memcontrol.c 146.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75
#else
76
#define do_swap_account		0
77 78 79
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 93 94
	MEM_CGROUP_STAT_NSTATS,
};

95 96 97 98
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
99 100
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
101 102
	MEM_CGROUP_EVENTS_NSTATS,
};
103 104 105 106 107 108 109 110 111
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
112
	MEM_CGROUP_TARGET_NUMAINFO,
113 114
	MEM_CGROUP_NTARGETS,
};
115 116 117
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
118

119
struct mem_cgroup_stat_cpu {
120
	long count[MEM_CGROUP_STAT_NSTATS];
121
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122
	unsigned long targets[MEM_CGROUP_NTARGETS];
123 124
};

125 126 127 128 129 130 131
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

132 133 134 135
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
136
	struct lruvec		lruvec;
137
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
138

139 140
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

141 142 143 144
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
145
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
146
						/* use container_of	   */
147 148 149 150 151 152 153 154 155 156
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

177 178 179 180 181
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
182
/* For threshold */
183
struct mem_cgroup_threshold_ary {
184
	/* An array index points to threshold just below or equal to usage. */
185
	int current_threshold;
186 187 188 189 190
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
191 192 193 194 195 196 197 198 199 200 201 202

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
203 204 205 206 207
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
208

209 210
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
211

B
Balbir Singh 已提交
212 213 214 215 216 217 218
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
219 220 221
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
222 223 224 225 226 227 228
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
		 * But when using vfree(), that cannot be done at
		 * interrupt time, so we must then queue the work.
		 */
		struct work_struct work_freeing;
	};

253 254 255 256
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
257
	struct mem_cgroup_lru_info info;
258 259 260
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
261 262
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
263
#endif
264 265 266 267
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
268 269 270 271

	bool		oom_lock;
	atomic_t	under_oom;

272
	atomic_t	refcnt;
273

274
	int	swappiness;
275 276
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
277

278 279 280
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

281 282 283 284
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
285
	struct mem_cgroup_thresholds thresholds;
286

287
	/* thresholds for mem+swap usage. RCU-protected */
288
	struct mem_cgroup_thresholds memsw_thresholds;
289

K
KAMEZAWA Hiroyuki 已提交
290 291
	/* For oom notifier event fd */
	struct list_head oom_notify;
292

293 294 295 296 297
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
298 299 300 301
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
302 303
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
304
	/*
305
	 * percpu counter.
306
	 */
307
	struct mem_cgroup_stat_cpu __percpu *stat;
308 309 310 311 312 313
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
314 315 316 317

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
318 319
};

320 321 322 323 324 325
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
326
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
327
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
328 329 330
	NR_MOVE_TYPE,
};

331 332
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
333
	spinlock_t	  lock; /* for from, to */
334 335 336
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
337
	unsigned long moved_charge;
338
	unsigned long moved_swap;
339 340 341
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
342
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
343 344
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
345

D
Daisuke Nishimura 已提交
346 347 348 349 350 351
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

352 353 354 355 356 357
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

358 359 360 361
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
362 363
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
364

365 366 367
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
368
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
369
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
370
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
371
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
372 373 374
	NR_CHARGE_TYPE,
};

375
/* for encoding cft->private value on file */
376 377 378
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
379 380
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
381
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
382 383
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
384

385 386 387 388 389 390 391 392
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

393 394
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
395 396 397 398

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
399
#include <net/ip.h>
G
Glauber Costa 已提交
400 401 402 403

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
404
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
405 406 407 408
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

409 410 411 412 413 414 415 416 417 418 419 420 421 422
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
436
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
437 438 439 440 441 442
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
443

444
#ifdef CONFIG_INET
G
Glauber Costa 已提交
445 446 447 448 449 450 451 452
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
453 454 455
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

456
static void drain_all_stock_async(struct mem_cgroup *memcg);
457

458
static struct mem_cgroup_per_zone *
459
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
460
{
461
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
462 463
}

464
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
465
{
466
	return &memcg->css;
467 468
}

469
static struct mem_cgroup_per_zone *
470
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
471
{
472 473
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
474

475
	return mem_cgroup_zoneinfo(memcg, nid, zid);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
494
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
495
				struct mem_cgroup_per_zone *mz,
496 497
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
498 499 500 501 502 503 504 505
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

506 507 508
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
525 526 527
}

static void
528
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
529 530 531 532 533 534 535 536 537
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

538
static void
539
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
540 541 542 543
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
544
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
545 546 547 548
	spin_unlock(&mctz->lock);
}


549
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
550
{
551
	unsigned long long excess;
552 553
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
554 555
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
556 557 558
	mctz = soft_limit_tree_from_page(page);

	/*
559 560
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
561
	 */
562 563 564
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
565 566 567 568
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
569
		if (excess || mz->on_tree) {
570 571 572
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
573
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
574
			/*
575 576
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
577
			 */
578
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
579 580
			spin_unlock(&mctz->lock);
		}
581 582 583
	}
}

584
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
585 586 587 588 589
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
590
	for_each_node(node) {
591
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
592
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
593
			mctz = soft_limit_tree_node_zone(node, zone);
594
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
595 596 597 598
		}
	}
}

599 600 601 602
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
603
	struct mem_cgroup_per_zone *mz;
604 605

retry:
606
	mz = NULL;
607 608 609 610 611 612 613 614 615 616
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
617 618 619
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
655
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
656
				 enum mem_cgroup_stat_index idx)
657
{
658
	long val = 0;
659 660
	int cpu;

661 662
	get_online_cpus();
	for_each_online_cpu(cpu)
663
		val += per_cpu(memcg->stat->count[idx], cpu);
664
#ifdef CONFIG_HOTPLUG_CPU
665 666 667
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
668 669
#endif
	put_online_cpus();
670 671 672
	return val;
}

673
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
674 675 676
					 bool charge)
{
	int val = (charge) ? 1 : -1;
677
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
678 679
}

680
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
681 682 683 684 685 686
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
687
		val += per_cpu(memcg->stat->events[idx], cpu);
688
#ifdef CONFIG_HOTPLUG_CPU
689 690 691
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
692 693 694 695
#endif
	return val;
}

696
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697
					 bool anon, int nr_pages)
698
{
699 700
	preempt_disable();

701 702 703 704 705 706
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707
				nr_pages);
708
	else
709
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710
				nr_pages);
711

712 713
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
714
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
715
	else {
716
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
717 718
		nr_pages = -nr_pages; /* for event */
	}
719

720
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
721

722
	preempt_enable();
723 724
}

725
unsigned long
726 727 728 729 730 731 732 733 734
mem_cgroup_get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
735
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
736
			unsigned int lru_mask)
737 738
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
739
	enum lru_list lru;
740 741
	unsigned long ret = 0;

742
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
743

H
Hugh Dickins 已提交
744 745 746
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
747 748 749 750 751
	}
	return ret;
}

static unsigned long
752
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
753 754
			int nid, unsigned int lru_mask)
{
755 756 757
	u64 total = 0;
	int zid;

758
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
759 760
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
761

762 763
	return total;
}
764

765
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
766
			unsigned int lru_mask)
767
{
768
	int nid;
769 770
	u64 total = 0;

771
	for_each_node_state(nid, N_HIGH_MEMORY)
772
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
773
	return total;
774 775
}

776 777
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
778 779 780
{
	unsigned long val, next;

781 782
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
783
	/* from time_after() in jiffies.h */
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
800
	}
801
	return false;
802 803 804 805 806 807
}

/*
 * Check events in order.
 *
 */
808
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
809
{
810
	preempt_disable();
811
	/* threshold event is triggered in finer grain than soft limit */
812 813
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
814 815
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
816 817 818 819 820 821 822 823 824

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

825
		mem_cgroup_threshold(memcg);
826
		if (unlikely(do_softlimit))
827
			mem_cgroup_update_tree(memcg, page);
828
#if MAX_NUMNODES > 1
829
		if (unlikely(do_numainfo))
830
			atomic_inc(&memcg->numainfo_events);
831
#endif
832 833
	} else
		preempt_enable();
834 835
}

G
Glauber Costa 已提交
836
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
837 838 839 840 841 842
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

843
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
844
{
845 846 847 848 849 850 851 852
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

853 854 855 856
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

857
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
858
{
859
	struct mem_cgroup *memcg = NULL;
860 861 862

	if (!mm)
		return NULL;
863 864 865 866 867 868 869
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
870 871
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
872
			break;
873
	} while (!css_tryget(&memcg->css));
874
	rcu_read_unlock();
875
	return memcg;
876 877
}

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
898
{
899 900
	struct mem_cgroup *memcg = NULL;
	int id = 0;
901

902 903 904
	if (mem_cgroup_disabled())
		return NULL;

905 906
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
907

908 909
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
910

911 912
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
913

914 915 916 917 918
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
919

920
	while (!memcg) {
921
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
922
		struct cgroup_subsys_state *css;
923

924 925 926 927 928 929 930 931 932 933 934
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
935

936 937 938 939 940 941 942 943
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
944 945
		rcu_read_unlock();

946 947 948 949 950 951 952
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
953 954 955 956 957

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
958
}
K
KAMEZAWA Hiroyuki 已提交
959

960 961 962 963 964 965 966
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
967 968 969 970 971 972
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
973

974 975 976 977 978 979
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
980
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
981
	     iter != NULL;				\
982
	     iter = mem_cgroup_iter(root, iter, NULL))
983

