memcontrol.c 130.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75
#else
#define do_swap_account		(0)
#endif

76 77 78 79 80 81 82 83 84
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85

86 87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 97
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
	/* incremented at every  pagein/pageout */
	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 104 105 106 107 108 109 110

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

111 112 113 114
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
115 116 117
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
118 119
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
120 121

	struct zone_reclaim_stat reclaim_stat;
122 123 124 125
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
126 127
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
128 129 130 131 132 133 134 135 136 137 138 139
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

160 161 162 163 164
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
165
/* For threshold */
166 167
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
168
	int current_threshold;
169 170 171 172 173
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
174 175 176 177 178 179 180 181 182 183 184 185

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
186 187 188 189 190
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
191 192

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
193
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194

B
Balbir Singh 已提交
195 196 197 198 199 200 201
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 203 204
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
205 206 207 208 209 210 211
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
212 213 214 215
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
216 217 218 219
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
220
	struct mem_cgroup_lru_info info;
221

K
KOSAKI Motohiro 已提交
222 223 224 225 226
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

227
	/*
228
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
229
	 * reclaimed from.
230
	 */
K
KAMEZAWA Hiroyuki 已提交
231
	int last_scanned_child;
232 233 234 235
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
236
	atomic_t	oom_lock;
237
	atomic_t	refcnt;
238

K
KOSAKI Motohiro 已提交
239
	unsigned int	swappiness;
240 241
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
242

243 244 245
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

246 247 248 249
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
250
	struct mem_cgroup_thresholds thresholds;
251

252
	/* thresholds for mem+swap usage. RCU-protected */
253
	struct mem_cgroup_thresholds memsw_thresholds;
254

K
KAMEZAWA Hiroyuki 已提交
255 256 257
	/* For oom notifier event fd */
	struct list_head oom_notify;

258 259 260 261 262
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
263
	/*
264
	 * percpu counter.
265
	 */
266
	struct mem_cgroup_stat_cpu *stat;
267 268 269 270 271 272
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
273 274
};

275 276 277 278 279 280
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
281
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 284 285
	NR_MOVE_TYPE,
};

286 287
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
288
	spinlock_t	  lock; /* for from, to */
289 290 291
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
292
	unsigned long moved_charge;
293
	unsigned long moved_swap;
294 295 296
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
297
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 299
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
300

D
Daisuke Nishimura 已提交
301 302 303 304 305 306
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

307 308 309 310 311 312
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

313 314 315 316 317 318 319
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

320 321 322
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
325
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
326
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327 328 329
	NR_CHARGE_TYPE,
};

330 331 332 333
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
334 335
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
336

337 338 339
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
340
#define _OOM_TYPE		(2)
341 342 343
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
344 345
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
346

347 348 349 350 351 352 353
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 355
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356

357 358
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
359
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360
static void drain_all_stock_async(void);
361

362 363 364 365 366 367
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

368 369 370 371 372
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
402
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403
				struct mem_cgroup_per_zone *mz,
404 405
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
406 407 408 409 410 411 412 413
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

414 415 416
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
433 434 435 436 437 438 439 440 441 442 443 444 445
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

446 447 448 449 450 451
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
452
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
453 454 455 456 457 458
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
459
	unsigned long long excess;
460 461
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
462 463
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
464 465 466
	mctz = soft_limit_tree_from_page(page);

	/*
467 468
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
469
	 */
470 471
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
472
		excess = res_counter_soft_limit_excess(&mem->res);
473 474 475 476
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
477
		if (excess || mz->on_tree) {
478 479 480 481 482
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
483 484
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
485
			 */
486
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 488
			spin_unlock(&mctz->lock);
		}
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

507 508 509 510 511 512 513 514 515
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
516
	struct mem_cgroup_per_zone *mz;
517 518

retry:
519
	mz = NULL;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
568 569 570 571 572 573
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

574 575
	get_online_cpus();
	for_each_online_cpu(cpu)
576
		val += per_cpu(mem->stat->count[idx], cpu);
577 578 579 580 581 582
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
583 584 585 586 587 588 589 590 591 592 593 594
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

595 596 597 598
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
599
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 601
}

602
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603
					 bool file, int nr_pages)
604
{
605 606
	preempt_disable();

607 608
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609
	else
610
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611

612 613
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
614
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615
	else
616
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617 618

	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
619

620
	preempt_enable();
621 622
}

K
KAMEZAWA Hiroyuki 已提交
623
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
624
					enum lru_list idx)
625 626 627 628 629 630 631 632 633 634 635
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
636 637
}

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

661
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
662 663 664 665 666 667
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

668
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
669
{
670 671 672 673 674 675 676 677
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

678 679 680 681
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

682 683 684
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
685 686 687

	if (!mm)
		return NULL;
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
703 704
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
705
{
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
728 729 730 731 732 733 734 735 736
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
737 738
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
739
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
740

K
KAMEZAWA Hiroyuki 已提交
741
	css_put(&iter->css);
742 743
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
744
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
745

746 747 748
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
749 750
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
751
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
752 753 754

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
755
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
756
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
757
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
758
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
759
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
760
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
761

K
KAMEZAWA Hiroyuki 已提交
762
	return iter;
K
KAMEZAWA Hiroyuki 已提交
763
}
K
KAMEZAWA Hiroyuki 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

777 778 779
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
780

781 782 783 784 785
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
799

K
KAMEZAWA Hiroyuki 已提交
800 801 802 803
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
804

805
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
806 807 808
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
809
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
810
		return;
811
	VM_BUG_ON(!pc->mem_cgroup);
812 813 814 815
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
816
	mz = page_cgroup_zoneinfo(pc);
817 818
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
819 820 821
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
822
	list_del_init(&pc->lru);
823 824
}

K
KAMEZAWA Hiroyuki 已提交
825
void mem_cgroup_del_lru(struct page *page)
826
{
K
KAMEZAWA Hiroyuki 已提交
827 828
	mem_cgroup_del_lru_list(page, page_lru(page));
}
829

K
KAMEZAWA Hiroyuki 已提交
830 831 832 833
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
834

835
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
836
		return;
837

K
KAMEZAWA Hiroyuki 已提交
838
	pc = lookup_page_cgroup(page);
839
	/* unused or root page is not rotated. */
840 841 842 843 844
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
845 846 847
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
848 849
}

K
KAMEZAWA Hiroyuki 已提交
850
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
851
{
K
KAMEZAWA Hiroyuki 已提交
852 853
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
854

855
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
856 857
		return;
	pc = lookup_page_cgroup(page);
858
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
859
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
860
		return;
861 862
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
K
KAMEZAWA Hiroyuki 已提交
863
	mz = page_cgroup_zoneinfo(pc);
864 865
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
866 867 868
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
869 870
	list_add(&pc->lru, &mz->lists[lru]);
}
871

