memcontrol.c 165.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130 131
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147 148 149 150 151 152
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

153 154 155 156
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
157
	struct lruvec		lruvec;
158
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
159

160 161
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

162 163 164 165
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
166
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
167
						/* use container_of	   */
168 169 170 171 172 173 174 175 176 177
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

198 199 200 201 202
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
203
/* For threshold */
204
struct mem_cgroup_threshold_ary {
205
	/* An array index points to threshold just below or equal to usage. */
206
	int current_threshold;
207 208 209 210 211
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
212 213 214 215 216 217 218 219 220 221 222 223

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
224 225 226 227 228
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
229

230 231
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
232

B
Balbir Singh 已提交
233 234 235 236 237 238 239
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 241 242
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
243 244 245 246 247 248 249
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
268 269
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
270 271 272 273
		 */
		struct work_struct work_freeing;
	};

274 275 276 277
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
278 279 280 281
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
282
	struct mem_cgroup_lru_info info;
283 284 285
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
286 287
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
288
#endif
289 290 291 292
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
293
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
294 295 296 297

	bool		oom_lock;
	atomic_t	under_oom;

298
	atomic_t	refcnt;
299

300
	int	swappiness;
301 302
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
303

304 305 306
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

307 308 309 310
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
311
	struct mem_cgroup_thresholds thresholds;
312

313
	/* thresholds for mem+swap usage. RCU-protected */
314
	struct mem_cgroup_thresholds memsw_thresholds;
315

K
KAMEZAWA Hiroyuki 已提交
316 317
	/* For oom notifier event fd */
	struct list_head oom_notify;
318

319 320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
324 325 326 327
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
328 329
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
330
	/*
331
	 * percpu counter.
332
	 */
333
	struct mem_cgroup_stat_cpu __percpu *stat;
334 335 336 337 338 339
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
340

M
Michal Hocko 已提交
341
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
342 343
	struct tcp_memcontrol tcp_mem;
#endif
344 345 346 347 348 349 350 351
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
B
Balbir Singh 已提交
352 353
};

354 355 356
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
357
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
358
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
359 360
};

361 362 363
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
364 365 366 367 368 369

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
370 371 372 373 374 375

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

376 377 378 379 380
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

381 382 383 384 385
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

386 387 388 389 390 391 392 393 394 395 396
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
397 398
#endif

399 400 401 402 403 404
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
405
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
406
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
407 408 409
	NR_MOVE_TYPE,
};

410 411
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
412
	spinlock_t	  lock; /* for from, to */
413 414 415
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
416
	unsigned long moved_charge;
417
	unsigned long moved_swap;
418 419 420
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
421
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
422 423
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
424

D
Daisuke Nishimura 已提交
425 426 427 428 429 430
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

431 432 433 434 435 436
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

437 438 439 440
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
441 442
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
443

444 445
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
446
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
447
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
448
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
449 450 451
	NR_CHARGE_TYPE,
};

452
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
453 454 455 456
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
457
	_KMEM,
G
Glauber Costa 已提交
458 459
};

460 461
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
462
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
463 464
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
465

466 467 468 469 470 471 472 473
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

474 475
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
476

477 478 479 480 481 482
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

483 484 485 486 487
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
488
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
489
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
490 491 492

void sock_update_memcg(struct sock *sk)
{
493
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
494
		struct mem_cgroup *memcg;
495
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
496 497 498

		BUG_ON(!sk->sk_prot->proto_cgroup);

499 500 501 502 503 504 505 506 507 508 509 510 511 512
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
513 514
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
515 516
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
517
			mem_cgroup_get(memcg);
518
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
519 520 521 522 523 524 525 526
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
527
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
528 529 530 531 532 533
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
534 535 536 537 538 539 540 541 542

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
543

544 545 546 547 548 549 550 551 552 553 554 555
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

556
#ifdef CONFIG_MEMCG_KMEM
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
static int memcg_limited_groups_array_size;
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

591 592 593 594
struct static_key memcg_kmem_enabled_key;

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
595
	if (memcg_kmem_is_active(memcg)) {
596
		static_key_slow_dec(&memcg_kmem_enabled_key);
597 598
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
599 600 601 602 603
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
604 605 606 607 608 609 610 611 612 613 614 615 616
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

617
static void drain_all_stock_async(struct mem_cgroup *memcg);
618

619
static struct mem_cgroup_per_zone *
620
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
621
{
622
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
623 624
}

625
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
626
{
627
	return &memcg->css;
628 629
}

630
static struct mem_cgroup_per_zone *
631
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
632
{
633 634
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
635

636
	return mem_cgroup_zoneinfo(memcg, nid, zid);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
655
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
656
				struct mem_cgroup_per_zone *mz,
657 658
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
659 660 661 662 663 664 665 666
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

667 668 669
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
686 687 688
}

static void
689
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
690 691 692 693 694 695 696 697 698
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

699
static void
700
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
701 702 703 704
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
705
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
706 707 708 709
	spin_unlock(&mctz->lock);
}


710
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
711
{
712
	unsigned long long excess;
713 714
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
715 716
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
717 718 719
	mctz = soft_limit_tree_from_page(page);

	/*
720 721
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
722
	 */
723 724 725
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
726 727 728 729
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
730
		if (excess || mz->on_tree) {
731 732 733
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
734
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
735
			/*
736 737
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
738
			 */
739
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
740 741
			spin_unlock(&mctz->lock);
		}
742 743 744
	}
}

745
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
746 747 748 749 750
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
751
	for_each_node(node) {
752
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
753
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
754
			mctz = soft_limit_tree_node_zone(node, zone);
755
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
756 757 758 759
		}
	}
}

760 761 762 763
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
764
	struct mem_cgroup_per_zone *mz;
765 766

retry:
767
	mz = NULL;
768 769 770 771 772 773 774 775 776 777
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
778 779 780
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
816
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
817
				 enum mem_cgroup_stat_index idx)
818
{
819
	long val = 0;
820 821
	int cpu;

822 823
	get_online_cpus();
	for_each_online_cpu(cpu)
824
		val += per_cpu(memcg->stat->count[idx], cpu);
825
#ifdef CONFIG_HOTPLUG_CPU
826 827 828
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
829 830
#endif
	put_online_cpus();
831 832 833
	return val;
}

834
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
835 836 837
					 bool charge)
{
	int val = (charge) ? 1 : -1;
838
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
839 840
}

841
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
842 843 844 845 846 847
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
848
		val += per_cpu(memcg->stat->events[idx], cpu);
849
#ifdef CONFIG_HOTPLUG_CPU
850 851 852
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
853 854 855 856
#endif
	return val;
}

857
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
858
					 bool anon, int nr_pages)
859
{
860 861
	preempt_disable();

862 863 864 865 866 867
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
868
				nr_pages);
869
	else
870
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
871
				nr_pages);
872

873 874
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
875
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
876
	else {
877
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
878 879
		nr_pages = -nr_pages; /* for event */
	}
880

881
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
882

883
	preempt_enable();
884 885
}

886
unsigned long
887
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
888 889 890 891 892 893 894 895
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
896
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
897
			unsigned int lru_mask)
898 899
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
900
	enum lru_list lru;
901 902
	unsigned long ret = 0;

903
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
904

H
Hugh Dickins 已提交
905 906 907
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
908 909 910 911 912
	}
	return ret;
}

static unsigned long
913
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
914 915
			int nid, unsigned int lru_mask)
{
916 917 918
	u64 total = 0;
	int zid;

919
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
920 921
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
922

923 924
	return total;
}
925

926
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
927
			unsigned int lru_mask)
928
{
929
	int nid;
930 931
	u64 total = 0;

932
	for_each_node_state(nid, N_MEMORY)
933
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
934
	return total;
935 936
}

937 938
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
939 940 941
{
	unsigned long val, next;

942
	val = __this_cpu_read(memcg->stat->nr_page_events);
943
	next = __this_cpu_read(memcg->stat->targets[target]);
944
	/* from time_after() in jiffies.h */
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
961
	}
962
	return false;
963 964 965 966 967 968
}

/*
 * Check events in order.
 *
 */
969
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
970
{
971
	preempt_disable();
972
	/* threshold event is triggered in finer grain than soft limit */
973 974
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
975 976
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
977 978 979 980 981 982 983 984 985

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

986
		mem_cgroup_threshold(memcg);
987
		if (unlikely(do_softlimit))
988
			mem_cgroup_update_tree(memcg, page);
989
#if MAX_NUMNODES > 1
990
		if (unlikely(do_numainfo))
991
			atomic_inc(&memcg->numainfo_events);
992
#endif
993 994
	} else
		preempt_enable();
995 996
}

G
Glauber Costa 已提交
997
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
998
{
999 1000
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1001 1002
}

1003
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1004
{
1005 1006 1007 1008 1009 1010 1011 1012
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1013
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1014 1015
}

1016
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1017
{
1018
	struct mem_cgroup *memcg = NULL;
1019 1020 1021

	if (!mm)
		return NULL;
1022 1023 1024 1025 1026 1027 1028
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1029 1030
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1031
			break;
1032
	} while (!css_tryget(&memcg->css));
1033
	rcu_read_unlock();
1034
	return memcg;
1035 1036
}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1057
{
1058 1059
	struct mem_cgroup *memcg = NULL;
	int id = 0;
1060

1061 1062 1063
	if (mem_cgroup_disabled())
		return NULL;

1064 1065
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1066

1067 1068
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1069

1070 1071
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1072

1073 1074 1075 1076 1077
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1078

1079
	while (!memcg) {
1080
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1081
		struct cgroup_subsys_state *css;
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
1094

1095 1096 1097 1098
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
1099
				memcg = mem_cgroup_from_css(css);
1100 1101
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
1102 1103
		rcu_read_unlock();