984
#define for_each_mem_cgroup(iter)			\
985
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
986
	     iter != NULL;				\
987
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
988

989
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
990
{
991
	return (memcg == root_mem_cgroup);
992 993
}

994 995
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
996
	struct mem_cgroup *memcg;
997 998 999 1000 1001

	if (!mm)
		return;

	rcu_read_lock();
1002 1003
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1004 1005 1006 1007
		goto out;

	switch (idx) {
	case PGFAULT:
1008 1009 1010 1011
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1012 1013 1014 1015 1016 1017 1018 1019 1020
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1070 1071
{
	struct mem_cgroup_per_zone *mz;
1072 1073
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1074

1075
	if (mem_cgroup_disabled())
1076 1077
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1078
	pc = lookup_page_cgroup(page);
1079
	memcg = pc->mem_cgroup;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

	/*
	 * Surreptitiously switch any uncharged page to root:
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
	if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
		pc->mem_cgroup = memcg = root_mem_cgroup;

1093 1094
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
1095
	mz->lru_size[lru] += 1 << compound_order(page);
1096
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1097
}
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1108
 */
1109
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1110 1111
{
	struct mem_cgroup_per_zone *mz;
1112
	struct mem_cgroup *memcg;
1113 1114 1115 1116 1117 1118
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1119 1120
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1121 1122
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
1123 1124
	VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
	mz->lru_size[lru] -= 1 << compound_order(page);
1125 1126
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1145
{
1146 1147 1148
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1149
}
1150

1151
/*
1152
 * Checks whether given mem is same or in the root_mem_cgroup's
1153 1154
 * hierarchy subtree
 */
1155 1156
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1157
{
1158 1159 1160 1161
	if (root_memcg == memcg)
		return true;
	if (!root_memcg->use_hierarchy)
		return false;
1162 1163 1164 1165 1166 1167 1168 1169
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1170
	rcu_read_lock();
1171
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1172 1173
	rcu_read_unlock();
	return ret;
1174 1175
}

1176
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1177 1178
{
	int ret;
1179
	struct mem_cgroup *curr = NULL;
1180
	struct task_struct *p;
1181

1182
	p = find_lock_task_mm(task);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1198 1199
	if (!curr)
		return 0;
1200
	/*
1201
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1202
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1203 1204
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1205
	 */
1206
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1207
	css_put(&curr->css);
1208 1209 1210
	return ret;
}

1211
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1212
{
1213
	unsigned long inactive_ratio;
1214
	unsigned long inactive;
1215
	unsigned long active;
1216
	unsigned long gb;
1217

1218 1219
	inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_ANON);
1220

1221 1222 1223 1224 1225 1226
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1227
	return inactive * inactive_ratio < active;
1228 1229
}

1230
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1231 1232 1233 1234
{
	unsigned long active;
	unsigned long inactive;

1235 1236
	inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_FILE);
1237 1238 1239 1240

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1251 1252
	if (!PageCgroupUsed(pc))
		return NULL;
1253 1254
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1255
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1256
	return &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
1257 1258
}

1259 1260 1261
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1262
/**
1263 1264
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1265
 *
1266
 * Returns the maximum amount of memory @mem can be charged with, in
1267
 * pages.
1268
 */
1269
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1270
{
1271 1272
	unsigned long long margin;

1273
	margin = res_counter_margin(&memcg->res);
1274
	if (do_swap_account)
1275
		margin = min(margin, res_counter_margin(&memcg->memsw));
1276
	return margin >> PAGE_SHIFT;
1277 1278
}

1279
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1280 1281 1282 1283 1284 1285 1286
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1287
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1288 1289
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1304 1305 1306 1307

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1308
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1309
{
1310
	atomic_inc(&memcg_moving);
1311
	atomic_inc(&memcg->moving_account);
1312 1313 1314
	synchronize_rcu();
}

1315
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1316
{
1317 1318 1319 1320
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1321 1322
	if (memcg) {
		atomic_dec(&memcg_moving);
1323
		atomic_dec(&memcg->moving_account);
1324
	}
1325
}
1326

1327 1328 1329
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1330 1331
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1332 1333 1334 1335 1336 1337 1338
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1339
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1340 1341
{
	VM_BUG_ON(!rcu_read_lock_held());
1342
	return atomic_read(&memcg->moving_account) > 0;
1343
}
1344

1345
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1346
{
1347 1348
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1349
	bool ret = false;
1350 1351 1352 1353 1354 1355 1356 1357 1358
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1359

1360 1361
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1362 1363
unlock:
	spin_unlock(&mc.lock);
1364 1365 1366
	return ret;
}

1367
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1368 1369
{
	if (mc.moving_task && current != mc.moving_task) {
1370
		if (mem_cgroup_under_move(memcg)) {
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1383 1384 1385 1386
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1387
 * see mem_cgroup_stolen(), too.
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1401
/**
1402
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1421
	if (!memcg || !p)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1467 1468 1469 1470
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1471
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1472 1473
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1474 1475
	struct mem_cgroup *iter;

1476
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1477
		num++;
1478 1479 1480
	return num;
}

D
David Rientjes 已提交
1481 1482 1483 1484 1485 1486 1487 1488
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1489 1490 1491
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1492 1493 1494 1495 1496 1497 1498 1499
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1546
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1547 1548
		int nid, bool noswap)
{
1549
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1550 1551 1552
		return true;
	if (noswap || !total_swap_pages)
		return false;
1553
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1554 1555 1556 1557
		return true;
	return false;

}
1558 1559 1560 1561 1562 1563 1564 1565
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1566
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1567 1568
{
	int nid;
1569 1570 1571 1572
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1573
	if (!atomic_read(&memcg->numainfo_events))
1574
		return;
1575
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1576 1577 1578
		return;

	/* make a nodemask where this memcg uses memory from */
1579
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1580 1581 1582

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1583 1584
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1585
	}
1586

1587 1588
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1603
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1604 1605 1606
{
	int node;

1607 1608
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1609

1610
	node = next_node(node, memcg->scan_nodes);
1611
	if (node == MAX_NUMNODES)
1612
		node = first_node(memcg->scan_nodes);
1613 1614 1615 1616 1617 1618 1619 1620 1621
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1622
	memcg->last_scanned_node = node;
1623 1624 1625
	return node;
}

1626 1627 1628 1629 1630 1631
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1632
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1633 1634 1635 1636 1637 1638 1639
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1640 1641
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1642
		     nid < MAX_NUMNODES;
1643
		     nid = next_node(nid, memcg->scan_nodes)) {
1644

1645
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1646 1647 1648 1649 1650 1651 1652
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1653
		if (node_isset(nid, memcg->scan_nodes))
1654
			continue;
1655
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1656 1657 1658 1659 1660
			return true;
	}
	return false;
}

1661
#else
1662
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1663 1664 1665
{
	return 0;
}
1666

1667
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1668
{
1669
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1670
}
1671 1672
#endif

1673 1674 1675 1676
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1677
{
1678
	struct mem_cgroup *victim = NULL;
1679
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1680
	int loop = 0;
1681
	unsigned long excess;
1682
	unsigned long nr_scanned;
1683 1684 1685 1686
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1687

1688
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1689

1690
	while (1) {
1691
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1692
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1693
			loop++;
1694 1695 1696 1697 1698 1699
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1700
				if (!total)
1701 1702
					break;
				/*
L
Lucas De Marchi 已提交
1703
				 * We want to do more targeted reclaim.
1704 1705 1706 1707 1708
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1709
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1710 1711
					break;
			}
1712
			continue;
1713
		}
1714
		if (!mem_cgroup_reclaimable(victim, false))
1715
			continue;
1716 1717 1718 1719
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1720
			break;
1721
	}
1722
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1723
	return total;
1724 1725
}

K
KAMEZAWA Hiroyuki 已提交
1726 1727 1728
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1729
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1730
 */
1731
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1732
{
1733
	struct mem_cgroup *iter, *failed = NULL;
1734

1735
	for_each_mem_cgroup_tree(iter, memcg) {
1736
		if (iter->oom_lock) {
1737 1738 1739 1740 1741
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1742 1743
			mem_cgroup_iter_break(memcg, iter);
			break;
1744 1745
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1746
	}
K
KAMEZAWA Hiroyuki 已提交
1747

1748
	if (!failed)
1749
		return true;
1750 1751 1752 1753 1754

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1755
	for_each_mem_cgroup_tree(iter, memcg) {
1756
		if (iter == failed) {
1757 1758
			mem_cgroup_iter_break(memcg, iter);
			break;
1759 1760 1761
		}
		iter->oom_lock = false;
	}
1762
	return false;
1763
}
1764

1765
/*
1766
 * Has to be called with memcg_oom_lock
1767
 */
1768
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1769
{
K
KAMEZAWA Hiroyuki 已提交
1770 1771
	struct mem_cgroup *iter;

1772
	for_each_mem_cgroup_tree(iter, memcg)
1773 1774 1775 1776
		iter->oom_lock = false;
	return 0;
}

1777
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1778 1779 1780
{
	struct mem_cgroup *iter;

1781
	for_each_mem_cgroup_tree(iter, memcg)
1782 1783 1784
		atomic_inc(&iter->under_oom);
}

1785
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1786 1787 1788
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1789 1790 1791 1792 1793
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1794
	for_each_mem_cgroup_tree(iter, memcg)
1795
		atomic_add_unless(&iter->under_oom, -1, 0);
1796 1797
}