K
KAMEZAWA Hiroyuki 已提交
872
/*
873 874 875 876 877
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
878
 */
879
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
880
{
881 882 883 884 885 886 887 888 889 890 891 892
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
893 894
}

895 896 897 898 899 900 901 902
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
903
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
904 905 906 907 908
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
909 910 911
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
912
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
913 914 915
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
916 917
}

918 919 920
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
921
	struct mem_cgroup *curr = NULL;
922
	struct task_struct *p;
923

924 925 926 927 928
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
929 930
	if (!curr)
		return 0;
931 932 933 934 935 936 937
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
938 939 940 941
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
942 943 944
	return ret;
}

945
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
946 947 948
{
	unsigned long active;
	unsigned long inactive;
949 950
	unsigned long gb;
	unsigned long inactive_ratio;
951

K
KAMEZAWA Hiroyuki 已提交
952 953
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
954

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
982 983 984 985 986
		return 1;

	return 0;
}

987 988 989 990 991 992 993 994 995 996 997
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

998 999 1000 1001
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1002
	int nid = zone_to_nid(zone);
1003 1004 1005 1006 1007 1008
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1009 1010 1011
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1012
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1029 1030
	if (!PageCgroupUsed(pc))
		return NULL;
1031 1032
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
K
KOSAKI Motohiro 已提交
1033 1034 1035 1036 1037 1038 1039
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

1040 1041 1042 1043 1044
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1045
					int active, int file)
1046 1047 1048 1049 1050 1051
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1052
	struct page_cgroup *pc, *tmp;
1053
	int nid = zone_to_nid(z);
1054 1055
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1056
	int lru = LRU_FILE * file + active;
1057
	int ret;
1058

1059
	BUG_ON(!mem_cont);
1060
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1061
	src = &mz->lists[lru];
1062

1063 1064
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1065
		if (scan >= nr_to_scan)
1066
			break;
K
KAMEZAWA Hiroyuki 已提交
1067 1068

		page = pc->page;
1069 1070
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1071
		if (unlikely(!PageLRU(page)))
1072 1073
			continue;

H
Hugh Dickins 已提交
1074
		scan++;
1075 1076 1077
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1078
			list_move(&page->lru, dst);
1079
			mem_cgroup_del_lru(page);
1080
			nr_taken += hpage_nr_pages(page);
1081 1082 1083 1084 1085 1086 1087
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1088 1089 1090 1091
		}
	}

	*scanned = scan;
1092 1093 1094 1095

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1096 1097 1098
	return nr_taken;
}

1099 1100 1101
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
/**
 * mem_cgroup_check_margin - check if the memory cgroup allows charging
 * @mem: memory cgroup to check
 * @bytes: the number of bytes the caller intends to charge
 *
 * Returns a boolean value on whether @mem can be charged @bytes or
 * whether this would exceed the limit.
 */
static bool mem_cgroup_check_margin(struct mem_cgroup *mem, unsigned long bytes)
{
	if (!res_counter_check_margin(&mem->res, bytes))
		return false;
	if (do_swap_account && !res_counter_check_margin(&mem->memsw, bytes))
		return false;
	return true;
}

K
KOSAKI Motohiro 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1147 1148 1149
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1150 1151 1152 1153

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1154
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1155 1156 1157
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1168 1169 1170
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1171
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1172 1173 1174
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1193 1194 1195

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1196 1197
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1198
	bool ret = false;
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1233
/**
1234
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1253
	if (!memcg || !p)
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1300 1301 1302 1303 1304 1305 1306
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1307 1308 1309 1310
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1311 1312 1313
	return num;
}

D
David Rientjes 已提交
1314 1315 1316 1317 1318 1319 1320 1321
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1322 1323 1324
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1325 1326 1327 1328 1329 1330 1331 1332
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1333
/*
K
KAMEZAWA Hiroyuki 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1376 1377
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1378 1379 1380
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1381 1382
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1383 1384
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1385
						struct zone *zone,
1386 1387
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1388
{
K
KAMEZAWA Hiroyuki 已提交
1389 1390 1391
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1392 1393
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1394 1395
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1396

1397 1398 1399 1400
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1401
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1402
		victim = mem_cgroup_select_victim(root_mem);
1403
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1404
			loop++;
1405 1406
			if (loop >= 1)
				drain_all_stock_async();
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1430
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1431 1432
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1433 1434
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1435
		/* we use swappiness of local cgroup */
1436 1437
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1438
				noswap, get_swappiness(victim), zone);
1439 1440 1441
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1442
		css_put(&victim->css);
1443 1444 1445 1446 1447 1448 1449
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1450
		total += ret;
1451 1452 1453 1454
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1455
			return 1 + total;
1456
	}
K
KAMEZAWA Hiroyuki 已提交
1457
	return total;
1458 1459
}

K
KAMEZAWA Hiroyuki 已提交
1460 1461 1462 1463 1464 1465
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1466 1467
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1468

K
KAMEZAWA Hiroyuki 已提交
1469 1470 1471 1472
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1473 1474 1475 1476

	if (lock_count == 1)
		return true;
	return false;
1477
}
1478

K
KAMEZAWA Hiroyuki 已提交
1479
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1480
{
K
KAMEZAWA Hiroyuki 已提交
1481 1482
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1483 1484 1485 1486 1487
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1488 1489
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1490 1491 1492
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1493 1494 1495 1496

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1533 1534
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1535
	if (mem && atomic_read(&mem->oom_lock))
1536 1537 1538
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1539 1540 1541 1542
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1543
{
K
KAMEZAWA Hiroyuki 已提交
1544
	struct oom_wait_info owait;
1545
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1546

K
KAMEZAWA Hiroyuki 已提交
1547 1548 1549 1550 1551
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1552
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1553 1554 1555 1556 1557 1558 1559 1560
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1561 1562 1563 1564
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1565
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1566 1567
	mutex_unlock(&memcg_oom_mutex);

1568 1569
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1570
		mem_cgroup_out_of_memory(mem, mask);
1571
	} else {
K
KAMEZAWA Hiroyuki 已提交
1572
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1573
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1574 1575 1576
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1577
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1578 1579 1580 1581 1582 1583 1584
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1585 1586
}

1587 1588 1589
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1609
 */
1610

1611 1612
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1613 1614
{
	struct mem_cgroup *mem;
1615 1616
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1617
	unsigned long uninitialized_var(flags);
1618 1619 1620 1621

	if (unlikely(!pc))
		return;

1622
	rcu_read_lock();
1623
	mem = pc->mem_cgroup;
1624 1625 1626
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1627
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1628
		/* take a lock against to access pc->mem_cgroup */
1629
		move_lock_page_cgroup(pc, &flags);
1630 1631 1632 1633 1634
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1635 1636

	switch (idx) {
1637
	case MEMCG_NR_FILE_MAPPED:
1638 1639 1640
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1641
			ClearPageCgroupFileMapped(pc);
1642
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1643 1644 1645
		break;
	default:
		BUG();
1646
	}
1647

