeted reclaim.
2017 2018 2019 2020 2021
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
2022
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2023 2024
					break;
			}
2025
			continue;
2026
		}
2027
		if (!mem_cgroup_reclaimable(victim, false))
2028
			continue;
2029 2030 2031 2032
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
2033
			break;
2034
	}
2035
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
2036
	return total;
2037 2038
}

K
KAMEZAWA Hiroyuki 已提交
2039 2040 2041
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2042
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2043
 */
2044
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2045
{
2046
	struct mem_cgroup *iter, *failed = NULL;
2047

2048
	for_each_mem_cgroup_tree(iter, memcg) {
2049
		if (iter->oom_lock) {
2050 2051 2052 2053 2054
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2055 2056
			mem_cgroup_iter_break(memcg, iter);
			break;
2057 2058
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2059
	}
K
KAMEZAWA Hiroyuki 已提交
2060

2061
	if (!failed)
2062
		return true;
2063 2064 2065 2066 2067

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2068
	for_each_mem_cgroup_tree(iter, memcg) {
2069
		if (iter == failed) {
2070 2071
			mem_cgroup_iter_break(memcg, iter);
			break;
2072 2073 2074
		}
		iter->oom_lock = false;
	}
2075
	return false;
2076
}
2077

2078
/*
2079
 * Has to be called with memcg_oom_lock
2080
 */
2081
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2082
{
K
KAMEZAWA Hiroyuki 已提交
2083 2084
	struct mem_cgroup *iter;

2085
	for_each_mem_cgroup_tree(iter, memcg)
2086 2087 2088 2089
		iter->oom_lock = false;
	return 0;
}

2090
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2091 2092 2093
{
	struct mem_cgroup *iter;

2094
	for_each_mem_cgroup_tree(iter, memcg)
2095 2096 2097
		atomic_inc(&iter->under_oom);
}

2098
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2099 2100 2101
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2102 2103 2104 2105 2106
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2107
	for_each_mem_cgroup_tree(iter, memcg)
2108
		atomic_add_unless(&iter->under_oom, -1, 0);
2109 2110
}

2111
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2112 2113
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2114
struct oom_wait_info {
2115
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2116 2117 2118 2119 2120 2121
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2122 2123
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2124 2125 2126
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2127
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2128 2129

	/*
2130
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2131 2132
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2133 2134
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2135 2136 2137 2138
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2139
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2140
{
2141 2142
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2143 2144
}

2145
static void memcg_oom_recover(struct mem_cgroup *memcg)
2146
{
2147 2148
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2149 2150
}

K
KAMEZAWA Hiroyuki 已提交
2151 2152 2153
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2154 2155
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2156
{
K
KAMEZAWA Hiroyuki 已提交
2157
	struct oom_wait_info owait;
2158
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2159

2160
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2161 2162 2163 2164
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2165
	need_to_kill = true;
2166
	mem_cgroup_mark_under_oom(memcg);
2167

2168
	/* At first, try to OOM lock hierarchy under memcg.*/
2169
	spin_lock(&memcg_oom_lock);
2170
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2171 2172 2173 2174 2175
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2176
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2177
	if (!locked || memcg->oom_kill_disable)
2178 2179
		need_to_kill = false;
	if (locked)
2180
		mem_cgroup_oom_notify(memcg);
2181
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2182

2183 2184
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2185
		mem_cgroup_out_of_memory(memcg, mask, order);
2186
	} else {
K
KAMEZAWA Hiroyuki 已提交
2187
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2188
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2189
	}
2190
	spin_lock(&memcg_oom_lock);
2191
	if (locked)
2192 2193
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2194
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2195

2196
	mem_cgroup_unmark_under_oom(memcg);
2197

K
KAMEZAWA Hiroyuki 已提交
2198 2199 2200
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2201
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2202
	return true;
2203 2204
}

2205 2206 2207
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2225 2226
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2227
 */
2228

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2242
	 * need to take move_lock_mem_cgroup(). Because we already hold
2243
	 * rcu_read_lock(), any calls to move_account will be delayed until
2244
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2245
	 */
2246
	if (!mem_cgroup_stolen(memcg))
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2264
	 * should take move_lock_mem_cgroup().
2265 2266 2267 2268
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2269 2270
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2271
{
2272
	struct mem_cgroup *memcg;
2273
	struct page_cgroup *pc = lookup_page_cgroup(page);
2274
	unsigned long uninitialized_var(flags);
2275

2276
	if (mem_cgroup_disabled())
2277
		return;
2278

2279 2280
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2281
		return;
2282 2283

	switch (idx) {
2284 2285
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2286 2287 2288
		break;
	default:
		BUG();
2289
	}
2290

2291
	this_cpu_add(memcg->stat->count[idx], val);
2292
}
2293

2294 2295 2296 2297
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2298
#define CHARGE_BATCH	32U
2299 2300
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2301
	unsigned int nr_pages;
2302
	struct work_struct work;
2303
	unsigned long flags;
2304
#define FLUSHING_CACHED_CHARGE	0
2305 2306
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2307
static DEFINE_MUTEX(percpu_charge_mutex);
2308

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2319
 */
2320
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2321 2322 2323 2324
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2325 2326 2327
	if (nr_pages > CHARGE_BATCH)
		return false;

2328
	stock = &get_cpu_var(memcg_stock);
2329 2330
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2344 2345 2346 2347
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2348
		if (do_swap_account)
2349 2350
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2363
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2364 2365
}

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2377 2378
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2379
 * This will be consumed by consume_stock() function, later.
2380
 */
2381
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2382 2383 2384
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2385
	if (stock->cached != memcg) { /* reset if necessary */
2386
		drain_stock(stock);
2387
		stock->cached = memcg;
2388
	}
2389
	stock->nr_pages += nr_pages;
2390 2391 2392 2393
	put_cpu_var(memcg_stock);
}

/*
2394
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2395 2396
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2397
 */
2398
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2399
{
2400
	int cpu, curcpu;
2401

2402 2403
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2404
	curcpu = get_cpu();
2405 2406
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2407
		struct mem_cgroup *memcg;
2408

2409 2410
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2411
			continue;
2412
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2413
			continue;
2414 2415 2416 2417 2418 2419
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2420
	}
2421
	put_cpu();
2422 2423 2424 2425 2426 2427

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2428
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2429 2430 2431
			flush_work(&stock->work);
	}
out:
2432
 	put_online_cpus();
2433 2434 2435 2436 2437 2438 2439 2440
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2441
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2442
{
2443 2444 2445 2446 2447
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2448
	drain_all_stock(root_memcg, false);
2449
	mutex_unlock(&percpu_charge_mutex);
2450 2451 2452
}

/* This is a synchronous drain interface. */
2453
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2454 2455
{
	/* called when force_empty is called */
2456
	mutex_lock(&percpu_charge_mutex);
2457
	drain_all_stock(root_memcg, true);
2458
	mutex_unlock(&percpu_charge_mutex);
2459 2460
}

2461 2462 2463 2464
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2465
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2466 2467 2468
{
	int i;

2469
	spin_lock(&memcg->pcp_counter_lock);
2470
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2471
		long x = per_cpu(memcg->stat->count[i], cpu);
2472

2473 2474
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2475
	}
2476
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2477
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2478

2479 2480
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2481
	}
2482
	spin_unlock(&memcg->pcp_counter_lock);
2483 2484 2485
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2486 2487 2488 2489 2490
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2491
	struct mem_cgroup *iter;
2492

2493
	if (action == CPU_ONLINE)
2494 2495
		return NOTIFY_OK;

2496
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2497
		return NOTIFY_OK;
2498

2499
	for_each_mem_cgroup(iter)
2500 2501
		mem_cgroup_drain_pcp_counter(iter, cpu);