1798
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1799 1800
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1801
struct oom_wait_info {
1802
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1803 1804 1805 1806 1807 1808
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1809 1810
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1811 1812 1813
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1814
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1815 1816

	/*
1817
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1818 1819
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1820 1821
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1822 1823 1824 1825
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1826
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1827
{
1828 1829
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1830 1831
}

1832
static void memcg_oom_recover(struct mem_cgroup *memcg)
1833
{
1834 1835
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1836 1837
}

K
KAMEZAWA Hiroyuki 已提交
1838 1839 1840
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1841 1842
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1843
{
K
KAMEZAWA Hiroyuki 已提交
1844
	struct oom_wait_info owait;
1845
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1846

1847
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1848 1849 1850 1851
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1852
	need_to_kill = true;
1853
	mem_cgroup_mark_under_oom(memcg);
1854

1855
	/* At first, try to OOM lock hierarchy under memcg.*/
1856
	spin_lock(&memcg_oom_lock);
1857
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1858 1859 1860 1861 1862
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1863
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1864
	if (!locked || memcg->oom_kill_disable)
1865 1866
		need_to_kill = false;
	if (locked)
1867
		mem_cgroup_oom_notify(memcg);
1868
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1869

1870 1871
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1872
		mem_cgroup_out_of_memory(memcg, mask, order);
1873
	} else {
K
KAMEZAWA Hiroyuki 已提交
1874
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1875
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1876
	}
1877
	spin_lock(&memcg_oom_lock);
1878
	if (locked)
1879 1880
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1881
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1882

1883
	mem_cgroup_unmark_under_oom(memcg);
1884

K
KAMEZAWA Hiroyuki 已提交
1885 1886 1887
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1888
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1889
	return true;
1890 1891
}

1892 1893 1894
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1912 1913
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1914
 */
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
	 * need to take move_lock_page_cgroup(). Because we already hold
	 * rcu_read_lock(), any calls to move_account will be delayed until
1931
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1932
	 */
1933
	if (!mem_cgroup_stolen(memcg))
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
	 * should take move_lock_page_cgroup().
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1956 1957
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1958
{
1959
	struct mem_cgroup *memcg;
1960
	struct page_cgroup *pc = lookup_page_cgroup(page);
1961
	unsigned long uninitialized_var(flags);
1962

1963
	if (mem_cgroup_disabled())
1964
		return;
1965

1966 1967
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1968
		return;
1969 1970

	switch (idx) {
1971 1972
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1973 1974 1975
		break;
	default:
		BUG();
1976
	}
1977

1978
	this_cpu_add(memcg->stat->count[idx], val);
1979
}
1980

1981 1982 1983 1984
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1985
#define CHARGE_BATCH	32U
1986 1987
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1988
	unsigned int nr_pages;
1989
	struct work_struct work;
1990
	unsigned long flags;
1991
#define FLUSHING_CACHED_CHARGE	0
1992 1993
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1994
static DEFINE_MUTEX(percpu_charge_mutex);
1995 1996

/*
1997
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1998 1999 2000 2001
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2002
static bool consume_stock(struct mem_cgroup *memcg)
2003 2004 2005 2006 2007
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2008
	if (memcg == stock->cached && stock->nr_pages)
2009
		stock->nr_pages--;
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2023 2024 2025 2026
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2027
		if (do_swap_account)
2028 2029
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2042
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2043 2044 2045 2046
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2047
 * This will be consumed by consume_stock() function, later.
2048
 */
2049
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2050 2051 2052
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2053
	if (stock->cached != memcg) { /* reset if necessary */
2054
		drain_stock(stock);
2055
		stock->cached = memcg;
2056
	}
2057
	stock->nr_pages += nr_pages;
2058 2059 2060 2061
	put_cpu_var(memcg_stock);
}

/*
2062
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2063 2064
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2065
 */
2066
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2067
{
2068
	int cpu, curcpu;
2069

2070 2071
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2072
	curcpu = get_cpu();
2073 2074
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2075
		struct mem_cgroup *memcg;
2076

2077 2078
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2079
			continue;
2080
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2081
			continue;
2082 2083 2084 2085 2086 2087
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2088
	}
2089
	put_cpu();
2090 2091 2092 2093 2094 2095

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2096
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2097 2098 2099
			flush_work(&stock->work);
	}
out:
2100
 	put_online_cpus();
2101 2102 2103 2104 2105 2106 2107 2108
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2109
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2110
{
2111 2112 2113 2114 2115
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2116
	drain_all_stock(root_memcg, false);
2117
	mutex_unlock(&percpu_charge_mutex);
2118 2119 2120
}

/* This is a synchronous drain interface. */
2121
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2122 2123
{
	/* called when force_empty is called */
2124
	mutex_lock(&percpu_charge_mutex);
2125
	drain_all_stock(root_memcg, true);
2126
	mutex_unlock(&percpu_charge_mutex);
2127 2128
}

2129 2130 2131 2132
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2133
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2134 2135 2136
{
	int i;

2137
	spin_lock(&memcg->pcp_counter_lock);
2138
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2139
		long x = per_cpu(memcg->stat->count[i], cpu);
2140

2141 2142
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2143
	}
2144
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2145
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2146

2147 2148
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2149
	}
2150
	spin_unlock(&memcg->pcp_counter_lock);
2151 2152 2153
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2154 2155 2156 2157 2158
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2159
	struct mem_cgroup *iter;
2160

2161
	if (action == CPU_ONLINE)
2162 2163
		return NOTIFY_OK;

2164
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2165
		return NOTIFY_OK;
2166

2167
	for_each_mem_cgroup(iter)
2168 2169
		mem_cgroup_drain_pcp_counter(iter, cpu);

2170 2171 2172 2173 2174
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2185
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2186
				unsigned int nr_pages, bool oom_check)
2187
{
2188
	unsigned long csize = nr_pages * PAGE_SIZE;
2189 2190 2191 2192 2193
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2194
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2195 2196 2197 2198

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2199
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2200 2201 2202
		if (likely(!ret))
			return CHARGE_OK;

2203
		res_counter_uncharge(&memcg->res, csize);
2204 2205 2206 2207
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2208
	/*
2209 2210
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2211 2212 2213 2214
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2215
	if (nr_pages == CHARGE_BATCH)
2216 2217 2218 2219 2220
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2221
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2222
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2223
		return CHARGE_RETRY;
2224
	/*
2225 2226 2227 2228 2229 2230 2231
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2232
	 */
2233
	if (nr_pages == 1 && ret)
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2247
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2248 2249 2250 2251 2252
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2253
/*
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2273
 */
2274
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2275
				   gfp_t gfp_mask,
2276
				   unsigned int nr_pages,
2277
				   struct mem_cgroup **ptr,
2278
				   bool oom)
2279
{
2280
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2281
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2282
	struct mem_cgroup *memcg = NULL;
2283
	int ret;
2284

K
KAMEZAWA Hiroyuki 已提交
2285 2286 2287 2288 2289 2290 2291 2292
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2293

2294
	/*
2295 2296
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2297 2298 2299
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2300
	if (!*ptr && !mm)
2301
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2302
again:
2303 2304 2305 2306
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2307
			goto done;
2308
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2309
			goto done;
2310
		css_get(&memcg->css);
2311
	} else {
K
KAMEZAWA Hiroyuki 已提交
2312
		struct task_struct *p;
2313

K
KAMEZAWA Hiroyuki 已提交
2314 2315 2316
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2317
		 * Because we don't have task_lock(), "p" can exit.
2318
		 * In that case, "memcg" can point to root or p can be NULL with
2319 2320 2321 2322 2323 2324
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2325
		 */
2326
		memcg = mem_cgroup_from_task(p);
2327 2328 2329
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2330 2331 2332
			rcu_read_unlock();
			goto done;
		}
2333
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2346
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2347 2348 2349 2350 2351
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2352

2353 2354
	do {
		bool oom_check;
2355

2356
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2357
		if (fatal_signal_pending(current)) {
2358
			css_put(&memcg->css);
2359
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2360
		}
2361

2362 2363 2364 2365
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2366
		}
2367

2368
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2369 2370 2371 2372
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2373
			batch = nr_pages;
2374 2375
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2376
			goto again;
2377
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2378
			css_put(&memcg->css);
2379 2380
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2381
			if (!oom) {
2382
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2383
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2384
			}
2385 2386 2387 2388
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2389
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2390
			goto bypass;
2391
		}
2392 2393
	} while (ret != CHARGE_OK);

2394
	if (batch > nr_pages)
2395 2396
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2397
done:
2398
	*ptr = memcg;
2399 2400
	return 0;
nomem:
2401
	*ptr = NULL;
2402
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2403
bypass:
2404 2405
	*ptr = root_mem_cgroup;
	return -EINTR;
2406
}
2407

2408 2409 2410 2411 2412
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2413
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2414
				       unsigned int nr_pages)
2415
{
2416
	if (!mem_cgroup_is_root(memcg)) {
2417 2418
		unsigned long bytes = nr_pages * PAGE_SIZE;

2419
		res_counter_uncharge(&memcg->res, bytes);
2420
		if (do_swap_account)
2421
			res_counter_uncharge(&memcg->memsw, bytes);
2422
	}
2423 2424
}

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2462
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2463
{
2464
	struct mem_cgroup *memcg = NULL;
2465
	struct page_cgroup *pc;
2466
	unsigned short id;
2467 2468
	swp_entry_t ent;

