memcontrol.c 185.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
95 96 97 98 99
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 101 102
	MEM_CGROUP_STAT_NSTATS,
};

103 104 105
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
106
	"rss_huge",
107 108 109 110
	"mapped_file",
	"swap",
};

111 112 113
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 115
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 117
	MEM_CGROUP_EVENTS_NSTATS,
};
118 119 120 121 122 123 124 125

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

126 127 128 129 130 131 132 133
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

134 135 136 137 138 139 140 141 142
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
143
	MEM_CGROUP_TARGET_NUMAINFO,
144 145
	MEM_CGROUP_NTARGETS,
};
146 147 148
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
149

150
struct mem_cgroup_stat_cpu {
151
	long count[MEM_CGROUP_STAT_NSTATS];
152
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153
	unsigned long nr_page_events;
154
	unsigned long targets[MEM_CGROUP_NTARGETS];
155 156
};

157
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
158 159 160 161
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
162
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
163 164
	unsigned long last_dead_count;

165 166 167 168
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

169 170 171 172
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
173
	struct lruvec		lruvec;
174
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
175

176 177
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

178 179 180 181
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
182
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183
						/* use container_of	   */
184 185 186 187 188 189
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

210 211 212 213 214
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
215
/* For threshold */
216
struct mem_cgroup_threshold_ary {
217
	/* An array index points to threshold just below or equal to usage. */
218
	int current_threshold;
219 220 221 222 223
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
224 225 226 227 228 229 230 231 232 233 234 235

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
236 237 238 239 240
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
241

242 243
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244

B
Balbir Singh 已提交
245 246 247 248 249 250 251
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 253 254
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
255 256 257 258 259 260 261
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
262

263 264 265
	/* vmpressure notifications */
	struct vmpressure vmpressure;

266 267 268 269
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
270

271 272 273 274
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
275 276 277 278
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
279
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
280 281 282 283

	bool		oom_lock;
	atomic_t	under_oom;

284
	int	swappiness;
285 286
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
287

288 289 290
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

291 292 293 294
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
295
	struct mem_cgroup_thresholds thresholds;
296

297
	/* thresholds for mem+swap usage. RCU-protected */
298
	struct mem_cgroup_thresholds memsw_thresholds;
299

K
KAMEZAWA Hiroyuki 已提交
300 301
	/* For oom notifier event fd */
	struct list_head oom_notify;
302

303 304 305 306 307
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
308 309 310 311
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
312 313
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
314
	/*
315
	 * percpu counter.
316
	 */
317
	struct mem_cgroup_stat_cpu __percpu *stat;
318 319 320 321 322 323
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
324

M
Michal Hocko 已提交
325
	atomic_t	dead_count;
M
Michal Hocko 已提交
326
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
327 328
	struct tcp_memcontrol tcp_mem;
#endif
329 330 331 332 333 334 335 336
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
337 338 339 340 341 342 343

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
344

345 346
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
347 348
};

349 350 351 352 353 354
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

355 356 357
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
358
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
359
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
360 361
};

362 363 364
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365 366 367 368 369 370

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
371 372 373 374 375 376

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

377 378 379 380 381
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

382 383 384 385 386
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

387 388
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
389 390 391 392 393
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
394 395 396 397 398 399 400 401 402
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
403 404
#endif

405 406
/* Stuffs for move charges at task migration. */
/*
407 408
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
409 410
 */
enum move_type {
411
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
412
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
413 414 415
	NR_MOVE_TYPE,
};

416 417
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
418
	spinlock_t	  lock; /* for from, to */
419 420
	struct mem_cgroup *from;
	struct mem_cgroup *to;
421
	unsigned long immigrate_flags;
422
	unsigned long precharge;
423
	unsigned long moved_charge;
424
	unsigned long moved_swap;
425 426 427
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
428
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
429 430
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
431

D
Daisuke Nishimura 已提交
432 433
static bool move_anon(void)
{
434
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
435 436
}

437 438
static bool move_file(void)
{
439
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
440 441
}

442 443 444 445
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
446 447
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
448

449 450
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
451
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
452
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
453
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
454 455 456
	NR_CHARGE_TYPE,
};

457
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
458 459 460 461
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
462
	_KMEM,
G
Glauber Costa 已提交
463 464
};

465 466
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
467
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
468 469
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
470

471 472 473 474 475 476 477 478
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

479 480 481 482 483 484 485
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

486 487 488
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
489
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
490 491
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

510 511 512 513 514
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
515
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
516
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
517 518 519

void sock_update_memcg(struct sock *sk)
{
520
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
521
		struct mem_cgroup *memcg;
522
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
523 524 525

		BUG_ON(!sk->sk_prot->proto_cgroup);

526 527 528 529 530 531 532 533 534 535
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
536
			css_get(&sk->sk_cgrp->memcg->css);
537 538 539
			return;
		}

G
Glauber Costa 已提交
540 541
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
542
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
543 544
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
545
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
546 547 548 549 550 551 552 553
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
554
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
555 556 557
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
558
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
559 560
	}
}
G
Glauber Costa 已提交
561 562 563 564 565 566 567 568 569

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
570

571 572 573 574 575 576 577 578 579 580 581 582
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

583
#ifdef CONFIG_MEMCG_KMEM
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
602 603
int memcg_limited_groups_array_size;

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

619 620 621 622 623 624
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
625
struct static_key memcg_kmem_enabled_key;
626
EXPORT_SYMBOL(memcg_kmem_enabled_key);
627 628 629

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
630
	if (memcg_kmem_is_active(memcg)) {
631
		static_key_slow_dec(&memcg_kmem_enabled_key);
632 633
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
634 635 636 637 638
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
639 640 641 642 643 644 645 646 647 648 649 650 651
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

652
static void drain_all_stock_async(struct mem_cgroup *memcg);
653

654
static struct mem_cgroup_per_zone *
655
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
656
{
657
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
658
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
659 660
}

661
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
662
{
663
	return &memcg->css;
664 665
}

666
static struct mem_cgroup_per_zone *
667
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
668
{
669 670
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
671

672
	return mem_cgroup_zoneinfo(memcg, nid, zid);
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
691
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
692
				struct mem_cgroup_per_zone *mz,
693 694
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
695 696 697 698 699 700 701 702
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

703 704 705
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
722 723 724
}

static void
725
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
726 727 728 729 730 731 732 733 734
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

735
static void
736
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
737 738 739 740
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
741
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
742 743 744 745
	spin_unlock(&mctz->lock);
}


746
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
747
{
748
	unsigned long long excess;
749 750
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
751 752
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
753 754 755
	mctz = soft_limit_tree_from_page(page);

	/*
756 757
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
758
	 */
759 760 761
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
762 763 764 765
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
766
		if (excess || mz->on_tree) {
767 768 769
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
770
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
771
			/*
772 773
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
774
			 */
775
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
776 777
			spin_unlock(&mctz->lock);
		}
778 779 780
	}
}

781
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
782 783 784 785 786
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
787
	for_each_node(node) {
788
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
789
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
790
			mctz = soft_limit_tree_node_zone(node, zone);
791
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
792 793 794 795
		}
	}
}

796 797 798 799
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
800
	struct mem_cgroup_per_zone *mz;
801 802

retry:
803
	mz = NULL;
804 805 806 807 808 809 810 811 812 813
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
814 815 816
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
852
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
853
				 enum mem_cgroup_stat_index idx)
854
{
855
	long val = 0;
856 857
	int cpu;

858 859
	get_online_cpus();
	for_each_online_cpu(cpu)
860
		val += per_cpu(memcg->stat->count[idx], cpu);
861
#ifdef CONFIG_HOTPLUG_CPU
862 863 864
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
865 866
#endif
	put_online_cpus();
867 868 869
	return val;
}

870
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
871 872 873
					 bool charge)
{
	int val = (charge) ? 1 : -1;
874
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
875 876
}

877
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
878 879 880 881 882 883
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
884
		val += per_cpu(memcg->stat->events[idx], cpu);
885
#ifdef CONFIG_HOTPLUG_CPU
886 887 888
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
889 890 891 892
#endif
	return val;
}

893
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
894
					 struct page *page,
895
					 bool anon, int nr_pages)
896
{
897 898
	preempt_disable();

899 900 901 902 903 904
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
905
				nr_pages);
906
	else
907
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
908
				nr_pages);
909

910 911 912 913
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

914 915
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
916
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
917
	else {
918
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
919 920
		nr_pages = -nr_pages; /* for event */
	}
921

922
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
923

924
	preempt_enable();
925 926
}

927
unsigned long
928
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
929 930 931 932 933 934 935 936
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
937
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
938
			unsigned int lru_mask)
939 940
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
941
	enum lru_list lru;
942 943
	unsigned long ret = 0;

944
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
945

H
Hugh Dickins 已提交
946 947 948
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
949 950 951 952 953
	}
	return ret;
}

static unsigned long
954
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
955 956
			int nid, unsigned int lru_mask)
{
957 958 959
	u64 total = 0;
	int zid;

960
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
961 962
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
963

964 965
	return total;
}
966

967
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
968
			unsigned int lru_mask)
969
{
970
	int nid;
971 972
	u64 total = 0;

973
	for_each_node_state(nid, N_MEMORY)
974
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
975
	return total;
976 977
}

978 979
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
980 981 982
{
	unsigned long val, next;

983
	val = __this_cpu_read(memcg->stat->nr_page_events);
984
	next = __this_cpu_read(memcg->stat->targets[target]);
985
	/* from time_after() in jiffies.h */
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1002
	}
1003
	return false;
1004 1005 1006 1007 1008 1009
}

/*
 * Check events in order.
 *
 */
1010
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1011
{
1012
	preempt_disable();
1013
	/* threshold event is triggered in finer grain than soft limit */
1014 1015
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1016 1017
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1018 1019 1020 1021 1022 1023 1024 1025 1026

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1027
		mem_cgroup_threshold(memcg);
1028
		if (unlikely(do_softlimit))
1029
			mem_cgroup_update_tree(memcg, page);
1030
#if MAX_NUMNODES > 1
1031
		if (unlikely(do_numainfo))
1032
			atomic_inc(&memcg->numainfo_events);
1033
#endif
1034 1035
	} else
		preempt_enable();
1036 1037
}

G
Glauber Costa 已提交
1038
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1039
{
1040
	return mem_cgroup_from_css(cgroup_css(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1041 1042
}

1043
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1044
{
1045 1046 1047 1048 1049 1050 1051 1052
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1053
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1054 1055
}