2502 2503 2504 2505 2506
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2517
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2518 2519
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2520
{
2521
	unsigned long csize = nr_pages * PAGE_SIZE;
2522 2523 2524 2525 2526
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2527
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2528 2529 2530 2531

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2532
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2533 2534 2535
		if (likely(!ret))
			return CHARGE_OK;

2536
		res_counter_uncharge(&memcg->res, csize);
2537 2538 2539 2540
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2541 2542 2543 2544
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2545
	if (nr_pages > min_pages)
2546 2547 2548 2549 2550
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2551 2552 2553
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2554
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2555
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2556
		return CHARGE_RETRY;
2557
	/*
2558 2559 2560 2561 2562 2563 2564
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2565
	 */
2566
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2580
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2581 2582 2583 2584 2585
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2586
/*
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2606
 */
2607
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2608
				   gfp_t gfp_mask,
2609
				   unsigned int nr_pages,
2610
				   struct mem_cgroup **ptr,
2611
				   bool oom)
2612
{
2613
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2614
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2615
	struct mem_cgroup *memcg = NULL;
2616
	int ret;
2617

K
KAMEZAWA Hiroyuki 已提交
2618 2619 2620 2621 2622 2623 2624 2625
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2626

2627
	/*
2628 2629
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2630
	 * thread group leader migrates. It's possible that mm is not
2631
	 * set, if so charge the root memcg (happens for pagecache usage).
2632
	 */
2633
	if (!*ptr && !mm)
2634
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2635
again:
2636 2637 2638
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2639
			goto done;
2640
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2641
			goto done;
2642
		css_get(&memcg->css);
2643
	} else {
K
KAMEZAWA Hiroyuki 已提交
2644
		struct task_struct *p;
2645

K
KAMEZAWA Hiroyuki 已提交
2646 2647 2648
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2649
		 * Because we don't have task_lock(), "p" can exit.
2650
		 * In that case, "memcg" can point to root or p can be NULL with
2651 2652 2653 2654 2655 2656
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2657
		 */
2658
		memcg = mem_cgroup_from_task(p);
2659 2660 2661
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2662 2663 2664
			rcu_read_unlock();
			goto done;
		}
2665
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2678
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2679 2680 2681 2682 2683
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2684

2685 2686
	do {
		bool oom_check;
2687

2688
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2689
		if (fatal_signal_pending(current)) {
2690
			css_put(&memcg->css);
2691
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2692
		}
2693

2694 2695 2696 2697
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2698
		}
2699

2700 2701
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2702 2703 2704 2705
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2706
			batch = nr_pages;
2707 2708
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2709
			goto again;
2710
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2711
			css_put(&memcg->css);
2712 2713
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2714
			if (!oom) {
2715
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2716
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2717
			}
2718 2719 2720 2721
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2722
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2723
			goto bypass;
2724
		}
2725 2726
	} while (ret != CHARGE_OK);

2727
	if (batch > nr_pages)
2728 2729
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2730
done:
2731
	*ptr = memcg;
2732 2733
	return 0;
nomem:
2734
	*ptr = NULL;
2735
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2736
bypass:
2737 2738
	*ptr = root_mem_cgroup;
	return -EINTR;
2739
}
2740

2741 2742 2743 2744 2745
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2746
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2747
				       unsigned int nr_pages)
2748
{
2749
	if (!mem_cgroup_is_root(memcg)) {
2750 2751
		unsigned long bytes = nr_pages * PAGE_SIZE;

2752
		res_counter_uncharge(&memcg->res, bytes);
2753
		if (do_swap_account)
2754
			res_counter_uncharge(&memcg->memsw, bytes);
2755
	}
2756 2757
}

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2776 2777
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2778 2779 2780
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2792
	return mem_cgroup_from_css(css);
2793 2794
}

2795
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2796
{
2797
	struct mem_cgroup *memcg = NULL;
2798
	struct page_cgroup *pc;
2799
	unsigned short id;
2800 2801
	swp_entry_t ent;

2802 2803 2804
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2805
	lock_page_cgroup(pc);
2806
	if (PageCgroupUsed(pc)) {
2807 2808 2809
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2810
	} else if (PageSwapCache(page)) {
2811
		ent.val = page_private(page);
2812
		id = lookup_swap_cgroup_id(ent);
2813
		rcu_read_lock();
2814 2815 2816
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2817
		rcu_read_unlock();
2818
	}
2819
	unlock_page_cgroup(pc);
2820
	return memcg;
2821 2822
}

2823
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2824
				       struct page *page,
2825
				       unsigned int nr_pages,
2826 2827
				       enum charge_type ctype,
				       bool lrucare)
2828
{
2829
	struct page_cgroup *pc = lookup_page_cgroup(page);
2830
	struct zone *uninitialized_var(zone);
2831
	struct lruvec *lruvec;
2832
	bool was_on_lru = false;
2833
	bool anon;
2834

2835
	lock_page_cgroup(pc);
2836
	VM_BUG_ON(PageCgroupUsed(pc));
2837 2838 2839 2840
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2841 2842 2843 2844 2845 2846 2847 2848 2849

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2850
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2851
			ClearPageLRU(page);
2852
			del_page_from_lru_list(page, lruvec, page_lru(page));
2853 2854 2855 2856
			was_on_lru = true;
		}
	}

2857
	pc->mem_cgroup = memcg;
2858 2859 2860 2861 2862 2863 2864
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2865
	smp_wmb();
2866
	SetPageCgroupUsed(pc);
2867

2868 2869
	if (lrucare) {
		if (was_on_lru) {
2870
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2871 2872
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2873
			add_page_to_lru_list(page, lruvec, page_lru(page));
2874 2875 2876 2877
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2878
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2879 2880 2881 2882 2883
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2884
	unlock_page_cgroup(pc);
2885

2886 2887 2888 2889 2890
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2891
	memcg_check_events(memcg, page);
2892
}
2893

2894 2895
static DEFINE_MUTEX(set_limit_mutex);

2896 2897 2898 2899 2900 2901 2902
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2990 2991 2992 2993 2994 2995 2996

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2997 2998
}

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3082 3083
static void kmem_cache_destroy_work_func(struct work_struct *w);

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

3103 3104
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3137 3138
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3139 3140 3141 3142 3143 3144
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3145 3146 3147
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3148 3149 3150 3151
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

3152 3153
	INIT_WORK(&s->memcg_params->destroy,
			kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3154
	if (memcg) {
3155
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3156
		s->memcg_params->root_cache = root_cache;
3157 3158 3159
	} else
		s->memcg_params->is_root_cache = true;

3160 3161 3162 3163 3164
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;
	mem_cgroup_put(memcg);

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

out:
3191 3192 3193
	kfree(s->memcg_params);
}

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3225 3226 3227 3228 3229 3230 3231 3232 3233
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3255 3256 3257 3258 3259 3260 3261 3262
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3283 3284 3285 3286 3287 3288 3289
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	char *name;
	struct dentry *dentry;

	rcu_read_lock();
	dentry = rcu_dereference(memcg->css.cgroup->dentry);
	rcu_read_unlock();

	BUG_ON(dentry == NULL);

	name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), dentry->d_name.name);

	return name;
}

static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	char *name;
	struct kmem_cache *new;

	name = memcg_cache_name(memcg, s);
	if (!name)
		return NULL;

	new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
G
Glauber Costa 已提交
3318
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3319

3320 3321 3322
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
	kfree(name);
	return new;
}

/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
G
Glauber Costa 已提交
3358
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3410
		cancel_work_sync(&c->memcg_params->destroy);
3411 3412 3413 3414 3415
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3416 3417 3418 3419 3420 3421
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 * Called with rcu_read_lock.
 */
3454 3455
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
	if (cw == NULL)
		return;

	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css)) {
		kfree(cw);
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3516 3517 3518
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
	rcu_read_unlock();

	if (!memcg_can_account_kmem(memcg))
		return cachep;