2469 2470 2471
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2472
	lock_page_cgroup(pc);
2473
	if (PageCgroupUsed(pc)) {
2474 2475 2476
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2477
	} else if (PageSwapCache(page)) {
2478
		ent.val = page_private(page);
2479
		id = lookup_swap_cgroup_id(ent);
2480
		rcu_read_lock();
2481 2482 2483
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2484
		rcu_read_unlock();
2485
	}
2486
	unlock_page_cgroup(pc);
2487
	return memcg;
2488 2489
}

2490
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2491
				       struct page *page,
2492
				       unsigned int nr_pages,
2493 2494
				       enum charge_type ctype,
				       bool lrucare)
2495
{
2496
	struct page_cgroup *pc = lookup_page_cgroup(page);
2497 2498
	struct zone *uninitialized_var(zone);
	bool was_on_lru = false;
2499
	bool anon;
2500

2501 2502 2503
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2504
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2505 2506 2507 2508 2509 2510
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
			ClearPageLRU(page);
			del_page_from_lru_list(zone, page, page_lru(page));
			was_on_lru = true;
		}
	}

2526
	pc->mem_cgroup = memcg;
2527 2528 2529 2530 2531 2532 2533
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2534
	smp_wmb();
2535
	SetPageCgroupUsed(pc);
2536

2537 2538 2539 2540 2541 2542 2543 2544 2545
	if (lrucare) {
		if (was_on_lru) {
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
			add_page_to_lru_list(zone, page, page_lru(page));
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2546 2547 2548 2549 2550 2551
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2552
	unlock_page_cgroup(pc);
2553

2554 2555 2556 2557 2558
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2559
	memcg_check_events(memcg, page);
2560
}
2561

2562 2563
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2564
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2565 2566
/*
 * Because tail pages are not marked as "used", set it. We're under
2567 2568 2569
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2570
 */
2571
void mem_cgroup_split_huge_fixup(struct page *head)
2572 2573
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2574 2575
	struct page_cgroup *pc;
	int i;
2576

2577 2578
	if (mem_cgroup_disabled())
		return;
2579 2580 2581 2582 2583 2584
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2585
}
2586
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2587

2588
/**
2589
 * mem_cgroup_move_account - move account of the page
2590
 * @page: the page
2591
 * @nr_pages: number of regular pages (>1 for huge pages)
2592 2593 2594
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2595
 * @uncharge: whether we should call uncharge and css_put against @from.
2596 2597
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2598
 * - page is not on LRU (isolate_page() is useful.)
2599
 * - compound_lock is held when nr_pages > 1
2600
 *
2601
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2602
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2603 2604
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2605
 */
2606 2607 2608 2609 2610 2611
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2612
{
2613 2614
	unsigned long flags;
	int ret;
2615
	bool anon = PageAnon(page);
2616

2617
	VM_BUG_ON(from == to);
2618
	VM_BUG_ON(PageLRU(page));
2619 2620 2621 2622 2623 2624 2625
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2626
	if (nr_pages > 1 && !PageTransHuge(page))
2627 2628 2629 2630 2631 2632 2633 2634
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2635
	move_lock_mem_cgroup(from, &flags);
2636

2637
	if (!anon && page_mapped(page)) {
2638 2639 2640 2641 2642
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2643
	}
2644
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2645 2646
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2647
		__mem_cgroup_cancel_charge(from, nr_pages);
2648

2649
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2650
	pc->mem_cgroup = to;
2651
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2652 2653 2654
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2655
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2656
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2657
	 * status here.
2658
	 */
2659
	move_unlock_mem_cgroup(from, &flags);
2660 2661
	ret = 0;
unlock:
2662
	unlock_page_cgroup(pc);
2663 2664 2665
	/*
	 * check events
	 */
2666 2667
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2668
out:
2669 2670 2671 2672 2673 2674 2675
	return ret;
}

/*
 * move charges to its parent.
 */

2676 2677
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2678 2679 2680 2681 2682 2683
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2684
	unsigned int nr_pages;
2685
	unsigned long uninitialized_var(flags);
2686 2687 2688 2689 2690 2691
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2692 2693 2694 2695 2696
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2697

2698
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2699

2700
	parent = mem_cgroup_from_cont(pcg);
2701 2702 2703 2704 2705 2706
	if (!parent->use_hierarchy) {
		ret = __mem_cgroup_try_charge(NULL,
					gfp_mask, nr_pages, &parent, false);
		if (ret)
			goto put_back;
	}
2707

2708
	if (nr_pages > 1)
2709 2710
		flags = compound_lock_irqsave(page);

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	if (parent->use_hierarchy) {
		ret = mem_cgroup_move_account(page, nr_pages,
					pc, child, parent, false);
		if (!ret)
			__mem_cgroup_cancel_local_charge(child, nr_pages);
	} else {
		ret = mem_cgroup_move_account(page, nr_pages,
					pc, child, parent, true);

		if (ret)
			__mem_cgroup_cancel_charge(parent, nr_pages);
	}
2723

2724
	if (nr_pages > 1)
2725
		compound_unlock_irqrestore(page, flags);
2726
put_back:
K
KAMEZAWA Hiroyuki 已提交
2727
	putback_lru_page(page);
2728
put:
2729
	put_page(page);
2730
out:
2731 2732 2733
	return ret;
}

2734 2735 2736 2737 2738 2739 2740
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2741
				gfp_t gfp_mask, enum charge_type ctype)
2742
{
2743
	struct mem_cgroup *memcg = NULL;
2744
	unsigned int nr_pages = 1;
2745
	bool oom = true;
2746
	int ret;
A
Andrea Arcangeli 已提交
2747

A
Andrea Arcangeli 已提交
2748
	if (PageTransHuge(page)) {
2749
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2750
		VM_BUG_ON(!PageTransHuge(page));
2751 2752 2753 2754 2755
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2756
	}
2757

2758
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2759
	if (ret == -ENOMEM)
2760
		return ret;
2761
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2762 2763 2764
	return 0;
}

2765 2766
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2767
{
2768
	if (mem_cgroup_disabled())
2769
		return 0;
2770 2771 2772
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2773
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2774
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2775 2776
}

D
Daisuke Nishimura 已提交
2777 2778 2779 2780
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2781 2782
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2783
{
2784
	struct mem_cgroup *memcg = NULL;
2785
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2786 2787
	int ret;

2788
	if (mem_cgroup_disabled())
2789
		return 0;
2790 2791
	if (PageCompound(page))
		return 0;
2792

2793
	if (unlikely(!mm))
2794
		mm = &init_mm;
2795 2796
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2797

2798
	if (!PageSwapCache(page))
2799
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2800
	else { /* page is swapcache/shmem */
2801
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2802
		if (!ret)
2803 2804
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2805
	return ret;
2806 2807
}

2808 2809 2810
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2811
 * struct page_cgroup is acquired. This refcnt will be consumed by
2812 2813
 * "commit()" or removed by "cancel()"
 */
2814 2815
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2816
				 gfp_t mask, struct mem_cgroup **memcgp)
2817
{
2818
	struct mem_cgroup *memcg;
2819
	int ret;
2820

2821
	*memcgp = NULL;
2822

2823
	if (mem_cgroup_disabled())
2824 2825 2826 2827 2828 2829
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2830 2831 2832
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2833 2834
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2835
		goto charge_cur_mm;
2836 2837
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2838
		goto charge_cur_mm;
2839 2840
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2841
	css_put(&memcg->css);
2842 2843
	if (ret == -EINTR)
		ret = 0;
2844
	return ret;
2845 2846 2847
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2848 2849 2850 2851
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2852 2853
}

D
Daisuke Nishimura 已提交
2854
static void
2855
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2856
					enum charge_type ctype)
2857
{
2858
	if (mem_cgroup_disabled())
2859
		return;
2860
	if (!memcg)
2861
		return;
2862
	cgroup_exclude_rmdir(&memcg->css);
2863

2864
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2865 2866 2867
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2868 2869 2870
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2871
	 */
2872
	if (do_swap_account && PageSwapCache(page)) {
2873
		swp_entry_t ent = {.val = page_private(page)};
2874
		mem_cgroup_uncharge_swap(ent);
2875
	}
2876 2877 2878 2879 2880
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2881
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2882 2883
}

2884 2885
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2886
{
2887 2888
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2889 2890
}

2891
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2892
{
2893
	if (mem_cgroup_disabled())
2894
		return;
2895
	if (!memcg)
2896
		return;
2897
	__mem_cgroup_cancel_charge(memcg, 1);
2898 2899
}

2900
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2901 2902
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2903 2904 2905
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2906

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2918
		batch->memcg = memcg;
2919 2920
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2921
	 * In those cases, all pages freed continuously can be expected to be in
2922 2923 2924 2925 2926 2927 2928 2929
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2930
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2931 2932
		goto direct_uncharge;

2933 2934 2935 2936 2937
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2938
	if (batch->memcg != memcg)
2939 2940
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2941
	batch->nr_pages++;
2942
	if (uncharge_memsw)
2943
		batch->memsw_nr_pages++;
2944 2945
	return;
direct_uncharge:
2946
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2947
	if (uncharge_memsw)
2948 2949 2950
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2951
}
2952

2953
/*
2954
 * uncharge if !page_mapped(page)
2955
 */
2956
static struct mem_cgroup *
2957
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2958
{
2959
	struct mem_cgroup *memcg = NULL;
2960 2961
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2962
	bool anon;
2963