1056
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1057
{
1058
	struct mem_cgroup *memcg = NULL;
1059 1060 1061

	if (!mm)
		return NULL;
1062 1063 1064 1065 1066 1067 1068
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1069 1070
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1071
			break;
1072
	} while (!css_tryget(&memcg->css));
1073
	rcu_read_unlock();
1074
	return memcg;
1075 1076
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
		struct mem_cgroup *last_visited)
{
	struct cgroup *prev_cgroup, *next_cgroup;

	/*
	 * Root is not visited by cgroup iterators so it needs an
	 * explicit visit.
	 */
	if (!last_visited)
		return root;

	prev_cgroup = (last_visited == root) ? NULL
		: last_visited->css.cgroup;
skip_node:
	next_cgroup = cgroup_next_descendant_pre(
			prev_cgroup, root->css.cgroup);

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
	if (next_cgroup) {
		struct mem_cgroup *mem = mem_cgroup_from_cont(
				next_cgroup);
		if (css_tryget(&mem->css))
			return mem;
		else {
			prev_cgroup = next_cgroup;
			goto skip_node;
		}
	}

	return NULL;
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1194
{
1195
	struct mem_cgroup *memcg = NULL;
1196
	struct mem_cgroup *last_visited = NULL;
1197

1198 1199 1200
	if (mem_cgroup_disabled())
		return NULL;

1201 1202
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1203

1204
	if (prev && !reclaim)
1205
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1206

1207 1208
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1209
			goto out_css_put;
1210 1211
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1212

1213
	rcu_read_lock();
1214
	while (!memcg) {
1215
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1216
		int uninitialized_var(seq);
1217

1218 1219 1220 1221 1222 1223 1224
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1225
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1226
				iter->last_visited = NULL;
1227 1228
				goto out_unlock;
			}
M
Michal Hocko 已提交
1229

1230
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1231
		}
K
KAMEZAWA Hiroyuki 已提交
1232

1233
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1234

1235
		if (reclaim) {
1236
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1237

M
Michal Hocko 已提交
1238
			if (!memcg)
1239 1240 1241 1242
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1243

M
Michal Hocko 已提交
1244
		if (prev && !memcg)
1245
			goto out_unlock;
1246
	}
1247 1248
out_unlock:
	rcu_read_unlock();
1249 1250 1251 1252
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1253
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1254
}
K
KAMEZAWA Hiroyuki 已提交
1255

1256 1257 1258 1259 1260 1261 1262
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1263 1264 1265 1266 1267 1268
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1269

1270 1271 1272 1273 1274 1275
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1276
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1277
	     iter != NULL;				\
1278
	     iter = mem_cgroup_iter(root, iter, NULL))
1279

1280
#define for_each_mem_cgroup(iter)			\
1281
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1282
	     iter != NULL;				\
1283
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1284

1285
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1286
{
1287
	struct mem_cgroup *memcg;
1288 1289

	rcu_read_lock();
1290 1291
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1292 1293 1294 1295
		goto out;

	switch (idx) {
	case PGFAULT:
1296 1297 1298 1299
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1300 1301 1302 1303 1304 1305 1306
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1307
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1308

1309 1310 1311
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1312
 * @memcg: memcg of the wanted lruvec
1313 1314 1315 1316 1317 1318 1319 1320 1321
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1322
	struct lruvec *lruvec;
1323

1324 1325 1326 1327
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1328 1329

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1340 1341
}

K
KAMEZAWA Hiroyuki 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1355

1356
/**
1357
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1358
 * @page: the page
1359
 * @zone: zone of the page
1360
 */
1361
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1362 1363
{
	struct mem_cgroup_per_zone *mz;
1364 1365
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1366
	struct lruvec *lruvec;
1367

1368 1369 1370 1371
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1372

K
KAMEZAWA Hiroyuki 已提交
1373
	pc = lookup_page_cgroup(page);
1374
	memcg = pc->mem_cgroup;
1375 1376

	/*
1377
	 * Surreptitiously switch any uncharged offlist page to root:
1378 1379 1380 1381 1382 1383 1384
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1385
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1386 1387
		pc->mem_cgroup = memcg = root_mem_cgroup;

1388
	mz = page_cgroup_zoneinfo(memcg, page);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1399
}
1400

1401
/**
1402 1403 1404 1405
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1406
 *
1407 1408
 * This function must be called when a page is added to or removed from an
 * lru list.
1409
 */
1410 1411
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1412 1413
{
	struct mem_cgroup_per_zone *mz;
1414
	unsigned long *lru_size;
1415 1416 1417 1418

	if (mem_cgroup_disabled())
		return;

1419 1420 1421 1422
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1423
}
1424

1425
/*
1426
 * Checks whether given mem is same or in the root_mem_cgroup's
1427 1428
 * hierarchy subtree
 */
1429 1430
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1431
{
1432 1433
	if (root_memcg == memcg)
		return true;
1434
	if (!root_memcg->use_hierarchy || !memcg)
1435
		return false;
1436 1437 1438 1439 1440 1441 1442 1443
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1444
	rcu_read_lock();
1445
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1446 1447
	rcu_read_unlock();
	return ret;
1448 1449
}

1450 1451
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1452
{
1453
	struct mem_cgroup *curr = NULL;
1454
	struct task_struct *p;
1455
	bool ret;
1456

1457
	p = find_lock_task_mm(task);
1458 1459 1460 1461 1462 1463 1464 1465 1466
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1467
		rcu_read_lock();
1468 1469 1470
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1471
		rcu_read_unlock();
1472
	}
1473
	if (!curr)
1474
		return false;
1475
	/*
1476
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1477
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1478 1479
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1480
	 */
1481
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1482
	css_put(&curr->css);
1483 1484 1485
	return ret;
}

1486
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1487
{
1488
	unsigned long inactive_ratio;
1489
	unsigned long inactive;
1490
	unsigned long active;
1491
	unsigned long gb;
1492

1493 1494
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1495

1496 1497 1498 1499 1500 1501
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1502
	return inactive * inactive_ratio < active;
1503 1504
}

1505 1506 1507
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1508
/**
1509
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1510
 * @memcg: the memory cgroup
1511
 *
1512
 * Returns the maximum amount of memory @mem can be charged with, in
1513
 * pages.
1514
 */
1515
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1516
{
1517 1518
	unsigned long long margin;

1519
	margin = res_counter_margin(&memcg->res);
1520
	if (do_swap_account)
1521
		margin = min(margin, res_counter_margin(&memcg->memsw));
1522
	return margin >> PAGE_SHIFT;
1523 1524
}

1525
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1526 1527
{
	/* root ? */
T
Tejun Heo 已提交
1528
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1529 1530
		return vm_swappiness;

1531
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1532 1533
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1548 1549 1550 1551

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1552
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1553
{
1554
	atomic_inc(&memcg_moving);
1555
	atomic_inc(&memcg->moving_account);
1556 1557 1558
	synchronize_rcu();
}

1559
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1560
{
1561 1562 1563 1564
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1565 1566
	if (memcg) {
		atomic_dec(&memcg_moving);
1567
		atomic_dec(&memcg->moving_account);
1568
	}
1569
}
1570

1571 1572 1573
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1574 1575
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1576 1577 1578 1579 1580 1581 1582
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1583
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1584 1585
{
	VM_BUG_ON(!rcu_read_lock_held());
1586
	return atomic_read(&memcg->moving_account) > 0;
1587
}
1588

1589
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1590
{
1591 1592
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1593
	bool ret = false;
1594 1595 1596 1597 1598 1599 1600 1601 1602
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1603

1604 1605
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1606 1607
unlock:
	spin_unlock(&mc.lock);
1608 1609 1610
	return ret;
}

1611
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1612 1613
{
	if (mc.moving_task && current != mc.moving_task) {
1614
		if (mem_cgroup_under_move(memcg)) {
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1627 1628 1629 1630
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1631
 * see mem_cgroup_stolen(), too.
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1645
#define K(x) ((x) << (PAGE_SHIFT-10))
1646
/**
1647
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1665 1666
	struct mem_cgroup *iter;
	unsigned int i;
1667

1668
	if (!p)
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1687
	pr_info("Task in %s killed", memcg_name);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1700
	pr_cont(" as a result of limit of %s\n", memcg_name);
1701 1702
done:

1703
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1704 1705 1706
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1707
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1708 1709 1710
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1711
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1712 1713 1714
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1739 1740
}

1741 1742 1743 1744
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1745
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1746 1747
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1748 1749
	struct mem_cgroup *iter;

1750
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1751
		num++;
1752 1753 1754
	return num;
}

D
David Rientjes 已提交
1755 1756 1757
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1758
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1759 1760 1761
{
	u64 limit;

1762 1763
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1764
	/*
1765
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1766
	 */
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1781 1782
}

1783 1784
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1785 1786 1787 1788 1789 1790 1791
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1792
	/*
1793 1794 1795
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1796
	 */
1797
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1798 1799 1800 1801 1802
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1886 1887
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1888
 * @memcg: the target memcg
1889 1890 1891 1892 1893 1894 1895
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1896
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1897 1898
		int nid, bool noswap)
{
1899
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1900 1901 1902
		return true;
	if (noswap || !total_swap_pages)
		return false;
1903
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1904 1905 1906 1907
		return true;
	return false;

}
1908 1909 1910 1911 1912 1913 1914 1915
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1916
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1917 1918
{
	int nid;
1919 1920 1921 1922
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1923
	if (!atomic_read(&memcg->numainfo_events))
1924
		return;
1925
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1926 1927 1928
		return;

	/* make a nodemask where this memcg uses memory from */
1929
	memcg->scan_nodes = node_states[N_MEMORY];
1930

1931
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1932

1933 1934
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1935
	}
1936

1937 1938
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1953
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1954 1955 1956
{
	int node;

1957 1958
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1959

1960
	node = next_node(node, memcg->scan_nodes);
1961
	if (node == MAX_NUMNODES)
1962
		node = first_node(memcg->scan_nodes);
1963 1964 1965 1966 1967 1968 1969 1970 1971
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1972
	memcg->last_scanned_node = node;
1973 1974 1975
	return node;
}

1976 1977 1978 1979 1980 1981
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1982
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1983 1984 1985 1986 1987 1988 1989
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1990 1991
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1992
		     nid < MAX_NUMNODES;
1993
		     nid = next_node(nid, memcg->scan_nodes)) {
1994