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
	if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
		/*
		 * If we are in a safe context (can wait, and not in interrupt
		 * context), we could be be predictable and return right away.
		 * This would guarantee that the allocation being performed
		 * already belongs in the new cache.
		 *
		 * However, there are some clashes that can arrive from locking.
		 * For instance, because we acquire the slab_mutex while doing
		 * kmem_cache_dup, this means no further allocation could happen
		 * with the slab_mutex held.
		 *
		 * Also, because cache creation issue get_online_cpus(), this
		 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
		 * that ends up reversed during cpu hotplug. (cpuset allocates
		 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
		 * better to defer everything.
		 */
		memcg_create_cache_enqueue(memcg, cachep);
		return cachep;
	}

	return cachep->memcg_params->memcg_caches[idx];
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3654 3655 3656 3657
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3658 3659
#endif /* CONFIG_MEMCG_KMEM */

3660 3661
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3662
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3663 3664
/*
 * Because tail pages are not marked as "used", set it. We're under
3665 3666 3667
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3668
 */
3669
void mem_cgroup_split_huge_fixup(struct page *head)
3670 3671
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3672 3673
	struct page_cgroup *pc;
	int i;
3674

3675 3676
	if (mem_cgroup_disabled())
		return;
3677 3678 3679 3680 3681 3682
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3683
}
3684
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3685

3686
/**
3687
 * mem_cgroup_move_account - move account of the page
3688
 * @page: the page
3689
 * @nr_pages: number of regular pages (>1 for huge pages)
3690 3691 3692 3693 3694
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3695
 * - page is not on LRU (isolate_page() is useful.)
3696
 * - compound_lock is held when nr_pages > 1
3697
 *
3698 3699
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3700
 */
3701 3702 3703 3704
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3705
				   struct mem_cgroup *to)
3706
{
3707 3708
	unsigned long flags;
	int ret;
3709
	bool anon = PageAnon(page);
3710

3711
	VM_BUG_ON(from == to);
3712
	VM_BUG_ON(PageLRU(page));
3713 3714 3715 3716 3717 3718 3719
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3720
	if (nr_pages > 1 && !PageTransHuge(page))
3721 3722 3723 3724 3725 3726 3727 3728
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3729
	move_lock_mem_cgroup(from, &flags);
3730

3731
	if (!anon && page_mapped(page)) {
3732 3733 3734 3735 3736
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3737
	}
3738
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3739

3740
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3741
	pc->mem_cgroup = to;
3742
	mem_cgroup_charge_statistics(to, anon, nr_pages);
3743
	move_unlock_mem_cgroup(from, &flags);
3744 3745
	ret = 0;
unlock:
3746
	unlock_page_cgroup(pc);
3747 3748 3749
	/*
	 * check events
	 */
3750 3751
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3752
out:
3753 3754 3755
	return ret;
}

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3776
 */
3777 3778
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3779
				  struct mem_cgroup *child)
3780 3781
{
	struct mem_cgroup *parent;
3782
	unsigned int nr_pages;
3783
	unsigned long uninitialized_var(flags);
3784 3785
	int ret;

3786
	VM_BUG_ON(mem_cgroup_is_root(child));
3787

3788 3789 3790 3791 3792
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3793

3794
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3795

3796 3797 3798 3799 3800 3801
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3802

3803 3804
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3805
		flags = compound_lock_irqsave(page);
3806
	}
3807

3808
	ret = mem_cgroup_move_account(page, nr_pages,
3809
				pc, child, parent);
3810 3811
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3812

3813
	if (nr_pages > 1)
3814
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3815
	putback_lru_page(page);
3816
put:
3817
	put_page(page);
3818
out:
3819 3820 3821
	return ret;
}

3822 3823 3824 3825 3826 3827 3828
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3829
				gfp_t gfp_mask, enum charge_type ctype)
3830
{
3831
	struct mem_cgroup *memcg = NULL;
3832
	unsigned int nr_pages = 1;
3833
	bool oom = true;
3834
	int ret;
A
Andrea Arcangeli 已提交
3835

A
Andrea Arcangeli 已提交
3836
	if (PageTransHuge(page)) {
3837
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3838
		VM_BUG_ON(!PageTransHuge(page));
3839 3840 3841 3842 3843
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3844
	}
3845

3846
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3847
	if (ret == -ENOMEM)
3848
		return ret;
3849
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3850 3851 3852
	return 0;
}

3853 3854
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3855
{
3856
	if (mem_cgroup_disabled())
3857
		return 0;
3858 3859 3860
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3861
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3862
					MEM_CGROUP_CHARGE_TYPE_ANON);
3863 3864
}

3865 3866 3867
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3868
 * struct page_cgroup is acquired. This refcnt will be consumed by
3869 3870
 * "commit()" or removed by "cancel()"
 */
3871 3872 3873 3874
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3875
{
3876
	struct mem_cgroup *memcg;
3877
	struct page_cgroup *pc;
3878
	int ret;
3879

3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3890 3891
	if (!do_swap_account)
		goto charge_cur_mm;
3892 3893
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3894
		goto charge_cur_mm;
3895 3896
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3897
	css_put(&memcg->css);
3898 3899
	if (ret == -EINTR)
		ret = 0;
3900
	return ret;
3901
charge_cur_mm:
3902 3903 3904 3905
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3906 3907
}

3908 3909 3910 3911 3912 3913
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3928 3929 3930
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3931 3932 3933 3934 3935 3936 3937 3938 3939
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3940
static void
3941
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3942
					enum charge_type ctype)
3943
{
3944
	if (mem_cgroup_disabled())
3945
		return;
3946
	if (!memcg)
3947
		return;
3948

3949
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3950 3951 3952
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3953 3954 3955
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3956
	 */
3957
	if (do_swap_account && PageSwapCache(page)) {
3958
		swp_entry_t ent = {.val = page_private(page)};
3959
		mem_cgroup_uncharge_swap(ent);
3960
	}
3961 3962
}

3963 3964
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3965
{
3966
	__mem_cgroup_commit_charge_swapin(page, memcg,
3967
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3968 3969
}

3970 3971
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3972
{
3973 3974 3975 3976
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3977
	if (mem_cgroup_disabled())
3978 3979 3980 3981 3982 3983 3984
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3985 3986
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3987 3988 3989 3990
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3991 3992
}

3993
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3994 3995
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3996 3997 3998
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3999

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4011
		batch->memcg = memcg;
4012 4013
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4014
	 * In those cases, all pages freed continuously can be expected to be in
4015 4016 4017 4018 4019 4020 4021 4022
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4023
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4024 4025
		goto direct_uncharge;

4026 4027 4028 4029 4030
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4031
	if (batch->memcg != memcg)
4032 4033
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4034
	batch->nr_pages++;
4035
	if (uncharge_memsw)
4036
		batch->memsw_nr_pages++;
4037 4038
	return;
direct_uncharge:
4039
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4040
	if (uncharge_memsw)
4041 4042 4043
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4044
}
4045

4046
/*
4047
 * uncharge if !page_mapped(page)
4048
 */
4049
static struct mem_cgroup *
4050 4051
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4052
{
4053
	struct mem_cgroup *memcg = NULL;
4054 4055
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4056
	bool anon;
4057

4058
	if (mem_cgroup_disabled())
4059
		return NULL;
4060

4061
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
4062

A
Andrea Arcangeli 已提交
4063
	if (PageTransHuge(page)) {
4064
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4065 4066
		VM_BUG_ON(!PageTransHuge(page));
	}
4067
	/*
4068
	 * Check if our page_cgroup is valid
4069
	 */
4070
	pc = lookup_page_cgroup(page);
4071
	if (unlikely(!PageCgroupUsed(pc)))
4072
		return NULL;
4073