2964
	if (mem_cgroup_disabled())
2965
		return NULL;
2966

K
KAMEZAWA Hiroyuki 已提交
2967
	if (PageSwapCache(page))
2968
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2969

A
Andrea Arcangeli 已提交
2970
	if (PageTransHuge(page)) {
2971
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2972 2973
		VM_BUG_ON(!PageTransHuge(page));
	}
2974
	/*
2975
	 * Check if our page_cgroup is valid
2976
	 */
2977
	pc = lookup_page_cgroup(page);
2978
	if (unlikely(!PageCgroupUsed(pc)))
2979
		return NULL;
2980

2981
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2982

2983
	memcg = pc->mem_cgroup;
2984

K
KAMEZAWA Hiroyuki 已提交
2985 2986 2987
	if (!PageCgroupUsed(pc))
		goto unlock_out;

2988 2989
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
2990 2991
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2992 2993 2994 2995 2996
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
2997 2998
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
2999
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3000 3001
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3013
	}
K
KAMEZAWA Hiroyuki 已提交
3014

3015
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3016

3017
	ClearPageCgroupUsed(pc);
3018 3019 3020 3021 3022 3023
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3024

3025
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3026
	/*
3027
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3028 3029
	 * will never be freed.
	 */
3030
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3031
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3032 3033
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3034
	}
3035 3036
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3037

3038
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3039 3040 3041

unlock_out:
	unlock_page_cgroup(pc);
3042
	return NULL;
3043 3044
}

3045 3046
void mem_cgroup_uncharge_page(struct page *page)
{
3047 3048 3049
	/* early check. */
	if (page_mapped(page))
		return;
3050
	VM_BUG_ON(page->mapping && !PageAnon(page));
3051 3052 3053 3054 3055 3056
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3057
	VM_BUG_ON(page->mapping);
3058 3059 3060
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3075 3076
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3097 3098 3099 3100 3101 3102
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3103
	memcg_oom_recover(batch->memcg);
3104 3105 3106 3107
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3108
#ifdef CONFIG_SWAP
3109
/*
3110
 * called after __delete_from_swap_cache() and drop "page" account.
3111 3112
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3113 3114
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3115 3116
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3117 3118 3119 3120 3121 3122
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3123

K
KAMEZAWA Hiroyuki 已提交
3124 3125 3126 3127 3128
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3129
		swap_cgroup_record(ent, css_id(&memcg->css));
3130
}
3131
#endif
3132 3133 3134 3135 3136 3137 3138

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3139
{
3140
	struct mem_cgroup *memcg;
3141
	unsigned short id;
3142 3143 3144 3145

	if (!do_swap_account)
		return;

3146 3147 3148
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3149
	if (memcg) {
3150 3151 3152 3153
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3154
		if (!mem_cgroup_is_root(memcg))
3155
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3156
		mem_cgroup_swap_statistics(memcg, false);
3157 3158
		mem_cgroup_put(memcg);
	}
3159
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3160
}
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3177
				struct mem_cgroup *from, struct mem_cgroup *to)
3178 3179 3180 3181 3182 3183 3184 3185
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3186
		mem_cgroup_swap_statistics(to, true);
3187
		/*
3188 3189 3190 3191 3192 3193
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3194 3195 3196 3197 3198 3199 3200 3201
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3202
				struct mem_cgroup *from, struct mem_cgroup *to)
3203 3204 3205
{
	return -EINVAL;
}
3206
#endif
K
KAMEZAWA Hiroyuki 已提交
3207

3208
/*
3209 3210
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3211
 */
3212
int mem_cgroup_prepare_migration(struct page *page,
3213
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3214
{
3215
	struct mem_cgroup *memcg = NULL;
3216
	struct page_cgroup *pc;
3217
	enum charge_type ctype;
3218
	int ret = 0;
3219

3220
	*memcgp = NULL;
3221

A
Andrea Arcangeli 已提交
3222
	VM_BUG_ON(PageTransHuge(page));
3223
	if (mem_cgroup_disabled())
3224 3225
		return 0;

3226 3227 3228
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3229 3230
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3262
	}
3263
	unlock_page_cgroup(pc);
3264 3265 3266 3267
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3268
	if (!memcg)
3269
		return 0;
3270

3271 3272
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3273
	css_put(&memcg->css);/* drop extra refcnt */
3274
	if (ret) {
3275 3276 3277 3278 3279 3280 3281 3282 3283
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3284
		/* we'll need to revisit this error code (we have -EINTR) */
3285
		return -ENOMEM;
3286
	}
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3299
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3300
	return ret;
3301
}
3302

3303
/* remove redundant charge if migration failed*/
3304
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3305
	struct page *oldpage, struct page *newpage, bool migration_ok)
3306
{
3307
	struct page *used, *unused;
3308
	struct page_cgroup *pc;
3309
	bool anon;
3310

3311
	if (!memcg)
3312
		return;
3313
	/* blocks rmdir() */
3314
	cgroup_exclude_rmdir(&memcg->css);
3315
	if (!migration_ok) {
3316 3317
		used = oldpage;
		unused = newpage;
3318
	} else {
3319
		used = newpage;
3320 3321
		unused = oldpage;
	}
3322
	/*
3323 3324 3325
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3326
	 */
3327 3328 3329 3330
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3331 3332 3333 3334
	anon = PageAnon(used);
	__mem_cgroup_uncharge_common(unused,
		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3335

3336
	/*
3337 3338 3339 3340 3341 3342
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3343
	 */
3344
	if (anon)
3345
		mem_cgroup_uncharge_page(used);
3346
	/*
3347 3348
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3349 3350 3351
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3352
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3353
}
3354

3355 3356 3357 3358 3359 3360 3361 3362
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3363
	struct mem_cgroup *memcg = NULL;
3364 3365 3366 3367 3368 3369 3370 3371 3372
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3373 3374 3375 3376 3377
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3378 3379
	unlock_page_cgroup(pc);

3380 3381 3382 3383 3384 3385 3386
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;

3387 3388 3389 3390 3391 3392 3393 3394
	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3395
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3396 3397
}

3398 3399 3400 3401 3402 3403
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3404 3405 3406 3407 3408
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3428
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3429 3430 3431 3432 3433
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3434 3435
static DEFINE_MUTEX(set_limit_mutex);

3436
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3437
				unsigned long long val)
3438
{
3439
	int retry_count;
3440
	u64 memswlimit, memlimit;
3441
	int ret = 0;
3442 3443
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3444
	int enlarge;
3445 3446 3447 3448 3449 3450 3451 3452 3453

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3454

3455
	enlarge = 0;
3456
	while (retry_count) {
3457 3458 3459 3460
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3461 3462 3463
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3464
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3465 3466 3467 3468 3469 3470
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3471 3472
			break;
		}
3473 3474 3475 3476 3477

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3478
		ret = res_counter_set_limit(&memcg->res, val);
3479 3480 3481 3482 3483 3484
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3485 3486 3487 3488 3489
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3490 3491
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3492 3493 3494 3495 3496 3497
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3498
	}
3499 3500
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3501

3502 3503 3504
	return ret;
}

L
Li Zefan 已提交
3505 3506
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3507
{
3508
	int retry_count;
3509
	u64 memlimit, memswlimit, oldusage, curusage;
3510 3511
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3512
	int enlarge = 0;
3513

3514 3515 3516
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3517 3518 3519 3520 3521 3522 3523 3524
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3525
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3526 3527 3528 3529 3530 3531 3532 3533
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3534 3535 3536
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3537
		ret = res_counter_set_limit(&memcg->memsw, val);
3538 3539 3540 3541 3542 3543
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3544 3545 3546 3547 3548
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3549 3550 3551
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3552
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3553
		/* Usage is reduced ? */
3554
		if (curusage >= oldusage)
3555
			retry_count--;
3556 3557
		else
			oldusage = curusage;
3558
	}
3559 3560
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3561 3562 3563
	return ret;
}

3564
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3565 3566
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3567 3568 3569 3570 3571 3572
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3573
	unsigned long long excess;
3574
	unsigned long nr_scanned;
3575 3576 3577 3578

	if (order > 0)
		return 0;

3579
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3593
		nr_scanned = 0;
3594
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3595
						    gfp_mask, &nr_scanned);
3596
		nr_reclaimed += reclaimed;
3597
		*total_scanned += nr_scanned;
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3620
				if (next_mz == mz)
3621
					css_put(&next_mz->memcg->css);
3622
				else /* next_mz == NULL or other memcg */
3623 3624 3625
					break;
			} while (1);
		}
3626 3627
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3628 3629 3630 3631 3632 3633 3634 3635
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3636
		/* If excess == 0, no tree ops */
3637
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3638
		spin_unlock(&mctz->lock);
3639
		css_put(&mz->memcg->css);
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3652
		css_put(&next_mz->memcg->css);
3653 3654 3655
	return nr_reclaimed;
}

3656 3657 3658 3659
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3660
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3661
				int node, int zid, enum lru_list lru)
3662
{
K
KAMEZAWA Hiroyuki 已提交
3663 3664
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3665
	struct list_head *list;
3666 3667
	struct page *busy;
	struct zone *zone;
3668
	int ret = 0;
3669

K
KAMEZAWA Hiroyuki 已提交
3670
	zone = &NODE_DATA(node)->node_zones[zid];
3671
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3672
	list = &mz->lruvec.lists[lru];
3673