1648 1649
	this_cpu_add(mem->stat->count[idx], val);

1650 1651
out:
	if (unlikely(need_unlock))
1652
		move_unlock_page_cgroup(pc, &flags);
1653 1654
	rcu_read_unlock();
	return;
1655
}
1656
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1657

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1719
 * This will be consumed by consume_stock() function, later.
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
		s64 x = per_cpu(mem->stat->count[i], cpu);

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1797 1798 1799 1800
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1801 1802 1803 1804 1805
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1806
	struct mem_cgroup *iter;
1807

1808 1809 1810 1811 1812 1813
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1814
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1815
		return NOTIFY_OK;
1816 1817 1818 1819

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1820 1821 1822 1823 1824
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

1852
		res_counter_uncharge(&mem->res, csize);
1853 1854 1855 1856
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1857 1858 1859 1860 1861 1862 1863 1864 1865
	/*
	 * csize can be either a huge page (HPAGE_SIZE), a batch of
	 * regular pages (CHARGE_SIZE), or a single regular page
	 * (PAGE_SIZE).
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
	if (csize == CHARGE_SIZE)
1866 1867 1868 1869 1870 1871
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1872 1873 1874
					      gfp_mask, flags);
	if (mem_cgroup_check_margin(mem_over_limit, csize))
		return CHARGE_RETRY;
1875
	/*
1876 1877 1878 1879 1880 1881 1882
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
1883
	 */
1884
	if (csize == PAGE_SIZE && ret)
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1904 1905 1906
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1907
 */
1908
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
1909 1910 1911
				   gfp_t gfp_mask,
				   struct mem_cgroup **memcg, bool oom,
				   int page_size)
1912
{
1913 1914 1915
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
A
Andrea Arcangeli 已提交
1916
	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1917

K
KAMEZAWA Hiroyuki 已提交
1918 1919 1920 1921 1922 1923 1924 1925
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1926

1927
	/*
1928 1929
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1930 1931 1932
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1933 1934 1935 1936
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1937
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1938 1939 1940
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
A
Andrea Arcangeli 已提交
1941
		if (page_size == PAGE_SIZE && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
1942
			goto done;
1943 1944
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1945
		struct task_struct *p;
1946

K
KAMEZAWA Hiroyuki 已提交
1947 1948 1949
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
1950 1951 1952 1953 1954 1955 1956 1957
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
1958 1959
		 */
		mem = mem_cgroup_from_task(p);
1960
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1961 1962 1963
			rcu_read_unlock();
			goto done;
		}
A
Andrea Arcangeli 已提交
1964
		if (page_size == PAGE_SIZE && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1983

1984 1985
	do {
		bool oom_check;
1986

1987
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1988 1989
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1990
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1991
		}
1992

1993 1994 1995 1996
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1997
		}
1998

1999
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2000

2001 2002 2003 2004
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
A
Andrea Arcangeli 已提交
2005
			csize = page_size;
K
KAMEZAWA Hiroyuki 已提交
2006 2007 2008
			css_put(&mem->css);
			mem = NULL;
			goto again;
2009
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2010
			css_put(&mem->css);
2011 2012
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2013 2014
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2015
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2016
			}
2017 2018 2019 2020
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2021
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2022
			goto bypass;
2023
		}
2024 2025
	} while (ret != CHARGE_OK);

A
Andrea Arcangeli 已提交
2026 2027
	if (csize > page_size)
		refill_stock(mem, csize - page_size);
K
KAMEZAWA Hiroyuki 已提交
2028
	css_put(&mem->css);
2029
done:
K
KAMEZAWA Hiroyuki 已提交
2030
	*memcg = mem;
2031 2032
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2033
	*memcg = NULL;
2034
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2035 2036 2037
bypass:
	*memcg = NULL;
	return 0;
2038
}
2039

2040 2041 2042 2043 2044
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2045 2046
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
2047 2048
{
	if (!mem_cgroup_is_root(mem)) {
2049
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2050
		if (do_swap_account)
2051
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2052
	}
2053 2054
}

A
Andrea Arcangeli 已提交
2055 2056
static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
				     int page_size)
2057
{
A
Andrea Arcangeli 已提交
2058
	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2059 2060
}

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2080
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2081
{
2082
	struct mem_cgroup *mem = NULL;
2083
	struct page_cgroup *pc;
2084
	unsigned short id;
2085 2086
	swp_entry_t ent;

2087 2088 2089
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2090
	lock_page_cgroup(pc);
2091
	if (PageCgroupUsed(pc)) {
2092
		mem = pc->mem_cgroup;
2093 2094
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2095
	} else if (PageSwapCache(page)) {
2096
		ent.val = page_private(page);
2097 2098 2099 2100 2101 2102
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2103
	}
2104
	unlock_page_cgroup(pc);
2105 2106 2107
	return mem;
}

2108 2109 2110 2111
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				       struct page_cgroup *pc,
				       enum charge_type ctype,
				       int page_size)
2112
{
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	int nr_pages = page_size >> PAGE_SHIFT;

	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		mem_cgroup_cancel_charge(mem, page_size);
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2129
	pc->mem_cgroup = mem;
2130 2131 2132 2133 2134 2135 2136
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2137
	smp_wmb();
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2151

2152
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2153
	unlock_page_cgroup(pc);
2154 2155 2156 2157 2158
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2159
	memcg_check_events(mem, pc->page);
2160
}
2161

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2176 2177
	if (mem_cgroup_disabled())
		return;
2178
	/*
2179
	 * We have no races with charge/uncharge but will have races with
2180 2181 2182 2183 2184 2185
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
		mz = page_cgroup_zoneinfo(head_pc);
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2199 2200 2201 2202 2203
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2204
/**
2205
 * __mem_cgroup_move_account - move account of the page
2206 2207 2208
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2209
 * @uncharge: whether we should call uncharge and css_put against @from.
2210 2211
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2212
 * - page is not on LRU (isolate_page() is useful.)
2213
 * - the pc is locked, used, and ->mem_cgroup points to @from.
2214
 *
2215 2216 2217 2218
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2219 2220
 */

2221
static void __mem_cgroup_move_account(struct page_cgroup *pc,
2222 2223
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
	int charge_size)
2224
{
2225 2226
	int nr_pages = charge_size >> PAGE_SHIFT;

2227
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
2228
	VM_BUG_ON(PageLRU(pc->page));
2229
	VM_BUG_ON(!page_is_cgroup_locked(pc));
2230 2231
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
2232

2233
	if (PageCgroupFileMapped(pc)) {
2234 2235 2236 2237 2238
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2239
	}
2240
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2241 2242
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2243
		mem_cgroup_cancel_charge(from, charge_size);
2244