1995
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1996 1997 1998 1999 2000 2001
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
2002
	for_each_node_state(nid, N_MEMORY) {
2003
		if (node_isset(nid, memcg->scan_nodes))
2004
			continue;
2005
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2006 2007 2008 2009 2010
			return true;
	}
	return false;
}

2011
#else
2012
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2013 2014 2015
{
	return 0;
}
2016

2017
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2018
{
2019
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2020
}
2021 2022
#endif

2023 2024 2025 2026
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
2027
{
2028
	struct mem_cgroup *victim = NULL;
2029
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
2030
	int loop = 0;
2031
	unsigned long excess;
2032
	unsigned long nr_scanned;
2033 2034 2035 2036
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
2037

2038
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
2039

2040
	while (1) {
2041
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2042
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
2043
			loop++;
2044 2045 2046 2047 2048 2049
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
2050
				if (!total)
2051 2052
					break;
				/*
L
Lucas De Marchi 已提交
2053
				 * We want to do more targeted reclaim.
2054 2055 2056 2057 2058
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
2059
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2060 2061
					break;
			}
2062
			continue;
2063
		}
2064
		if (!mem_cgroup_reclaimable(victim, false))
2065
			continue;
2066 2067 2068 2069
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
2070
			break;
2071
	}
2072
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
2073
	return total;
2074 2075
}

K
KAMEZAWA Hiroyuki 已提交
2076 2077 2078
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2079
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2080
 */
2081
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2082
{
2083
	struct mem_cgroup *iter, *failed = NULL;
2084

2085
	for_each_mem_cgroup_tree(iter, memcg) {
2086
		if (iter->oom_lock) {
2087 2088 2089 2090 2091
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2092 2093
			mem_cgroup_iter_break(memcg, iter);
			break;
2094 2095
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2096
	}
K
KAMEZAWA Hiroyuki 已提交
2097

2098
	if (!failed)
2099
		return true;
2100 2101 2102 2103 2104

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2105
	for_each_mem_cgroup_tree(iter, memcg) {
2106
		if (iter == failed) {
2107 2108
			mem_cgroup_iter_break(memcg, iter);
			break;
2109 2110 2111
		}
		iter->oom_lock = false;
	}
2112
	return false;
2113
}
2114

2115
/*
2116
 * Has to be called with memcg_oom_lock
2117
 */
2118
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2119
{
K
KAMEZAWA Hiroyuki 已提交
2120 2121
	struct mem_cgroup *iter;

2122
	for_each_mem_cgroup_tree(iter, memcg)
2123 2124 2125 2126
		iter->oom_lock = false;
	return 0;
}

2127
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2128 2129 2130
{
	struct mem_cgroup *iter;

2131
	for_each_mem_cgroup_tree(iter, memcg)
2132 2133 2134
		atomic_inc(&iter->under_oom);
}

2135
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2136 2137 2138
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2139 2140 2141 2142 2143
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2144
	for_each_mem_cgroup_tree(iter, memcg)
2145
		atomic_add_unless(&iter->under_oom, -1, 0);
2146 2147
}

2148
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2149 2150
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2151
struct oom_wait_info {
2152
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2153 2154 2155 2156 2157 2158
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2159 2160
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2161 2162 2163
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2164
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2165 2166

	/*
2167
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2168 2169
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2170 2171
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2172 2173 2174 2175
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2176
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2177
{
2178 2179
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2180 2181
}

2182
static void memcg_oom_recover(struct mem_cgroup *memcg)
2183
{
2184 2185
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2186 2187
}

K
KAMEZAWA Hiroyuki 已提交
2188 2189 2190
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2191 2192
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2193
{
K
KAMEZAWA Hiroyuki 已提交
2194
	struct oom_wait_info owait;
2195
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2196

2197
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2198 2199 2200 2201
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2202
	need_to_kill = true;
2203
	mem_cgroup_mark_under_oom(memcg);
2204

2205
	/* At first, try to OOM lock hierarchy under memcg.*/
2206
	spin_lock(&memcg_oom_lock);
2207
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2208 2209 2210 2211 2212
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2213
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2214
	if (!locked || memcg->oom_kill_disable)
2215 2216
		need_to_kill = false;
	if (locked)
2217
		mem_cgroup_oom_notify(memcg);
2218
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2219

2220 2221
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2222
		mem_cgroup_out_of_memory(memcg, mask, order);
2223
	} else {
K
KAMEZAWA Hiroyuki 已提交
2224
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2225
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2226
	}
2227
	spin_lock(&memcg_oom_lock);
2228
	if (locked)
2229 2230
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2231
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2232

2233
	mem_cgroup_unmark_under_oom(memcg);
2234

K
KAMEZAWA Hiroyuki 已提交
2235 2236 2237
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2238
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2239
	return true;
2240 2241
}

2242 2243 2244
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2262 2263
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2264
 */
2265

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2279
	 * need to take move_lock_mem_cgroup(). Because we already hold
2280
	 * rcu_read_lock(), any calls to move_account will be delayed until
2281
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2282
	 */
2283
	if (!mem_cgroup_stolen(memcg))
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2301
	 * should take move_lock_mem_cgroup().
2302 2303 2304 2305
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2306 2307
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2308
{
2309
	struct mem_cgroup *memcg;
2310
	struct page_cgroup *pc = lookup_page_cgroup(page);
2311
	unsigned long uninitialized_var(flags);
2312

2313
	if (mem_cgroup_disabled())
2314
		return;
2315

2316 2317
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2318
		return;
2319 2320

	switch (idx) {
2321 2322
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2323 2324 2325
		break;
	default:
		BUG();
2326
	}
2327

2328
	this_cpu_add(memcg->stat->count[idx], val);
2329
}
2330

2331 2332 2333 2334
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2335
#define CHARGE_BATCH	32U
2336 2337
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2338
	unsigned int nr_pages;
2339
	struct work_struct work;
2340
	unsigned long flags;
2341
#define FLUSHING_CACHED_CHARGE	0
2342 2343
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2344
static DEFINE_MUTEX(percpu_charge_mutex);
2345

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2356
 */
2357
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2358 2359 2360 2361
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2362 2363 2364
	if (nr_pages > CHARGE_BATCH)
		return false;

2365
	stock = &get_cpu_var(memcg_stock);
2366 2367
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2381 2382 2383 2384
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2385
		if (do_swap_account)
2386 2387
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2400
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2401 2402
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2414 2415
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2416
 * This will be consumed by consume_stock() function, later.
2417
 */
2418
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2419 2420 2421
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2422
	if (stock->cached != memcg) { /* reset if necessary */
2423
		drain_stock(stock);
2424
		stock->cached = memcg;
2425
	}
2426
	stock->nr_pages += nr_pages;
2427 2428 2429 2430
	put_cpu_var(memcg_stock);
}

/*
2431
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2432 2433
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2434
 */
2435
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2436
{
2437
	int cpu, curcpu;
2438

2439 2440
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2441
	curcpu = get_cpu();
2442 2443
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2444
		struct mem_cgroup *memcg;
2445

2446 2447
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2448
			continue;
2449
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2450
			continue;
2451 2452 2453 2454 2455 2456
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2457
	}
2458
	put_cpu();
2459 2460 2461 2462 2463 2464

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2465
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2466 2467 2468
			flush_work(&stock->work);
	}
out:
2469
 	put_online_cpus();
2470 2471 2472 2473 2474 2475 2476 2477
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2478
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2479
{
2480 2481 2482 2483 2484
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2485
	drain_all_stock(root_memcg, false);
2486
	mutex_unlock(&percpu_charge_mutex);
2487 2488 2489
}

/* This is a synchronous drain interface. */
2490
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2491 2492
{
	/* called when force_empty is called */
2493
	mutex_lock(&percpu_charge_mutex);
2494
	drain_all_stock(root_memcg, true);
2495
	mutex_unlock(&percpu_charge_mutex);
2496 2497
}

2498 2499 2500 2501
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2502
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2503 2504 2505
{
	int i;

2506
	spin_lock(&memcg->pcp_counter_lock);
2507
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2508
		long x = per_cpu(memcg->stat->count[i], cpu);
2509

2510 2511
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2512
	}
2513
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2514
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2515

2516 2517
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2518
	}
2519
	spin_unlock(&memcg->pcp_counter_lock);
2520 2521 2522
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2523 2524 2525 2526 2527
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2528
	struct mem_cgroup *iter;
2529

2530
	if (action == CPU_ONLINE)
2531 2532
		return NOTIFY_OK;

2533
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2534
		return NOTIFY_OK;
2535

2536
	for_each_mem_cgroup(iter)
2537 2538
		mem_cgroup_drain_pcp_counter(iter, cpu);

2539 2540 2541 2542 2543
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2554
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2555 2556
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2557
{
2558
	unsigned long csize = nr_pages * PAGE_SIZE;
2559 2560 2561 2562 2563
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2564
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2565 2566 2567 2568

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2569
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2570 2571 2572
		if (likely(!ret))
			return CHARGE_OK;

2573
		res_counter_uncharge(&memcg->res, csize);
2574 2575 2576 2577
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2578 2579 2580 2581
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2582
	if (nr_pages > min_pages)
2583 2584 2585 2586 2587
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2588 2589 2590
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2591
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2592
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2593
		return CHARGE_RETRY;
2594
	/*
2595 2596 2597 2598 2599 2600 2601
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2602
	 */
2603
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2617
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2618 2619 2620 2621 2622
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2623
/*
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2643
 */
2644
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2645
				   gfp_t gfp_mask,
2646
				   unsigned int nr_pages,
2647
				   struct mem_cgroup **ptr,
2648
				   bool oom)
2649
{
2650
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2651
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2652
	struct mem_cgroup *memcg = NULL;
2653
	int ret;
2654

K
KAMEZAWA Hiroyuki 已提交
2655 2656 2657 2658 2659 2660 2661 2662
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2663

2664
	/*
2665 2666
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2667
	 * thread group leader migrates. It's possible that mm is not
2668
	 * set, if so charge the root memcg (happens for pagecache usage).
2669
	 */
2670
	if (!*ptr && !mm)
2671
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2672
again:
2673 2674 2675
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2676
			goto done;
2677
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2678
			goto done;
2679
		css_get(&memcg->css);
2680
	} else {
K
KAMEZAWA Hiroyuki 已提交
2681
		struct task_struct *p;
2682

K
KAMEZAWA Hiroyuki 已提交
2683 2684 2685
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2686
		 * Because we don't have task_lock(), "p" can exit.
2687
		 * In that case, "memcg" can point to root or p can be NULL with
2688 2689 2690 2691 2692 2693
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2694
		 */
2695
		memcg = mem_cgroup_from_task(p);
2696 2697 2698
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2699 2700 2701
			rcu_read_unlock();
			goto done;
		}
2702
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2715
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2716 2717 2718 2719 2720
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2721