4074
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4075

4076
	memcg = pc->mem_cgroup;
4077

K
KAMEZAWA Hiroyuki 已提交
4078 4079 4080
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4081 4082
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4083
	switch (ctype) {
4084
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4085 4086 4087 4088 4089
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4090 4091
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4092
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4093
		/* See mem_cgroup_prepare_migration() */
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4115
	}
K
KAMEZAWA Hiroyuki 已提交
4116

4117
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4118

4119
	ClearPageCgroupUsed(pc);
4120 4121 4122 4123 4124 4125
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4126

4127
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4128
	/*
4129
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4130 4131
	 * will never be freed.
	 */
4132
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4133
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4134 4135
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4136
	}
4137 4138 4139 4140 4141 4142
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4143
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4144

4145
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4146 4147 4148

unlock_out:
	unlock_page_cgroup(pc);
4149
	return NULL;
4150 4151
}

4152 4153
void mem_cgroup_uncharge_page(struct page *page)
{
4154 4155 4156
	/* early check. */
	if (page_mapped(page))
		return;
4157
	VM_BUG_ON(page->mapping && !PageAnon(page));
4158 4159
	if (PageSwapCache(page))
		return;
4160
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4161 4162 4163 4164 4165
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4166
	VM_BUG_ON(page->mapping);
4167
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4168 4169
}

4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4184 4185
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4206 4207 4208 4209 4210 4211
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4212
	memcg_oom_recover(batch->memcg);
4213 4214 4215 4216
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4217
#ifdef CONFIG_SWAP
4218
/*
4219
 * called after __delete_from_swap_cache() and drop "page" account.
4220 4221
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4222 4223
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4224 4225
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4226 4227 4228 4229 4230
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4231
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4232

K
KAMEZAWA Hiroyuki 已提交
4233 4234 4235 4236 4237
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4238
		swap_cgroup_record(ent, css_id(&memcg->css));
4239
}
4240
#endif
4241

A
Andrew Morton 已提交
4242
#ifdef CONFIG_MEMCG_SWAP
4243 4244 4245 4246 4247
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4248
{
4249
	struct mem_cgroup *memcg;
4250
	unsigned short id;
4251 4252 4253 4254

	if (!do_swap_account)
		return;

4255 4256 4257
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4258
	if (memcg) {
4259 4260 4261 4262
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4263
		if (!mem_cgroup_is_root(memcg))
4264
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4265
		mem_cgroup_swap_statistics(memcg, false);
4266 4267
		mem_cgroup_put(memcg);
	}
4268
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4269
}
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4286
				struct mem_cgroup *from, struct mem_cgroup *to)
4287 4288 4289 4290 4291 4292 4293 4294
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4295
		mem_cgroup_swap_statistics(to, true);
4296
		/*
4297 4298 4299 4300 4301 4302
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4303 4304 4305 4306 4307 4308 4309 4310
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4311
				struct mem_cgroup *from, struct mem_cgroup *to)
4312 4313 4314
{
	return -EINVAL;
}
4315
#endif
K
KAMEZAWA Hiroyuki 已提交
4316

4317
/*
4318 4319
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4320
 */
4321 4322
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4323
{
4324
	struct mem_cgroup *memcg = NULL;
4325
	unsigned int nr_pages = 1;
4326
	struct page_cgroup *pc;
4327
	enum charge_type ctype;
4328

4329
	*memcgp = NULL;
4330

4331
	if (mem_cgroup_disabled())
4332
		return;
4333

4334 4335 4336
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4337 4338 4339
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4340 4341
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4373
	}
4374
	unlock_page_cgroup(pc);
4375 4376 4377 4378
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4379
	if (!memcg)
4380
		return;
4381

4382
	*memcgp = memcg;
4383 4384 4385 4386 4387 4388 4389
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4390
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4391
	else
4392
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4393 4394 4395 4396 4397
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4398
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4399
}
4400

4401
/* remove redundant charge if migration failed*/
4402
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4403
	struct page *oldpage, struct page *newpage, bool migration_ok)
4404
{
4405
	struct page *used, *unused;
4406
	struct page_cgroup *pc;
4407
	bool anon;
4408

4409
	if (!memcg)
4410
		return;
4411

4412
	if (!migration_ok) {
4413 4414
		used = oldpage;
		unused = newpage;
4415
	} else {
4416
		used = newpage;
4417 4418
		unused = oldpage;
	}
4419
	anon = PageAnon(used);
4420 4421 4422 4423
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4424
	css_put(&memcg->css);
4425
	/*
4426 4427 4428
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4429
	 */
4430 4431 4432 4433 4434
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4435
	/*
4436 4437 4438 4439 4440 4441
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4442
	 */
4443
	if (anon)
4444
		mem_cgroup_uncharge_page(used);
4445
}
4446

4447 4448 4449 4450 4451 4452 4453 4454
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4455
	struct mem_cgroup *memcg = NULL;
4456 4457 4458 4459 4460 4461 4462 4463 4464
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4465 4466 4467 4468 4469
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
4470 4471
	unlock_page_cgroup(pc);

4472 4473 4474 4475 4476 4477
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4478 4479 4480 4481 4482
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4483
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4484 4485
}

4486 4487 4488 4489 4490 4491
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4492 4493 4494 4495 4496
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4516 4517
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4518 4519 4520 4521
	}
}
#endif

4522
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4523
				unsigned long long val)
4524
{
4525
	int retry_count;
4526
	u64 memswlimit, memlimit;
4527
	int ret = 0;
4528 4529
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4530
	int enlarge;
4531 4532 4533 4534 4535 4536 4537 4538 4539

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4540

4541
	enlarge = 0;
4542
	while (retry_count) {
4543 4544 4545 4546
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4547 4548 4549
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4550
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4551 4552 4553 4554 4555 4556
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4557 4558
			break;
		}
4559 4560 4561 4562 4563

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4564
		ret = res_counter_set_limit(&memcg->res, val);
4565 4566 4567 4568 4569 4570
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4571 4572 4573 4574 4575
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4576 4577
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4578 4579 4580 4581 4582 4583
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4584
	}
4585 4586
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4587

4588 4589 4590
	return ret;
}

L
Li Zefan 已提交
4591 4592
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4593
{
4594
	int retry_count;
4595
	u64 memlimit, memswlimit, oldusage, curusage;
4596 4597
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4598
	int enlarge = 0;
4599

4600 4601 4602
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4603 4604 4605 4606 4607 4608 4609 4610
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4611
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4612 4613 4614 4615 4616 4617 4618 4619
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4620 4621 4622
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4623
		ret = res_counter_set_limit(&memcg->memsw, val);
4624 4625 4626 4627 4628 4629
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4630 4631 4632 4633 4634
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4635 4636 4637
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4638
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4639
		/* Usage is reduced ? */
4640
		if (curusage >= oldusage)
4641
			retry_count--;
4642 4643
		else
			oldusage = curusage;
4644
	}
4645 4646
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4647 4648 4649
	return ret;
}

4650
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4651 4652
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4653 4654 4655 4656 4657 4658
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4659
	unsigned long long excess;
4660
	unsigned long nr_scanned;
4661 4662 4663 4664

	if (order > 0)
		return 0;

4665
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4679
		nr_scanned = 0;
4680
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4681
						    gfp_mask, &nr_scanned);
4682
		nr_reclaimed += reclaimed;
4683
		*total_scanned += nr_scanned;
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4706
				if (next_mz == mz)
4707
					css_put(&next_mz->memcg->css);
4708
				else /* next_mz == NULL or other memcg */
4709 4710 4711
					break;
			} while (1);
		}
4712 4713
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4714 4715 4716 4717 4718 4719 4720 4721
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4722
		/* If excess == 0, no tree ops */
4723
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4724
		spin_unlock(&mctz->lock);
4725
		css_put(&mz->memcg->css);
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4738
		css_put(&next_mz->memcg->css);
4739 4740 4741
	return nr_reclaimed;
}