1104 1105 1106 1107 1108 1109 1110
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1111 1112 1113 1114 1115

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1116
}
K
KAMEZAWA Hiroyuki 已提交
1117

1118 1119 1120 1121 1122 1123 1124
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1125 1126 1127 1128 1129 1130
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1131

1132 1133 1134 1135 1136 1137
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1138
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1139
	     iter != NULL;				\
1140
	     iter = mem_cgroup_iter(root, iter, NULL))
1141

1142
#define for_each_mem_cgroup(iter)			\
1143
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1144
	     iter != NULL;				\
1145
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1146

1147
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1148
{
1149
	struct mem_cgroup *memcg;
1150 1151

	rcu_read_lock();
1152 1153
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1154 1155 1156 1157
		goto out;

	switch (idx) {
	case PGFAULT:
1158 1159 1160 1161
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1162 1163 1164 1165 1166 1167 1168
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1169
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1170

1171 1172 1173
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1174
 * @memcg: memcg of the wanted lruvec
1175 1176 1177 1178 1179 1180 1181 1182 1183
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1184
	struct lruvec *lruvec;
1185

1186 1187 1188 1189
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1190 1191

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1202 1203
}

K
KAMEZAWA Hiroyuki 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1217

1218
/**
1219
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1220
 * @page: the page
1221
 * @zone: zone of the page
1222
 */
1223
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1224 1225
{
	struct mem_cgroup_per_zone *mz;
1226 1227
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1228
	struct lruvec *lruvec;
1229

1230 1231 1232 1233
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1234

K
KAMEZAWA Hiroyuki 已提交
1235
	pc = lookup_page_cgroup(page);
1236
	memcg = pc->mem_cgroup;
1237 1238

	/*
1239
	 * Surreptitiously switch any uncharged offlist page to root:
1240 1241 1242 1243 1244 1245 1246
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1247
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1248 1249
		pc->mem_cgroup = memcg = root_mem_cgroup;

1250
	mz = page_cgroup_zoneinfo(memcg, page);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1261
}
1262

1263
/**
1264 1265 1266 1267
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1268
 *
1269 1270
 * This function must be called when a page is added to or removed from an
 * lru list.
1271
 */
1272 1273
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1274 1275
{
	struct mem_cgroup_per_zone *mz;
1276
	unsigned long *lru_size;
1277 1278 1279 1280

	if (mem_cgroup_disabled())
		return;

1281 1282 1283 1284
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1285
}
1286

1287
/*
1288
 * Checks whether given mem is same or in the root_mem_cgroup's
1289 1290
 * hierarchy subtree
 */
1291 1292
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1293
{
1294 1295
	if (root_memcg == memcg)
		return true;
1296
	if (!root_memcg->use_hierarchy || !memcg)
1297
		return false;
1298 1299 1300 1301 1302 1303 1304 1305
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1306
	rcu_read_lock();
1307
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1308 1309
	rcu_read_unlock();
	return ret;
1310 1311
}

1312
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1313 1314
{
	int ret;
1315
	struct mem_cgroup *curr = NULL;
1316
	struct task_struct *p;
1317

1318
	p = find_lock_task_mm(task);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1334 1335
	if (!curr)
		return 0;
1336
	/*
1337
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1338
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1339 1340
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1341
	 */
1342
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1343
	css_put(&curr->css);
1344 1345 1346
	return ret;
}

1347
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1348
{
1349
	unsigned long inactive_ratio;
1350
	unsigned long inactive;
1351
	unsigned long active;
1352
	unsigned long gb;
1353

1354 1355
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1356

1357 1358 1359 1360 1361 1362
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1363
	return inactive * inactive_ratio < active;
1364 1365
}

1366
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1367 1368 1369 1370
{
	unsigned long active;
	unsigned long inactive;

1371 1372
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1373 1374 1375 1376

	return (active > inactive);
}

1377 1378 1379
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1380
/**
1381
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1382
 * @memcg: the memory cgroup
1383
 *
1384
 * Returns the maximum amount of memory @mem can be charged with, in
1385
 * pages.
1386
 */
1387
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1388
{
1389 1390
	unsigned long long margin;

1391
	margin = res_counter_margin(&memcg->res);
1392
	if (do_swap_account)
1393
		margin = min(margin, res_counter_margin(&memcg->memsw));
1394
	return margin >> PAGE_SHIFT;
1395 1396
}

1397
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1398 1399 1400 1401 1402 1403 1404
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1405
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1406 1407
}

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1422 1423 1424 1425

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1426
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1427
{
1428
	atomic_inc(&memcg_moving);
1429
	atomic_inc(&memcg->moving_account);
1430 1431 1432
	synchronize_rcu();
}

1433
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1434
{
1435 1436 1437 1438
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1439 1440
	if (memcg) {
		atomic_dec(&memcg_moving);
1441
		atomic_dec(&memcg->moving_account);
1442
	}
1443
}
1444

1445 1446 1447
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1448 1449
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1450 1451 1452 1453 1454 1455 1456
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1457
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1458 1459
{
	VM_BUG_ON(!rcu_read_lock_held());
1460
	return atomic_read(&memcg->moving_account) > 0;
1461
}
1462

1463
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1464
{
1465 1466
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1467
	bool ret = false;
1468 1469 1470 1471 1472 1473 1474 1475 1476
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1477

1478 1479
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1480 1481
unlock:
	spin_unlock(&mc.lock);
1482 1483 1484
	return ret;
}

1485
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1486 1487
{
	if (mc.moving_task && current != mc.moving_task) {
1488
		if (mem_cgroup_under_move(memcg)) {
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1501 1502 1503 1504
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1505
 * see mem_cgroup_stolen(), too.
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1519
/**
1520
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1539
	if (!memcg || !p)
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1583 1584 1585 1586
	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1587 1588
}

1589 1590 1591 1592
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1593
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1594 1595
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1596 1597
	struct mem_cgroup *iter;

1598
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1599
		num++;
1600 1601 1602
	return num;
}

D
David Rientjes 已提交
1603 1604 1605
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1606
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1607 1608 1609
{
	u64 limit;

1610 1611
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1612
	/*
1613
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1614
	 */
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1629 1630
}

1631 1632
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1633 1634 1635 1636 1637 1638 1639
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1734 1735
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1736
 * @memcg: the target memcg
1737 1738 1739 1740 1741 1742 1743
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1744
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1745 1746
		int nid, bool noswap)
{
1747
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1748 1749 1750
		return true;
	if (noswap || !total_swap_pages)
		return false;
1751
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1752 1753 1754 1755
		return true;
	return false;

}
1756 1757 1758 1759 1760 1761 1762 1763
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1764
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1765 1766
{
	int nid;
1767 1768 1769 1770
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1771
	if (!atomic_read(&memcg->numainfo_events))
1772
		return;
1773
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1774 1775 1776
		return;

	/* make a nodemask where this memcg uses memory from */
1777
	memcg->scan_nodes = node_states[N_MEMORY];
1778

1779
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1780

1781 1782
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1783
	}
1784

1785 1786
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1801
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1802 1803 1804
{
	int node;

1805 1806
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1807

1808
	node = next_node(node, memcg->scan_nodes);
1809
	if (node == MAX_NUMNODES)
1810
		node = first_node(memcg->scan_nodes);
1811 1812 1813 1814 1815 1816 1817 1818 1819
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1820
	memcg->last_scanned_node = node;
1821 1822 1823
	return node;
}

1824 1825 1826 1827 1828 1829
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1830
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1831 1832 1833 1834 1835 1836 1837
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1838 1839
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1840
		     nid < MAX_NUMNODES;
1841
		     nid = next_node(nid, memcg->scan_nodes)) {
1842

1843
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1844 1845 1846 1847 1848 1849
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1850
	for_each_node_state(nid, N_MEMORY) {
1851
		if (node_isset(nid, memcg->scan_nodes))
1852
			continue;
1853
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1854 1855 1856 1857 1858
			return true;
	}
	return false;
}

1859
#else
1860
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1861 1862 1863
{
	return 0;
}
1864

1865
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1866
{
1867
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1868
}
1869 1870
#endif

1871 1872 1873 1874
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1875
{
1876
	struct mem_cgroup *victim = NULL;
1877
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1878
	int loop = 0;
1879
	unsigned long excess;
1880
	unsigned long nr_scanned;
1881 1882 1883 1884
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1885

1886
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1887

1888
	while (1) {
1889
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1890
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1891
			loop++;
1892 1893 1894 1895 1896 1897
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1898
				if (!total)
1899 1900
					break;
				/*
L
Lucas De Marchi 已提交
1901
				 * We want to do more targeted reclaim.
1902 1903 1904 1905 1906
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1907
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1908 1909
					break;
			}
1910
			continue;
1911
		}
1912
		if (!mem_cgroup_reclaimable(victim, false))
1913
			continue;
1914 1915 1916 1917
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1918
			break;
1919
	}
1920
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1921
	return total;
1922 1923
}

K
KAMEZAWA Hiroyuki 已提交
1924 1925 1926
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1927
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1928
 */
1929
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1930
{
1931
	struct mem_cgroup *iter, *failed = NULL;
1932

1933
	for_each_mem_cgroup_tree(iter, memcg) {
1934
		if (iter->oom_lock) {
1935 1936 1937 1938 1939
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1940 1941
			mem_cgroup_iter_break(memcg, iter);
			break;
1942 1943
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1944
	}
K
KAMEZAWA Hiroyuki 已提交
1945

1946
	if (!failed)
1947
		return true;
1948 1949 1950 1951 1952

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1953
	for_each_mem_cgroup_tree(iter, memcg) {
1954
		if (iter == failed) {
1955 1956
			mem_cgroup_iter_break(memcg, iter);
			break;
1957 1958 1959
		}
		iter->oom_lock = false;
	}
1960
	return false;
1961
}
1962