2245
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2246
	pc->mem_cgroup = to;
2247
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2248 2249 2250
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2251 2252 2253
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2254
	 */
2255 2256 2257 2258 2259 2260 2261
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
2262 2263
		struct mem_cgroup *from, struct mem_cgroup *to,
		bool uncharge, int charge_size)
2264 2265
{
	int ret = -EINVAL;
2266
	unsigned long flags;
2267 2268 2269 2270 2271 2272
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
2273 2274 2275
	if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
		return -EBUSY;

2276 2277
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2278
		move_lock_page_cgroup(pc, &flags);
2279
		__mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2280
		move_unlock_page_cgroup(pc, &flags);
2281 2282 2283
		ret = 0;
	}
	unlock_page_cgroup(pc);
2284 2285 2286 2287 2288
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
2300
	struct page *page = pc->page;
2301 2302 2303
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2304
	int page_size = PAGE_SIZE;
2305
	unsigned long flags;
2306 2307 2308 2309 2310 2311
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2312 2313 2314 2315 2316
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2317 2318 2319

	if (PageTransHuge(page))
		page_size = HPAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2320

2321
	parent = mem_cgroup_from_cont(pcg);
2322 2323
	ret = __mem_cgroup_try_charge(NULL, gfp_mask,
				&parent, false, page_size);
2324
	if (ret || !parent)
2325
		goto put_back;
2326

2327
	if (page_size > PAGE_SIZE)
2328 2329
		flags = compound_lock_irqsave(page);

2330
	ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2331
	if (ret)
2332
		mem_cgroup_cancel_charge(parent, page_size);
2333

2334
	if (page_size > PAGE_SIZE)
2335
		compound_unlock_irqrestore(page, flags);
2336
put_back:
K
KAMEZAWA Hiroyuki 已提交
2337
	putback_lru_page(page);
2338
put:
2339
	put_page(page);
2340
out:
2341 2342 2343
	return ret;
}

2344 2345 2346 2347 2348 2349 2350
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2351
				gfp_t gfp_mask, enum charge_type ctype)
2352
{
2353
	struct mem_cgroup *mem = NULL;
2354 2355
	struct page_cgroup *pc;
	int ret;
A
Andrea Arcangeli 已提交
2356 2357
	int page_size = PAGE_SIZE;

A
Andrea Arcangeli 已提交
2358
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2359
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2360 2361
		VM_BUG_ON(!PageTransHuge(page));
	}
2362 2363 2364 2365 2366 2367 2368

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

A
Andrea Arcangeli 已提交
2369
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2370
	if (ret || !mem)
2371 2372
		return ret;

A
Andrea Arcangeli 已提交
2373
	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2374 2375 2376
	return 0;
}

2377 2378
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2379
{
2380
	if (mem_cgroup_disabled())
2381
		return 0;
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2393
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2394
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2395 2396
}

D
Daisuke Nishimura 已提交
2397 2398 2399 2400
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2401 2402
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2403
{
2404 2405
	int ret;

2406
	if (mem_cgroup_disabled())
2407
		return 0;
2408 2409
	if (PageCompound(page))
		return 0;
2410 2411 2412 2413 2414 2415 2416 2417
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2418 2419
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2420 2421 2422 2423
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2424 2425 2426 2427 2428 2429
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2430 2431
			return 0;
		}
2432
		unlock_page_cgroup(pc);
2433 2434
	}

2435
	if (unlikely(!mm))
2436
		mm = &init_mm;
2437

2438 2439
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2440
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2441

D
Daisuke Nishimura 已提交
2442 2443
	/* shmem */
	if (PageSwapCache(page)) {
2444 2445
		struct mem_cgroup *mem = NULL;

D
Daisuke Nishimura 已提交
2446 2447 2448 2449 2450 2451
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2452
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2453 2454

	return ret;
2455 2456
}

2457 2458 2459
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2460
 * struct page_cgroup is acquired. This refcnt will be consumed by
2461 2462
 * "commit()" or removed by "cancel()"
 */
2463 2464 2465 2466 2467
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2468
	int ret;
2469

2470
	if (mem_cgroup_disabled())
2471 2472 2473 2474 2475 2476
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2477 2478 2479
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2480 2481
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2482
		goto charge_cur_mm;
2483
	mem = try_get_mem_cgroup_from_page(page);
2484 2485
	if (!mem)
		goto charge_cur_mm;
2486
	*ptr = mem;
A
Andrea Arcangeli 已提交
2487
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2488 2489
	css_put(&mem->css);
	return ret;
2490 2491 2492
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
A
Andrea Arcangeli 已提交
2493
	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2494 2495
}

D
Daisuke Nishimura 已提交
2496 2497 2498
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2499 2500 2501
{
	struct page_cgroup *pc;

2502
	if (mem_cgroup_disabled())
2503 2504 2505
		return;
	if (!ptr)
		return;
2506
	cgroup_exclude_rmdir(&ptr->css);
2507
	pc = lookup_page_cgroup(page);
2508
	mem_cgroup_lru_del_before_commit_swapcache(page);
A
Andrea Arcangeli 已提交
2509
	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2510
	mem_cgroup_lru_add_after_commit_swapcache(page);
2511 2512 2513
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2514 2515 2516
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2517
	 */
2518
	if (do_swap_account && PageSwapCache(page)) {
2519
		swp_entry_t ent = {.val = page_private(page)};
2520
		unsigned short id;
2521
		struct mem_cgroup *memcg;
2522 2523 2524 2525

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2526
		if (memcg) {
2527 2528 2529 2530
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2531
			if (!mem_cgroup_is_root(memcg))
2532
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2533
			mem_cgroup_swap_statistics(memcg, false);
2534 2535
			mem_cgroup_put(memcg);
		}
2536
		rcu_read_unlock();
2537
	}
2538 2539 2540 2541 2542 2543
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2544 2545
}

D
Daisuke Nishimura 已提交
2546 2547 2548 2549 2550 2551
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2552 2553
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2554
	if (mem_cgroup_disabled())
2555 2556 2557
		return;
	if (!mem)
		return;
A
Andrea Arcangeli 已提交
2558
	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2559 2560
}

2561
static void
A
Andrea Arcangeli 已提交
2562 2563
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
	      int page_size)
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

A
Andrea Arcangeli 已提交
2590 2591 2592
	if (page_size != PAGE_SIZE)
		goto direct_uncharge;

2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
A
Andrea Arcangeli 已提交
2606
	res_counter_uncharge(&mem->res, page_size);
2607
	if (uncharge_memsw)
A
Andrea Arcangeli 已提交
2608
		res_counter_uncharge(&mem->memsw, page_size);
2609 2610
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2611 2612
	return;
}
2613