4742 4743 4744 4745 4746 4747 4748
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4749
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4750 4751
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4752
 */
4753
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4754
				int node, int zid, enum lru_list lru)
4755
{
4756
	struct lruvec *lruvec;
4757
	unsigned long flags;
4758
	struct list_head *list;
4759 4760
	struct page *busy;
	struct zone *zone;
4761

K
KAMEZAWA Hiroyuki 已提交
4762
	zone = &NODE_DATA(node)->node_zones[zid];
4763 4764
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4765

4766
	busy = NULL;
4767
	do {
4768
		struct page_cgroup *pc;
4769 4770
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4771
		spin_lock_irqsave(&zone->lru_lock, flags);
4772
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4773
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4774
			break;
4775
		}
4776 4777 4778
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4779
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4780
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4781 4782
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4783
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4784

4785
		pc = lookup_page_cgroup(page);
4786

4787
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4788
			/* found lock contention or "pc" is obsolete. */
4789
			busy = page;
4790 4791 4792
			cond_resched();
		} else
			busy = NULL;
4793
	} while (!list_empty(list));
4794 4795 4796
}

/*
4797 4798
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4799
 * This enables deleting this mem_cgroup.
4800 4801
 *
 * Caller is responsible for holding css reference on the memcg.
4802
 */
4803
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4804
{
4805
	int node, zid;
4806
	u64 usage;
4807

4808
	do {
4809 4810
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4811 4812
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4813
		for_each_node_state(node, N_MEMORY) {
4814
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4815 4816
				enum lru_list lru;
				for_each_lru(lru) {
4817
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4818
							node, zid, lru);
4819
				}
4820
			}
4821
		}
4822 4823
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4824
		cond_resched();
4825

4826
		/*
4827 4828 4829 4830 4831
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4832 4833 4834 4835 4836 4837
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4838 4839 4840
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4841 4842
}

4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
	struct cgroup *pos;

	/* bounce at first found */
	cgroup_for_each_child(pos, memcg->css.cgroup)
		return true;
	return false;
}

/*
4859 4860
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4861 4862 4863 4864 4865 4866 4867 4868 4869
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4880

4881
	/* returns EBUSY if there is a task or if we come here twice. */
4882 4883 4884
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4885 4886
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4887
	/* try to free all pages in this cgroup */
4888
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4889
		int progress;
4890

4891 4892 4893
		if (signal_pending(current))
			return -EINTR;

4894
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4895
						false);
4896
		if (!progress) {
4897
			nr_retries--;
4898
			/* maybe some writeback is necessary */
4899
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4900
		}
4901 4902

	}
K
KAMEZAWA Hiroyuki 已提交
4903
	lru_add_drain();
4904 4905 4906
	mem_cgroup_reparent_charges(memcg);

	return 0;
4907 4908
}

4909
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4910
{
4911 4912 4913
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4914 4915
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4916 4917 4918 4919 4920
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4921 4922 4923
}


4924 4925 4926 4927 4928 4929 4930 4931 4932
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4933
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4934
	struct cgroup *parent = cont->parent;
4935
	struct mem_cgroup *parent_memcg = NULL;
4936 4937

	if (parent)
4938
		parent_memcg = mem_cgroup_from_cont(parent);
4939

4940
	mutex_lock(&memcg_create_mutex);
4941 4942 4943 4944

	if (memcg->use_hierarchy == val)
		goto out;

4945
	/*
4946
	 * If parent's use_hierarchy is set, we can't make any modifications
4947 4948 4949 4950 4951 4952
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4953
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4954
				(val == 1 || val == 0)) {
4955
		if (!__memcg_has_children(memcg))
4956
			memcg->use_hierarchy = val;
4957 4958 4959 4960
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4961 4962

out:
4963
	mutex_unlock(&memcg_create_mutex);
4964 4965 4966 4967

	return retval;
}

4968

4969
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4970
					       enum mem_cgroup_stat_index idx)
4971
{
K
KAMEZAWA Hiroyuki 已提交
4972
	struct mem_cgroup *iter;
4973
	long val = 0;
4974

4975
	/* Per-cpu values can be negative, use a signed accumulator */
4976
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4977 4978 4979 4980 4981
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4982 4983
}

4984
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4985
{
K
KAMEZAWA Hiroyuki 已提交
4986
	u64 val;
4987

4988
	if (!mem_cgroup_is_root(memcg)) {
4989
		if (!swap)
4990
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4991
		else
4992
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4993 4994
	}

4995 4996
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4997

K
KAMEZAWA Hiroyuki 已提交
4998
	if (swap)
4999
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5000 5001 5002 5003

	return val << PAGE_SHIFT;
}

5004 5005 5006
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5007
{
5008
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5009
	char str[64];
5010
	u64 val;
G
Glauber Costa 已提交
5011 5012
	int name, len;
	enum res_type type;
5013 5014 5015

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5016 5017 5018 5019

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5020 5021
	switch (type) {
	case _MEM:
5022
		if (name == RES_USAGE)
5023
			val = mem_cgroup_usage(memcg, false);
5024
		else
5025
			val = res_counter_read_u64(&memcg->res, name);
5026 5027
		break;
	case _MEMSWAP:
5028
		if (name == RES_USAGE)
5029
			val = mem_cgroup_usage(memcg, true);
5030
		else
5031
			val = res_counter_read_u64(&memcg->memsw, name);
5032
		break;
5033 5034 5035
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5036 5037 5038
	default:
		BUG();
	}
5039 5040 5041

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5042
}
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5061
	mutex_lock(&memcg_create_mutex);
5062 5063
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5064
		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5065 5066 5067 5068 5069 5070
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5071 5072 5073 5074 5075
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5076 5077 5078 5079 5080 5081 5082
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);

5083 5084 5085 5086 5087 5088 5089
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
5090 5091 5092 5093
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5094
	mutex_unlock(&memcg_create_mutex);
5095 5096 5097 5098
#endif
	return ret;
}

5099
#ifdef CONFIG_MEMCG_KMEM
5100
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5101
{
5102
	int ret = 0;
5103 5104
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5105 5106
		goto out;

5107
	memcg->kmem_account_flags = parent->kmem_account_flags;
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5135
}
5136
#endif /* CONFIG_MEMCG_KMEM */
5137

5138 5139 5140 5141
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5142 5143
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5144
{
5145
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5146 5147
	enum res_type type;
	int name;
5148 5149 5150
	unsigned long long val;
	int ret;

5151 5152
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5153 5154 5155 5156

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5157
	switch (name) {
5158
	case RES_LIMIT:
5159 5160 5161 5162
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5163 5164
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5165 5166 5167
		if (ret)
			break;
		if (type == _MEM)
5168
			ret = mem_cgroup_resize_limit(memcg, val);
5169
		else if (type == _MEMSWAP)
5170
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5171 5172 5173 5174
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5175
		break;
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5190 5191 5192 5193 5194
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5195 5196
}

5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5224
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5225
{
5226
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5227 5228
	int name;
	enum res_type type;
5229

5230 5231
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5232 5233 5234 5235

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5236
	switch (name) {
5237
	case RES_MAX_USAGE:
5238
		if (type == _MEM)
5239
			res_counter_reset_max(&memcg->res);
5240
		else if (type == _MEMSWAP)
5241
			res_counter_reset_max(&memcg->memsw);
5242 5243 5244 5245
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5246 5247
		break;
	case RES_FAILCNT:
5248
		if (type == _MEM)
5249
			res_counter_reset_failcnt(&memcg->res);
5250
		else if (type == _MEMSWAP)
5251
			res_counter_reset_failcnt(&memcg->memsw);
5252 5253 5254 5255
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5256 5257
		break;
	}
5258

5259
	return 0;
5260 5261
}

5262 5263 5264 5265 5266 5267
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5268
#ifdef CONFIG_MMU
5269 5270 5271
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5272
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5273 5274 5275