1963
/*
1964
 * Has to be called with memcg_oom_lock
1965
 */
1966
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1967
{
K
KAMEZAWA Hiroyuki 已提交
1968 1969
	struct mem_cgroup *iter;

1970
	for_each_mem_cgroup_tree(iter, memcg)
1971 1972 1973 1974
		iter->oom_lock = false;
	return 0;
}

1975
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1976 1977 1978
{
	struct mem_cgroup *iter;

1979
	for_each_mem_cgroup_tree(iter, memcg)
1980 1981 1982
		atomic_inc(&iter->under_oom);
}

1983
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1984 1985 1986
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1987 1988 1989 1990 1991
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1992
	for_each_mem_cgroup_tree(iter, memcg)
1993
		atomic_add_unless(&iter->under_oom, -1, 0);
1994 1995
}

1996
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1997 1998
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1999
struct oom_wait_info {
2000
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2001 2002 2003 2004 2005 2006
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2007 2008
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2009 2010 2011
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2012
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2013 2014

	/*
2015
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2016 2017
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2018 2019
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2020 2021 2022 2023
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2024
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2025
{
2026 2027
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2028 2029
}

2030
static void memcg_oom_recover(struct mem_cgroup *memcg)
2031
{
2032 2033
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2034 2035
}

K
KAMEZAWA Hiroyuki 已提交
2036 2037 2038
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2039 2040
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2041
{
K
KAMEZAWA Hiroyuki 已提交
2042
	struct oom_wait_info owait;
2043
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2044

2045
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2046 2047 2048 2049
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2050
	need_to_kill = true;
2051
	mem_cgroup_mark_under_oom(memcg);
2052

2053
	/* At first, try to OOM lock hierarchy under memcg.*/
2054
	spin_lock(&memcg_oom_lock);
2055
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2056 2057 2058 2059 2060
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2061
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2062
	if (!locked || memcg->oom_kill_disable)
2063 2064
		need_to_kill = false;
	if (locked)
2065
		mem_cgroup_oom_notify(memcg);
2066
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2067

2068 2069
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2070
		mem_cgroup_out_of_memory(memcg, mask, order);
2071
	} else {
K
KAMEZAWA Hiroyuki 已提交
2072
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2073
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2074
	}
2075
	spin_lock(&memcg_oom_lock);
2076
	if (locked)
2077 2078
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2079
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2080

2081
	mem_cgroup_unmark_under_oom(memcg);
2082

K
KAMEZAWA Hiroyuki 已提交
2083 2084 2085
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2086
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2087
	return true;
2088 2089
}

2090 2091 2092
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2110 2111
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2112
 */
2113

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2127
	 * need to take move_lock_mem_cgroup(). Because we already hold
2128
	 * rcu_read_lock(), any calls to move_account will be delayed until
2129
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2130
	 */
2131
	if (!mem_cgroup_stolen(memcg))
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2149
	 * should take move_lock_mem_cgroup().
2150 2151 2152 2153
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2154 2155
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2156
{
2157
	struct mem_cgroup *memcg;
2158
	struct page_cgroup *pc = lookup_page_cgroup(page);
2159
	unsigned long uninitialized_var(flags);
2160

2161
	if (mem_cgroup_disabled())
2162
		return;
2163

2164 2165
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2166
		return;
2167 2168

	switch (idx) {
2169 2170
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2171 2172 2173
		break;
	default:
		BUG();
2174
	}
2175

2176
	this_cpu_add(memcg->stat->count[idx], val);
2177
}
2178

2179 2180 2181 2182
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2183
#define CHARGE_BATCH	32U
2184 2185
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2186
	unsigned int nr_pages;
2187
	struct work_struct work;
2188
	unsigned long flags;
2189
#define FLUSHING_CACHED_CHARGE	0
2190 2191
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2192
static DEFINE_MUTEX(percpu_charge_mutex);
2193

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2204
 */
2205
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2206 2207 2208 2209
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2210 2211 2212
	if (nr_pages > CHARGE_BATCH)
		return false;

2213
	stock = &get_cpu_var(memcg_stock);
2214 2215
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2229 2230 2231 2232
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2233
		if (do_swap_account)
2234 2235
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2248
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2249 2250 2251 2252
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2253
 * This will be consumed by consume_stock() function, later.
2254
 */
2255
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2256 2257 2258
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2259
	if (stock->cached != memcg) { /* reset if necessary */
2260
		drain_stock(stock);
2261
		stock->cached = memcg;
2262
	}
2263
	stock->nr_pages += nr_pages;
2264 2265 2266 2267
	put_cpu_var(memcg_stock);
}

/*
2268
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2269 2270
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2271
 */
2272
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2273
{
2274
	int cpu, curcpu;
2275

2276 2277
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2278
	curcpu = get_cpu();
2279 2280
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2281
		struct mem_cgroup *memcg;
2282

2283 2284
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2285
			continue;
2286
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2287
			continue;
2288 2289 2290 2291 2292 2293
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2294
	}
2295
	put_cpu();
2296 2297 2298 2299 2300 2301

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2302
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2303 2304 2305
			flush_work(&stock->work);
	}
out:
2306
 	put_online_cpus();
2307 2308 2309 2310 2311 2312 2313 2314
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2315
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2316
{
2317 2318 2319 2320 2321
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2322
	drain_all_stock(root_memcg, false);
2323
	mutex_unlock(&percpu_charge_mutex);
2324 2325 2326
}

/* This is a synchronous drain interface. */
2327
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2328 2329
{
	/* called when force_empty is called */
2330
	mutex_lock(&percpu_charge_mutex);
2331
	drain_all_stock(root_memcg, true);
2332
	mutex_unlock(&percpu_charge_mutex);
2333 2334
}

2335 2336 2337 2338
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2339
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2340 2341 2342
{
	int i;

2343
	spin_lock(&memcg->pcp_counter_lock);
2344
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2345
		long x = per_cpu(memcg->stat->count[i], cpu);
2346

2347 2348
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2349
	}
2350
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2351
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2352

2353 2354
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2355
	}
2356
	spin_unlock(&memcg->pcp_counter_lock);
2357 2358 2359
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2360 2361 2362 2363 2364
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2365
	struct mem_cgroup *iter;
2366

2367
	if (action == CPU_ONLINE)
2368 2369
		return NOTIFY_OK;

2370
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2371
		return NOTIFY_OK;
2372

2373
	for_each_mem_cgroup(iter)
2374 2375
		mem_cgroup_drain_pcp_counter(iter, cpu);

2376 2377 2378 2379 2380
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2391
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2392 2393
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2394
{
2395
	unsigned long csize = nr_pages * PAGE_SIZE;
2396 2397 2398 2399 2400
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2401
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2402 2403 2404 2405

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2406
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2407 2408 2409
		if (likely(!ret))
			return CHARGE_OK;

2410
		res_counter_uncharge(&memcg->res, csize);
2411 2412 2413 2414
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2415 2416 2417 2418
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2419
	if (nr_pages > min_pages)
2420 2421 2422 2423 2424
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2425 2426 2427
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2428
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2429
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2430
		return CHARGE_RETRY;
2431
	/*
2432 2433 2434 2435 2436 2437 2438
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2439
	 */
2440
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2454
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2455 2456 2457 2458 2459
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2460
/*
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2480
 */
2481
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2482
				   gfp_t gfp_mask,
2483
				   unsigned int nr_pages,
2484
				   struct mem_cgroup **ptr,
2485
				   bool oom)
2486
{
2487
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2488
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2489
	struct mem_cgroup *memcg = NULL;
2490
	int ret;
2491

K
KAMEZAWA Hiroyuki 已提交
2492 2493 2494 2495 2496 2497 2498 2499
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2500

2501
	/*
2502 2503
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2504
	 * thread group leader migrates. It's possible that mm is not
2505
	 * set, if so charge the root memcg (happens for pagecache usage).
2506
	 */
2507
	if (!*ptr && !mm)
2508
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2509
again:
2510 2511 2512
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2513
			goto done;
2514
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2515
			goto done;
2516
		css_get(&memcg->css);
2517
	} else {
K
KAMEZAWA Hiroyuki 已提交
2518
		struct task_struct *p;
2519

K
KAMEZAWA Hiroyuki 已提交
2520 2521 2522
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2523
		 * Because we don't have task_lock(), "p" can exit.
2524
		 * In that case, "memcg" can point to root or p can be NULL with
2525 2526 2527 2528 2529 2530
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2531
		 */
2532
		memcg = mem_cgroup_from_task(p);
2533 2534 2535
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2536 2537 2538
			rcu_read_unlock();
			goto done;
		}
2539
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2552
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2553 2554 2555 2556 2557
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2558

2559 2560
	do {
		bool oom_check;
2561

2562
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2563
		if (fatal_signal_pending(current)) {
2564
			css_put(&memcg->css);
2565
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2566
		}
2567

2568 2569 2570 2571
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2572
		}
2573

2574 2575
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2576 2577 2578 2579
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2580
			batch = nr_pages;
2581 2582
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2583
			goto again;
2584
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2585
			css_put(&memcg->css);
2586 2587
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2588
			if (!oom) {
2589
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2590
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2591
			}
2592 2593 2594 2595
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2596
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2597
			goto bypass;
2598
		}
2599 2600
	} while (ret != CHARGE_OK);

2601
	if (batch > nr_pages)
2602 2603
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2604
done:
2605
	*ptr = memcg;
2606 2607
	return 0;
nomem:
2608
	*ptr = NULL;
2609
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2610
bypass:
2611 2612
	*ptr = root_mem_cgroup;
	return -EINTR;
2613
}
2614