3674
	loop = mz->lru_size[lru];
3675 3676 3677 3678
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3679
		struct page_cgroup *pc;
3680 3681
		struct page *page;

3682
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3683
		spin_lock_irqsave(&zone->lru_lock, flags);
3684
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3685
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3686
			break;
3687
		}
3688 3689 3690
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3691
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3692
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3693 3694
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3695
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3696

3697
		pc = lookup_page_cgroup(page);
3698

3699
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3700
		if (ret == -ENOMEM || ret == -EINTR)
3701
			break;
3702 3703 3704

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3705
			busy = page;
3706 3707 3708
			cond_resched();
		} else
			busy = NULL;
3709
	}
K
KAMEZAWA Hiroyuki 已提交
3710

3711 3712 3713
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3714 3715 3716 3717 3718 3719
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3720
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3721
{
3722 3723 3724
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3725
	struct cgroup *cgrp = memcg->css.cgroup;
3726

3727
	css_get(&memcg->css);
3728 3729

	shrink = 0;
3730 3731 3732
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3733
move_account:
3734
	do {
3735
		ret = -EBUSY;
3736 3737 3738 3739
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3740
			goto out;
3741 3742
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3743
		drain_all_stock_sync(memcg);
3744
		ret = 0;
3745
		mem_cgroup_start_move(memcg);
3746
		for_each_node_state(node, N_HIGH_MEMORY) {
3747
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3748 3749
				enum lru_list lru;
				for_each_lru(lru) {
3750
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3751
							node, zid, lru);
3752 3753 3754
					if (ret)
						break;
				}
3755
			}
3756 3757 3758
			if (ret)
				break;
		}
3759 3760
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3761 3762 3763
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3764
		cond_resched();
3765
	/* "ret" should also be checked to ensure all lists are empty. */
3766
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3767
out:
3768
	css_put(&memcg->css);
3769
	return ret;
3770 3771

try_to_free:
3772 3773
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3774 3775 3776
		ret = -EBUSY;
		goto out;
	}
3777 3778
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3779 3780
	/* try to free all pages in this cgroup */
	shrink = 1;
3781
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3782
		int progress;
3783 3784 3785 3786 3787

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3788
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3789
						false);
3790
		if (!progress) {
3791
			nr_retries--;
3792
			/* maybe some writeback is necessary */
3793
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3794
		}
3795 3796

	}
K
KAMEZAWA Hiroyuki 已提交
3797
	lru_add_drain();
3798
	/* try move_account...there may be some *locked* pages. */
3799
	goto move_account;
3800 3801
}

3802
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3803 3804 3805 3806 3807
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3808 3809 3810 3811 3812 3813 3814 3815 3816
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3817
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3818
	struct cgroup *parent = cont->parent;
3819
	struct mem_cgroup *parent_memcg = NULL;
3820 3821

	if (parent)
3822
		parent_memcg = mem_cgroup_from_cont(parent);
3823 3824 3825

	cgroup_lock();
	/*
3826
	 * If parent's use_hierarchy is set, we can't make any modifications
3827 3828 3829 3830 3831 3832
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3833
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3834 3835
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3836
			memcg->use_hierarchy = val;
3837 3838 3839 3840 3841 3842 3843 3844 3845
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3846

3847
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3848
					       enum mem_cgroup_stat_index idx)
3849
{
K
KAMEZAWA Hiroyuki 已提交
3850
	struct mem_cgroup *iter;
3851
	long val = 0;
3852

3853
	/* Per-cpu values can be negative, use a signed accumulator */
3854
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3855 3856 3857 3858 3859
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3860 3861
}

3862
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3863
{
K
KAMEZAWA Hiroyuki 已提交
3864
	u64 val;
3865

3866
	if (!mem_cgroup_is_root(memcg)) {
3867
		if (!swap)
3868
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3869
		else
3870
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3871 3872
	}

3873 3874
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3875

K
KAMEZAWA Hiroyuki 已提交
3876
	if (swap)
3877
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3878 3879 3880 3881

	return val << PAGE_SHIFT;
}

3882 3883 3884
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3885
{
3886
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3887
	char str[64];
3888
	u64 val;
3889
	int type, name, len;
3890 3891 3892

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3893 3894 3895 3896

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3897 3898
	switch (type) {
	case _MEM:
3899
		if (name == RES_USAGE)
3900
			val = mem_cgroup_usage(memcg, false);
3901
		else
3902
			val = res_counter_read_u64(&memcg->res, name);
3903 3904
		break;
	case _MEMSWAP:
3905
		if (name == RES_USAGE)
3906
			val = mem_cgroup_usage(memcg, true);
3907
		else
3908
			val = res_counter_read_u64(&memcg->memsw, name);
3909 3910 3911 3912
		break;
	default:
		BUG();
	}
3913 3914 3915

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3916
}
3917 3918 3919 3920
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3921 3922
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3923
{
3924
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3925
	int type, name;
3926 3927 3928
	unsigned long long val;
	int ret;

3929 3930
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3931 3932 3933 3934

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3935
	switch (name) {
3936
	case RES_LIMIT:
3937 3938 3939 3940
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3941 3942
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3943 3944 3945
		if (ret)
			break;
		if (type == _MEM)
3946
			ret = mem_cgroup_resize_limit(memcg, val);
3947 3948
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3949
		break;
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3964 3965 3966 3967 3968
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3969 3970
}

3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

3998
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3999
{
4000
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4001
	int type, name;
4002

4003 4004
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4005 4006 4007 4008

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4009
	switch (name) {
4010
	case RES_MAX_USAGE:
4011
		if (type == _MEM)
4012
			res_counter_reset_max(&memcg->res);
4013
		else
4014
			res_counter_reset_max(&memcg->memsw);
4015 4016
		break;
	case RES_FAILCNT:
4017
		if (type == _MEM)
4018
			res_counter_reset_failcnt(&memcg->res);
4019
		else
4020
			res_counter_reset_failcnt(&memcg->memsw);
4021 4022
		break;
	}
4023

4024
	return 0;
4025 4026
}

4027 4028 4029 4030 4031 4032
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4033
#ifdef CONFIG_MMU
4034 4035 4036
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4037
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4038 4039 4040 4041 4042 4043 4044 4045 4046

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4047
	memcg->move_charge_at_immigrate = val;
4048 4049 4050 4051
	cgroup_unlock();

	return 0;
}
4052 4053 4054 4055 4056 4057 4058
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4059

K
KAMEZAWA Hiroyuki 已提交
4060 4061 4062 4063 4064

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4065
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4066 4067
	MCS_PGPGIN,
	MCS_PGPGOUT,
4068
	MCS_SWAP,
4069 4070
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4081 4082
};

4083
static struct {
K
KAMEZAWA Hiroyuki 已提交
4084 4085 4086 4087 4088
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4089
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4090 4091
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4092
	{"swap", "total_swap"},
4093 4094
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4095 4096 4097 4098 4099 4100 4101 4102
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4103
static void
4104
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4105 4106 4107 4108
{
	s64 val;

	/* per cpu stat */
4109
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4110
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4111
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4112
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4113
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4114
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4115
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4116
	s->stat[MCS_PGPGIN] += val;
4117
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4118
	s->stat[MCS_PGPGOUT] += val;
4119
	if (do_swap_account) {
4120
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4121 4122
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4123
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4124
	s->stat[MCS_PGFAULT] += val;
4125
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4126
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4127 4128

	/* per zone stat */
4129
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4130
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4131
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4132
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4133
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4134
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4135
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4136
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4137
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4138 4139 4140 4141
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4142
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4143
{
K
KAMEZAWA Hiroyuki 已提交
4144 4145
	struct mem_cgroup *iter;

4146
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4147
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4148 4149
}

4150 4151 4152 4153 4154 4155 4156
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
4157
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4158

4159
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4160 4161
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4162
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4163 4164 4165 4166
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4167
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4168 4169
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4170
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4171
				LRU_ALL_FILE);
4172 4173 4174 4175
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4176
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4177 4178
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4179
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4180
				LRU_ALL_ANON);
4181 4182 4183 4184
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4185
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4186 4187
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4188
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4189
				BIT(LRU_UNEVICTABLE));
4190 4191 4192 4193 4194 4195 4196
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4197 4198
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4199
{
4200
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4201
	struct mcs_total_stat mystat;
4202 4203
	int i;

K
KAMEZAWA Hiroyuki 已提交
4204
	memset(&mystat, 0, sizeof(mystat));
4205
	mem_cgroup_get_local_stat(memcg, &mystat);
4206

4207

4208 4209 4210
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4211
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4212
	}
L
Lee Schermerhorn 已提交
4213

K
KAMEZAWA Hiroyuki 已提交
4214
	/* Hierarchical information */
4215 4216
	{
		unsigned long long limit, memsw_limit;
4217
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4218 4219 4220 4221
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4222

K
KAMEZAWA Hiroyuki 已提交
4223
	memset(&mystat, 0, sizeof(mystat));
4224
	mem_cgroup_get_total_stat(memcg, &mystat);
4225 4226 4227
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4228
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4229
	}
K
KAMEZAWA Hiroyuki 已提交
4230

K
KOSAKI Motohiro 已提交
4231 4232 4233 4234
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4235
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4236 4237 4238 4239 4240
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4241
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4242
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4243

4244 4245 4246 4247
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4248 4249 4250 4251 4252 4253 4254 4255
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4256 4257 4258
	return 0;
}