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5276

5277
	/*
5278 5279 5280 5281
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5282
	 */
5283
	memcg->move_charge_at_immigrate = val;
5284 5285
	return 0;
}
5286 5287 5288 5289 5290 5291 5292
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5293

5294
#ifdef CONFIG_NUMA
5295
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5296
				      struct seq_file *m)
5297 5298 5299 5300
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5301
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5302

5303
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5304
	seq_printf(m, "total=%lu", total_nr);
5305
	for_each_node_state(nid, N_MEMORY) {
5306
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5307 5308 5309 5310
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5311
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5312
	seq_printf(m, "file=%lu", file_nr);
5313
	for_each_node_state(nid, N_MEMORY) {
5314
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5315
				LRU_ALL_FILE);
5316 5317 5318 5319
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5320
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5321
	seq_printf(m, "anon=%lu", anon_nr);
5322
	for_each_node_state(nid, N_MEMORY) {
5323
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5324
				LRU_ALL_ANON);
5325 5326 5327 5328
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5329
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5330
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5331
	for_each_node_state(nid, N_MEMORY) {
5332
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5333
				BIT(LRU_UNEVICTABLE));
5334 5335 5336 5337 5338 5339 5340
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5341 5342 5343 5344 5345
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5346
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5347
				 struct seq_file *m)
5348
{
5349
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5350 5351
	struct mem_cgroup *mi;
	unsigned int i;
5352

5353
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5354
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5355
			continue;
5356 5357
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5358
	}
L
Lee Schermerhorn 已提交
5359

5360 5361 5362 5363 5364 5365 5366 5367
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5368
	/* Hierarchical information */
5369 5370
	{
		unsigned long long limit, memsw_limit;
5371
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5372
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5373
		if (do_swap_account)
5374 5375
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5376
	}
K
KOSAKI Motohiro 已提交
5377

5378 5379 5380
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5381
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5382
			continue;
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5403
	}
K
KAMEZAWA Hiroyuki 已提交
5404

K
KOSAKI Motohiro 已提交
5405 5406 5407 5408
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5409
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5410 5411 5412 5413 5414
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5415
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5416
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5417

5418 5419 5420 5421
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5422
			}
5423 5424 5425 5426
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5427 5428 5429
	}
#endif

5430 5431 5432
	return 0;
}

K
KOSAKI Motohiro 已提交
5433 5434 5435 5436
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5437
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5438 5439 5440 5441 5442 5443 5444
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5445

K
KOSAKI Motohiro 已提交
5446 5447 5448 5449 5450 5451 5452
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5453

5454
	mutex_lock(&memcg_create_mutex);
5455

K
KOSAKI Motohiro 已提交
5456
	/* If under hierarchy, only empty-root can set this value */
5457
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5458
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5459
		return -EINVAL;
5460
	}
K
KOSAKI Motohiro 已提交
5461 5462 5463

	memcg->swappiness = val;

5464
	mutex_unlock(&memcg_create_mutex);
5465

K
KOSAKI Motohiro 已提交
5466 5467 5468
	return 0;
}

5469 5470 5471 5472 5473 5474 5475 5476
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5477
		t = rcu_dereference(memcg->thresholds.primary);
5478
	else
5479
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5480 5481 5482 5483 5484 5485 5486

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5487
	 * current_threshold points to threshold just below or equal to usage.
5488 5489 5490
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5491
	i = t->current_threshold;
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5515
	t->current_threshold = i - 1;
5516 5517 5518 5519 5520 5521
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5522 5523 5524 5525 5526 5527 5528
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5539
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5540 5541 5542
{
	struct mem_cgroup_eventfd_list *ev;

5543
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5544 5545 5546 5547
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5548
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5549
{
K
KAMEZAWA Hiroyuki 已提交
5550 5551
	struct mem_cgroup *iter;

5552
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5553
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5554 5555 5556 5557
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5558 5559
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5560 5561
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5562
	enum res_type type = MEMFILE_TYPE(cft->private);
5563
	u64 threshold, usage;
5564
	int i, size, ret;
5565 5566 5567 5568 5569 5570

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5571

5572
	if (type == _MEM)
5573
		thresholds = &memcg->thresholds;
5574
	else if (type == _MEMSWAP)
5575
		thresholds = &memcg->memsw_thresholds;
5576 5577 5578 5579 5580 5581
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5582
	if (thresholds->primary)
5583 5584
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5585
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5586 5587

	/* Allocate memory for new array of thresholds */
5588
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5589
			GFP_KERNEL);
5590
	if (!new) {
5591 5592 5593
		ret = -ENOMEM;
		goto unlock;
	}
5594
	new->size = size;
5595 5596

	/* Copy thresholds (if any) to new array */
5597 5598
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5599
				sizeof(struct mem_cgroup_threshold));
5600 5601
	}

5602
	/* Add new threshold */
5603 5604
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5605 5606

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5607
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5608 5609 5610
			compare_thresholds, NULL);

	/* Find current threshold */
5611
	new->current_threshold = -1;
5612
	for (i = 0; i < size; i++) {
5613
		if (new->entries[i].threshold <= usage) {
5614
			/*
5615 5616
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5617 5618
			 * it here.
			 */
5619
			++new->current_threshold;
5620 5621
		} else
			break;
5622 5623
	}

5624 5625 5626 5627 5628
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5629

5630
	/* To be sure that nobody uses thresholds */
5631 5632 5633 5634 5635 5636 5637 5638
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5639
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5640
	struct cftype *cft, struct eventfd_ctx *eventfd)
5641 5642
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5643 5644
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5645
	enum res_type type = MEMFILE_TYPE(cft->private);
5646
	u64 usage;
5647
	int i, j, size;
5648 5649 5650

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5651
		thresholds = &memcg->thresholds;
5652
	else if (type == _MEMSWAP)
5653
		thresholds = &memcg->memsw_thresholds;
5654 5655 5656
	else
		BUG();

5657 5658 5659
	if (!thresholds->primary)
		goto unlock;

5660 5661 5662 5663 5664 5665
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5666 5667 5668
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5669 5670 5671
			size++;
	}

5672
	new = thresholds->spare;
5673

5674 5675
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5676 5677
		kfree(new);
		new = NULL;
5678
		goto swap_buffers;
5679 5680
	}

5681
	new->size = size;
5682 5683

	/* Copy thresholds and find current threshold */
5684 5685 5686
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5687 5688
			continue;

5689
		new->entries[j] = thresholds->primary->entries[i];
5690
		if (new->entries[j].threshold <= usage) {
5691
			/*
5692
			 * new->current_threshold will not be used
5693 5694 5695
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5696
			++new->current_threshold;
5697 5698 5699 5700
		}
		j++;
	}

5701
swap_buffers:
5702 5703
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5704 5705 5706 5707 5708 5709
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5710
	rcu_assign_pointer(thresholds->primary, new);
5711

5712
	/* To be sure that nobody uses thresholds */
5713
	synchronize_rcu();
5714
unlock:
5715 5716
	mutex_unlock(&memcg->thresholds_lock);
}
5717

K
KAMEZAWA Hiroyuki 已提交
5718 5719 5720 5721 5722
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5723
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5724 5725 5726 5727 5728 5729

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5730
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5731 5732 5733 5734 5735

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5736
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5737
		eventfd_signal(eventfd, 1);
5738
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5739 5740 5741 5742

	return 0;
}

5743
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5744 5745
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5746
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5747
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5748
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5749 5750 5751

	BUG_ON(type != _OOM_TYPE);

5752
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5753

5754
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5755 5756 5757 5758 5759 5760
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5761
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5762 5763
}

5764 5765 5766
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5767
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5768

5769
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5770

5771
	if (atomic_read(&memcg->under_oom))
5772 5773 5774 5775 5776 5777 5778 5779 5780
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5781
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5782 5783 5784 5785 5786 5787 5788 5789
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