2614
/*
2615
 * uncharge if !page_mapped(page)
2616
 */
2617
static struct mem_cgroup *
2618
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2619
{
2620
	int count;
H
Hugh Dickins 已提交
2621
	struct page_cgroup *pc;
2622
	struct mem_cgroup *mem = NULL;
A
Andrea Arcangeli 已提交
2623
	int page_size = PAGE_SIZE;
2624

2625
	if (mem_cgroup_disabled())
2626
		return NULL;
2627

K
KAMEZAWA Hiroyuki 已提交
2628
	if (PageSwapCache(page))
2629
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2630

A
Andrea Arcangeli 已提交
2631
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2632
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2633 2634
		VM_BUG_ON(!PageTransHuge(page));
	}
A
Andrea Arcangeli 已提交
2635

2636
	count = page_size >> PAGE_SHIFT;
2637
	/*
2638
	 * Check if our page_cgroup is valid
2639
	 */
2640 2641
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2642
		return NULL;
2643

2644
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2645

2646 2647
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2648 2649 2650 2651 2652
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2653
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2654 2655
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2667
	}
K
KAMEZAWA Hiroyuki 已提交
2668

2669
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
K
KAMEZAWA Hiroyuki 已提交
2670

2671
	ClearPageCgroupUsed(pc);
2672 2673 2674 2675 2676 2677
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2678

2679
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2680 2681 2682 2683
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2684
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2685 2686 2687 2688 2689
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
A
Andrea Arcangeli 已提交
2690
		__do_uncharge(mem, ctype, page_size);
2691

2692
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2693 2694 2695

unlock_out:
	unlock_page_cgroup(pc);
2696
	return NULL;
2697 2698
}

2699 2700
void mem_cgroup_uncharge_page(struct page *page)
{
2701 2702 2703 2704 2705
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2706 2707 2708 2709 2710 2711
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2712
	VM_BUG_ON(page->mapping);
2713 2714 2715
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2756
	memcg_oom_recover(batch->memcg);
2757 2758 2759 2760
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2761
#ifdef CONFIG_SWAP
2762
/*
2763
 * called after __delete_from_swap_cache() and drop "page" account.
2764 2765
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2766 2767
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2768 2769
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2770 2771 2772 2773 2774 2775
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2776

K
KAMEZAWA Hiroyuki 已提交
2777 2778 2779 2780 2781
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2782
		swap_cgroup_record(ent, css_id(&memcg->css));
2783
}
2784
#endif
2785 2786 2787 2788 2789 2790 2791

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2792
{
2793
	struct mem_cgroup *memcg;
2794
	unsigned short id;
2795 2796 2797 2798

	if (!do_swap_account)
		return;

2799 2800 2801
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2802
	if (memcg) {
2803 2804 2805 2806
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2807
		if (!mem_cgroup_is_root(memcg))
2808
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2809
		mem_cgroup_swap_statistics(memcg, false);
2810 2811
		mem_cgroup_put(memcg);
	}
2812
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2813
}
2814 2815 2816 2817 2818 2819

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2820
 * @need_fixup: whether we should fixup res_counters and refcounts.
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2831
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2832 2833 2834 2835 2836 2837 2838 2839
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2840
		mem_cgroup_swap_statistics(to, true);
2841
		/*
2842 2843 2844 2845 2846 2847
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2848 2849
		 */
		mem_cgroup_get(to);
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2861 2862 2863 2864 2865 2866
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2867
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2868 2869 2870
{
	return -EINVAL;
}
2871
#endif
K
KAMEZAWA Hiroyuki 已提交
2872

2873
/*
2874 2875
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2876
 */
2877 2878
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2879 2880
{
	struct page_cgroup *pc;
2881
	struct mem_cgroup *mem = NULL;
2882
	enum charge_type ctype;
2883
	int ret = 0;
2884

A
Andrea Arcangeli 已提交
2885
	VM_BUG_ON(PageTransHuge(page));
2886
	if (mem_cgroup_disabled())
2887 2888
		return 0;

2889 2890 2891
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2892 2893
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2925
	}
2926
	unlock_page_cgroup(pc);
2927 2928 2929 2930 2931 2932
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2933

A
Andrea Arcangeli 已提交
2934
	*ptr = mem;
A
Andrea Arcangeli 已提交
2935
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2948
	}
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
A
Andrea Arcangeli 已提交
2962
	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2963
	return ret;
2964
}
2965

2966
/* remove redundant charge if migration failed*/
2967
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2968
	struct page *oldpage, struct page *newpage, bool migration_ok)
2969
{
2970
	struct page *used, *unused;
2971 2972 2973 2974
	struct page_cgroup *pc;

	if (!mem)
		return;
2975
	/* blocks rmdir() */
2976
	cgroup_exclude_rmdir(&mem->css);
2977
	if (!migration_ok) {
2978 2979
		used = oldpage;
		unused = newpage;
2980
	} else {
2981
		used = newpage;
2982 2983
		unused = oldpage;
	}
2984
	/*
2985 2986 2987
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2988
	 */
2989 2990 2991 2992
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2993

2994 2995
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

2996
	/*
2997 2998 2999 3000 3001 3002
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3003
	 */
3004 3005
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3006
	/*
3007 3008
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3009 3010 3011 3012
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3013
}
3014

3015
/*
3016 3017 3018 3019 3020 3021
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3022
 */
3023
int mem_cgroup_shmem_charge_fallback(struct page *page,
3024 3025
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3026
{
3027
	struct mem_cgroup *mem = NULL;
3028
	int ret;
3029

3030
	if (mem_cgroup_disabled())
3031
		return 0;
3032

3033 3034 3035
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3036

3037
	return ret;
3038 3039
}

3040 3041
static DEFINE_MUTEX(set_limit_mutex);

3042
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3043
				unsigned long long val)
3044
{
3045
	int retry_count;
3046
	u64 memswlimit, memlimit;
3047
	int ret = 0;
3048 3049
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3050
	int enlarge;
3051 3052 3053 3054 3055 3056 3057 3058 3059

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3060

3061
	enlarge = 0;
3062
	while (retry_count) {
3063 3064 3065 3066
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3077 3078
			break;
		}
3079 3080 3081 3082 3083

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3084
		ret = res_counter_set_limit(&memcg->res, val);
3085 3086 3087 3088 3089 3090
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3091 3092 3093 3094 3095
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3096
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3097
						MEM_CGROUP_RECLAIM_SHRINK);
3098 3099 3100 3101 3102 3103
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3104
	}
3105 3106
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3107

3108 3109 3110
	return ret;
}

L
Li Zefan 已提交
3111 3112
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3113
{
3114
	int retry_count;
3115
	u64 memlimit, memswlimit, oldusage, curusage;
3116 3117
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3118
	int enlarge = 0;
3119