K
KOSAKI Motohiro 已提交
4259 4260 4261 4262
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4263
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4264 4265 4266 4267 4268 4269 4270
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4271

K
KOSAKI Motohiro 已提交
4272 4273 4274 4275 4276 4277 4278
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4279 4280 4281

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4282 4283
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4284 4285
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4286
		return -EINVAL;
4287
	}
K
KOSAKI Motohiro 已提交
4288 4289 4290

	memcg->swappiness = val;

4291 4292
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4293 4294 4295
	return 0;
}

4296 4297 4298 4299 4300 4301 4302 4303
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4304
		t = rcu_dereference(memcg->thresholds.primary);
4305
	else
4306
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4307 4308 4309 4310 4311 4312 4313

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4314
	 * current_threshold points to threshold just below or equal to usage.
4315 4316 4317
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4318
	i = t->current_threshold;
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4342
	t->current_threshold = i - 1;
4343 4344 4345 4346 4347 4348
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4349 4350 4351 4352 4353 4354 4355
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4366
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4367 4368 4369
{
	struct mem_cgroup_eventfd_list *ev;

4370
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4371 4372 4373 4374
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4375
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4376
{
K
KAMEZAWA Hiroyuki 已提交
4377 4378
	struct mem_cgroup *iter;

4379
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4380
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4381 4382 4383 4384
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4385 4386
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4387 4388
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4389 4390
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4391
	int i, size, ret;
4392 4393 4394 4395 4396 4397

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4398

4399
	if (type == _MEM)
4400
		thresholds = &memcg->thresholds;
4401
	else if (type == _MEMSWAP)
4402
		thresholds = &memcg->memsw_thresholds;
4403 4404 4405 4406 4407 4408
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4409
	if (thresholds->primary)
4410 4411
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4412
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4413 4414

	/* Allocate memory for new array of thresholds */
4415
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4416
			GFP_KERNEL);
4417
	if (!new) {
4418 4419 4420
		ret = -ENOMEM;
		goto unlock;
	}
4421
	new->size = size;
4422 4423

	/* Copy thresholds (if any) to new array */
4424 4425
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4426
				sizeof(struct mem_cgroup_threshold));
4427 4428
	}

4429
	/* Add new threshold */
4430 4431
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4432 4433

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4434
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4435 4436 4437
			compare_thresholds, NULL);

	/* Find current threshold */
4438
	new->current_threshold = -1;
4439
	for (i = 0; i < size; i++) {
4440
		if (new->entries[i].threshold <= usage) {
4441
			/*
4442 4443
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4444 4445
			 * it here.
			 */
4446
			++new->current_threshold;
4447 4448
		} else
			break;
4449 4450
	}

4451 4452 4453 4454 4455
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4456

4457
	/* To be sure that nobody uses thresholds */
4458 4459 4460 4461 4462 4463 4464 4465
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4466
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4467
	struct cftype *cft, struct eventfd_ctx *eventfd)
4468 4469
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4470 4471
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4472 4473
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4474
	int i, j, size;
4475 4476 4477

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4478
		thresholds = &memcg->thresholds;
4479
	else if (type == _MEMSWAP)
4480
		thresholds = &memcg->memsw_thresholds;
4481 4482 4483
	else
		BUG();

4484 4485 4486
	if (!thresholds->primary)
		goto unlock;

4487 4488 4489 4490 4491 4492
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4493 4494 4495
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4496 4497 4498
			size++;
	}

4499
	new = thresholds->spare;
4500

4501 4502
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4503 4504
		kfree(new);
		new = NULL;
4505
		goto swap_buffers;
4506 4507
	}

4508
	new->size = size;
4509 4510

	/* Copy thresholds and find current threshold */
4511 4512 4513
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4514 4515
			continue;

4516
		new->entries[j] = thresholds->primary->entries[i];
4517
		if (new->entries[j].threshold <= usage) {
4518
			/*
4519
			 * new->current_threshold will not be used
4520 4521 4522
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4523
			++new->current_threshold;
4524 4525 4526 4527
		}
		j++;
	}

4528
swap_buffers:
4529 4530
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4531 4532 4533 4534 4535 4536
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4537
	rcu_assign_pointer(thresholds->primary, new);
4538

4539
	/* To be sure that nobody uses thresholds */
4540
	synchronize_rcu();
4541
unlock:
4542 4543
	mutex_unlock(&memcg->thresholds_lock);
}
4544

K
KAMEZAWA Hiroyuki 已提交
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4557
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4558 4559 4560 4561 4562

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4563
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4564
		eventfd_signal(eventfd, 1);
4565
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4566 4567 4568 4569

	return 0;
}

4570
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4571 4572
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4573
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4574 4575 4576 4577 4578
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4579
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4580

4581
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4582 4583 4584 4585 4586 4587
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4588
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4589 4590
}

4591 4592 4593
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4594
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4595

4596
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4597

4598
	if (atomic_read(&memcg->under_oom))
4599 4600 4601 4602 4603 4604 4605 4606 4607
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4608
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4620
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4621 4622 4623
		cgroup_unlock();
		return -EINVAL;
	}
4624
	memcg->oom_kill_disable = val;
4625
	if (!val)
4626
		memcg_oom_recover(memcg);
4627 4628 4629 4630
	cgroup_unlock();
	return 0;
}

4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4647
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4648
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4649
{
4650
	return mem_cgroup_sockets_init(memcg, ss);
4651 4652
};

4653
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4654
{
4655
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4656
}
4657
#else
4658
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4659 4660 4661
{
	return 0;
}
G
Glauber Costa 已提交
4662

4663
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4664 4665
{
}
4666 4667
#endif

B
Balbir Singh 已提交
4668 4669
static struct cftype mem_cgroup_files[] = {
	{
4670
		.name = "usage_in_bytes",
4671
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4672
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4673 4674
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4675
	},
4676 4677
	{
		.name = "max_usage_in_bytes",
4678
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4679
		.trigger = mem_cgroup_reset,
4680
		.read = mem_cgroup_read,
4681
	},
B
Balbir Singh 已提交
4682
	{
4683
		.name = "limit_in_bytes",
4684
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4685
		.write_string = mem_cgroup_write,
4686
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4687
	},
4688 4689 4690 4691
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4692
		.read = mem_cgroup_read,
4693
	},
B
Balbir Singh 已提交
4694 4695
	{
		.name = "failcnt",
4696
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4697
		.trigger = mem_cgroup_reset,
4698
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4699
	},
4700 4701
	{
		.name = "stat",
4702
		.read_map = mem_control_stat_show,
4703
	},
4704 4705 4706 4707
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4708 4709 4710 4711 4712
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4713 4714 4715 4716 4717
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4718 4719 4720 4721 4722
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4723 4724
	{
		.name = "oom_control",
4725 4726
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4727 4728 4729 4730
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4731 4732 4733 4734
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4735
		.mode = S_IRUGO,
4736 4737
	},
#endif
4738 4739 4740 4741
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4742
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4743 4744
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4745 4746 4747 4748 4749
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4750
		.read = mem_cgroup_read,
4751 4752 4753 4754 4755
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4756
		.read = mem_cgroup_read,
4757 4758 4759 4760 4761
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4762
		.read = mem_cgroup_read,
4763 4764
	},
#endif
4765
	{ },	/* terminate */
4766
};
4767

4768
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4769 4770
{
	struct mem_cgroup_per_node *pn;
4771
	struct mem_cgroup_per_zone *mz;
4772
	int zone, tmp = node;
4773 4774 4775 4776 4777 4778 4779 4780
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4781 4782
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4783
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4784 4785
	if (!pn)
		return 1;
4786 4787 4788

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4789
		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4790
		mz->usage_in_excess = 0;
4791
		mz->on_tree = false;
4792
		mz->memcg = memcg;
4793
	}
4794
	memcg->info.nodeinfo[node] = pn;
4795 4796 4797
	return 0;
}

4798
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4799
{
4800
	kfree(memcg->info.nodeinfo[node]);
4801 4802
}

4803 4804
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4805
	struct mem_cgroup *memcg;
4806
	int size = sizeof(struct mem_cgroup);
4807

4808
	/* Can be very big if MAX_NUMNODES is very big */
4809
	if (size < PAGE_SIZE)
4810
		memcg = kzalloc(size, GFP_KERNEL);
4811
	else
4812
		memcg = vzalloc(size);
4813

4814
	if (!memcg)
4815 4816
		return NULL;

4817 4818
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4819
		goto out_free;
4820 4821
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4822 4823 4824

out_free:
	if (size < PAGE_SIZE)
4825
		kfree(memcg);
4826
	else
4827
		vfree(memcg);
4828
	return NULL;
4829 4830
}

4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
/*
 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
static void vfree_work(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, work_freeing);
	vfree(memcg);
}
static void vfree_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, vfree_work);
	schedule_work(&memcg->work_freeing);
}

4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4863
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4864
{
K
KAMEZAWA Hiroyuki 已提交
4865 4866
	int node;

4867 4868
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4869

B
Bob Liu 已提交
4870
	for_each_node(node)
4871
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4872

4873
	free_percpu(memcg->stat);
4874
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4875
		kfree_rcu(memcg, rcu_freeing);
4876
	else
4877
		call_rcu(&memcg->rcu_freeing, vfree_rcu);
4878 4879
}

4880
static void mem_cgroup_get(struct mem_cgroup *memcg)
4881
{
4882
	atomic_inc(&memcg->refcnt);
4883 4884
}