5790
	mutex_lock(&memcg_create_mutex);
5791
	/* oom-kill-disable is a flag for subhierarchy. */
5792
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5793
		mutex_unlock(&memcg_create_mutex);
5794 5795
		return -EINVAL;
	}
5796
	memcg->oom_kill_disable = val;
5797
	if (!val)
5798
		memcg_oom_recover(memcg);
5799
	mutex_unlock(&memcg_create_mutex);
5800 5801 5802
	return 0;
}

A
Andrew Morton 已提交
5803
#ifdef CONFIG_MEMCG_KMEM
5804
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5805
{
5806 5807
	int ret;

5808
	memcg->kmemcg_id = -1;
5809 5810 5811
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5812

5813
	return mem_cgroup_sockets_init(memcg, ss);
5814 5815
};

5816
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5817
{
5818
	mem_cgroup_sockets_destroy(memcg);
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5833
}
5834
#else
5835
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5836 5837 5838
{
	return 0;
}
G
Glauber Costa 已提交
5839

5840
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5841 5842
{
}
5843 5844
#endif

B
Balbir Singh 已提交
5845 5846
static struct cftype mem_cgroup_files[] = {
	{
5847
		.name = "usage_in_bytes",
5848
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5849
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5850 5851
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5852
	},
5853 5854
	{
		.name = "max_usage_in_bytes",
5855
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5856
		.trigger = mem_cgroup_reset,
5857
		.read = mem_cgroup_read,
5858
	},
B
Balbir Singh 已提交
5859
	{
5860
		.name = "limit_in_bytes",
5861
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5862
		.write_string = mem_cgroup_write,
5863
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5864
	},
5865 5866 5867 5868
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5869
		.read = mem_cgroup_read,
5870
	},
B
Balbir Singh 已提交
5871 5872
	{
		.name = "failcnt",
5873
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5874
		.trigger = mem_cgroup_reset,
5875
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5876
	},
5877 5878
	{
		.name = "stat",
5879
		.read_seq_string = memcg_stat_show,
5880
	},
5881 5882 5883 5884
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5885 5886 5887 5888 5889
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5890 5891 5892 5893 5894
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5895 5896 5897 5898 5899
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5900 5901
	{
		.name = "oom_control",
5902 5903
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5904 5905 5906 5907
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5908 5909 5910
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5911
		.read_seq_string = memcg_numa_stat_show,
5912 5913
	},
#endif
5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5938 5939 5940 5941 5942 5943
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5944
#endif
5945
	{ },	/* terminate */
5946
};
5947

5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5978
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5979 5980
{
	struct mem_cgroup_per_node *pn;
5981
	struct mem_cgroup_per_zone *mz;
5982
	int zone, tmp = node;
5983 5984 5985 5986 5987 5988 5989 5990
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5991 5992
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5993
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5994 5995
	if (!pn)
		return 1;
5996 5997 5998

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5999
		lruvec_init(&mz->lruvec);
6000
		mz->usage_in_excess = 0;
6001
		mz->on_tree = false;
6002
		mz->memcg = memcg;
6003
	}
6004
	memcg->info.nodeinfo[node] = pn;
6005 6006 6007
	return 0;
}

6008
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6009
{
6010
	kfree(memcg->info.nodeinfo[node]);
6011 6012
}

6013 6014
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6015
	struct mem_cgroup *memcg;
6016
	size_t size = memcg_size();
6017

6018
	/* Can be very big if nr_node_ids is very big */
6019
	if (size < PAGE_SIZE)
6020
		memcg = kzalloc(size, GFP_KERNEL);
6021
	else
6022
		memcg = vzalloc(size);
6023

6024
	if (!memcg)
6025 6026
		return NULL;

6027 6028
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6029
		goto out_free;
6030 6031
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6032 6033 6034

out_free:
	if (size < PAGE_SIZE)
6035
		kfree(memcg);
6036
	else
6037
		vfree(memcg);
6038
	return NULL;
6039 6040
}

6041
/*
6042 6043 6044 6045 6046 6047 6048 6049
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6050
 */
6051 6052

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6053
{
6054
	int node;
6055
	size_t size = memcg_size();
6056

6057 6058 6059 6060 6061 6062 6063 6064
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6076
	disarm_static_keys(memcg);
6077 6078 6079 6080
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6081
}
6082

6083

6084
/*
6085 6086 6087
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
6088
 */
6089
static void free_work(struct work_struct *work)
6090
{
6091
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6092

6093 6094 6095
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
6096

6097 6098 6099
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6100

6101 6102 6103
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
6104 6105
}

6106
static void mem_cgroup_get(struct mem_cgroup *memcg)
6107
{
6108
	atomic_inc(&memcg->refcnt);
6109 6110
}

6111
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6112
{
6113 6114
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6115
		call_rcu(&memcg->rcu_freeing, free_rcu);
6116 6117 6118
		if (parent)
			mem_cgroup_put(parent);
	}
6119 6120
}

6121
static void mem_cgroup_put(struct mem_cgroup *memcg)
6122
{
6123
	__mem_cgroup_put(memcg, 1);
6124 6125
}

6126 6127 6128
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6129
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6130
{
6131
	if (!memcg->res.parent)
6132
		return NULL;
6133
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6134
}
G
Glauber Costa 已提交
6135
EXPORT_SYMBOL(parent_mem_cgroup);
6136

6137
static void __init mem_cgroup_soft_limit_tree_init(void)
6138 6139 6140 6141 6142
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6143
	for_each_node(node) {
6144 6145 6146 6147
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6148
		BUG_ON(!rtpn);
6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6160
static struct cgroup_subsys_state * __ref
6161
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6162
{
6163
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6164
	long error = -ENOMEM;
6165
	int node;
B
Balbir Singh 已提交
6166

6167 6168
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6169
		return ERR_PTR(error);
6170

B
Bob Liu 已提交
6171
	for_each_node(node)
6172
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6173
			goto free_out;
6174

6175
	/* root ? */
6176
	if (cont->parent == NULL) {
6177
		root_mem_cgroup = memcg;
6178 6179 6180
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6181
	}
6182

6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
mem_cgroup_css_online(struct cgroup *cont)
{
	struct mem_cgroup *memcg, *parent;
	int error = 0;

	if (!cont->parent)
		return 0;

6206
	mutex_lock(&memcg_create_mutex);
6207 6208 6209 6210 6211 6212 6213 6214
	memcg = mem_cgroup_from_cont(cont);
	parent = mem_cgroup_from_cont(cont->parent);

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6215 6216
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6217
		res_counter_init(&memcg->kmem, &parent->kmem);
6218

6219 6220 6221 6222 6223 6224 6225
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6226
	} else {
6227 6228
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6229
		res_counter_init(&memcg->kmem, NULL);
6230 6231 6232 6233 6234
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6235
		if (parent != root_mem_cgroup)
6236
			mem_cgroup_subsys.broken_hierarchy = true;
6237
	}
6238 6239

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6240
	mutex_unlock(&memcg_create_mutex);
6241 6242 6243 6244 6245 6246 6247
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
6248 6249
		if (parent->use_hierarchy)
			mem_cgroup_put(parent);
6250
	}
6251
	return error;
B
Balbir Singh 已提交
6252 6253
}

M
Michal Hocko 已提交
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
		atomic_inc(&parent->dead_count);

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
		atomic_inc(&root_mem_cgroup->dead_count);
}

6272
static void mem_cgroup_css_offline(struct cgroup *cont)
6273
{
6274
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6275

M
Michal Hocko 已提交
6276
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6277
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6278
	mem_cgroup_destroy_all_caches(memcg);
6279 6280
}

6281
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6282
{
6283
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6284