2615 2616 2617 2618 2619
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2620
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2621
				       unsigned int nr_pages)
2622
{
2623
	if (!mem_cgroup_is_root(memcg)) {
2624 2625
		unsigned long bytes = nr_pages * PAGE_SIZE;

2626
		res_counter_uncharge(&memcg->res, bytes);
2627
		if (do_swap_account)
2628
			res_counter_uncharge(&memcg->memsw, bytes);
2629
	}
2630 2631
}

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2650 2651
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2652 2653 2654
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2666
	return mem_cgroup_from_css(css);
2667 2668
}

2669
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2670
{
2671
	struct mem_cgroup *memcg = NULL;
2672
	struct page_cgroup *pc;
2673
	unsigned short id;
2674 2675
	swp_entry_t ent;

2676 2677 2678
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2679
	lock_page_cgroup(pc);
2680
	if (PageCgroupUsed(pc)) {
2681 2682 2683
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2684
	} else if (PageSwapCache(page)) {
2685
		ent.val = page_private(page);
2686
		id = lookup_swap_cgroup_id(ent);
2687
		rcu_read_lock();
2688 2689 2690
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2691
		rcu_read_unlock();
2692
	}
2693
	unlock_page_cgroup(pc);
2694
	return memcg;
2695 2696
}

2697
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2698
				       struct page *page,
2699
				       unsigned int nr_pages,
2700 2701
				       enum charge_type ctype,
				       bool lrucare)
2702
{
2703
	struct page_cgroup *pc = lookup_page_cgroup(page);
2704
	struct zone *uninitialized_var(zone);
2705
	struct lruvec *lruvec;
2706
	bool was_on_lru = false;
2707
	bool anon;
2708

2709
	lock_page_cgroup(pc);
2710
	VM_BUG_ON(PageCgroupUsed(pc));
2711 2712 2713 2714
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2715 2716 2717 2718 2719 2720 2721 2722 2723

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2724
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2725
			ClearPageLRU(page);
2726
			del_page_from_lru_list(page, lruvec, page_lru(page));
2727 2728 2729 2730
			was_on_lru = true;
		}
	}

2731
	pc->mem_cgroup = memcg;
2732 2733 2734 2735 2736 2737 2738
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2739
	smp_wmb();
2740
	SetPageCgroupUsed(pc);
2741

2742 2743
	if (lrucare) {
		if (was_on_lru) {
2744
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2745 2746
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2747
			add_page_to_lru_list(page, lruvec, page_lru(page));
2748 2749 2750 2751
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2752
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2753 2754 2755 2756 2757
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2758
	unlock_page_cgroup(pc);
2759

2760 2761 2762 2763 2764
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2765
	memcg_check_events(memcg, page);
2766
}
2767

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2828 2829 2830 2831 2832 2833 2834

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2835 2836
}

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

2971 2972 2973 2974 2975 2976 2977
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

2978 2979 2980
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

	if (memcg)
		s->memcg_params->memcg = memcg;
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
	kfree(s->memcg_params);
}

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
#endif /* CONFIG_MEMCG_KMEM */

3092 3093
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3094
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3095 3096
/*
 * Because tail pages are not marked as "used", set it. We're under
3097 3098 3099
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3100
 */
3101
void mem_cgroup_split_huge_fixup(struct page *head)
3102 3103
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3104 3105
	struct page_cgroup *pc;
	int i;
3106

3107 3108
	if (mem_cgroup_disabled())
		return;
3109 3110 3111 3112 3113 3114
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3115
}
3116
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3117

3118
/**
3119
 * mem_cgroup_move_account - move account of the page
3120
 * @page: the page
3121
 * @nr_pages: number of regular pages (>1 for huge pages)
3122 3123 3124 3125 3126
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3127
 * - page is not on LRU (isolate_page() is useful.)
3128
 * - compound_lock is held when nr_pages > 1
3129
 *
3130 3131
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3132
 */
3133 3134 3135 3136
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3137
				   struct mem_cgroup *to)
3138
{
3139 3140
	unsigned long flags;
	int ret;
3141
	bool anon = PageAnon(page);
3142

3143
	VM_BUG_ON(from == to);
3144
	VM_BUG_ON(PageLRU(page));
3145 3146 3147 3148 3149 3150 3151
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3152
	if (nr_pages > 1 && !PageTransHuge(page))
3153 3154 3155 3156 3157 3158 3159 3160
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3161
	move_lock_mem_cgroup(from, &flags);
3162

3163
	if (!anon && page_mapped(page)) {
3164 3165 3166 3167 3168
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3169
	}
3170
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3171

3172
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3173
	pc->mem_cgroup = to;
3174
	mem_cgroup_charge_statistics(to, anon, nr_pages);
3175
	move_unlock_mem_cgroup(from, &flags);
3176 3177
	ret = 0;
unlock:
3178
	unlock_page_cgroup(pc);
3179 3180 3181
	/*
	 * check events
	 */
3182 3183
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3184
out:
3185 3186 3187
	return ret;
}

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3208
 */
3209 3210
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3211
				  struct mem_cgroup *child)
3212 3213
{
	struct mem_cgroup *parent;
3214
	unsigned int nr_pages;
3215
	unsigned long uninitialized_var(flags);
3216 3217
	int ret;

3218
	VM_BUG_ON(mem_cgroup_is_root(child));
3219

3220 3221 3222 3223 3224
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3225

3226
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3227

3228 3229 3230 3231 3232 3233
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3234

3235 3236
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3237
		flags = compound_lock_irqsave(page);
3238
	}
3239

3240
	ret = mem_cgroup_move_account(page, nr_pages,
3241
				pc, child, parent);
3242 3243
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3244

3245
	if (nr_pages > 1)
3246
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3247
	putback_lru_page(page);
3248
put:
3249
	put_page(page);
3250
out:
3251 3252 3253
	return ret;
}

3254 3255 3256 3257 3258 3259 3260
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3261
				gfp_t gfp_mask, enum charge_type ctype)
3262
{
3263
	struct mem_cgroup *memcg = NULL;
3264
	unsigned int nr_pages = 1;
3265
	bool oom = true;
3266
	int ret;
A
Andrea Arcangeli 已提交
3267

A
Andrea Arcangeli 已提交
3268
	if (PageTransHuge(page)) {
3269
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3270
		VM_BUG_ON(!PageTransHuge(page));
3271 3272 3273 3274 3275
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3276
	}
3277

3278
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3279
	if (ret == -ENOMEM)
3280
		return ret;
3281
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3282 3283 3284
	return 0;
}

3285 3286
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3287
{
3288
	if (mem_cgroup_disabled())
3289
		return 0;
3290 3291 3292
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3293
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3294
					MEM_CGROUP_CHARGE_TYPE_ANON);
3295 3296
}

3297 3298 3299
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3300
 * struct page_cgroup is acquired. This refcnt will be consumed by
3301 3302
 * "commit()" or removed by "cancel()"
 */
3303 3304 3305 3306
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3307
{
3308
	struct mem_cgroup *memcg;
3309
	struct page_cgroup *pc;
3310
	int ret;
3311

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3322 3323
	if (!do_swap_account)
		goto charge_cur_mm;
3324 3325
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3326
		goto charge_cur_mm;
3327 3328
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3329
	css_put(&memcg->css);
3330 3331
	if (ret == -EINTR)
		ret = 0;
3332
	return ret;
3333
charge_cur_mm:
3334 3335 3336 3337
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3338 3339
}

3340 3341 3342 3343 3344 3345
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3360 3361 3362
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3363 3364 3365 3366 3367 3368 3369 3370 3371
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3372
static void
3373
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3374
					enum charge_type ctype)
3375
{
3376
	if (mem_cgroup_disabled())
3377
		return;
3378
	if (!memcg)
3379
		return;
3380

3381
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3382 3383 3384
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3385 3386 3387
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3388
	 */
3389
	if (do_swap_account && PageSwapCache(page)) {
3390
		swp_entry_t ent = {.val = page_private(page)};
3391
		mem_cgroup_uncharge_swap(ent);
3392
	}
3393 3394
}

3395 3396
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3397
{
3398
	__mem_cgroup_commit_charge_swapin(page, memcg,
3399
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3400 3401
}

3402 3403
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3404
{
3405 3406 3407 3408
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3409
	if (mem_cgroup_disabled())
3410 3411 3412 3413 3414 3415 3416
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3417 3418
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3419 3420 3421 3422
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3423 3424
}

3425
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3426 3427
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3428 3429 3430
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3431

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3443
		batch->memcg = memcg;
3444 3445
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3446
	 * In those cases, all pages freed continuously can be expected to be in
3447 3448 3449 3450 3451 3452 3453 3454
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3455
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3456 3457
		goto direct_uncharge;

3458 3459 3460 3461 3462
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3463
	if (batch->memcg != memcg)
3464 3465
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3466
	batch->nr_pages++;
3467
	if (uncharge_memsw)
3468
		batch->memsw_nr_pages++;
3469 3470
	return;
direct_uncharge:
3471
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3472
	if (uncharge_memsw)
3473 3474 3475
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3476
}
3477

3478
/*
3479
 * uncharge if !page_mapped(page)
3480
 */
3481
static struct mem_cgroup *
3482 3483
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3484
{
3485
	struct mem_cgroup *memcg = NULL;
3486 3487
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3488
	bool anon;
3489

3490
	if (mem_cgroup_disabled())
3491
		return NULL;
3492

3493
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3494

A
Andrea Arcangeli 已提交
3495
	if (PageTransHuge(page)) {
3496
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3497 3498
		VM_BUG_ON(!PageTransHuge(page));
	}
3499
	/*
3500
	 * Check if our page_cgroup is valid
3501
	 */
3502
	pc = lookup_page_cgroup(page);
3503
	if (unlikely(!PageCgroupUsed(pc)))
3504
		return NULL;
3505