3120 3121 3122
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3140 3141 3142
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3143
		ret = res_counter_set_limit(&memcg->memsw, val);
3144 3145 3146 3147 3148 3149
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3150 3151 3152 3153 3154
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3155
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3156 3157
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
3158
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3159
		/* Usage is reduced ? */
3160
		if (curusage >= oldusage)
3161
			retry_count--;
3162 3163
		else
			oldusage = curusage;
3164
	}
3165 3166
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3167 3168 3169
	return ret;
}

3170
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3171
					    gfp_t gfp_mask)
3172 3173 3174 3175 3176 3177
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3178
	unsigned long long excess;
3179 3180 3181 3182

	if (order > 0)
		return 0;

3183
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3231
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3232 3233 3234 3235 3236 3237 3238 3239
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3240 3241
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3260 3261 3262 3263
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3264
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3265
				int node, int zid, enum lru_list lru)
3266
{
K
KAMEZAWA Hiroyuki 已提交
3267 3268
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3269
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3270
	unsigned long flags, loop;
3271
	struct list_head *list;
3272
	int ret = 0;
3273

K
KAMEZAWA Hiroyuki 已提交
3274 3275
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3276
	list = &mz->lists[lru];
3277

3278 3279 3280 3281 3282 3283
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3284
		spin_lock_irqsave(&zone->lru_lock, flags);
3285
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3286
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3287
			break;
3288 3289 3290 3291
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3292
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3293
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3294 3295
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3296
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3297

K
KAMEZAWA Hiroyuki 已提交
3298
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3299
		if (ret == -ENOMEM)
3300
			break;
3301 3302 3303 3304 3305 3306 3307

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3308
	}
K
KAMEZAWA Hiroyuki 已提交
3309

3310 3311 3312
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3313 3314 3315 3316 3317 3318
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3319
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3320
{
3321 3322 3323
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3324
	struct cgroup *cgrp = mem->css.cgroup;
3325

3326
	css_get(&mem->css);
3327 3328

	shrink = 0;
3329 3330 3331
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3332
move_account:
3333
	do {
3334
		ret = -EBUSY;
3335 3336 3337 3338
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3339
			goto out;
3340 3341
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3342
		drain_all_stock_sync();
3343
		ret = 0;
3344
		mem_cgroup_start_move(mem);
3345
		for_each_node_state(node, N_HIGH_MEMORY) {
3346
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3347
				enum lru_list l;
3348 3349
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3350
							node, zid, l);
3351 3352 3353
					if (ret)
						break;
				}
3354
			}
3355 3356 3357
			if (ret)
				break;
		}
3358
		mem_cgroup_end_move(mem);
3359
		memcg_oom_recover(mem);
3360 3361 3362
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3363
		cond_resched();
3364 3365
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3366 3367 3368
out:
	css_put(&mem->css);
	return ret;
3369 3370

try_to_free:
3371 3372
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3373 3374 3375
		ret = -EBUSY;
		goto out;
	}
3376 3377
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3378 3379 3380 3381
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3382 3383 3384 3385 3386

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3387 3388
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3389
		if (!progress) {
3390
			nr_retries--;
3391
			/* maybe some writeback is necessary */
3392
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3393
		}
3394 3395

	}
K
KAMEZAWA Hiroyuki 已提交
3396
	lru_add_drain();
3397
	/* try move_account...there may be some *locked* pages. */
3398
	goto move_account;
3399 3400
}

3401 3402 3403 3404 3405 3406
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3425
	 * If parent's use_hierarchy is set, we can't make any modifications
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3445

K
KAMEZAWA Hiroyuki 已提交
3446 3447
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx)
3448
{
K
KAMEZAWA Hiroyuki 已提交
3449 3450
	struct mem_cgroup *iter;
	s64 val = 0;
3451

K
KAMEZAWA Hiroyuki 已提交
3452 3453 3454 3455 3456 3457 3458
	/* each per cpu's value can be minus.Then, use s64 */
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3459 3460
}

3461 3462
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3463
	u64 val;
3464 3465 3466 3467 3468 3469 3470 3471

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

K
KAMEZAWA Hiroyuki 已提交
3472 3473
	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3474

K
KAMEZAWA Hiroyuki 已提交
3475 3476 3477
	if (swap)
		val += mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT);
3478 3479 3480 3481

	return val << PAGE_SHIFT;
}

3482
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3483
{
3484
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3485
	u64 val;
3486 3487 3488 3489 3490 3491
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3492 3493 3494
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3495
			val = res_counter_read_u64(&mem->res, name);
3496 3497
		break;
	case _MEMSWAP:
3498 3499 3500
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3501
			val = res_counter_read_u64(&mem->memsw, name);
3502 3503 3504 3505 3506 3507
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3508
}
3509 3510 3511 3512
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3513 3514
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3515
{
3516
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3517
	int type, name;
3518 3519 3520
	unsigned long long val;
	int ret;

3521 3522 3523
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3524
	case RES_LIMIT:
3525 3526 3527 3528
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3529 3530
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3531 3532 3533
		if (ret)
			break;
		if (type == _MEM)
3534
			ret = mem_cgroup_resize_limit(memcg, val);
3535 3536
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3537
		break;
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3552 3553 3554 3555 3556
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3557 3558
}

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3587
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3588 3589
{
	struct mem_cgroup *mem;
3590
	int type, name;
3591 3592

	mem = mem_cgroup_from_cont(cont);
3593 3594 3595
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3596
	case RES_MAX_USAGE:
3597 3598 3599 3600
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3601 3602
		break;
	case RES_FAILCNT:
3603 3604 3605 3606
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3607 3608
		break;
	}
3609

3610
	return 0;
3611 3612
}

3613 3614 3615 3616 3617 3618
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3619
#ifdef CONFIG_MMU
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3638 3639 3640 3641 3642 3643 3644
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3645

K
KAMEZAWA Hiroyuki 已提交
3646 3647 3648 3649 3650

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3651
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3652 3653
	MCS_PGPGIN,
	MCS_PGPGOUT,
3654
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3665 3666
};

K
KAMEZAWA Hiroyuki 已提交
3667 3668 3669 3670 3671 3672
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3673
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3674 3675
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3676
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3677 3678 3679 3680 3681 3682 3683 3684
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3685 3686
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3687 3688 3689 3690
{
	s64 val;

	/* per cpu stat */
3691
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3692
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3693
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3694
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3695
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3696
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3697
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3698
	s->stat[MCS_PGPGIN] += val;
3699
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3700
	s->stat[MCS_PGPGOUT] += val;
3701
	if (do_swap_account) {
3702
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3703 3704
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3722 3723 3724 3725
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3726 3727
}

3728 3729
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3730 3731
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3732
	struct mcs_total_stat mystat;
3733 3734
	int i;

K
KAMEZAWA Hiroyuki 已提交
3735 3736
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3737