2722 2723
	do {
		bool oom_check;
2724

2725
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2726
		if (fatal_signal_pending(current)) {
2727
			css_put(&memcg->css);
2728
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2729
		}
2730

2731 2732 2733 2734
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2735
		}
2736

2737 2738
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2739 2740 2741 2742
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2743
			batch = nr_pages;
2744 2745
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2746
			goto again;
2747
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2748
			css_put(&memcg->css);
2749 2750
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2751
			if (!oom) {
2752
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2753
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2754
			}
2755 2756 2757 2758
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2759
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2760
			goto bypass;
2761
		}
2762 2763
	} while (ret != CHARGE_OK);

2764
	if (batch > nr_pages)
2765 2766
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2767
done:
2768
	*ptr = memcg;
2769 2770
	return 0;
nomem:
2771
	*ptr = NULL;
2772
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2773
bypass:
2774 2775
	*ptr = root_mem_cgroup;
	return -EINTR;
2776
}
2777

2778 2779 2780 2781 2782
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2783
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2784
				       unsigned int nr_pages)
2785
{
2786
	if (!mem_cgroup_is_root(memcg)) {
2787 2788
		unsigned long bytes = nr_pages * PAGE_SIZE;

2789
		res_counter_uncharge(&memcg->res, bytes);
2790
		if (do_swap_account)
2791
			res_counter_uncharge(&memcg->memsw, bytes);
2792
	}
2793 2794
}

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2813 2814
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2815 2816 2817
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2829
	return mem_cgroup_from_css(css);
2830 2831
}

2832
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2833
{
2834
	struct mem_cgroup *memcg = NULL;
2835
	struct page_cgroup *pc;
2836
	unsigned short id;
2837 2838
	swp_entry_t ent;

2839 2840 2841
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2842
	lock_page_cgroup(pc);
2843
	if (PageCgroupUsed(pc)) {
2844 2845 2846
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2847
	} else if (PageSwapCache(page)) {
2848
		ent.val = page_private(page);
2849
		id = lookup_swap_cgroup_id(ent);
2850
		rcu_read_lock();
2851 2852 2853
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2854
		rcu_read_unlock();
2855
	}
2856
	unlock_page_cgroup(pc);
2857
	return memcg;
2858 2859
}

2860
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2861
				       struct page *page,
2862
				       unsigned int nr_pages,
2863 2864
				       enum charge_type ctype,
				       bool lrucare)
2865
{
2866
	struct page_cgroup *pc = lookup_page_cgroup(page);
2867
	struct zone *uninitialized_var(zone);
2868
	struct lruvec *lruvec;
2869
	bool was_on_lru = false;
2870
	bool anon;
2871

2872
	lock_page_cgroup(pc);
2873
	VM_BUG_ON(PageCgroupUsed(pc));
2874 2875 2876 2877
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2878 2879 2880 2881 2882 2883 2884 2885 2886

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2887
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2888
			ClearPageLRU(page);
2889
			del_page_from_lru_list(page, lruvec, page_lru(page));
2890 2891 2892 2893
			was_on_lru = true;
		}
	}

2894
	pc->mem_cgroup = memcg;
2895 2896 2897 2898 2899 2900 2901
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2902
	smp_wmb();
2903
	SetPageCgroupUsed(pc);
2904

2905 2906
	if (lrucare) {
		if (was_on_lru) {
2907
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2908 2909
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2910
			add_page_to_lru_list(page, lruvec, page_lru(page));
2911 2912 2913 2914
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2915
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2916 2917 2918 2919
		anon = true;
	else
		anon = false;

2920
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2921
	unlock_page_cgroup(pc);
2922

2923 2924 2925 2926 2927
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2928
	memcg_check_events(memcg, page);
2929
}
2930

2931 2932
static DEFINE_MUTEX(set_limit_mutex);

2933 2934 2935 2936 2937 2938 2939
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3027 3028 3029 3030 3031

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3032 3033 3034 3035 3036 3037 3038 3039
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3040
	if (memcg_kmem_test_and_clear_dead(memcg))
3041
		css_put(&memcg->css);
3042 3043
}

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3127 3128
static void kmem_cache_destroy_work_func(struct work_struct *w);

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3180 3181
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3182 3183 3184 3185 3186 3187
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3188 3189 3190
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3191 3192 3193 3194
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

3195 3196
	INIT_WORK(&s->memcg_params->destroy,
			kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3197
	if (memcg) {
3198
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3199
		s->memcg_params->root_cache = root_cache;
3200 3201 3202
	} else
		s->memcg_params->is_root_cache = true;

3203 3204 3205 3206 3207
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3232
	css_put(&memcg->css);
3233
out:
3234 3235 3236
	kfree(s->memcg_params);
}

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3298 3299 3300 3301 3302 3303 3304 3305
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3326 3327 3328 3329 3330 3331 3332
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3333 3334 3335 3336 3337 3338 3339 3340 3341
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3342

3343 3344 3345
/*
 * Called with memcg_cache_mutex held
 */
3346 3347 3348 3349
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3350
	static char *tmp_name = NULL;
3351

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3370

3371
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3372
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3373

3374 3375 3376
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3392 3393
	if (new_cachep) {
		css_put(&memcg->css);
3394
		goto out;
3395
	}
3396 3397 3398 3399

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3400
		css_put(&memcg->css);
3401 3402 3403
		goto out;
	}

G
Glauber Costa 已提交
3404
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3456
		cancel_work_sync(&c->memcg_params->destroy);
3457 3458 3459 3460 3461
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3462 3463 3464 3465 3466 3467
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3497 3498
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3499 3500 3501 3502
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3503 3504
	if (cw == NULL) {
		css_put(&memcg->css);
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3555 3556 3557
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3558 3559 3560 3561
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3562
		goto out;
3563 3564 3565 3566 3567 3568 3569 3570

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3571 3572 3573
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3574 3575
	}

3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3603 3604 3605
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
	 * 	memcg_stop_kmem_account();
	 * 	kmalloc(<large_number>)
	 * 	memcg_resume_kmem_account();
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3729 3730 3731 3732
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3733 3734
#endif /* CONFIG_MEMCG_KMEM */

3735 3736
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3737
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3738 3739
/*
 * Because tail pages are not marked as "used", set it. We're under
3740 3741 3742
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3743
 */
3744
void mem_cgroup_split_huge_fixup(struct page *head)
3745 3746
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3747
	struct page_cgroup *pc;
3748
	struct mem_cgroup *memcg;
3749
	int i;
3750

3751 3752
	if (mem_cgroup_disabled())
		return;
3753 3754

	memcg = head_pc->mem_cgroup;
3755 3756
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3757
		pc->mem_cgroup = memcg;
3758 3759 3760
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3761 3762
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3763
}
3764
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3765

3766
/**
3767
 * mem_cgroup_move_account - move account of the page
3768
 * @page: the page
3769
 * @nr_pages: number of regular pages (>1 for huge pages)
3770 3771 3772 3773 3774
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3775
 * - page is not on LRU (isolate_page() is useful.)
3776
 * - compound_lock is held when nr_pages > 1
3777
 *
3778 3779
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3780
 */
3781 3782 3783 3784
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3785
				   struct mem_cgroup *to)
3786
{
3787 3788
	unsigned long flags;
	int ret;
3789
	bool anon = PageAnon(page);
3790

3791
	VM_BUG_ON(from == to);
3792
	VM_BUG_ON(PageLRU(page));
3793 3794 3795 3796 3797 3798 3799
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3800
	if (nr_pages > 1 && !PageTransHuge(page))
3801 3802 3803 3804 3805 3806 3807 3808
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3809
	move_lock_mem_cgroup(from, &flags);
3810

3811
	if (!anon && page_mapped(page)) {
3812 3813 3814 3815 3816
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3817
	}
3818
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3819

3820
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3821
	pc->mem_cgroup = to;
3822
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3823
	move_unlock_mem_cgroup(from, &flags);
3824 3825
	ret = 0;
unlock:
3826
	unlock_page_cgroup(pc);
3827 3828 3829
	/*
	 * check events
	 */
3830 3831
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3832
out:
3833 3834 3835
	return ret;
}

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3856
 */
3857 3858
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3859
				  struct mem_cgroup *child)
3860 3861
{
	struct mem_cgroup *parent;
3862
	unsigned int nr_pages;
3863
	unsigned long uninitialized_var(flags);
3864 3865
	int ret;

3866
	VM_BUG_ON(mem_cgroup_is_root(child));
3867

3868 3869 3870 3871 3872
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3873

3874
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3875

3876 3877 3878 3879 3880 3881
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3882

3883 3884
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3885
		flags = compound_lock_irqsave(page);
3886
	}
3887

3888
	ret = mem_cgroup_move_account(page, nr_pages,
3889
				pc, child, parent);
3890 3891
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3892

3893
	if (nr_pages > 1)
3894
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3895
	putback_lru_page(page);
3896
put:
3897
	put_page(page);
3898
out:
3899 3900 3901
	return ret;
}

3902 3903 3904 3905 3906 3907 3908
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3909
				gfp_t gfp_mask, enum charge_type ctype)
3910
{
3911
	struct mem_cgroup *memcg = NULL;
3912
	unsigned int nr_pages = 1;
3913
	bool oom = true;
3914
	int ret;
A
Andrea Arcangeli 已提交
3915

A
Andrea Arcangeli 已提交
3916
	if (PageTransHuge(page)) {
3917
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3918
		VM_BUG_ON(!PageTransHuge(page));
3919 3920 3921 3922 3923
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3924
	}
3925

3926
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3927
	if (ret == -ENOMEM)
3928
		return ret;
3929
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3930 3931 3932
	return 0;
}

3933 3934
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3935
{
3936
	if (mem_cgroup_disabled())
3937
		return 0;
3938 3939 3940
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3941
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3942
					MEM_CGROUP_CHARGE_TYPE_ANON);
3943 3944
}

3945 3946 3947
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3948
 * struct page_cgroup is acquired. This refcnt will be consumed by
3949 3950
 * "commit()" or removed by "cancel()"
 */
3951 3952 3953 3954
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3955
{
3956
	struct mem_cgroup *memcg;
3957
	struct page_cgroup *pc;
3958
	int ret;
3959