6285
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6286

6287
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6288 6289
}

6290
#ifdef CONFIG_MMU
6291
/* Handlers for move charge at task migration. */
6292 6293
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6294
{
6295 6296
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6297
	struct mem_cgroup *memcg = mc.to;
6298

6299
	if (mem_cgroup_is_root(memcg)) {
6300 6301 6302 6303 6304 6305 6306 6307
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6308
		 * "memcg" cannot be under rmdir() because we've already checked
6309 6310 6311 6312
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6313
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6314
			goto one_by_one;
6315
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6316
						PAGE_SIZE * count, &dummy)) {
6317
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6334 6335
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6336
		if (ret)
6337
			/* mem_cgroup_clear_mc() will do uncharge later */
6338
			return ret;
6339 6340
		mc.precharge++;
	}
6341 6342 6343 6344
	return ret;
}

/**
6345
 * get_mctgt_type - get target type of moving charge
6346 6347 6348
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6349
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6350 6351 6352 6353 6354 6355
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6356 6357 6358
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6359 6360 6361 6362 6363
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6364
	swp_entry_t	ent;
6365 6366 6367
};

enum mc_target_type {
6368
	MC_TARGET_NONE = 0,
6369
	MC_TARGET_PAGE,
6370
	MC_TARGET_SWAP,
6371 6372
};

D
Daisuke Nishimura 已提交
6373 6374
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6375
{
D
Daisuke Nishimura 已提交
6376
	struct page *page = vm_normal_page(vma, addr, ptent);
6377

D
Daisuke Nishimura 已提交
6378 6379 6380 6381
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6382
		if (!move_anon())
D
Daisuke Nishimura 已提交
6383
			return NULL;
6384 6385
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6386 6387 6388 6389 6390 6391 6392
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6393
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6394 6395 6396 6397 6398 6399 6400 6401
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6402 6403 6404 6405
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6406
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6407 6408 6409 6410 6411
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6412 6413 6414 6415 6416 6417 6418
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6419

6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6439 6440 6441 6442 6443 6444
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6445
		if (do_swap_account)
6446
			*entry = swap;
6447
		page = find_get_page(swap_address_space(swap), swap.val);
6448
	}
6449
#endif
6450 6451 6452
	return page;
}

6453
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6454 6455 6456 6457
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6458
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6459 6460 6461 6462 6463 6464
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6465 6466
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6467 6468

	if (!page && !ent.val)
6469
		return ret;
6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6485 6486
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6487
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6488 6489 6490
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6491 6492 6493 6494
	}
	return ret;
}

6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6530 6531 6532 6533 6534 6535 6536 6537
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6538 6539 6540 6541
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6542
		return 0;
6543
	}
6544

6545 6546
	if (pmd_trans_unstable(pmd))
		return 0;
6547 6548
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6549
		if (get_mctgt_type(vma, addr, *pte, NULL))
6550 6551 6552 6553
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6554 6555 6556
	return 0;
}

6557 6558 6559 6560 6561
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6562
	down_read(&mm->mmap_sem);
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6574
	up_read(&mm->mmap_sem);
6575 6576 6577 6578 6579 6580 6581 6582 6583

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6584 6585 6586 6587 6588
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6589 6590
}

6591 6592
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6593
{
6594 6595 6596
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6597
	/* we must uncharge all the leftover precharges from mc.to */
6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6609
	}
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6644
	spin_lock(&mc.lock);
6645 6646
	mc.from = NULL;
	mc.to = NULL;
6647
	spin_unlock(&mc.lock);
6648
	mem_cgroup_end_move(from);
6649 6650
}

6651 6652
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6653
{
6654
	struct task_struct *p = cgroup_taskset_first(tset);
6655
	int ret = 0;
6656
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6657
	unsigned long move_charge_at_immigrate;
6658

6659 6660 6661 6662 6663 6664 6665
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6666 6667 6668
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6669
		VM_BUG_ON(from == memcg);
6670 6671 6672 6673 6674

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6675 6676 6677 6678
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6679
			VM_BUG_ON(mc.moved_charge);
6680
			VM_BUG_ON(mc.moved_swap);
6681
			mem_cgroup_start_move(from);
6682
			spin_lock(&mc.lock);
6683
			mc.from = from;
6684
			mc.to = memcg;
6685
			mc.immigrate_flags = move_charge_at_immigrate;
6686
			spin_unlock(&mc.lock);
6687
			/* We set mc.moving_task later */
6688 6689 6690 6691

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6692 6693
		}
		mmput(mm);
6694 6695 6696 6697
	}
	return ret;
}

6698 6699
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6700
{
6701
	mem_cgroup_clear_mc();
6702 6703
}

6704 6705 6706
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6707
{
6708 6709 6710 6711
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6712 6713 6714 6715
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6716

6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6728
		if (mc.precharge < HPAGE_PMD_NR) {
6729 6730 6731 6732 6733 6734 6735 6736 6737
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6738
							pc, mc.from, mc.to)) {
6739 6740 6741 6742 6743 6744 6745 6746
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6747
		return 0;
6748 6749
	}

6750 6751
	if (pmd_trans_unstable(pmd))
		return 0;
6752 6753 6754 6755
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6756
		swp_entry_t ent;
6757 6758 6759 6760

		if (!mc.precharge)
			break;

6761
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6762 6763 6764 6765 6766
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6767
			if (!mem_cgroup_move_account(page, 1, pc,
6768
						     mc.from, mc.to)) {
6769
				mc.precharge--;
6770 6771
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6772 6773
			}
			putback_lru_page(page);
6774
put:			/* get_mctgt_type() gets the page */
6775 6776
			put_page(page);
			break;
6777 6778
		case MC_TARGET_SWAP:
			ent = target.ent;
6779
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6780
				mc.precharge--;
6781 6782 6783
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6784
			break;
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6799
		ret = mem_cgroup_do_precharge(1);
6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6843
	up_read(&mm->mmap_sem);
6844 6845
}

6846 6847
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6848
{
6849
	struct task_struct *p = cgroup_taskset_first(tset);
6850
	struct mm_struct *mm = get_task_mm(p);
6851 6852

	if (mm) {
6853 6854
		if (mc.to)
			mem_cgroup_move_charge(mm);
6855 6856
		mmput(mm);
	}
6857 6858
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6859
}
6860
#else	/* !CONFIG_MMU */
6861 6862
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6863 6864 6865
{
	return 0;
}
6866 6867
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6868 6869
{
}
6870 6871
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6872 6873 6874
{
}
#endif
B
Balbir Singh 已提交
6875

B
Balbir Singh 已提交
6876 6877 6878
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6879
	.css_alloc = mem_cgroup_css_alloc,
6880
	.css_online = mem_cgroup_css_online,
6881 6882
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6883 6884
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6885
	.attach = mem_cgroup_move_task,
6886
	.base_cftypes = mem_cgroup_files,
6887
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6888
	.use_id = 1,
B
Balbir Singh 已提交
6889
};
6890

A
Andrew Morton 已提交
6891
#ifdef CONFIG_MEMCG_SWAP
6892 6893 6894
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6895
	if (!strcmp(s, "1"))
6896
		really_do_swap_account = 1;
6897
	else if (!strcmp(s, "0"))
6898 6899 6900
		really_do_swap_account = 0;
	return 1;
}
6901
__setup("swapaccount=", enable_swap_account);
6902

6903 6904
static void __init memsw_file_init(void)
{
6905 6906 6907 6908 6909 6910 6911 6912 6913
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6914
}
6915

6916
#else
6917
static void __init enable_swap_cgroup(void)
6918 6919
{
}
6920
#endif
6921 6922

/*
6923 6924 6925 6926 6927 6928
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6929 6930 6931 6932
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6933
	enable_swap_cgroup();
6934
	mem_cgroup_soft_limit_tree_init();
6935
	memcg_stock_init();
6936 6937 6938
	return 0;
}
subsys_initcall(mem_cgroup_init);