3738 3739 3740
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3741
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3742
	}
L
Lee Schermerhorn 已提交
3743

K
KAMEZAWA Hiroyuki 已提交
3744
	/* Hierarchical information */
3745 3746 3747 3748 3749 3750 3751
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3752

K
KAMEZAWA Hiroyuki 已提交
3753 3754
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3755 3756 3757
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3758
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3759
	}
K
KAMEZAWA Hiroyuki 已提交
3760

K
KOSAKI Motohiro 已提交
3761
#ifdef CONFIG_DEBUG_VM
3762
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3790 3791 3792
	return 0;
}

K
KOSAKI Motohiro 已提交
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3805

K
KOSAKI Motohiro 已提交
3806 3807 3808 3809 3810 3811 3812
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3813 3814 3815

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3816 3817
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3818 3819
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3820
		return -EINVAL;
3821
	}
K
KOSAKI Motohiro 已提交
3822 3823 3824 3825 3826

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3827 3828
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3829 3830 3831
	return 0;
}

3832 3833 3834 3835 3836 3837 3838 3839
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3840
		t = rcu_dereference(memcg->thresholds.primary);
3841
	else
3842
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3854
	i = t->current_threshold;
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3878
	t->current_threshold = i - 1;
3879 3880 3881 3882 3883 3884
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3885 3886 3887 3888 3889 3890 3891
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3902
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
3913 3914 3915 3916
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3917 3918 3919 3920
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3921 3922
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3923 3924
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3925 3926
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3927
	int i, size, ret;
3928 3929 3930 3931 3932 3933

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3934

3935
	if (type == _MEM)
3936
		thresholds = &memcg->thresholds;
3937
	else if (type == _MEMSWAP)
3938
		thresholds = &memcg->memsw_thresholds;
3939 3940 3941 3942 3943 3944
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3945
	if (thresholds->primary)
3946 3947
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3948
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3949 3950

	/* Allocate memory for new array of thresholds */
3951
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3952
			GFP_KERNEL);
3953
	if (!new) {
3954 3955 3956
		ret = -ENOMEM;
		goto unlock;
	}
3957
	new->size = size;
3958 3959

	/* Copy thresholds (if any) to new array */
3960 3961
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3962
				sizeof(struct mem_cgroup_threshold));
3963 3964
	}

3965
	/* Add new threshold */
3966 3967
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3968 3969

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3970
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3971 3972 3973
			compare_thresholds, NULL);

	/* Find current threshold */
3974
	new->current_threshold = -1;
3975
	for (i = 0; i < size; i++) {
3976
		if (new->entries[i].threshold < usage) {
3977
			/*
3978 3979
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3980 3981
			 * it here.
			 */
3982
			++new->current_threshold;
3983 3984 3985
		}
	}

3986 3987 3988 3989 3990
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3991

3992
	/* To be sure that nobody uses thresholds */
3993 3994 3995 3996 3997 3998 3999 4000
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4001
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4002
	struct cftype *cft, struct eventfd_ctx *eventfd)
4003 4004
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4005 4006
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4007 4008
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4009
	int i, j, size;
4010 4011 4012

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4013
		thresholds = &memcg->thresholds;
4014
	else if (type == _MEMSWAP)
4015
		thresholds = &memcg->memsw_thresholds;
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4031 4032 4033
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4034 4035 4036
			size++;
	}

4037
	new = thresholds->spare;
4038

4039 4040
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4041 4042
		kfree(new);
		new = NULL;
4043
		goto swap_buffers;
4044 4045
	}

4046
	new->size = size;
4047 4048

	/* Copy thresholds and find current threshold */
4049 4050 4051
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4052 4053
			continue;

4054 4055
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4056
			/*
4057
			 * new->current_threshold will not be used
4058 4059 4060
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4061
			++new->current_threshold;
4062 4063 4064 4065
		}
		j++;
	}

4066
swap_buffers:
4067 4068 4069
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4070

4071
	/* To be sure that nobody uses thresholds */
4072 4073 4074 4075
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4076

K
KAMEZAWA Hiroyuki 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4102
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4157 4158
	if (!val)
		memcg_oom_recover(mem);
4159 4160 4161 4162
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4163 4164
static struct cftype mem_cgroup_files[] = {
	{
4165
		.name = "usage_in_bytes",
4166
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4167
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4168 4169
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4170
	},
4171 4172
	{
		.name = "max_usage_in_bytes",
4173
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4174
		.trigger = mem_cgroup_reset,
4175 4176
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4177
	{
4178
		.name = "limit_in_bytes",
4179
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4180
		.write_string = mem_cgroup_write,
4181
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4182
	},
4183 4184 4185 4186 4187 4188
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4189 4190
	{
		.name = "failcnt",
4191
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4192
		.trigger = mem_cgroup_reset,
4193
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4194
	},
4195 4196
	{
		.name = "stat",
4197
		.read_map = mem_control_stat_show,
4198
	},
4199 4200 4201 4202
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4203 4204 4205 4206 4207
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4208 4209 4210 4211 4212
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4213 4214 4215 4216 4217
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4218 4219
	{
		.name = "oom_control",
4220 4221
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4222 4223 4224 4225
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4226 4227
};

4228 4229 4230 4231 4232 4233
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4234 4235
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4271 4272 4273
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4274
	struct mem_cgroup_per_zone *mz;
4275
	enum lru_list l;
4276
	int zone, tmp = node;
4277 4278 4279 4280 4281 4282 4283 4284
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4285 4286
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4287
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4288 4289
	if (!pn)
		return 1;
4290

4291
	mem->info.nodeinfo[node] = pn;
4292 4293
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4294 4295
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4296
		mz->usage_in_excess = 0;
4297 4298
		mz->on_tree = false;
		mz->mem = mem;
4299
	}
4300 4301 4302
	return 0;
}

4303 4304 4305 4306 4307
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4308 4309 4310
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4311
	int size = sizeof(struct mem_cgroup);
4312

4313
	/* Can be very big if MAX_NUMNODES is very big */
4314
	if (size < PAGE_SIZE)
4315
		mem = kzalloc(size, GFP_KERNEL);
4316
	else
4317
		mem = vzalloc(size);
4318

4319 4320 4321
	if (!mem)
		return NULL;

4322
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4323 4324
	if (!mem->stat)
		goto out_free;
4325
	spin_lock_init(&mem->pcp_counter_lock);
4326
	return mem;
4327 4328 4329 4330 4331 4332 4333

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4334 4335
}

4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4347
static void __mem_cgroup_free(struct mem_cgroup *mem)
4348
{
K
KAMEZAWA Hiroyuki 已提交
4349 4350
	int node;

4351
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4352 4353
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4354 4355 4356
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4357 4358
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4359 4360 4361 4362 4363
		kfree(mem);
	else
		vfree(mem);
}