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3970 3971
	if (!do_swap_account)
		goto charge_cur_mm;
3972 3973
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3974
		goto charge_cur_mm;
3975 3976
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3977
	css_put(&memcg->css);
3978 3979
	if (ret == -EINTR)
		ret = 0;
3980
	return ret;
3981
charge_cur_mm:
3982 3983 3984 3985
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3986 3987
}

3988 3989 3990 3991 3992 3993
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4008 4009 4010
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4011 4012 4013 4014 4015 4016 4017 4018 4019
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4020
static void
4021
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4022
					enum charge_type ctype)
4023
{
4024
	if (mem_cgroup_disabled())
4025
		return;
4026
	if (!memcg)
4027
		return;
4028

4029
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4030 4031 4032
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4033 4034 4035
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4036
	 */
4037
	if (do_swap_account && PageSwapCache(page)) {
4038
		swp_entry_t ent = {.val = page_private(page)};
4039
		mem_cgroup_uncharge_swap(ent);
4040
	}
4041 4042
}

4043 4044
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4045
{
4046
	__mem_cgroup_commit_charge_swapin(page, memcg,
4047
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4048 4049
}

4050 4051
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4052
{
4053 4054 4055 4056
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4057
	if (mem_cgroup_disabled())
4058 4059 4060 4061 4062 4063 4064
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4065 4066
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4067 4068 4069 4070
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4071 4072
}

4073
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4074 4075
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4076 4077 4078
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4079

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4091
		batch->memcg = memcg;
4092 4093
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4094
	 * In those cases, all pages freed continuously can be expected to be in
4095 4096 4097 4098 4099 4100 4101 4102
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4103
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4104 4105
		goto direct_uncharge;

4106 4107 4108 4109 4110
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4111
	if (batch->memcg != memcg)
4112 4113
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4114
	batch->nr_pages++;
4115
	if (uncharge_memsw)
4116
		batch->memsw_nr_pages++;
4117 4118
	return;
direct_uncharge:
4119
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4120
	if (uncharge_memsw)
4121 4122 4123
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4124
}
4125

4126
/*
4127
 * uncharge if !page_mapped(page)
4128
 */
4129
static struct mem_cgroup *
4130 4131
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4132
{
4133
	struct mem_cgroup *memcg = NULL;
4134 4135
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4136
	bool anon;
4137

4138
	if (mem_cgroup_disabled())
4139
		return NULL;
4140

A
Andrea Arcangeli 已提交
4141
	if (PageTransHuge(page)) {
4142
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4143 4144
		VM_BUG_ON(!PageTransHuge(page));
	}
4145
	/*
4146
	 * Check if our page_cgroup is valid
4147
	 */
4148
	pc = lookup_page_cgroup(page);
4149
	if (unlikely(!PageCgroupUsed(pc)))
4150
		return NULL;
4151

4152
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4153

4154
	memcg = pc->mem_cgroup;
4155

K
KAMEZAWA Hiroyuki 已提交
4156 4157 4158
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4159 4160
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4161
	switch (ctype) {
4162
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4163 4164 4165 4166 4167
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4168 4169
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4170
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4171
		/* See mem_cgroup_prepare_migration() */
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4193
	}
K
KAMEZAWA Hiroyuki 已提交
4194

4195
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4196

4197
	ClearPageCgroupUsed(pc);
4198 4199 4200 4201 4202 4203
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4204

4205
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4206
	/*
4207
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4208
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4209
	 */
4210
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4211
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4212
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4213
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4214
	}
4215 4216 4217 4218 4219 4220
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4221
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4222

4223
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4224 4225 4226

unlock_out:
	unlock_page_cgroup(pc);
4227
	return NULL;
4228 4229
}

4230 4231
void mem_cgroup_uncharge_page(struct page *page)
{
4232 4233 4234
	/* early check. */
	if (page_mapped(page))
		return;
4235
	VM_BUG_ON(page->mapping && !PageAnon(page));
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4248 4249
	if (PageSwapCache(page))
		return;
4250
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4251 4252 4253 4254 4255
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4256
	VM_BUG_ON(page->mapping);
4257
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4258 4259
}

4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4274 4275
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4296 4297 4298 4299 4300 4301
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4302
	memcg_oom_recover(batch->memcg);
4303 4304 4305 4306
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4307
#ifdef CONFIG_SWAP
4308
/*
4309
 * called after __delete_from_swap_cache() and drop "page" account.
4310 4311
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4312 4313
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4314 4315
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4316 4317 4318 4319 4320
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4321
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4322

K
KAMEZAWA Hiroyuki 已提交
4323 4324
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4325
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4326 4327
	 */
	if (do_swap_account && swapout && memcg)
4328
		swap_cgroup_record(ent, css_id(&memcg->css));
4329
}
4330
#endif
4331

A
Andrew Morton 已提交
4332
#ifdef CONFIG_MEMCG_SWAP
4333 4334 4335 4336 4337
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4338
{
4339
	struct mem_cgroup *memcg;
4340
	unsigned short id;
4341 4342 4343 4344

	if (!do_swap_account)
		return;

4345 4346 4347
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4348
	if (memcg) {
4349 4350 4351 4352
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4353
		if (!mem_cgroup_is_root(memcg))
4354
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4355
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4356
		css_put(&memcg->css);
4357
	}
4358
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4359
}
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4376
				struct mem_cgroup *from, struct mem_cgroup *to)
4377 4378 4379 4380 4381 4382 4383 4384
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4385
		mem_cgroup_swap_statistics(to, true);
4386
		/*
4387 4388 4389
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4390 4391 4392 4393 4394 4395
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4396
		 */
L
Li Zefan 已提交
4397
		css_get(&to->css);
4398 4399 4400 4401 4402 4403
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4404
				struct mem_cgroup *from, struct mem_cgroup *to)
4405 4406 4407
{
	return -EINVAL;
}
4408
#endif
K
KAMEZAWA Hiroyuki 已提交
4409

4410
/*
4411 4412
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4413
 */
4414 4415
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4416
{
4417
	struct mem_cgroup *memcg = NULL;
4418
	unsigned int nr_pages = 1;
4419
	struct page_cgroup *pc;
4420
	enum charge_type ctype;
4421

4422
	*memcgp = NULL;
4423

4424
	if (mem_cgroup_disabled())
4425
		return;
4426

4427 4428 4429
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4430 4431 4432
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4433 4434
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4466
	}
4467
	unlock_page_cgroup(pc);
4468 4469 4470 4471
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4472
	if (!memcg)
4473
		return;
4474

4475
	*memcgp = memcg;
4476 4477 4478 4479 4480 4481 4482
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4483
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4484
	else
4485
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4486 4487 4488 4489 4490
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4491
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4492
}
4493

4494
/* remove redundant charge if migration failed*/
4495
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4496
	struct page *oldpage, struct page *newpage, bool migration_ok)
4497
{
4498
	struct page *used, *unused;
4499
	struct page_cgroup *pc;
4500
	bool anon;
4501

4502
	if (!memcg)
4503
		return;
4504

4505
	if (!migration_ok) {
4506 4507
		used = oldpage;
		unused = newpage;
4508
	} else {
4509
		used = newpage;
4510 4511
		unused = oldpage;
	}
4512
	anon = PageAnon(used);
4513 4514 4515 4516
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4517
	css_put(&memcg->css);
4518
	/*
4519 4520 4521
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4522
	 */
4523 4524 4525 4526 4527
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4528
	/*
4529 4530 4531 4532 4533 4534
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4535
	 */
4536
	if (anon)
4537
		mem_cgroup_uncharge_page(used);
4538
}
4539

4540 4541 4542 4543 4544 4545 4546 4547
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4548
	struct mem_cgroup *memcg = NULL;
4549 4550 4551 4552 4553 4554 4555 4556 4557
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4558 4559
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4560
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4561 4562
		ClearPageCgroupUsed(pc);
	}
4563 4564
	unlock_page_cgroup(pc);

4565 4566 4567 4568 4569 4570
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4571 4572 4573 4574 4575
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4576
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4577 4578
}

4579 4580 4581 4582 4583 4584
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4585 4586 4587 4588 4589
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4609 4610
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4611 4612 4613 4614
	}
}
#endif

4615
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4616
				unsigned long long val)
4617
{
4618
	int retry_count;
4619
	u64 memswlimit, memlimit;
4620
	int ret = 0;
4621 4622
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4623
	int enlarge;
4624 4625 4626 4627 4628 4629 4630 4631 4632

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4633

4634
	enlarge = 0;
4635
	while (retry_count) {
4636 4637 4638 4639
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4640 4641 4642
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4643
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4644 4645 4646 4647 4648 4649
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4650 4651
			break;
		}
4652 4653 4654 4655 4656

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4657
		ret = res_counter_set_limit(&memcg->res, val);
4658 4659 4660 4661 4662 4663
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4664 4665 4666 4667 4668
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4669 4670
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4671 4672 4673 4674 4675 4676
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4677
	}
4678 4679
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4680

4681 4682 4683
	return ret;
}

L
Li Zefan 已提交
4684 4685
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4686
{
4687
	int retry_count;
4688
	u64 memlimit, memswlimit, oldusage, curusage;
4689 4690
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4691
	int enlarge = 0;
4692

4693 4694 4695
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4696 4697 4698 4699 4700 4701 4702 4703
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4704
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4705 4706 4707 4708 4709 4710 4711 4712
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4713 4714 4715
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4716
		ret = res_counter_set_limit(&memcg->memsw, val);
4717 4718 4719 4720 4721 4722
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4723 4724 4725 4726 4727
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4728 4729 4730
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4731
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4732
		/* Usage is reduced ? */
4733
		if (curusage >= oldusage)
4734
			retry_count--;
4735 4736
		else
			oldusage = curusage;
4737
	}
4738 4739
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4740 4741 4742
	return ret;
}

4743
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4744 4745
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4746 4747 4748 4749 4750 4751
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4752
	unsigned long long excess;
4753
	unsigned long nr_scanned;
4754 4755 4756 4757

	if (order > 0)
		return 0;

4758
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4772
		nr_scanned = 0;
4773
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4774
						    gfp_mask, &nr_scanned);
4775
		nr_reclaimed += reclaimed;
4776
		*total_scanned += nr_scanned;
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4799
				if (next_mz == mz)
4800
					css_put(&next_mz->memcg->css);
4801
				else /* next_mz == NULL or other memcg */
4802 4803 4804
					break;
			} while (1);
		}
4805 4806
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4807 4808 4809 4810 4811 4812 4813 4814
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4815
		/* If excess == 0, no tree ops */
4816
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4817
		spin_unlock(&mctz->lock);
4818
		css_put(&mz->memcg->css);
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4831
		css_put(&next_mz->memcg->css);
4832 4833 4834
	return nr_reclaimed;
}

4835 4836 4837 4838 4839 4840 4841
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4842
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4843 4844
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4845
 */
4846
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4847
				int node, int zid, enum lru_list lru)
4848
{
4849
	struct lruvec *lruvec;
4850
	unsigned long flags;
4851
	struct list_head *list;
4852 4853
	struct page *busy;
	struct zone *zone;
4854

K
KAMEZAWA Hiroyuki 已提交
4855
	zone = &NODE_DATA(node)->node_zones[zid];
4856 4857
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4858

4859
	busy = NULL;
4860
	do {
4861
		struct page_cgroup *pc;
4862 4863
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4864
		spin_lock_irqsave(&zone->lru_lock, flags);
4865
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4866
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4867
			break;
4868
		}
4869 4870 4871
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4872
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4873
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4874 4875
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4876
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4877

4878
		pc = lookup_page_cgroup(page);
4879

4880
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4881
			/* found lock contention or "pc" is obsolete. */
4882
			busy = page;
4883 4884 4885
			cond_resched();
		} else
			busy = NULL;
4886
	} while (!list_empty(list));
4887 4888 4889
}

/*
4890 4891
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4892
 * This enables deleting this mem_cgroup.
4893 4894
 *
 * Caller is responsible for holding css reference on the memcg.
4895
 */
4896
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4897
{
4898
	int node, zid;
4899
	u64 usage;
4900

4901
	do {
4902 4903
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4904 4905
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4906
		for_each_node_state(node, N_MEMORY) {
4907
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4908 4909
				enum lru_list lru;
				for_each_lru(lru) {
4910
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4911
							node, zid, lru);
4912
				}
4913
			}
4914
		}
4915 4916
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4917
		cond_resched();
4918

4919
		/*
4920 4921 4922 4923 4924
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4925 4926 4927 4928 4929 4930
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4931 4932 4933
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4934 4935
}

4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
	struct cgroup *pos;

	/* bounce at first found */
	cgroup_for_each_child(pos, memcg->css.cgroup)
		return true;
	return false;
}

/*
4952 4953
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4954 4955 4956 4957 4958 4959 4960 4961 4962
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4973

4974
	/* returns EBUSY if there is a task or if we come here twice. */
4975 4976 4977
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4978 4979
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4980
	/* try to free all pages in this cgroup */
4981
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4982
		int progress;
4983

4984 4985 4986
		if (signal_pending(current))
			return -EINTR;

4987
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4988
						false);
4989
		if (!progress) {
4990
			nr_retries--;
4991
			/* maybe some writeback is necessary */
4992
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4993
		}
4994 4995

	}
K
KAMEZAWA Hiroyuki 已提交
4996
	lru_add_drain();
4997 4998 4999
	mem_cgroup_reparent_charges(memcg);

	return 0;
5000 5001
}

5002
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
5003
{
5004 5005 5006
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

5007 5008
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5009 5010 5011 5012 5013
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
5014 5015 5016
}


5017 5018 5019 5020 5021 5022 5023 5024 5025
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
5026
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
T
Tejun Heo 已提交
5027
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5028

5029
	mutex_lock(&memcg_create_mutex);
5030 5031 5032 5033

	if (memcg->use_hierarchy == val)
		goto out;

5034
	/*
5035
	 * If parent's use_hierarchy is set, we can't make any modifications
5036 5037 5038 5039 5040 5041
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5042
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5043
				(val == 1 || val == 0)) {
5044
		if (!__memcg_has_children(memcg))
5045
			memcg->use_hierarchy = val;
5046 5047 5048 5049
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5050 5051

out:
5052
	mutex_unlock(&memcg_create_mutex);
5053 5054 5055 5056

	return retval;
}

5057

5058
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5059
					       enum mem_cgroup_stat_index idx)
5060
{
K
KAMEZAWA Hiroyuki 已提交
5061
	struct mem_cgroup *iter;
5062
	long val = 0;
5063

5064
	/* Per-cpu values can be negative, use a signed accumulator */
5065
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5066 5067 5068 5069 5070
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5071 5072
}

5073
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5074
{
K
KAMEZAWA Hiroyuki 已提交
5075
	u64 val;
5076

5077
	if (!mem_cgroup_is_root(memcg)) {
5078
		if (!swap)
5079
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5080
		else
5081
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5082 5083
	}

5084 5085 5086 5087
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5088 5089
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5090

K
KAMEZAWA Hiroyuki 已提交
5091
	if (swap)
5092
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5093 5094 5095 5096

	return val << PAGE_SHIFT;
}

5097 5098 5099
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5100
{
5101
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5102
	char str[64];
5103
	u64 val;
G
Glauber Costa 已提交
5104 5105
	int name, len;
	enum res_type type;
5106 5107 5108

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5109

5110 5111
	switch (type) {
	case _MEM:
5112
		if (name == RES_USAGE)
5113
			val = mem_cgroup_usage(memcg, false);
5114
		else
5115
			val = res_counter_read_u64(&memcg->res, name);
5116 5117
		break;
	case _MEMSWAP:
5118
		if (name == RES_USAGE)
5119
			val = mem_cgroup_usage(memcg, true);
5120
		else
5121
			val = res_counter_read_u64(&memcg->memsw, name);
5122
		break;
5123 5124 5125
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5126 5127 5128
	default:
		BUG();
	}
5129 5130 5131

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5132
}
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5151
	mutex_lock(&memcg_create_mutex);
5152 5153
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5154
		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5155 5156 5157 5158 5159 5160
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5161 5162 5163 5164 5165
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5166 5167 5168 5169 5170 5171
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5172 5173 5174 5175
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5176
	mutex_unlock(&memcg_create_mutex);
5177 5178 5179 5180
#endif
	return ret;
}

5181
#ifdef CONFIG_MEMCG_KMEM
5182
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5183
{
5184
	int ret = 0;
5185 5186
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5187 5188
		goto out;

5189
	memcg->kmem_account_flags = parent->kmem_account_flags;
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5200 5201 5202 5203
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5204 5205 5206
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5207 5208 5209 5210
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5211
	memcg_stop_kmem_account();
5212
	ret = memcg_update_cache_sizes(memcg);
5213
	memcg_resume_kmem_account();
5214 5215 5216
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5217
}
5218
#endif /* CONFIG_MEMCG_KMEM */
5219

5220 5221 5222 5223
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5224 5225
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5226
{
5227
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5228 5229
	enum res_type type;
	int name;
5230 5231 5232
	unsigned long long val;
	int ret;

5233 5234
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5235

5236
	switch (name) {
5237
	case RES_LIMIT:
5238 5239 5240 5241
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5242 5243
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5244 5245 5246
		if (ret)
			break;
		if (type == _MEM)
5247
			ret = mem_cgroup_resize_limit(memcg, val);
5248
		else if (type == _MEMSWAP)
5249
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5250 5251 5252 5253
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5254
		break;
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5269 5270 5271 5272 5273
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5274 5275
}

5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5286 5287
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5300
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5301
{
5302
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5303 5304
	int name;
	enum res_type type;
5305

5306 5307
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5308

5309
	switch (name) {
5310
	case RES_MAX_USAGE:
5311
		if (type == _MEM)
5312
			res_counter_reset_max(&memcg->res);
5313
		else if (type == _MEMSWAP)
5314
			res_counter_reset_max(&memcg->memsw);
5315 5316 5317 5318
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5319 5320
		break;
	case RES_FAILCNT:
5321
		if (type == _MEM)
5322
			res_counter_reset_failcnt(&memcg->res);
5323
		else if (type == _MEMSWAP)
5324
			res_counter_reset_failcnt(&memcg->memsw);
5325 5326 5327 5328
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5329 5330
		break;
	}
5331

5332
	return 0;
5333 5334
}

5335 5336 5337 5338 5339 5340
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5341
#ifdef CONFIG_MMU
5342 5343 5344
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5345
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5346 5347 5348

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5349

5350
	/*
5351 5352 5353 5354
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5355
	 */
5356
	memcg->move_charge_at_immigrate = val;
5357 5358
	return 0;
}
5359 5360 5361 5362 5363 5364 5365
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5366

5367
#ifdef CONFIG_NUMA
5368
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5369
				      struct seq_file *m)
5370 5371 5372 5373
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5374
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5375

5376
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5377
	seq_printf(m, "total=%lu", total_nr);
5378
	for_each_node_state(nid, N_MEMORY) {
5379
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5380 5381 5382 5383
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5384
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5385
	seq_printf(m, "file=%lu", file_nr);
5386
	for_each_node_state(nid, N_MEMORY) {
5387
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5388
				LRU_ALL_FILE);
5389 5390 5391 5392
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5393
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5394
	seq_printf(m, "anon=%lu", anon_nr);
5395
	for_each_node_state(nid, N_MEMORY) {
5396
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5397
				LRU_ALL_ANON);
5398 5399 5400 5401
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5402
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5403
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5404
	for_each_node_state(nid, N_MEMORY) {
5405
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5406
				BIT(LRU_UNEVICTABLE));
5407 5408 5409 5410 5411 5412 5413
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5414 5415 5416 5417 5418
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5419
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5420
				 struct seq_file *m)
5421
{
5422
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5423 5424
	struct mem_cgroup *mi;
	unsigned int i;
5425

5426
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5427
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5428
			continue;
5429 5430
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5431
	}
L
Lee Schermerhorn 已提交
5432

5433 5434 5435 5436 5437 5438 5439 5440
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5441
	/* Hierarchical information */
5442 5443
	{
		unsigned long long limit, memsw_limit;
5444
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5445
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5446
		if (do_swap_account)
5447 5448
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5449
	}
K
KOSAKI Motohiro 已提交
5450

5451 5452 5453
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5454
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5455
			continue;
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5476
	}
K
KAMEZAWA Hiroyuki 已提交
5477

K
KOSAKI Motohiro 已提交
5478 5479 5480 5481
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5482
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5483 5484 5485 5486 5487
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5488
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5489
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5490

5491 5492 5493 5494
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5495
			}
5496 5497 5498 5499
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5500 5501 5502
	}
#endif

5503 5504 5505
	return 0;
}

K
KOSAKI Motohiro 已提交
5506 5507 5508 5509
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5510
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5511 5512 5513 5514 5515 5516
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
T
Tejun Heo 已提交
5517
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5518