3506
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3507

3508
	memcg = pc->mem_cgroup;
3509

K
KAMEZAWA Hiroyuki 已提交
3510 3511 3512
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3513 3514
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3515
	switch (ctype) {
3516
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3517 3518 3519 3520 3521
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3522 3523
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3524
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3525
		/* See mem_cgroup_prepare_migration() */
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3547
	}
K
KAMEZAWA Hiroyuki 已提交
3548

3549
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3550

3551
	ClearPageCgroupUsed(pc);
3552 3553 3554 3555 3556 3557
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3558

3559
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3560
	/*
3561
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3562 3563
	 * will never be freed.
	 */
3564
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3565
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3566 3567
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3568
	}
3569 3570 3571 3572 3573 3574
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3575
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3576

3577
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3578 3579 3580

unlock_out:
	unlock_page_cgroup(pc);
3581
	return NULL;
3582 3583
}

3584 3585
void mem_cgroup_uncharge_page(struct page *page)
{
3586 3587 3588
	/* early check. */
	if (page_mapped(page))
		return;
3589
	VM_BUG_ON(page->mapping && !PageAnon(page));
3590 3591
	if (PageSwapCache(page))
		return;
3592
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3593 3594 3595 3596 3597
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3598
	VM_BUG_ON(page->mapping);
3599
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3600 3601
}

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3616 3617
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3638 3639 3640 3641 3642 3643
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3644
	memcg_oom_recover(batch->memcg);
3645 3646 3647 3648
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3649
#ifdef CONFIG_SWAP
3650
/*
3651
 * called after __delete_from_swap_cache() and drop "page" account.
3652 3653
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3654 3655
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3656 3657
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3658 3659 3660 3661 3662
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3663
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3664

K
KAMEZAWA Hiroyuki 已提交
3665 3666 3667 3668 3669
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3670
		swap_cgroup_record(ent, css_id(&memcg->css));
3671
}
3672
#endif
3673

A
Andrew Morton 已提交
3674
#ifdef CONFIG_MEMCG_SWAP
3675 3676 3677 3678 3679
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3680
{
3681
	struct mem_cgroup *memcg;
3682
	unsigned short id;
3683 3684 3685 3686

	if (!do_swap_account)
		return;

3687 3688 3689
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3690
	if (memcg) {
3691 3692 3693 3694
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3695
		if (!mem_cgroup_is_root(memcg))
3696
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3697
		mem_cgroup_swap_statistics(memcg, false);
3698 3699
		mem_cgroup_put(memcg);
	}
3700
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3701
}
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3718
				struct mem_cgroup *from, struct mem_cgroup *to)
3719 3720 3721 3722 3723 3724 3725 3726
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3727
		mem_cgroup_swap_statistics(to, true);
3728
		/*
3729 3730 3731 3732 3733 3734
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3735 3736 3737 3738 3739 3740 3741 3742
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3743
				struct mem_cgroup *from, struct mem_cgroup *to)
3744 3745 3746
{
	return -EINVAL;
}
3747
#endif
K
KAMEZAWA Hiroyuki 已提交
3748

3749
/*
3750 3751
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3752
 */
3753 3754
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3755
{
3756
	struct mem_cgroup *memcg = NULL;
3757
	unsigned int nr_pages = 1;
3758
	struct page_cgroup *pc;
3759
	enum charge_type ctype;
3760

3761
	*memcgp = NULL;
3762

3763
	if (mem_cgroup_disabled())
3764
		return;
3765

3766 3767 3768
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

3769 3770 3771
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3772 3773
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3805
	}
3806
	unlock_page_cgroup(pc);
3807 3808 3809 3810
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3811
	if (!memcg)
3812
		return;
3813

3814
	*memcgp = memcg;
3815 3816 3817 3818 3819 3820 3821
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3822
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3823
	else
3824
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3825 3826 3827 3828 3829
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3830
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
3831
}
3832

3833
/* remove redundant charge if migration failed*/
3834
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3835
	struct page *oldpage, struct page *newpage, bool migration_ok)
3836
{
3837
	struct page *used, *unused;
3838
	struct page_cgroup *pc;
3839
	bool anon;
3840

3841
	if (!memcg)
3842
		return;
3843

3844
	if (!migration_ok) {
3845 3846
		used = oldpage;
		unused = newpage;
3847
	} else {
3848
		used = newpage;
3849 3850
		unused = oldpage;
	}
3851
	anon = PageAnon(used);
3852 3853 3854 3855
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3856
	css_put(&memcg->css);
3857
	/*
3858 3859 3860
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3861
	 */
3862 3863 3864 3865 3866
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3867
	/*
3868 3869 3870 3871 3872 3873
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3874
	 */
3875
	if (anon)
3876
		mem_cgroup_uncharge_page(used);
3877
}
3878

3879 3880 3881 3882 3883 3884 3885 3886
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3887
	struct mem_cgroup *memcg = NULL;
3888 3889 3890 3891 3892 3893 3894 3895 3896
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3897 3898 3899 3900 3901
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3902 3903
	unlock_page_cgroup(pc);

3904 3905 3906 3907 3908 3909
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
3910 3911 3912 3913 3914
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3915
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3916 3917
}

3918 3919 3920 3921 3922 3923
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3924 3925 3926 3927 3928
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3948
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3949 3950 3951 3952 3953
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3954 3955
static DEFINE_MUTEX(set_limit_mutex);

3956
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3957
				unsigned long long val)
3958
{
3959
	int retry_count;
3960
	u64 memswlimit, memlimit;
3961
	int ret = 0;
3962 3963
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3964
	int enlarge;
3965 3966 3967 3968 3969 3970 3971 3972 3973

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3974

3975
	enlarge = 0;
3976
	while (retry_count) {
3977 3978 3979 3980
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3981 3982 3983
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3984
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3985 3986 3987 3988 3989 3990
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3991 3992
			break;
		}
3993 3994 3995 3996 3997

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3998
		ret = res_counter_set_limit(&memcg->res, val);
3999 4000 4001 4002 4003 4004
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4005 4006 4007 4008 4009
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4010 4011
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4012 4013 4014 4015 4016 4017
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4018
	}
4019 4020
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4021

4022 4023 4024
	return ret;
}

L
Li Zefan 已提交
4025 4026
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4027
{
4028
	int retry_count;
4029
	u64 memlimit, memswlimit, oldusage, curusage;
4030 4031
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4032
	int enlarge = 0;
4033

4034 4035 4036
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4037 4038 4039 4040 4041 4042 4043 4044
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4045
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4046 4047 4048 4049 4050 4051 4052 4053
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4054 4055 4056
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4057
		ret = res_counter_set_limit(&memcg->memsw, val);
4058 4059 4060 4061 4062 4063
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4064 4065 4066 4067 4068
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4069 4070 4071
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4072
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4073
		/* Usage is reduced ? */
4074
		if (curusage >= oldusage)
4075
			retry_count--;
4076 4077
		else
			oldusage = curusage;
4078
	}
4079 4080
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4081 4082 4083
	return ret;
}

4084
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4085 4086
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4087 4088 4089 4090 4091 4092
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4093
	unsigned long long excess;
4094
	unsigned long nr_scanned;
4095 4096 4097 4098

	if (order > 0)
		return 0;

4099
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4113
		nr_scanned = 0;
4114
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4115
						    gfp_mask, &nr_scanned);
4116
		nr_reclaimed += reclaimed;
4117
		*total_scanned += nr_scanned;
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4140
				if (next_mz == mz)
4141
					css_put(&next_mz->memcg->css);
4142
				else /* next_mz == NULL or other memcg */
4143 4144 4145
					break;
			} while (1);
		}
4146 4147
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4148 4149 4150 4151 4152 4153 4154 4155
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4156
		/* If excess == 0, no tree ops */
4157
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4158
		spin_unlock(&mctz->lock);
4159
		css_put(&mz->memcg->css);
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4172
		css_put(&next_mz->memcg->css);
4173 4174 4175
	return nr_reclaimed;
}

4176 4177 4178 4179 4180 4181 4182
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4183
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4184 4185
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4186
 */
4187
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4188
				int node, int zid, enum lru_list lru)
4189
{
4190
	struct lruvec *lruvec;
4191
	unsigned long flags;
4192
	struct list_head *list;
4193 4194
	struct page *busy;
	struct zone *zone;
4195

K
KAMEZAWA Hiroyuki 已提交
4196
	zone = &NODE_DATA(node)->node_zones[zid];
4197 4198
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4199

4200
	busy = NULL;
4201
	do {
4202
		struct page_cgroup *pc;
4203 4204
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4205
		spin_lock_irqsave(&zone->lru_lock, flags);
4206
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4207
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4208
			break;
4209
		}
4210 4211 4212
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4213
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4214
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4215 4216
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4217
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4218

4219
		pc = lookup_page_cgroup(page);
4220

4221
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4222
			/* found lock contention or "pc" is obsolete. */
4223
			busy = page;
4224 4225 4226
			cond_resched();
		} else
			busy = NULL;
4227
	} while (!list_empty(list));
4228 4229 4230
}

/*
4231 4232
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4233
 * This enables deleting this mem_cgroup.
4234 4235
 *
 * Caller is responsible for holding css reference on the memcg.
4236
 */
4237
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4238
{
4239
	int node, zid;
4240
	u64 usage;
4241

4242
	do {
4243 4244
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4245 4246
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4247
		for_each_node_state(node, N_MEMORY) {
4248
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4249 4250
				enum lru_list lru;
				for_each_lru(lru) {
4251
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4252
							node, zid, lru);
4253
				}
4254
			}
4255
		}
4256 4257
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4258
		cond_resched();
4259

4260
		/*
4261 4262 4263 4264 4265
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4266 4267 4268 4269 4270 4271
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4272 4273 4274
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4287

4288
	/* returns EBUSY if there is a task or if we come here twice. */
4289 4290 4291
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4292 4293
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4294
	/* try to free all pages in this cgroup */
4295
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4296
		int progress;
4297

4298 4299 4300
		if (signal_pending(current))
			return -EINTR;

4301
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4302
						false);
4303
		if (!progress) {
4304
			nr_retries--;
4305
			/* maybe some writeback is necessary */
4306
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4307
		}
4308 4309

	}
K
KAMEZAWA Hiroyuki 已提交
4310
	lru_add_drain();
4311 4312 4313
	mem_cgroup_reparent_charges(memcg);

	return 0;
4314 4315
}

4316
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4317
{
4318 4319 4320
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4321 4322
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4323 4324 4325 4326 4327
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4328 4329 4330
}


4331 4332 4333 4334 4335 4336 4337 4338 4339
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4340
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4341
	struct cgroup *parent = cont->parent;
4342
	struct mem_cgroup *parent_memcg = NULL;
4343 4344

	if (parent)
4345
		parent_memcg = mem_cgroup_from_cont(parent);
4346 4347

	cgroup_lock();
4348 4349 4350 4351

	if (memcg->use_hierarchy == val)
		goto out;

4352
	/*
4353
	 * If parent's use_hierarchy is set, we can't make any modifications
4354 4355 4356 4357 4358 4359
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4360
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4361 4362
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
4363
			memcg->use_hierarchy = val;
4364 4365 4366 4367
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4368 4369

out:
4370 4371 4372 4373 4374
	cgroup_unlock();

	return retval;
}

4375

4376
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4377
					       enum mem_cgroup_stat_index idx)
4378
{
K
KAMEZAWA Hiroyuki 已提交
4379
	struct mem_cgroup *iter;
4380
	long val = 0;
4381

4382
	/* Per-cpu values can be negative, use a signed accumulator */
4383
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4384 4385 4386 4387 4388
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4389 4390
}

4391
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4392
{
K
KAMEZAWA Hiroyuki 已提交
4393
	u64 val;
4394

4395
	if (!mem_cgroup_is_root(memcg)) {
4396
		if (!swap)
4397
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4398
		else
4399
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4400 4401
	}

4402 4403
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4404

K
KAMEZAWA Hiroyuki 已提交
4405
	if (swap)
4406
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4407 4408 4409 4410

	return val << PAGE_SHIFT;
}

4411 4412 4413
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4414
{
4415
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4416
	char str[64];
4417
	u64 val;
G
Glauber Costa 已提交
4418 4419
	int name, len;
	enum res_type type;
4420 4421 4422

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4423 4424 4425 4426

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4427 4428
	switch (type) {
	case _MEM:
4429
		if (name == RES_USAGE)
4430
			val = mem_cgroup_usage(memcg, false);
4431
		else
4432
			val = res_counter_read_u64(&memcg->res, name);
4433 4434
		break;
	case _MEMSWAP:
4435
		if (name == RES_USAGE)
4436
			val = mem_cgroup_usage(memcg, true);
4437
		else
4438
			val = res_counter_read_u64(&memcg->memsw, name);
4439
		break;
4440 4441 4442
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4443 4444 4445
	default:
		BUG();
	}
4446 4447 4448

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4449
}
4450 4451 4452 4453 4454

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4455 4456
	bool must_inc_static_branch = false;

4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 *
	 * Taking the cgroup_lock is really offensive, but it is so far the only
	 * way to guarantee that no children will appear. There are plenty of
	 * other offenders, and they should all go away. Fine grained locking
	 * is probably the way to go here. When we are fully hierarchical, we
	 * can also get rid of the use_hierarchy check.
	 */
	cgroup_lock();
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
						!list_empty(&cont->children))) {
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4487 4488 4489 4490 4491
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
4492
		must_inc_static_branch = true;
4493 4494 4495 4496 4497 4498 4499
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
4500 4501 4502 4503 4504
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
	cgroup_unlock();
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525

	/*
	 * We are by now familiar with the fact that we can't inc the static
	 * branch inside cgroup_lock. See disarm functions for details. A
	 * worker here is overkill, but also wrong: After the limit is set, we
	 * must start accounting right away. Since this operation can't fail,
	 * we can safely defer it to here - no rollback will be needed.
	 *
	 * The boolean used to control this is also safe, because
	 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
	 * able to set it to true;
	 */
	if (must_inc_static_branch) {
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
	}

4526 4527 4528 4529
#endif
	return ret;
}

4530
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4531
{
4532
	int ret = 0;
4533 4534
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
4535 4536
		goto out;

4537
	memcg->kmem_account_flags = parent->kmem_account_flags;
4538
#ifdef CONFIG_MEMCG_KMEM
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
4564
#endif
4565 4566
out:
	return ret;
4567 4568
}

4569 4570 4571 4572
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4573 4574
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
4575
{
4576
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4577 4578
	enum res_type type;
	int name;
4579 4580 4581
	unsigned long long val;
	int ret;

4582 4583
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4584 4585 4586 4587

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4588
	switch (name) {
4589
	case RES_LIMIT:
4590 4591 4592 4593
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4594 4595
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4596 4597 4598
		if (ret)
			break;
		if (type == _MEM)
4599
			ret = mem_cgroup_resize_limit(memcg, val);
4600
		else if (type == _MEMSWAP)
4601
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4602 4603 4604 4605
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
4606
		break;
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4621 4622 4623 4624 4625
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4626 4627
}

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4655
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4656
{
4657
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4658 4659
	int name;
	enum res_type type;
4660

4661 4662
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4663 4664 4665 4666

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4667
	switch (name) {
4668
	case RES_MAX_USAGE:
4669
		if (type == _MEM)
4670
			res_counter_reset_max(&memcg->res);
4671
		else if (type == _MEMSWAP)
4672
			res_counter_reset_max(&memcg->memsw);
4673 4674 4675 4676
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
4677 4678
		break;
	case RES_FAILCNT:
4679
		if (type == _MEM)
4680
			res_counter_reset_failcnt(&memcg->res);
4681
		else if (type == _MEMSWAP)
4682
			res_counter_reset_failcnt(&memcg->memsw);
4683 4684 4685 4686
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
4687 4688
		break;
	}
4689

4690
	return 0;
4691 4692
}

4693 4694 4695 4696 4697 4698
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4699
#ifdef CONFIG_MMU
4700 4701 4702
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4703
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4704 4705 4706 4707 4708 4709 4710 4711 4712

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4713
	memcg->move_charge_at_immigrate = val;
4714 4715 4716 4717
	cgroup_unlock();

	return 0;
}
4718 4719 4720 4721 4722 4723 4724
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4725

4726
#ifdef CONFIG_NUMA
4727
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4728
				      struct seq_file *m)
4729 4730 4731 4732
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4733
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4734

4735
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4736
	seq_printf(m, "total=%lu", total_nr);
4737
	for_each_node_state(nid, N_MEMORY) {
4738
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4739 4740 4741 4742
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4743
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4744
	seq_printf(m, "file=%lu", file_nr);
4745
	for_each_node_state(nid, N_MEMORY) {
4746
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4747
				LRU_ALL_FILE);
4748 4749 4750 4751
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4752
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4753
	seq_printf(m, "anon=%lu", anon_nr);
4754
	for_each_node_state(nid, N_MEMORY) {
4755
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4756
				LRU_ALL_ANON);
4757 4758 4759 4760
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4761
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4762
	seq_printf(m, "unevictable=%lu", unevictable_nr);
4763
	for_each_node_state(nid, N_MEMORY) {
4764
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4765
				BIT(LRU_UNEVICTABLE));
4766 4767 4768 4769 4770 4771 4772
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4786
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4787
				 struct seq_file *m)
4788
{
4789
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4790 4791
	struct mem_cgroup *mi;
	unsigned int i;
4792

4793
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4794
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4795
			continue;
4796 4797
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4798
	}
L
Lee Schermerhorn 已提交
4799

4800 4801 4802 4803 4804 4805 4806 4807
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4808
	/* Hierarchical information */
4809 4810
	{
		unsigned long long limit, memsw_limit;
4811
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4812
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4813
		if (do_swap_account)
4814 4815
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4816
	}
K
KOSAKI Motohiro 已提交
4817

4818 4819 4820
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4821
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4822
			continue;
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4843
	}
K
KAMEZAWA Hiroyuki 已提交
4844

K
KOSAKI Motohiro 已提交
4845 4846 4847 4848
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4849
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4850 4851 4852 4853 4854
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4855
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4856
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4857

4858 4859 4860 4861
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4862
			}
4863 4864 4865 4866
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4867 4868 4869
	}
#endif

4870 4871 4872
	return 0;
}

K
KOSAKI Motohiro 已提交
4873 4874 4875 4876
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4877
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4878 4879 4880 4881 4882 4883 4884
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4885

K
KOSAKI Motohiro 已提交
4886 4887 4888 4889 4890 4891 4892
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4893 4894 4895

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4896 4897
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4898 4899
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4900
		return -EINVAL;
4901
	}
K
KOSAKI Motohiro 已提交
4902 4903 4904

	memcg->swappiness = val;

4905 4906
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4907 4908 4909
	return 0;
}

4910 4911 4912 4913 4914 4915 4916 4917
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4918
		t = rcu_dereference(memcg->thresholds.primary);
4919
	else
4920
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4921 4922 4923 4924 4925 4926 4927

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4928
	 * current_threshold points to threshold just below or equal to usage.
4929 4930 4931
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4932
	i = t->current_threshold;
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4956
	t->current_threshold = i - 1;
4957 4958 4959 4960 4961 4962
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4963 4964 4965 4966 4967 4968 4969
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4980
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4981 4982 4983
{
	struct mem_cgroup_eventfd_list *ev;

4984
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4985 4986 4987 4988
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4989
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4990
{
K
KAMEZAWA Hiroyuki 已提交
4991 4992
	struct mem_cgroup *iter;

4993
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4994
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4995 4996 4997 4998
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4999 5000
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5001 5002
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5003
	enum res_type type = MEMFILE_TYPE(cft->private);
5004
	u64 threshold, usage;
5005
	int i, size, ret;
5006 5007 5008 5009 5010 5011

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5012

5013
	if (type == _MEM)
5014
		thresholds = &memcg->thresholds;
5015
	else if (type == _MEMSWAP)
5016
		thresholds = &memcg->memsw_thresholds;
5017 5018 5019 5020 5021 5022
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5023
	if (thresholds->primary)
5024 5025
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5026
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5027 5028

	/* Allocate memory for new array of thresholds */
5029
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5030
			GFP_KERNEL);
5031
	if (!new) {
5032 5033 5034
		ret = -ENOMEM;
		goto unlock;
	}
5035
	new->size = size;
5036 5037

	/* Copy thresholds (if any) to new array */
5038 5039
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5040
				sizeof(struct mem_cgroup_threshold));
5041 5042
	}

5043
	/* Add new threshold */
5044 5045
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5046 5047

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5048
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5049 5050 5051
			compare_thresholds, NULL);

	/* Find current threshold */
5052
	new->current_threshold = -1;
5053
	for (i = 0; i < size; i++) {
5054
		if (new->entries[i].threshold <= usage) {
5055
			/*
5056 5057
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5058 5059
			 * it here.
			 */
5060
			++new->current_threshold;
5061 5062
		} else
			break;
5063 5064
	}

5065 5066 5067 5068 5069
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5070

5071
	/* To be sure that nobody uses thresholds */
5072 5073 5074 5075 5076 5077 5078 5079
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5080
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5081
	struct cftype *cft, struct eventfd_ctx *eventfd)
5082 5083
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5084 5085
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5086
	enum res_type type = MEMFILE_TYPE(cft->private);
5087
	u64 usage;
5088
	int i, j, size;
5089 5090 5091

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5092
		thresholds = &memcg->thresholds;
5093
	else if (type == _MEMSWAP)
5094
		thresholds = &memcg->memsw_thresholds;
5095 5096 5097
	else
		BUG();

5098 5099 5100
	if (!thresholds->primary)
		goto unlock;

5101 5102 5103 5104 5105 5106
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5107 5108 5109
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5110 5111 5112
			size++;
	}

5113
	new = thresholds->spare;
5114

5115 5116
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5117 5118
		kfree(new);
		new = NULL;
5119
		goto swap_buffers;
5120 5121
	}

5122
	new->size = size;
5123 5124

	/* Copy thresholds and find current threshold */
5125 5126 5127
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5128 5129
			continue;

5130
		new->entries[j] = thresholds->primary->entries[i];
5131
		if (new->entries[j].threshold <= usage) {
5132
			/*
5133
			 * new->current_threshold will not be used
5134 5135 5136
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5137
			++new->current_threshold;
5138 5139 5140 5141
		}
		j++;
	}

5142
swap_buffers:
5143 5144
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5145 5146 5147 5148 5149 5150
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5151
	rcu_assign_pointer(thresholds->primary, new);
5152

5153
	/* To be sure that nobody uses thresholds */
5154
	synchronize_rcu();
5155
unlock:
5156 5157
	mutex_unlock(&memcg->thresholds_lock);
}
5158

K
KAMEZAWA Hiroyuki 已提交
5159 5160 5161 5162 5163
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5164
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5165 5166 5167 5168 5169 5170

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5171
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5172 5173 5174 5175 5176

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5177
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5178
		eventfd_signal(eventfd, 1);
5179
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5180 5181 5182 5183

	return 0;
}

5184
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5185 5186
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5187
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5188
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5189
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5190 5191 5192

	BUG_ON(type != _OOM_TYPE);

5193
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5194

5195
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5196 5197 5198 5199 5200 5201
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5202
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5203 5204
}

5205 5206 5207
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5208
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5209

5210
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5211

5212
	if (atomic_read(&memcg->under_oom))
5213 5214 5215 5216 5217 5218 5219 5220 5221
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5222
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
5234
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5235 5236 5237
		cgroup_unlock();
		return -EINVAL;
	}
5238
	memcg->oom_kill_disable = val;
5239
	if (!val)
5240
		memcg_oom_recover(memcg);
5241 5242 5243 5244
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
5245
#ifdef CONFIG_MEMCG_KMEM
5246
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5247
{
5248 5249
	int ret;

5250
	memcg->kmemcg_id = -1;
5251 5252 5253
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5254

5255
	return mem_cgroup_sockets_init(memcg, ss);
5256 5257
};

5258
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5259
{
5260
	mem_cgroup_sockets_destroy(memcg);
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5275
}
5276
#else
5277
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5278 5279 5280
{
	return 0;
}
G
Glauber Costa 已提交
5281

5282
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5283 5284
{
}
5285 5286
#endif

B
Balbir Singh 已提交
5287 5288
static struct cftype mem_cgroup_files[] = {
	{
5289
		.name = "usage_in_bytes",
5290
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5291
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5292 5293
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5294
	},
5295 5296
	{
		.name = "max_usage_in_bytes",
5297
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5298
		.trigger = mem_cgroup_reset,
5299
		.read = mem_cgroup_read,
5300
	},
B
Balbir Singh 已提交
5301
	{
5302
		.name = "limit_in_bytes",
5303
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5304
		.write_string = mem_cgroup_write,
5305
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5306
	},
5307 5308 5309 5310
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5311
		.read = mem_cgroup_read,
5312
	},
B
Balbir Singh 已提交
5313 5314
	{
		.name = "failcnt",
5315
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5316
		.trigger = mem_cgroup_reset,
5317
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5318
	},
5319 5320
	{
		.name = "stat",
5321
		.read_seq_string = memcg_stat_show,
5322
	},
5323 5324 5325 5326
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5327 5328 5329 5330 5331
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5332 5333 5334 5335 5336
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5337 5338 5339 5340 5341
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5342 5343
	{
		.name = "oom_control",
5344 5345
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5346 5347 5348 5349
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5350 5351 5352
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5353
		.read_seq_string = memcg_numa_stat_show,
5354 5355
	},
#endif
A
Andrew Morton 已提交
5356
#ifdef CONFIG_MEMCG_SWAP
5357 5358 5359
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5360
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5361 5362
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
5363 5364 5365 5366 5367
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
5368
		.read = mem_cgroup_read,
5369 5370 5371 5372 5373
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
5374
		.read = mem_cgroup_read,
5375 5376 5377 5378 5379
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
5380
		.read = mem_cgroup_read,
5381
	},
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
#endif
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5407
#endif
5408
	{ },	/* terminate */
5409
};
5410

5411
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5412 5413
{
	struct mem_cgroup_per_node *pn;
5414
	struct mem_cgroup_per_zone *mz;
5415
	int zone, tmp = node;
5416 5417 5418 5419 5420 5421 5422 5423
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5424 5425
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5426
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5427 5428
	if (!pn)
		return 1;
5429 5430 5431

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5432
		lruvec_init(&mz->lruvec);
5433
		mz->usage_in_excess = 0;
5434
		mz->on_tree = false;
5435
		mz->memcg = memcg;
5436
	}
5437
	memcg->info.nodeinfo[node] = pn;
5438 5439 5440
	return 0;
}

5441
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5442
{
5443
	kfree(memcg->info.nodeinfo[node]);
5444 5445
}

5446 5447
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5448
	struct mem_cgroup *memcg;
5449
	int size = sizeof(struct mem_cgroup);
5450

5451
	/* Can be very big if MAX_NUMNODES is very big */
5452
	if (size < PAGE_SIZE)
5453
		memcg = kzalloc(size, GFP_KERNEL);
5454
	else
5455
		memcg = vzalloc(size);
5456

5457
	if (!memcg)
5458 5459
		return NULL;

5460 5461
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5462
		goto out_free;
5463 5464
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5465 5466 5467

out_free:
	if (size < PAGE_SIZE)
5468
		kfree(memcg);
5469
	else
5470
		vfree(memcg);
5471
	return NULL;
5472 5473
}

5474
/*
5475 5476 5477 5478 5479 5480 5481 5482
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5483
 */
5484 5485

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5486
{
5487
	int node;
5488
	int size = sizeof(struct mem_cgroup);
5489

5490 5491 5492 5493 5494 5495 5496 5497
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5509
	disarm_static_keys(memcg);
5510 5511 5512 5513
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5514
}
5515

5516

5517
/*
5518 5519 5520
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
5521
 */
5522
static void free_work(struct work_struct *work)
5523
{
5524
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5525

5526 5527 5528
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
5529

5530 5531 5532
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5533

5534 5535 5536
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
5537 5538
}

5539
static void mem_cgroup_get(struct mem_cgroup *memcg)
5540
{
5541
	atomic_inc(&memcg->refcnt);
5542 5543
}

5544
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
5545
{
5546 5547
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5548
		call_rcu(&memcg->rcu_freeing, free_rcu);
5549 5550 5551
		if (parent)
			mem_cgroup_put(parent);
	}
5552 5553
}

5554
static void mem_cgroup_put(struct mem_cgroup *memcg)
5555
{
5556
	__mem_cgroup_put(memcg, 1);
5557 5558
}

5559 5560 5561
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5562
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5563
{
5564
	if (!memcg->res.parent)
5565
		return NULL;
5566
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5567
}
G
Glauber Costa 已提交
5568
EXPORT_SYMBOL(parent_mem_cgroup);
5569

A
Andrew Morton 已提交
5570
#ifdef CONFIG_MEMCG_SWAP
5571 5572
static void __init enable_swap_cgroup(void)
{
5573
	if (!mem_cgroup_disabled() && really_do_swap_account)
5574 5575 5576 5577 5578 5579 5580 5581
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5582 5583 5584 5585 5586 5587
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
5588
	for_each_node(node) {
5589 5590 5591 5592 5593
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
5594
			goto err_cleanup;
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
5605 5606

err_cleanup:
B
Bob Liu 已提交
5607
	for_each_node(node) {
5608 5609 5610 5611 5612 5613 5614
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

5615 5616
}

L
Li Zefan 已提交
5617
static struct cgroup_subsys_state * __ref
5618
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
5619
{
5620
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
5621
	long error = -ENOMEM;
5622
	int node;
B
Balbir Singh 已提交
5623

5624 5625
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5626
		return ERR_PTR(error);
5627

B
Bob Liu 已提交
5628
	for_each_node(node)
5629
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5630
			goto free_out;
5631

5632
	/* root ? */
5633
	if (cont->parent == NULL) {
5634
		int cpu;
5635
		enable_swap_cgroup();
5636
		parent = NULL;
5637 5638
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5639
		root_mem_cgroup = memcg;
5640 5641 5642 5643 5644
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5645
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5646
	} else {
5647
		parent = mem_cgroup_from_cont(cont->parent);
5648 5649
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5650
	}
5651

5652
	if (parent && parent->use_hierarchy) {
5653 5654
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5655
		res_counter_init(&memcg->kmem, &parent->kmem);
5656

5657 5658 5659 5660 5661 5662 5663
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5664
	} else {
5665 5666
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5667
		res_counter_init(&memcg->kmem, NULL);
5668 5669 5670 5671 5672 5673 5674
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
5675
	}
5676 5677
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5678

K
KOSAKI Motohiro 已提交
5679
	if (parent)
5680 5681 5682 5683
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5684
	spin_lock_init(&memcg->move_lock);
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5696
	return &memcg->css;
5697
free_out:
5698
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5699
	return ERR_PTR(error);
B
Balbir Singh 已提交
5700 5701
}

5702
static void mem_cgroup_css_offline(struct cgroup *cont)
5703
{
5704
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5705

5706
	mem_cgroup_reparent_charges(memcg);
5707 5708
}

5709
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
5710
{
5711
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5712

5713
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5714

5715
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5716 5717
}

5718
#ifdef CONFIG_MMU
5719
/* Handlers for move charge at task migration. */
5720 5721
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5722
{
5723 5724
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5725
	struct mem_cgroup *memcg = mc.to;
5726

5727
	if (mem_cgroup_is_root(memcg)) {
5728 5729 5730 5731 5732 5733 5734 5735
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5736
		 * "memcg" cannot be under rmdir() because we've already checked
5737 5738 5739 5740
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5741
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5742
			goto one_by_one;
5743
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5744
						PAGE_SIZE * count, &dummy)) {
5745
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5762 5763
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5764
		if (ret)
5765
			/* mem_cgroup_clear_mc() will do uncharge later */
5766
			return ret;
5767 5768
		mc.precharge++;
	}
5769 5770 5771 5772
	return ret;
}

/**
5773
 * get_mctgt_type - get target type of moving charge
5774 5775 5776
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5777
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5778 5779 5780 5781 5782 5783
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5784 5785 5786
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5787 5788 5789 5790 5791
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5792
	swp_entry_t	ent;
5793 5794 5795
};

enum mc_target_type {
5796
	MC_TARGET_NONE = 0,
5797
	MC_TARGET_PAGE,
5798
	MC_TARGET_SWAP,
5799 5800
};

D
Daisuke Nishimura 已提交
5801 5802
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5803
{
D
Daisuke Nishimura 已提交
5804
	struct page *page = vm_normal_page(vma, addr, ptent);
5805

D
Daisuke Nishimura 已提交
5806 5807 5808 5809
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5810
		if (!move_anon())
D
Daisuke Nishimura 已提交
5811
			return NULL;
5812 5813
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5814 5815 5816 5817 5818 5819 5820
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5821
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5822 5823 5824 5825 5826 5827 5828 5829
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5830 5831 5832 5833 5834
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5835 5836 5837 5838 5839
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5840 5841 5842 5843 5844 5845 5846
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5847

5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5867 5868 5869 5870 5871 5872
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5873
		if (do_swap_account)
5874 5875
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5876
	}
5877
#endif
5878 5879 5880
	return page;
}

5881
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5882 5883 5884 5885
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5886
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5887 5888 5889 5890 5891 5892
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5893 5894
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5895 5896

	if (!page && !ent.val)
5897
		return ret;
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5913 5914
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5915
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5916 5917 5918
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5919 5920 5921 5922
	}
	return ret;
}

5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5958 5959 5960 5961 5962 5963 5964 5965
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5966 5967 5968 5969
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5970
		return 0;
5971
	}
5972

5973 5974
	if (pmd_trans_unstable(pmd))
		return 0;
5975 5976
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5977
		if (get_mctgt_type(vma, addr, *pte, NULL))
5978 5979 5980 5981
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5982 5983 5984
	return 0;
}

5985 5986 5987 5988 5989
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5990
	down_read(&mm->mmap_sem);
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6002
	up_read(&mm->mmap_sem);
6003 6004 6005 6006 6007 6008 6009 6010 6011

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6012 6013 6014 6015 6016
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6017 6018
}

6019 6020
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6021
{
6022 6023 6024
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6025
	/* we must uncharge all the leftover precharges from mc.to */
6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6037
	}
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6072
	spin_lock(&mc.lock);
6073 6074
	mc.from = NULL;
	mc.to = NULL;
6075
	spin_unlock(&mc.lock);
6076
	mem_cgroup_end_move(from);
6077 6078
}

6079 6080
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6081
{
6082
	struct task_struct *p = cgroup_taskset_first(tset);
6083
	int ret = 0;
6084
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6085

6086
	if (memcg->move_charge_at_immigrate) {
6087 6088 6089
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6090
		VM_BUG_ON(from == memcg);
6091 6092 6093 6094 6095

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6096 6097 6098 6099
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6100
			VM_BUG_ON(mc.moved_charge);
6101
			VM_BUG_ON(mc.moved_swap);
6102
			mem_cgroup_start_move(from);
6103
			spin_lock(&mc.lock);
6104
			mc.from = from;
6105
			mc.to = memcg;
6106
			spin_unlock(&mc.lock);
6107
			/* We set mc.moving_task later */
6108 6109 6110 6111

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6112 6113
		}
		mmput(mm);
6114 6115 6116 6117
	}
	return ret;
}

6118 6119
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6120
{
6121
	mem_cgroup_clear_mc();
6122 6123
}

6124 6125 6126
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6127
{
6128 6129 6130 6131
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6132 6133 6134 6135
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6136

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6148
		if (mc.precharge < HPAGE_PMD_NR) {
6149 6150 6151 6152 6153 6154 6155 6156 6157
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6158
							pc, mc.from, mc.to)) {
6159 6160 6161 6162 6163 6164 6165 6166
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6167
		return 0;
6168 6169
	}

6170 6171
	if (pmd_trans_unstable(pmd))
		return 0;
6172 6173 6174 6175
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6176
		swp_entry_t ent;
6177 6178 6179 6180

		if (!mc.precharge)
			break;

6181
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6182 6183 6184 6185 6186
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6187
			if (!mem_cgroup_move_account(page, 1, pc,
6188
						     mc.from, mc.to)) {
6189
				mc.precharge--;
6190 6191
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6192 6193
			}
			putback_lru_page(page);
6194
put:			/* get_mctgt_type() gets the page */
6195 6196
			put_page(page);
			break;
6197 6198
		case MC_TARGET_SWAP:
			ent = target.ent;
6199
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6200
				mc.precharge--;
6201 6202 6203
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6204
			break;
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6219
		ret = mem_cgroup_do_precharge(1);
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6263
	up_read(&mm->mmap_sem);
6264 6265
}

6266 6267
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6268
{
6269
	struct task_struct *p = cgroup_taskset_first(tset);
6270
	struct mm_struct *mm = get_task_mm(p);
6271 6272

	if (mm) {
6273 6274
		if (mc.to)
			mem_cgroup_move_charge(mm);
6275 6276
		mmput(mm);
	}
6277 6278
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6279
}
6280
#else	/* !CONFIG_MMU */
6281 6282
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6283 6284 6285
{
	return 0;
}
6286 6287
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6288 6289
{
}
6290 6291
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6292 6293 6294
{
}
#endif
B
Balbir Singh 已提交
6295

B
Balbir Singh 已提交
6296 6297 6298
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6299 6300 6301
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6302 6303
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6304
	.attach = mem_cgroup_move_task,
6305
	.base_cftypes = mem_cgroup_files,
6306
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6307
	.use_id = 1,
B
Balbir Singh 已提交
6308
};
6309

A
Andrew Morton 已提交
6310
#ifdef CONFIG_MEMCG_SWAP
6311 6312 6313
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6314
	if (!strcmp(s, "1"))
6315
		really_do_swap_account = 1;
6316
	else if (!strcmp(s, "0"))
6317 6318 6319
		really_do_swap_account = 0;
	return 1;
}
6320
__setup("swapaccount=", enable_swap_account);
6321 6322

#endif