4885
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4886
{
4887 4888 4889
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4890 4891 4892
		if (parent)
			mem_cgroup_put(parent);
	}
4893 4894
}

4895
static void mem_cgroup_put(struct mem_cgroup *memcg)
4896
{
4897
	__mem_cgroup_put(memcg, 1);
4898 4899
}

4900 4901 4902
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4903
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4904
{
4905
	if (!memcg->res.parent)
4906
		return NULL;
4907
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4908
}
G
Glauber Costa 已提交
4909
EXPORT_SYMBOL(parent_mem_cgroup);
4910

4911 4912 4913
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4914
	if (!mem_cgroup_disabled() && really_do_swap_account)
4915 4916 4917 4918 4919 4920 4921 4922
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4923 4924 4925 4926 4927 4928
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4929
	for_each_node(node) {
4930 4931 4932 4933 4934
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4935
			goto err_cleanup;
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4946 4947

err_cleanup:
B
Bob Liu 已提交
4948
	for_each_node(node) {
4949 4950 4951 4952 4953 4954 4955
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4956 4957
}

L
Li Zefan 已提交
4958
static struct cgroup_subsys_state * __ref
4959
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4960
{
4961
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4962
	long error = -ENOMEM;
4963
	int node;
B
Balbir Singh 已提交
4964

4965 4966
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4967
		return ERR_PTR(error);
4968

B
Bob Liu 已提交
4969
	for_each_node(node)
4970
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4971
			goto free_out;
4972

4973
	/* root ? */
4974
	if (cont->parent == NULL) {
4975
		int cpu;
4976
		enable_swap_cgroup();
4977
		parent = NULL;
4978 4979
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4980
		root_mem_cgroup = memcg;
4981 4982 4983 4984 4985
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4986
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4987
	} else {
4988
		parent = mem_cgroup_from_cont(cont->parent);
4989 4990
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4991
	}
4992

4993
	if (parent && parent->use_hierarchy) {
4994 4995
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4996 4997 4998 4999 5000 5001 5002
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5003
	} else {
5004 5005
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5006
	}
5007 5008
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5009

K
KOSAKI Motohiro 已提交
5010
	if (parent)
5011 5012 5013 5014
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5015
	spin_lock_init(&memcg->move_lock);
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5027
	return &memcg->css;
5028
free_out:
5029
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5030
	return ERR_PTR(error);
B
Balbir Singh 已提交
5031 5032
}

5033
static int mem_cgroup_pre_destroy(struct cgroup *cont)
5034
{
5035
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5036

5037
	return mem_cgroup_force_empty(memcg, false);
5038 5039
}

5040
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
5041
{
5042
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5043

5044
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5045

5046
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5047 5048
}

5049
#ifdef CONFIG_MMU
5050
/* Handlers for move charge at task migration. */
5051 5052
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5053
{
5054 5055
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5056
	struct mem_cgroup *memcg = mc.to;
5057

5058
	if (mem_cgroup_is_root(memcg)) {
5059 5060 5061 5062 5063 5064 5065 5066
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5067
		 * "memcg" cannot be under rmdir() because we've already checked
5068 5069 5070 5071
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5072
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5073
			goto one_by_one;
5074
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5075
						PAGE_SIZE * count, &dummy)) {
5076
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5093 5094
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5095
		if (ret)
5096
			/* mem_cgroup_clear_mc() will do uncharge later */
5097
			return ret;
5098 5099
		mc.precharge++;
	}
5100 5101 5102 5103
	return ret;
}

/**
5104
 * get_mctgt_type - get target type of moving charge
5105 5106 5107
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5108
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5109 5110 5111 5112 5113 5114
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5115 5116 5117
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5118 5119 5120 5121 5122
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5123
	swp_entry_t	ent;
5124 5125 5126
};

enum mc_target_type {
5127
	MC_TARGET_NONE = 0,
5128
	MC_TARGET_PAGE,
5129
	MC_TARGET_SWAP,
5130 5131
};

D
Daisuke Nishimura 已提交
5132 5133
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5134
{
D
Daisuke Nishimura 已提交
5135
	struct page *page = vm_normal_page(vma, addr, ptent);
5136

D
Daisuke Nishimura 已提交
5137 5138 5139 5140
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5141
		if (!move_anon())
D
Daisuke Nishimura 已提交
5142
			return NULL;
5143 5144
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5145 5146 5147 5148 5149 5150 5151
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5152
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5153 5154 5155 5156 5157 5158 5159 5160
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5161 5162 5163 5164 5165
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5166 5167 5168 5169 5170
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5171 5172 5173 5174 5175 5176 5177
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5178

5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5198 5199 5200 5201 5202 5203
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5204
		if (do_swap_account)
5205 5206
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5207
	}
5208
#endif
5209 5210 5211
	return page;
}

5212
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5213 5214 5215 5216
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5217
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5218 5219 5220 5221 5222 5223
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5224 5225
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5226 5227

	if (!page && !ent.val)
5228
		return ret;
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5244 5245
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5246
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5247 5248 5249
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5250 5251 5252 5253
	}
	return ret;
}

5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5289 5290 5291 5292 5293 5294 5295 5296
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5297 5298 5299 5300
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5301
		return 0;
5302
	}
5303

5304 5305
	if (pmd_trans_unstable(pmd))
		return 0;
5306 5307
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5308
		if (get_mctgt_type(vma, addr, *pte, NULL))
5309 5310 5311 5312
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5313 5314 5315
	return 0;
}

5316 5317 5318 5319 5320
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5321
	down_read(&mm->mmap_sem);
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5333
	up_read(&mm->mmap_sem);
5334 5335 5336 5337 5338 5339 5340 5341 5342

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5343 5344 5345 5346 5347
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5348 5349
}

5350 5351
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5352
{
5353 5354 5355
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5356
	/* we must uncharge all the leftover precharges from mc.to */
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5368
	}
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5403
	spin_lock(&mc.lock);
5404 5405
	mc.from = NULL;
	mc.to = NULL;
5406
	spin_unlock(&mc.lock);
5407
	mem_cgroup_end_move(from);
5408 5409
}

5410 5411
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5412
{
5413
	struct task_struct *p = cgroup_taskset_first(tset);
5414
	int ret = 0;
5415
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5416

5417
	if (memcg->move_charge_at_immigrate) {
5418 5419 5420
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5421
		VM_BUG_ON(from == memcg);
5422 5423 5424 5425 5426

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5427 5428 5429 5430
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5431
			VM_BUG_ON(mc.moved_charge);
5432
			VM_BUG_ON(mc.moved_swap);
5433
			mem_cgroup_start_move(from);
5434
			spin_lock(&mc.lock);
5435
			mc.from = from;
5436
			mc.to = memcg;
5437
			spin_unlock(&mc.lock);
5438
			/* We set mc.moving_task later */
5439 5440 5441 5442

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5443 5444
		}
		mmput(mm);
5445 5446 5447 5448
	}
	return ret;
}

5449 5450
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5451
{
5452
	mem_cgroup_clear_mc();
5453 5454
}

5455 5456 5457
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5458
{
5459 5460 5461 5462
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5463 5464 5465 5466
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5467

5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5479
		if (mc.precharge < HPAGE_PMD_NR) {
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
							     pc, mc.from, mc.to,
							     false)) {
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5499
		return 0;
5500 5501
	}

5502 5503
	if (pmd_trans_unstable(pmd))
		return 0;
5504 5505 5506 5507
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5508
		swp_entry_t ent;
5509 5510 5511 5512

		if (!mc.precharge)
			break;

5513
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5514 5515 5516 5517 5518
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5519 5520
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5521
				mc.precharge--;
5522 5523
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5524 5525
			}
			putback_lru_page(page);
5526
put:			/* get_mctgt_type() gets the page */
5527 5528
			put_page(page);
			break;
5529 5530
		case MC_TARGET_SWAP:
			ent = target.ent;
5531
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5532
				mc.precharge--;
5533 5534 5535
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5536
			break;
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5551
		ret = mem_cgroup_do_precharge(1);
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5595
	up_read(&mm->mmap_sem);
5596 5597
}

5598 5599
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5600
{
5601
	struct task_struct *p = cgroup_taskset_first(tset);
5602
	struct mm_struct *mm = get_task_mm(p);
5603 5604

	if (mm) {
5605 5606
		if (mc.to)
			mem_cgroup_move_charge(mm);
5607 5608
		mmput(mm);
	}
5609 5610
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5611
}
5612
#else	/* !CONFIG_MMU */
5613 5614
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5615 5616 5617
{
	return 0;
}
5618 5619
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5620 5621
{
}
5622 5623
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5624 5625 5626
{
}
#endif
B
Balbir Singh 已提交
5627

B
Balbir Singh 已提交
5628 5629 5630 5631
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5632
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5633
	.destroy = mem_cgroup_destroy,
5634 5635
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5636
	.attach = mem_cgroup_move_task,
5637
	.base_cftypes = mem_cgroup_files,
5638
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5639
	.use_id = 1,
5640
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5641
};
5642 5643

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5644 5645 5646
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5647
	if (!strcmp(s, "1"))
5648
		really_do_swap_account = 1;
5649
	else if (!strcmp(s, "0"))
5650 5651 5652
		really_do_swap_account = 0;
	return 1;
}
5653
__setup("swapaccount=", enable_swap_account);
5654 5655

#endif