T
Tejun Heo 已提交
5519
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5520 5521
		return -EINVAL;

5522
	mutex_lock(&memcg_create_mutex);
5523

K
KOSAKI Motohiro 已提交
5524
	/* If under hierarchy, only empty-root can set this value */
5525
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5526
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5527
		return -EINVAL;
5528
	}
K
KOSAKI Motohiro 已提交
5529 5530 5531

	memcg->swappiness = val;

5532
	mutex_unlock(&memcg_create_mutex);
5533

K
KOSAKI Motohiro 已提交
5534 5535 5536
	return 0;
}

5537 5538 5539 5540 5541 5542 5543 5544
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5545
		t = rcu_dereference(memcg->thresholds.primary);
5546
	else
5547
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5548 5549 5550 5551 5552 5553 5554

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5555
	 * current_threshold points to threshold just below or equal to usage.
5556 5557 5558
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5559
	i = t->current_threshold;
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5583
	t->current_threshold = i - 1;
5584 5585 5586 5587 5588 5589
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5590 5591 5592 5593 5594 5595 5596
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5607
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5608 5609 5610
{
	struct mem_cgroup_eventfd_list *ev;

5611
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5612 5613 5614 5615
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5616
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5617
{
K
KAMEZAWA Hiroyuki 已提交
5618 5619
	struct mem_cgroup *iter;

5620
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5621
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5622 5623 5624 5625
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5626 5627
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5628 5629
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5630
	enum res_type type = MEMFILE_TYPE(cft->private);
5631
	u64 threshold, usage;
5632
	int i, size, ret;
5633 5634 5635 5636 5637 5638

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5639

5640
	if (type == _MEM)
5641
		thresholds = &memcg->thresholds;
5642
	else if (type == _MEMSWAP)
5643
		thresholds = &memcg->memsw_thresholds;
5644 5645 5646 5647 5648 5649
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5650
	if (thresholds->primary)
5651 5652
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5653
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5654 5655

	/* Allocate memory for new array of thresholds */
5656
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5657
			GFP_KERNEL);
5658
	if (!new) {
5659 5660 5661
		ret = -ENOMEM;
		goto unlock;
	}
5662
	new->size = size;
5663 5664

	/* Copy thresholds (if any) to new array */
5665 5666
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5667
				sizeof(struct mem_cgroup_threshold));
5668 5669
	}

5670
	/* Add new threshold */
5671 5672
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5673 5674

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5675
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5676 5677 5678
			compare_thresholds, NULL);

	/* Find current threshold */
5679
	new->current_threshold = -1;
5680
	for (i = 0; i < size; i++) {
5681
		if (new->entries[i].threshold <= usage) {
5682
			/*
5683 5684
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5685 5686
			 * it here.
			 */
5687
			++new->current_threshold;
5688 5689
		} else
			break;
5690 5691
	}

5692 5693 5694 5695 5696
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5697

5698
	/* To be sure that nobody uses thresholds */
5699 5700 5701 5702 5703 5704 5705 5706
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5707
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5708
	struct cftype *cft, struct eventfd_ctx *eventfd)
5709 5710
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5711 5712
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5713
	enum res_type type = MEMFILE_TYPE(cft->private);
5714
	u64 usage;
5715
	int i, j, size;
5716 5717 5718

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5719
		thresholds = &memcg->thresholds;
5720
	else if (type == _MEMSWAP)
5721
		thresholds = &memcg->memsw_thresholds;
5722 5723 5724
	else
		BUG();

5725 5726 5727
	if (!thresholds->primary)
		goto unlock;

5728 5729 5730 5731 5732 5733
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5734 5735 5736
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5737 5738 5739
			size++;
	}

5740
	new = thresholds->spare;
5741

5742 5743
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5744 5745
		kfree(new);
		new = NULL;
5746
		goto swap_buffers;
5747 5748
	}

5749
	new->size = size;
5750 5751

	/* Copy thresholds and find current threshold */
5752 5753 5754
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5755 5756
			continue;

5757
		new->entries[j] = thresholds->primary->entries[i];
5758
		if (new->entries[j].threshold <= usage) {
5759
			/*
5760
			 * new->current_threshold will not be used
5761 5762 5763
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5764
			++new->current_threshold;
5765 5766 5767 5768
		}
		j++;
	}

5769
swap_buffers:
5770 5771
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5772 5773 5774 5775 5776 5777
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5778
	rcu_assign_pointer(thresholds->primary, new);
5779

5780
	/* To be sure that nobody uses thresholds */
5781
	synchronize_rcu();
5782
unlock:
5783 5784
	mutex_unlock(&memcg->thresholds_lock);
}
5785

K
KAMEZAWA Hiroyuki 已提交
5786 5787 5788 5789 5790
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5791
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5792 5793 5794 5795 5796 5797

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5798
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5799 5800 5801 5802 5803

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5804
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5805
		eventfd_signal(eventfd, 1);
5806
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5807 5808 5809 5810

	return 0;
}

5811
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5812 5813
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5814
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5815
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5816
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5817 5818 5819

	BUG_ON(type != _OOM_TYPE);

5820
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5821

5822
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5823 5824 5825 5826 5827 5828
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5829
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5830 5831
}

5832 5833 5834
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5835
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5836

5837
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5838

5839
	if (atomic_read(&memcg->under_oom))
5840 5841 5842 5843 5844 5845 5846 5847 5848
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5849
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
T
Tejun Heo 已提交
5850
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5851 5852

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5853
	if (!parent || !((val == 0) || (val == 1)))
5854 5855
		return -EINVAL;

5856
	mutex_lock(&memcg_create_mutex);
5857
	/* oom-kill-disable is a flag for subhierarchy. */
5858
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5859
		mutex_unlock(&memcg_create_mutex);
5860 5861
		return -EINVAL;
	}
5862
	memcg->oom_kill_disable = val;
5863
	if (!val)
5864
		memcg_oom_recover(memcg);
5865
	mutex_unlock(&memcg_create_mutex);
5866 5867 5868
	return 0;
}

A
Andrew Morton 已提交
5869
#ifdef CONFIG_MEMCG_KMEM
5870
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5871
{
5872 5873
	int ret;

5874
	memcg->kmemcg_id = -1;
5875 5876 5877
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5878

5879
	return mem_cgroup_sockets_init(memcg, ss);
5880
}
5881

5882
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5883
{
5884
	mem_cgroup_sockets_destroy(memcg);
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5911 5912 5913 5914 5915 5916 5917

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5918
		css_put(&memcg->css);
G
Glauber Costa 已提交
5919
}
5920
#else
5921
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5922 5923 5924
{
	return 0;
}
G
Glauber Costa 已提交
5925

5926 5927 5928 5929 5930
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5931 5932
{
}
5933 5934
#endif

B
Balbir Singh 已提交
5935 5936
static struct cftype mem_cgroup_files[] = {
	{
5937
		.name = "usage_in_bytes",
5938
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5939
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5940 5941
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5942
	},
5943 5944
	{
		.name = "max_usage_in_bytes",
5945
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5946
		.trigger = mem_cgroup_reset,
5947
		.read = mem_cgroup_read,
5948
	},
B
Balbir Singh 已提交
5949
	{
5950
		.name = "limit_in_bytes",
5951
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5952
		.write_string = mem_cgroup_write,
5953
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5954
	},
5955 5956 5957 5958
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5959
		.read = mem_cgroup_read,
5960
	},
B
Balbir Singh 已提交
5961 5962
	{
		.name = "failcnt",
5963
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5964
		.trigger = mem_cgroup_reset,
5965
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5966
	},
5967 5968
	{
		.name = "stat",
5969
		.read_seq_string = memcg_stat_show,
5970
	},
5971 5972 5973 5974
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5975 5976
	{
		.name = "use_hierarchy",
5977
		.flags = CFTYPE_INSANE,
5978 5979 5980
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5981 5982 5983 5984 5985
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5986 5987 5988 5989 5990
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5991 5992
	{
		.name = "oom_control",
5993 5994
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5995 5996 5997 5998
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5999 6000 6001 6002 6003
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
6004 6005 6006
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6007
		.read_seq_string = memcg_numa_stat_show,
6008 6009
	},
#endif
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6034 6035 6036 6037 6038 6039
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6040
#endif
6041
	{ },	/* terminate */
6042
};
6043

6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6074
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6075 6076
{
	struct mem_cgroup_per_node *pn;
6077
	struct mem_cgroup_per_zone *mz;
6078
	int zone, tmp = node;
6079 6080 6081 6082 6083 6084 6085 6086
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6087 6088
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6089
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6090 6091
	if (!pn)
		return 1;
6092 6093 6094

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6095
		lruvec_init(&mz->lruvec);
6096
		mz->usage_in_excess = 0;
6097
		mz->on_tree = false;
6098
		mz->memcg = memcg;
6099
	}
6100
	memcg->nodeinfo[node] = pn;
6101 6102 6103
	return 0;
}

6104
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6105
{
6106
	kfree(memcg->nodeinfo[node]);
6107 6108
}

6109 6110
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6111
	struct mem_cgroup *memcg;
6112
	size_t size = memcg_size();
6113

6114
	/* Can be very big if nr_node_ids is very big */
6115
	if (size < PAGE_SIZE)
6116
		memcg = kzalloc(size, GFP_KERNEL);
6117
	else
6118
		memcg = vzalloc(size);
6119

6120
	if (!memcg)
6121 6122
		return NULL;

6123 6124
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6125
		goto out_free;
6126 6127
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6128 6129 6130

out_free:
	if (size < PAGE_SIZE)
6131
		kfree(memcg);
6132
	else
6133
		vfree(memcg);
6134
	return NULL;
6135 6136
}

6137
/*
6138 6139 6140 6141 6142 6143 6144 6145
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6146
 */
6147 6148

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6149
{
6150
	int node;
6151
	size_t size = memcg_size();
6152

6153 6154 6155 6156 6157 6158 6159 6160
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6172
	disarm_static_keys(memcg);
6173 6174 6175 6176
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6177
}
6178

6179 6180 6181
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6182
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6183
{
6184
	if (!memcg->res.parent)
6185
		return NULL;
6186
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6187
}
G
Glauber Costa 已提交
6188
EXPORT_SYMBOL(parent_mem_cgroup);
6189

6190
static void __init mem_cgroup_soft_limit_tree_init(void)
6191 6192 6193 6194 6195
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6196
	for_each_node(node) {
6197 6198 6199 6200
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6201
		BUG_ON(!rtpn);
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6213
static struct cgroup_subsys_state * __ref
6214
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6215
{
6216
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6217
	long error = -ENOMEM;
6218
	int node;
B
Balbir Singh 已提交
6219

6220 6221
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6222
		return ERR_PTR(error);
6223

B
Bob Liu 已提交
6224
	for_each_node(node)
6225
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6226
			goto free_out;
6227

6228
	/* root ? */
6229
	if (parent_css == NULL) {
6230
		root_mem_cgroup = memcg;
6231 6232 6233
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6234
	}
6235

6236 6237 6238 6239 6240
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6241
	vmpressure_init(&memcg->vmpressure);
6242 6243 6244 6245 6246 6247 6248 6249 6250

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6251
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6252
{
6253 6254
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6255 6256
	int error = 0;

T
Tejun Heo 已提交
6257
	if (!parent)
6258 6259
		return 0;

6260
	mutex_lock(&memcg_create_mutex);
6261 6262 6263 6264 6265 6266

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6267 6268
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6269
		res_counter_init(&memcg->kmem, &parent->kmem);
6270

6271
		/*
6272 6273
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6274
		 */
6275
	} else {
6276 6277
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6278
		res_counter_init(&memcg->kmem, NULL);
6279 6280 6281 6282 6283
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6284
		if (parent != root_mem_cgroup)
6285
			mem_cgroup_subsys.broken_hierarchy = true;
6286
	}
6287 6288

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6289
	mutex_unlock(&memcg_create_mutex);
6290
	return error;
B
Balbir Singh 已提交
6291 6292
}

M
Michal Hocko 已提交
6293 6294 6295 6296 6297 6298 6299 6300
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6301
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6302 6303 6304 6305 6306 6307

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6308
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6309 6310
}

6311
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6312
{
6313
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6314

6315 6316
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6317
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6318
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6319
	mem_cgroup_destroy_all_caches(memcg);
6320 6321
}

6322
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6323
{
6324
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6325

6326
	memcg_destroy_kmem(memcg);
6327
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6328 6329
}

6330
#ifdef CONFIG_MMU
6331
/* Handlers for move charge at task migration. */
6332 6333
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6334
{
6335 6336
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6337
	struct mem_cgroup *memcg = mc.to;
6338

6339
	if (mem_cgroup_is_root(memcg)) {
6340 6341 6342 6343 6344 6345 6346 6347
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6348
		 * "memcg" cannot be under rmdir() because we've already checked
6349 6350 6351 6352
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6353
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6354
			goto one_by_one;
6355
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6356
						PAGE_SIZE * count, &dummy)) {
6357
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6374 6375
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6376
		if (ret)
6377
			/* mem_cgroup_clear_mc() will do uncharge later */
6378
			return ret;
6379 6380
		mc.precharge++;
	}
6381 6382 6383 6384
	return ret;
}

/**
6385
 * get_mctgt_type - get target type of moving charge
6386 6387 6388
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6389
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6390 6391 6392 6393 6394 6395
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6396 6397 6398
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6399 6400 6401 6402 6403
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6404
	swp_entry_t	ent;
6405 6406 6407
};

enum mc_target_type {
6408
	MC_TARGET_NONE = 0,
6409
	MC_TARGET_PAGE,
6410
	MC_TARGET_SWAP,
6411 6412
};

D
Daisuke Nishimura 已提交
6413 6414
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6415
{
D
Daisuke Nishimura 已提交
6416
	struct page *page = vm_normal_page(vma, addr, ptent);
6417

D
Daisuke Nishimura 已提交
6418 6419 6420 6421
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6422
		if (!move_anon())
D
Daisuke Nishimura 已提交
6423
			return NULL;
6424 6425
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6426 6427 6428 6429 6430 6431 6432
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6433
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6434 6435 6436 6437 6438 6439 6440 6441
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6442 6443 6444 6445
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6446
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6447 6448 6449 6450 6451
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6452 6453 6454 6455 6456 6457 6458
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6459

6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6479 6480 6481 6482 6483 6484
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6485
		if (do_swap_account)
6486
			*entry = swap;
6487
		page = find_get_page(swap_address_space(swap), swap.val);
6488
	}
6489
#endif
6490 6491 6492
	return page;
}

6493
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6494 6495 6496 6497
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6498
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6499 6500 6501 6502 6503 6504
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6505 6506
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6507 6508

	if (!page && !ent.val)
6509
		return ret;
6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6525 6526
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6527
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6528 6529 6530
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6531 6532 6533 6534
	}
	return ret;
}

6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6570 6571 6572 6573 6574 6575 6576 6577
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6578 6579 6580 6581
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6582
		return 0;
6583
	}
6584

6585 6586
	if (pmd_trans_unstable(pmd))
		return 0;
6587 6588
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6589
		if (get_mctgt_type(vma, addr, *pte, NULL))
6590 6591 6592 6593
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6594 6595 6596
	return 0;
}

6597 6598 6599 6600 6601
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6602
	down_read(&mm->mmap_sem);
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6614
	up_read(&mm->mmap_sem);
6615 6616 6617 6618 6619 6620 6621 6622 6623

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6624 6625 6626 6627 6628
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6629 6630
}

6631 6632
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6633
{
6634 6635
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6636
	int i;
6637

6638
	/* we must uncharge all the leftover precharges from mc.to */
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6650
	}
6651 6652 6653 6654 6655 6656
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6657 6658 6659

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6660 6661 6662 6663 6664 6665 6666 6667 6668

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6669
		/* we've already done css_get(mc.to) */
6670 6671
		mc.moved_swap = 0;
	}
6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6687
	spin_lock(&mc.lock);
6688 6689
	mc.from = NULL;
	mc.to = NULL;
6690
	spin_unlock(&mc.lock);
6691
	mem_cgroup_end_move(from);
6692 6693
}

6694
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6695
				 struct cgroup_taskset *tset)
6696
{
6697
	struct task_struct *p = cgroup_taskset_first(tset);
6698
	int ret = 0;
6699
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6700
	unsigned long move_charge_at_immigrate;
6701

6702 6703 6704 6705 6706 6707 6708
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6709 6710 6711
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6712
		VM_BUG_ON(from == memcg);
6713 6714 6715 6716 6717

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6718 6719 6720 6721
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6722
			VM_BUG_ON(mc.moved_charge);
6723
			VM_BUG_ON(mc.moved_swap);
6724
			mem_cgroup_start_move(from);
6725
			spin_lock(&mc.lock);
6726
			mc.from = from;
6727
			mc.to = memcg;
6728
			mc.immigrate_flags = move_charge_at_immigrate;
6729
			spin_unlock(&mc.lock);
6730
			/* We set mc.moving_task later */
6731 6732 6733 6734

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6735 6736
		}
		mmput(mm);
6737 6738 6739 6740
	}
	return ret;
}

6741
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6742
				     struct cgroup_taskset *tset)
6743
{
6744
	mem_cgroup_clear_mc();
6745 6746
}

6747 6748 6749
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6750
{
6751 6752 6753 6754
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6755 6756 6757 6758
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6759

6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6771
		if (mc.precharge < HPAGE_PMD_NR) {
6772 6773 6774 6775 6776 6777 6778 6779 6780
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6781
							pc, mc.from, mc.to)) {
6782 6783 6784 6785 6786 6787 6788 6789
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6790
		return 0;
6791 6792
	}

6793 6794
	if (pmd_trans_unstable(pmd))
		return 0;
6795 6796 6797 6798
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6799
		swp_entry_t ent;
6800 6801 6802 6803

		if (!mc.precharge)
			break;

6804
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6805 6806 6807 6808 6809
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6810
			if (!mem_cgroup_move_account(page, 1, pc,
6811
						     mc.from, mc.to)) {
6812
				mc.precharge--;
6813 6814
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6815 6816
			}
			putback_lru_page(page);
6817
put:			/* get_mctgt_type() gets the page */
6818 6819
			put_page(page);
			break;
6820 6821
		case MC_TARGET_SWAP:
			ent = target.ent;
6822
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6823
				mc.precharge--;
6824 6825 6826
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6827
			break;
6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6842
		ret = mem_cgroup_do_precharge(1);
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6886
	up_read(&mm->mmap_sem);
6887 6888
}

6889
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6890
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6891
{
6892
	struct task_struct *p = cgroup_taskset_first(tset);
6893
	struct mm_struct *mm = get_task_mm(p);
6894 6895

	if (mm) {
6896 6897
		if (mc.to)
			mem_cgroup_move_charge(mm);
6898 6899
		mmput(mm);
	}
6900 6901
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6902
}
6903
#else	/* !CONFIG_MMU */
6904
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6905
				 struct cgroup_taskset *tset)
6906 6907 6908
{
	return 0;
}
6909
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6910
				     struct cgroup_taskset *tset)
6911 6912
{
}
6913
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6914
				 struct cgroup_taskset *tset)
6915 6916 6917
{
}
#endif
B
Balbir Singh 已提交
6918

6919 6920 6921 6922
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6923
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6924 6925 6926 6927 6928 6929
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6930 6931
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6932 6933
}

B
Balbir Singh 已提交
6934 6935 6936
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6937
	.css_alloc = mem_cgroup_css_alloc,
6938
	.css_online = mem_cgroup_css_online,
6939 6940
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6941 6942
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6943
	.attach = mem_cgroup_move_task,
6944
	.bind = mem_cgroup_bind,
6945
	.base_cftypes = mem_cgroup_files,
6946
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6947
	.use_id = 1,
B
Balbir Singh 已提交
6948
};
6949

A
Andrew Morton 已提交
6950
#ifdef CONFIG_MEMCG_SWAP
6951 6952 6953
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6954
	if (!strcmp(s, "1"))
6955
		really_do_swap_account = 1;
6956
	else if (!strcmp(s, "0"))
6957 6958 6959
		really_do_swap_account = 0;
	return 1;
}
6960
__setup("swapaccount=", enable_swap_account);
6961

6962 6963
static void __init memsw_file_init(void)
{
6964 6965 6966 6967 6968 6969 6970 6971 6972
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6973
}
6974

6975
#else
6976
static void __init enable_swap_cgroup(void)
6977 6978
{
}
6979
#endif
6980 6981

/*
6982 6983 6984 6985 6986 6987
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6988 6989 6990 6991
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6992
	enable_swap_cgroup();
6993
	mem_cgroup_soft_limit_tree_init();
6994
	memcg_stock_init();
6995 6996 6997
	return 0;
}
subsys_initcall(mem_cgroup_init);