4364 4365 4366 4367 4368
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4369
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4370
{
4371
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4372
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4373
		__mem_cgroup_free(mem);
4374 4375 4376
		if (parent)
			mem_cgroup_put(parent);
	}
4377 4378
}

4379 4380 4381 4382 4383
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4384 4385 4386 4387 4388 4389 4390 4391 4392
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4393

4394 4395 4396
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4397
	if (!mem_cgroup_disabled() && really_do_swap_account)
4398 4399 4400 4401 4402 4403 4404 4405
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4431
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4432 4433
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4434
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4435
	long error = -ENOMEM;
4436
	int node;
B
Balbir Singh 已提交
4437

4438 4439
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4440
		return ERR_PTR(error);
4441

4442 4443 4444
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4445

4446
	/* root ? */
4447
	if (cont->parent == NULL) {
4448
		int cpu;
4449
		enable_swap_cgroup();
4450
		parent = NULL;
4451
		root_mem_cgroup = mem;
4452 4453
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4454 4455 4456 4457 4458
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4459
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4460
	} else {
4461
		parent = mem_cgroup_from_cont(cont->parent);
4462
		mem->use_hierarchy = parent->use_hierarchy;
4463
		mem->oom_kill_disable = parent->oom_kill_disable;
4464
	}
4465

4466 4467 4468
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4469 4470 4471 4472 4473 4474 4475
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4476 4477 4478 4479
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4480
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4481
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4482
	INIT_LIST_HEAD(&mem->oom_notify);
4483

K
KOSAKI Motohiro 已提交
4484 4485
	if (parent)
		mem->swappiness = get_swappiness(parent);
4486
	atomic_set(&mem->refcnt, 1);
4487
	mem->move_charge_at_immigrate = 0;
4488
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4489
	return &mem->css;
4490
free_out:
4491
	__mem_cgroup_free(mem);
4492
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4493
	return ERR_PTR(error);
B
Balbir Singh 已提交
4494 4495
}

4496
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4497 4498 4499
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4500 4501

	return mem_cgroup_force_empty(mem, false);
4502 4503
}

B
Balbir Singh 已提交
4504 4505 4506
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4507 4508 4509
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4510 4511 4512 4513 4514
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4515 4516 4517 4518 4519 4520 4521 4522
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4523 4524
}

4525
#ifdef CONFIG_MMU
4526
/* Handlers for move charge at task migration. */
4527 4528
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4529
{
4530 4531
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4532 4533
	struct mem_cgroup *mem = mc.to;

4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
A
Andrea Arcangeli 已提交
4569 4570
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
					      PAGE_SIZE);
4571 4572 4573 4574 4575
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4576 4577 4578 4579 4580 4581 4582 4583
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4584
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4585 4586 4587 4588 4589 4590
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4591 4592 4593
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4594 4595 4596 4597 4598
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4599
	swp_entry_t	ent;
4600 4601 4602 4603 4604
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4605
	MC_TARGET_SWAP,
4606 4607
};

D
Daisuke Nishimura 已提交
4608 4609
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4610
{
D
Daisuke Nishimura 已提交
4611
	struct page *page = vm_normal_page(vma, addr, ptent);
4612

D
Daisuke Nishimura 已提交
4613 4614 4615 4616 4617 4618
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4619 4620
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4639 4640
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4641
		return NULL;
4642
	}
D
Daisuke Nishimura 已提交
4643 4644 4645 4646 4647 4648
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4694 4695
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4696 4697 4698

	if (!page && !ent.val)
		return 0;
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4714 4715
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4716 4717 4718 4719
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

A
Andrea Arcangeli 已提交
4732
	VM_BUG_ON(pmd_trans_huge(*pmd));
4733 4734 4735 4736 4737 4738 4739
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4740 4741 4742
	return 0;
}

4743 4744 4745 4746 4747
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4748
	down_read(&mm->mmap_sem);
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4760
	up_read(&mm->mmap_sem);
4761 4762 4763 4764 4765 4766 4767 4768 4769

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4770 4771 4772 4773 4774
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4775 4776
}

4777 4778
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4779
{
4780 4781 4782
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4783
	/* we must uncharge all the leftover precharges from mc.to */
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4795
	}
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4830
	spin_lock(&mc.lock);
4831 4832
	mc.from = NULL;
	mc.to = NULL;
4833
	spin_unlock(&mc.lock);
4834
	mem_cgroup_end_move(from);
4835 4836
}

4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4855 4856 4857 4858
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4859
			VM_BUG_ON(mc.moved_charge);
4860
			VM_BUG_ON(mc.moved_swap);
4861
			mem_cgroup_start_move(from);
4862
			spin_lock(&mc.lock);
4863 4864
			mc.from = from;
			mc.to = mem;
4865
			spin_unlock(&mc.lock);
4866
			/* We set mc.moving_task later */
4867 4868 4869 4870

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4871 4872
		}
		mmput(mm);
4873 4874 4875 4876 4877 4878 4879 4880 4881
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4882
	mem_cgroup_clear_mc();
4883 4884
}

4885 4886 4887
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4888
{
4889 4890 4891 4892 4893 4894
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
A
Andrea Arcangeli 已提交
4895
	VM_BUG_ON(pmd_trans_huge(*pmd));
4896 4897 4898 4899 4900 4901 4902
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4903
		swp_entry_t ent;
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4915
			if (!mem_cgroup_move_account(pc,
4916
					mc.from, mc.to, false, PAGE_SIZE)) {
4917
				mc.precharge--;
4918 4919
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4920 4921 4922 4923 4924
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4925 4926
		case MC_TARGET_SWAP:
			ent = target.ent;
4927 4928
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4929
				mc.precharge--;
4930 4931 4932
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4933
			break;
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4948
		ret = mem_cgroup_do_precharge(1);
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
4992
	up_read(&mm->mmap_sem);
4993 4994
}

B
Balbir Singh 已提交
4995 4996 4997
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4998 4999
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
5000
{
5001 5002 5003
	struct mm_struct *mm;

	if (!mc.to)
5004 5005 5006
		/* no need to move charge */
		return;

5007 5008 5009 5010 5011
	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
5012
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5013
}
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
5036

B
Balbir Singh 已提交
5037 5038 5039 5040
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5041
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5042 5043
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5044 5045
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5046
	.attach = mem_cgroup_move_task,
5047
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5048
	.use_id = 1,
B
Balbir Singh 已提交
5049
};
5050 5051

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5052 5053 5054
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5055
	if (!(*s) || !strcmp(s, "=1"))
5056
		really_do_swap_account = 1;
5057
	else if (!strcmp(s, "=0"))
5058 5059 5060 5061
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount", enable_swap_account);
5062 5063 5064

static int __init disable_swap_account(char *s)
{
5065
	printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5066
	enable_swap_account("=0");
5067 5068 5069 5070
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif