memcontrol.c 143.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129 130 131 132
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

133 134 135 136
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
137
	struct lruvec		lruvec;
138
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139

140 141
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
142
	struct zone_reclaim_stat reclaim_stat;
143 144 145 146
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
147 148
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
149 150 151 152 153 154 155 156 157 158 159 160
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

181 182 183 184 185
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
186
/* For threshold */
187 188
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
189
	int current_threshold;
190 191 192 193 194
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
195 196 197 198 199 200 201 202 203 204 205 206

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
207 208 209 210 211
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
212

213 214
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215

B
Balbir Singh 已提交
216 217 218 219 220 221 222
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 224 225
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
226 227 228 229 230 231 232
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
233 234 235 236
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
237 238 239 240
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
241
	struct mem_cgroup_lru_info info;
242 243 244
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
245 246
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
247
#endif
248 249 250 251
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
252 253 254 255

	bool		oom_lock;
	atomic_t	under_oom;

256
	atomic_t	refcnt;
257

258
	int	swappiness;
259 260
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
261

262 263 264
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

265 266 267 268
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
269
	struct mem_cgroup_thresholds thresholds;
270

271
	/* thresholds for mem+swap usage. RCU-protected */
272
	struct mem_cgroup_thresholds memsw_thresholds;
273

K
KAMEZAWA Hiroyuki 已提交
274 275
	/* For oom notifier event fd */
	struct list_head oom_notify;
276

277 278 279 280 281
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
282
	/*
283
	 * percpu counter.
284
	 */
285
	struct mem_cgroup_stat_cpu *stat;
286 287 288 289 290 291
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
292 293 294 295

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
296 297
};

298 299 300 301 302 303
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
304
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306 307 308
	NR_MOVE_TYPE,
};

309 310
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
311
	spinlock_t	  lock; /* for from, to */
312 313 314
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
315
	unsigned long moved_charge;
316
	unsigned long moved_swap;
317 318 319
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
320
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 322
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
323

D
Daisuke Nishimura 已提交
324 325 326 327 328 329
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

330 331 332 333 334 335
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

336 337 338 339 340 341 342
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

343 344 345
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
348
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
349
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350 351 352
	NR_CHARGE_TYPE,
};

353
/* for encoding cft->private value on file */
354 355 356
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
357 358 359
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
360 361
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
362

363 364 365 366 367 368 369 370
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

371 372
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
373 374 375 376 377

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#ifdef CONFIG_INET
#include <net/sock.h>
G
Glauber Costa 已提交
378
#include <net/ip.h>
G
Glauber Costa 已提交
379 380 381 382 383 384 385 386 387

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled)) {
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

388 389 390 391 392 393 394 395 396 397 398 399 400 401
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
422 423 424 425 426 427 428 429 430

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
431 432 433
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

434
static void drain_all_stock_async(struct mem_cgroup *memcg);
435

436
static struct mem_cgroup_per_zone *
437
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438
{
439
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 441
}

442
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443
{
444
	return &memcg->css;
445 446
}

447
static struct mem_cgroup_per_zone *
448
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449
{
450 451
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
452

453
	return mem_cgroup_zoneinfo(memcg, nid, zid);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
472
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473
				struct mem_cgroup_per_zone *mz,
474 475
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
476 477 478 479 480 481 482 483
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

484 485 486
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
503 504 505
}

static void
506
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 508 509 510 511 512 513 514 515
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

516
static void
517
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 519 520 521
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
522
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 524 525 526
	spin_unlock(&mctz->lock);
}


527
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528
{
529
	unsigned long long excess;
530 531
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
532 533
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
534 535 536
	mctz = soft_limit_tree_from_page(page);

	/*
537 538
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
539
	 */
540 541 542
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
543 544 545 546
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
547
		if (excess || mz->on_tree) {
548 549 550
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
551
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552
			/*
553 554
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
555
			 */
556
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 558
			spin_unlock(&mctz->lock);
		}
559 560 561
	}
}

562
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 564 565 566 567 568 569
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571
			mctz = soft_limit_tree_node_zone(node, zone);
572
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
		}
	}
}

577 578 579 580
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
581
	struct mem_cgroup_per_zone *mz;
582 583

retry:
584
	mz = NULL;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
633
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634
				 enum mem_cgroup_stat_index idx)
635
{
636
	long val = 0;
637 638
	int cpu;

639 640
	get_online_cpus();
	for_each_online_cpu(cpu)
641
		val += per_cpu(memcg->stat->count[idx], cpu);
642
#ifdef CONFIG_HOTPLUG_CPU
643 644 645
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
646 647
#endif
	put_online_cpus();
648 649 650
	return val;
}

651
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 653 654
					 bool charge)
{
	int val = (charge) ? 1 : -1;
655
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 657
}

658
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 660 661 662 663 664
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
665
		val += per_cpu(memcg->stat->events[idx], cpu);
666
#ifdef CONFIG_HOTPLUG_CPU
667 668 669
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
670 671 672 673
#endif
	return val;
}

674
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675
					 bool file, int nr_pages)
676
{
677 678
	preempt_disable();

679
	if (file)
680 681
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
682
	else
683 684
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
685

686 687
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
688
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689
	else {
690
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 692
		nr_pages = -nr_pages; /* for event */
	}
693

694
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695

696
	preempt_enable();
697 698
}

699
unsigned long
700
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701
			unsigned int lru_mask)
702 703
{
	struct mem_cgroup_per_zone *mz;
704 705 706
	enum lru_list l;
	unsigned long ret = 0;

707
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708 709 710 711 712 713 714 715 716

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
717
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 719
			int nid, unsigned int lru_mask)
{
720 721 722
	u64 total = 0;
	int zid;

723
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 725
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
726

727 728
	return total;
}
729

730
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731
			unsigned int lru_mask)
732
{
733
	int nid;
734 735
	u64 total = 0;

736
	for_each_node_state(nid, N_HIGH_MEMORY)
737
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738
	return total;
739 740
}

741 742
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
743 744 745
{
	unsigned long val, next;

746 747
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
748
	/* from time_after() in jiffies.h */
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
765
	}
766
	return false;
767 768 769 770 771 772
}

/*
 * Check events in order.
 *
 */
773
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774
{
775
	preempt_disable();
776
	/* threshold event is triggered in finer grain than soft limit */
777 778 779 780 781 782 783 784 785 786 787 788
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
		bool do_softlimit, do_numainfo;

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

789
		mem_cgroup_threshold(memcg);
790
		if (unlikely(do_softlimit))
791
			mem_cgroup_update_tree(memcg, page);
792
#if MAX_NUMNODES > 1
793
		if (unlikely(do_numainfo))
794
			atomic_inc(&memcg->numainfo_events);
795
#endif
796 797
	} else
		preempt_enable();
798 799
}

G
Glauber Costa 已提交
800
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
801 802 803 804 805 806
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

807
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808
{
809 810 811 812 813 814 815 816
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

817 818 819 820
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

821
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
822
{
823
	struct mem_cgroup *memcg = NULL;
824 825 826

	if (!mm)
		return NULL;
827 828 829 830 831 832 833
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
834 835
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
836
			break;
837
	} while (!css_tryget(&memcg->css));
838
	rcu_read_unlock();
839
	return memcg;
840 841
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
862
{
863 864
	struct mem_cgroup *memcg = NULL;
	int id = 0;
865

866 867 868
	if (mem_cgroup_disabled())
		return NULL;

869 870
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
871

872 873
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
874

875 876
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
877

878 879 880 881 882
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
883

884
	while (!memcg) {
885
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
886
		struct cgroup_subsys_state *css;
887

888 889 890 891 892 893 894 895 896 897 898
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
899

900 901 902 903 904 905 906 907
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
908 909
		rcu_read_unlock();

910 911 912 913 914 915 916
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
917 918 919 920 921

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
922
}
K
KAMEZAWA Hiroyuki 已提交
923

924 925 926 927 928 929 930
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
931 932 933 934 935 936
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
937

938 939 940 941 942 943
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
944
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
945
	     iter != NULL;				\
946
	     iter = mem_cgroup_iter(root, iter, NULL))
947

948
#define for_each_mem_cgroup(iter)			\
949
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
950
	     iter != NULL;				\
951
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
952

953
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
954
{
955
	return (memcg == root_mem_cgroup);
956 957
}

958 959
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
960
	struct mem_cgroup *memcg;
961 962 963 964 965

	if (!mm)
		return;

	rcu_read_lock();
966 967
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
968 969 970 971
		goto out;

	switch (idx) {
	case PGFAULT:
972 973 974 975
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
976 977 978 979 980 981 982 983 984
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1034 1035
{
	struct mem_cgroup_per_zone *mz;
1036 1037
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1038

1039
	if (mem_cgroup_disabled())
1040 1041
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1042
	pc = lookup_page_cgroup(page);
1043
	VM_BUG_ON(PageCgroupAcctLRU(pc));
1044
	/*
1045 1046 1047 1048 1049 1050 1051
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
1052
	 */
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	smp_mb();
	/*
	 * If the page is uncharged, it may be freed soon, but it
	 * could also be swap cache (readahead, swapoff) that needs to
	 * be reclaimable in the future.  root_mem_cgroup will babysit
	 * it for the time being.
	 */
	if (PageCgroupUsed(pc)) {
		/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
		smp_rmb();
		memcg = pc->mem_cgroup;
		SetPageCgroupAcctLRU(pc);
	} else
		memcg = root_mem_cgroup;
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1071
}
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1082
 */
1083
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1084 1085
{
	struct mem_cgroup_per_zone *mz;
1086
	struct mem_cgroup *memcg;
1087 1088 1089 1090 1091 1092
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	/*
	 * root_mem_cgroup babysits uncharged LRU pages, but
	 * PageCgroupUsed is cleared when the page is about to get
	 * freed.  PageCgroupAcctLRU remembers whether the
	 * LRU-accounting happened against pc->mem_cgroup or
	 * root_mem_cgroup.
	 */
	if (TestClearPageCgroupAcctLRU(pc)) {
		VM_BUG_ON(!pc->mem_cgroup);
		memcg = pc->mem_cgroup;
	} else
		memcg = root_mem_cgroup;
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1108 1109
}

1110
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1111
{
1112
	mem_cgroup_lru_del_list(page, page_lru(page));
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1133
{
1134 1135 1136
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1137
}
1138

1139
/*
1140
 * Checks whether given mem is same or in the root_mem_cgroup's
1141 1142
 * hierarchy subtree
 */
1143 1144
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1145
{
1146 1147 1148
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1149 1150 1151 1152 1153
	}

	return true;
}

1154
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1155 1156
{
	int ret;
1157
	struct mem_cgroup *curr = NULL;
1158
	struct task_struct *p;
1159

1160
	p = find_lock_task_mm(task);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1176 1177
	if (!curr)
		return 0;
1178
	/*
1179
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1180
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1181 1182
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1183
	 */
1184
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1185
	css_put(&curr->css);
1186 1187 1188
	return ret;
}

1189
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1190
{
1191 1192 1193
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1194
	unsigned long inactive;
1195
	unsigned long active;
1196
	unsigned long gb;
1197

1198 1199 1200 1201
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1202

1203 1204 1205 1206 1207 1208
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1209
	return inactive * inactive_ratio < active;
1210 1211
}

1212
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1213 1214 1215
{
	unsigned long active;
	unsigned long inactive;
1216 1217
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1218

1219 1220 1221 1222
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1223 1224 1225 1226

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1227 1228 1229
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1230
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1247 1248
	if (!PageCgroupUsed(pc))
		return NULL;
1249 1250
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1251
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1252 1253 1254
	return &mz->reclaim_stat;
}

1255 1256 1257
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1258
/**
1259 1260
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1261
 *
1262
 * Returns the maximum amount of memory @mem can be charged with, in
1263
 * pages.
1264
 */
1265
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1266
{
1267 1268
	unsigned long long margin;

1269
	margin = res_counter_margin(&memcg->res);
1270
	if (do_swap_account)
1271
		margin = min(margin, res_counter_margin(&memcg->memsw));
1272
	return margin >> PAGE_SHIFT;
1273 1274
}

1275
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1276 1277 1278 1279 1280 1281 1282
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1283
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1284 1285
}

1286
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1287 1288
{
	int cpu;
1289 1290

	get_online_cpus();
1291
	spin_lock(&memcg->pcp_counter_lock);
1292
	for_each_online_cpu(cpu)
1293 1294 1295
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1296
	put_online_cpus();
1297 1298 1299 1300

	synchronize_rcu();
}

1301
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1302 1303 1304
{
	int cpu;

1305
	if (!memcg)
1306
		return;
1307
	get_online_cpus();
1308
	spin_lock(&memcg->pcp_counter_lock);
1309
	for_each_online_cpu(cpu)
1310 1311 1312
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1313
	put_online_cpus();
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1327
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1328 1329
{
	VM_BUG_ON(!rcu_read_lock_held());
1330
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1331
}
1332

1333
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1334
{
1335 1336
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1337
	bool ret = false;
1338 1339 1340 1341 1342 1343 1344 1345 1346
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1347

1348 1349
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1350 1351
unlock:
	spin_unlock(&mc.lock);
1352 1353 1354
	return ret;
}

1355
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1356 1357
{
	if (mc.moving_task && current != mc.moving_task) {
1358
		if (mem_cgroup_under_move(memcg)) {
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1371
/**
1372
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1391
	if (!memcg || !p)
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1438 1439 1440 1441
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1442
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1443 1444
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1445 1446
	struct mem_cgroup *iter;

1447
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1448
		num++;
1449 1450 1451
	return num;
}

D
David Rientjes 已提交
1452 1453 1454 1455 1456 1457 1458 1459
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1460 1461 1462
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1463 1464 1465 1466 1467 1468 1469 1470
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1517
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1518 1519
		int nid, bool noswap)
{
1520
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1521 1522 1523
		return true;
	if (noswap || !total_swap_pages)
		return false;
1524
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1525 1526 1527 1528
		return true;
	return false;

}
1529 1530 1531 1532 1533 1534 1535 1536
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1537
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1538 1539
{
	int nid;
1540 1541 1542 1543
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1544
	if (!atomic_read(&memcg->numainfo_events))
1545
		return;
1546
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1547 1548 1549
		return;

	/* make a nodemask where this memcg uses memory from */
1550
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1551 1552 1553

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1554 1555
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1556
	}
1557

1558 1559
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1574
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1575 1576 1577
{
	int node;

1578 1579
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1580

1581
	node = next_node(node, memcg->scan_nodes);
1582
	if (node == MAX_NUMNODES)
1583
		node = first_node(memcg->scan_nodes);
1584 1585 1586 1587 1588 1589 1590 1591 1592
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1593
	memcg->last_scanned_node = node;
1594 1595 1596
	return node;
}

1597 1598 1599 1600 1601 1602
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1603
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1604 1605 1606 1607 1608 1609 1610
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1611 1612
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1613
		     nid < MAX_NUMNODES;
1614
		     nid = next_node(nid, memcg->scan_nodes)) {
1615

1616
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1617 1618 1619 1620 1621 1622 1623
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1624
		if (node_isset(nid, memcg->scan_nodes))
1625
			continue;
1626
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1627 1628 1629 1630 1631
			return true;
	}
	return false;
}

1632
#else
1633
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1634 1635 1636
{
	return 0;
}
1637

1638
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1639
{
1640
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1641
}
1642 1643
#endif

1644 1645 1646 1647
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1648
{
1649
	struct mem_cgroup *victim = NULL;
1650
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1651
	int loop = 0;
1652
	unsigned long excess;
1653
	unsigned long nr_scanned;
1654 1655 1656 1657
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1658

1659
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1660

1661
	while (1) {
1662
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1663
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1664
			loop++;
1665 1666 1667 1668 1669 1670
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1671
				if (!total)
1672 1673
					break;
				/*
L
Lucas De Marchi 已提交
1674
				 * We want to do more targeted reclaim.
1675 1676 1677 1678 1679
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1680
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1681 1682
					break;
			}
1683
			continue;
1684
		}
1685
		if (!mem_cgroup_reclaimable(victim, false))
1686
			continue;
1687 1688 1689 1690
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1691
			break;
1692
	}
1693
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1694
	return total;
1695 1696
}

K
KAMEZAWA Hiroyuki 已提交
1697 1698 1699
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1700
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1701
 */
1702
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1703
{
1704
	struct mem_cgroup *iter, *failed = NULL;
1705

1706
	for_each_mem_cgroup_tree(iter, memcg) {
1707
		if (iter->oom_lock) {
1708 1709 1710 1711 1712
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1713 1714
			mem_cgroup_iter_break(memcg, iter);
			break;
1715 1716
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1717
	}
K
KAMEZAWA Hiroyuki 已提交
1718

1719
	if (!failed)
1720
		return true;
1721 1722 1723 1724 1725

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1726
	for_each_mem_cgroup_tree(iter, memcg) {
1727
		if (iter == failed) {
1728 1729
			mem_cgroup_iter_break(memcg, iter);
			break;
1730 1731 1732
		}
		iter->oom_lock = false;
	}
1733
	return false;
1734
}
1735

1736
/*
1737
 * Has to be called with memcg_oom_lock
1738
 */
1739
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1740
{
K
KAMEZAWA Hiroyuki 已提交
1741 1742
	struct mem_cgroup *iter;

1743
	for_each_mem_cgroup_tree(iter, memcg)
1744 1745 1746 1747
		iter->oom_lock = false;
	return 0;
}

1748
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1749 1750 1751
{
	struct mem_cgroup *iter;

1752
	for_each_mem_cgroup_tree(iter, memcg)
1753 1754 1755
		atomic_inc(&iter->under_oom);
}

1756
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1757 1758 1759
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1760 1761 1762 1763 1764
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1765
	for_each_mem_cgroup_tree(iter, memcg)
1766
		atomic_add_unless(&iter->under_oom, -1, 0);
1767 1768
}

1769
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1770 1771
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1772 1773 1774 1775 1776 1777 1778 1779
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1780 1781
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1782 1783 1784
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1785
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1786 1787 1788 1789 1790

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1791 1792
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1793 1794 1795 1796
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1797
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1798
{
1799 1800
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1801 1802
}

1803
static void memcg_oom_recover(struct mem_cgroup *memcg)
1804
{
1805 1806
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1807 1808
}

K
KAMEZAWA Hiroyuki 已提交
1809 1810 1811
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1812
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1813
{
K
KAMEZAWA Hiroyuki 已提交
1814
	struct oom_wait_info owait;
1815
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1816

1817
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1818 1819 1820 1821
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1822
	need_to_kill = true;
1823
	mem_cgroup_mark_under_oom(memcg);
1824

1825
	/* At first, try to OOM lock hierarchy under memcg.*/
1826
	spin_lock(&memcg_oom_lock);
1827
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1828 1829 1830 1831 1832
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1833
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1834
	if (!locked || memcg->oom_kill_disable)
1835 1836
		need_to_kill = false;
	if (locked)
1837
		mem_cgroup_oom_notify(memcg);
1838
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1839

1840 1841
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1842
		mem_cgroup_out_of_memory(memcg, mask);
1843
	} else {
K
KAMEZAWA Hiroyuki 已提交
1844
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1845
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1846
	}
1847
	spin_lock(&memcg_oom_lock);
1848
	if (locked)
1849 1850
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1851
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1852

1853
	mem_cgroup_unmark_under_oom(memcg);
1854

K
KAMEZAWA Hiroyuki 已提交
1855 1856 1857
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1858
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1859
	return true;
1860 1861
}

1862 1863 1864
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1884
 */
1885

1886 1887
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1888
{
1889
	struct mem_cgroup *memcg;
1890 1891
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1892
	unsigned long uninitialized_var(flags);
1893

1894
	if (mem_cgroup_disabled())
1895 1896
		return;

1897
	rcu_read_lock();
1898 1899
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1900 1901
		goto out;
	/* pc->mem_cgroup is unstable ? */
1902
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1903
		/* take a lock against to access pc->mem_cgroup */
1904
		move_lock_page_cgroup(pc, &flags);
1905
		need_unlock = true;
1906 1907
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1908 1909
			goto out;
	}
1910 1911

	switch (idx) {
1912
	case MEMCG_NR_FILE_MAPPED:
1913 1914 1915
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1916
			ClearPageCgroupFileMapped(pc);
1917
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1918 1919 1920
		break;
	default:
		BUG();
1921
	}
1922

1923
	this_cpu_add(memcg->stat->count[idx], val);
1924

1925 1926
out:
	if (unlikely(need_unlock))
1927
		move_unlock_page_cgroup(pc, &flags);
1928 1929
	rcu_read_unlock();
	return;
1930
}
1931
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1932

1933 1934 1935 1936
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1937
#define CHARGE_BATCH	32U
1938 1939
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1940
	unsigned int nr_pages;
1941
	struct work_struct work;
1942 1943
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1944 1945
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1946
static DEFINE_MUTEX(percpu_charge_mutex);
1947 1948

/*
1949
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1950 1951 1952 1953
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
1954
static bool consume_stock(struct mem_cgroup *memcg)
1955 1956 1957 1958 1959
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1960
	if (memcg == stock->cached && stock->nr_pages)
1961
		stock->nr_pages--;
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1975 1976 1977 1978
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1979
		if (do_swap_account)
1980 1981
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
1994
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1995 1996 1997 1998
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1999
 * This will be consumed by consume_stock() function, later.
2000
 */
2001
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2002 2003 2004
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2005
	if (stock->cached != memcg) { /* reset if necessary */
2006
		drain_stock(stock);
2007
		stock->cached = memcg;
2008
	}
2009
	stock->nr_pages += nr_pages;
2010 2011 2012 2013
	put_cpu_var(memcg_stock);
}

/*
2014
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2015 2016
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2017
 */
2018
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2019
{
2020
	int cpu, curcpu;
2021

2022 2023
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2024
	curcpu = get_cpu();
2025 2026
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2027
		struct mem_cgroup *memcg;
2028

2029 2030
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2031
			continue;
2032
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2033
			continue;
2034 2035 2036 2037 2038 2039
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2040
	}
2041
	put_cpu();
2042 2043 2044 2045 2046 2047

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2048
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2049 2050 2051
			flush_work(&stock->work);
	}
out:
2052
 	put_online_cpus();
2053 2054 2055 2056 2057 2058 2059 2060
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2061
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2062
{
2063 2064 2065 2066 2067
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2068
	drain_all_stock(root_memcg, false);
2069
	mutex_unlock(&percpu_charge_mutex);
2070 2071 2072
}

/* This is a synchronous drain interface. */
2073
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2074 2075
{
	/* called when force_empty is called */
2076
	mutex_lock(&percpu_charge_mutex);
2077
	drain_all_stock(root_memcg, true);
2078
	mutex_unlock(&percpu_charge_mutex);
2079 2080
}

2081 2082 2083 2084
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2085
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2086 2087 2088
{
	int i;

2089
	spin_lock(&memcg->pcp_counter_lock);
2090
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2091
		long x = per_cpu(memcg->stat->count[i], cpu);
2092

2093 2094
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2095
	}
2096
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2097
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2098

2099 2100
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2101
	}
2102
	/* need to clear ON_MOVE value, works as a kind of lock. */
2103 2104
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2105 2106
}

2107
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2108 2109 2110
{
	int idx = MEM_CGROUP_ON_MOVE;

2111 2112 2113
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2114 2115 2116
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2117 2118 2119 2120 2121
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2122
	struct mem_cgroup *iter;
2123

2124
	if ((action == CPU_ONLINE)) {
2125
		for_each_mem_cgroup(iter)
2126 2127 2128 2129
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2130
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2131
		return NOTIFY_OK;
2132

2133
	for_each_mem_cgroup(iter)
2134 2135
		mem_cgroup_drain_pcp_counter(iter, cpu);

2136 2137 2138 2139 2140
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2151
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2152
				unsigned int nr_pages, bool oom_check)
2153
{
2154
	unsigned long csize = nr_pages * PAGE_SIZE;
2155 2156 2157 2158 2159
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2160
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2161 2162 2163 2164

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2165
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2166 2167 2168
		if (likely(!ret))
			return CHARGE_OK;

2169
		res_counter_uncharge(&memcg->res, csize);
2170 2171 2172 2173
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2174
	/*
2175 2176
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2177 2178 2179 2180
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2181
	if (nr_pages == CHARGE_BATCH)
2182 2183 2184 2185 2186
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2187
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2188
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2189
		return CHARGE_RETRY;
2190
	/*
2191 2192 2193 2194 2195 2196 2197
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2198
	 */
2199
	if (nr_pages == 1 && ret)
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2219 2220 2221
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2222
 */
2223
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2224
				   gfp_t gfp_mask,
2225
				   unsigned int nr_pages,
2226
				   struct mem_cgroup **ptr,
2227
				   bool oom)
2228
{
2229
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2230
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2231
	struct mem_cgroup *memcg = NULL;
2232
	int ret;
2233

K
KAMEZAWA Hiroyuki 已提交
2234 2235 2236 2237 2238 2239 2240 2241
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2242

2243
	/*
2244 2245
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2246 2247 2248
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2249
	if (!*ptr && !mm)
K
KAMEZAWA Hiroyuki 已提交
2250 2251
		goto bypass;
again:
2252 2253 2254 2255
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2256
			goto done;
2257
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2258
			goto done;
2259
		css_get(&memcg->css);
2260
	} else {
K
KAMEZAWA Hiroyuki 已提交
2261
		struct task_struct *p;
2262

K
KAMEZAWA Hiroyuki 已提交
2263 2264 2265
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2266
		 * Because we don't have task_lock(), "p" can exit.
2267
		 * In that case, "memcg" can point to root or p can be NULL with
2268 2269 2270 2271 2272 2273
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2274
		 */
2275 2276
		memcg = mem_cgroup_from_task(p);
		if (!memcg || mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2277 2278 2279
			rcu_read_unlock();
			goto done;
		}
2280
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2293
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2294 2295 2296 2297 2298
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2299

2300 2301
	do {
		bool oom_check;
2302

2303
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2304
		if (fatal_signal_pending(current)) {
2305
			css_put(&memcg->css);
2306
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2307
		}
2308

2309 2310 2311 2312
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2313
		}
2314

2315
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2316 2317 2318 2319
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2320
			batch = nr_pages;
2321 2322
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2323
			goto again;
2324
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2325
			css_put(&memcg->css);
2326 2327
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2328
			if (!oom) {
2329
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2330
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2331
			}
2332 2333 2334 2335
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2336
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2337
			goto bypass;
2338
		}
2339 2340
	} while (ret != CHARGE_OK);

2341
	if (batch > nr_pages)
2342 2343
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2344
done:
2345
	*ptr = memcg;
2346 2347
	return 0;
nomem:
2348
	*ptr = NULL;
2349
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2350
bypass:
2351
	*ptr = NULL;
K
KAMEZAWA Hiroyuki 已提交
2352
	return 0;
2353
}
2354

2355 2356 2357 2358 2359
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2360
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2361
				       unsigned int nr_pages)
2362
{
2363
	if (!mem_cgroup_is_root(memcg)) {
2364 2365
		unsigned long bytes = nr_pages * PAGE_SIZE;

2366
		res_counter_uncharge(&memcg->res, bytes);
2367
		if (do_swap_account)
2368
			res_counter_uncharge(&memcg->memsw, bytes);
2369
	}
2370 2371
}

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2391
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2392
{
2393
	struct mem_cgroup *memcg = NULL;
2394
	struct page_cgroup *pc;
2395
	unsigned short id;
2396 2397
	swp_entry_t ent;

2398 2399 2400
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2401
	lock_page_cgroup(pc);
2402
	if (PageCgroupUsed(pc)) {
2403 2404 2405
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2406
	} else if (PageSwapCache(page)) {
2407
		ent.val = page_private(page);
2408
		id = lookup_swap_cgroup_id(ent);
2409
		rcu_read_lock();
2410 2411 2412
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2413
		rcu_read_unlock();
2414
	}
2415
	unlock_page_cgroup(pc);
2416
	return memcg;
2417 2418
}

2419
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2420
				       struct page *page,
2421
				       unsigned int nr_pages,
2422
				       struct page_cgroup *pc,
2423
				       enum charge_type ctype)
2424
{
2425 2426 2427
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2428
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2429 2430 2431 2432 2433 2434
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2435
	pc->mem_cgroup = memcg;
2436 2437 2438 2439 2440 2441 2442
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2443
	smp_wmb();
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2457

2458
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2459
	unlock_page_cgroup(pc);
2460 2461 2462 2463 2464
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2465
	memcg_check_events(memcg, page);
2466
}
2467

2468 2469 2470 2471 2472 2473
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
2474 2475 2476
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2477
 */
2478
void mem_cgroup_split_huge_fixup(struct page *head)
2479 2480
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2481 2482
	struct page_cgroup *pc;
	int i;
2483

2484 2485
	if (mem_cgroup_disabled())
		return;
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		/*
		 * LRU flags cannot be copied because we need to add tail
		 * page to LRU by generic call and our hooks will be called.
		 */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2496

2497 2498 2499 2500 2501 2502 2503
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;
		/*
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2504
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2505
		MEM_CGROUP_ZSTAT(mz, lru) -= HPAGE_PMD_NR - 1;
2506
	}
2507 2508 2509
}
#endif

2510
/**
2511
 * mem_cgroup_move_account - move account of the page
2512
 * @page: the page
2513
 * @nr_pages: number of regular pages (>1 for huge pages)
2514 2515 2516
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2517
 * @uncharge: whether we should call uncharge and css_put against @from.
2518 2519
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2520
 * - page is not on LRU (isolate_page() is useful.)
2521
 * - compound_lock is held when nr_pages > 1
2522
 *
2523
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2524
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2525 2526
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2527
 */
2528 2529 2530 2531 2532 2533
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2534
{
2535 2536
	unsigned long flags;
	int ret;
2537

2538
	VM_BUG_ON(from == to);
2539
	VM_BUG_ON(PageLRU(page));
2540 2541 2542 2543 2544 2545 2546
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2547
	if (nr_pages > 1 && !PageTransHuge(page))
2548 2549 2550 2551 2552 2553 2554 2555 2556
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2557

2558
	if (PageCgroupFileMapped(pc)) {
2559 2560 2561 2562 2563
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2564
	}
2565
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2566 2567
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2568
		__mem_cgroup_cancel_charge(from, nr_pages);
2569

2570
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2571
	pc->mem_cgroup = to;
2572
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2573 2574 2575
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2576
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2577
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2578
	 * status here.
2579
	 */
2580 2581 2582
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2583
	unlock_page_cgroup(pc);
2584 2585 2586
	/*
	 * check events
	 */
2587 2588
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2589
out:
2590 2591 2592 2593 2594 2595 2596
	return ret;
}

/*
 * move charges to its parent.
 */

2597 2598
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2599 2600 2601 2602 2603 2604
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2605
	unsigned int nr_pages;
2606
	unsigned long uninitialized_var(flags);
2607 2608 2609 2610 2611 2612
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2613 2614 2615 2616 2617
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2618

2619
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2620

2621
	parent = mem_cgroup_from_cont(pcg);
2622
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2623
	if (ret || !parent)
2624
		goto put_back;
2625

2626
	if (nr_pages > 1)
2627 2628
		flags = compound_lock_irqsave(page);

2629
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2630
	if (ret)
2631
		__mem_cgroup_cancel_charge(parent, nr_pages);
2632

2633
	if (nr_pages > 1)
2634
		compound_unlock_irqrestore(page, flags);
2635
put_back:
K
KAMEZAWA Hiroyuki 已提交
2636
	putback_lru_page(page);
2637
put:
2638
	put_page(page);
2639
out:
2640 2641 2642
	return ret;
}

2643 2644 2645 2646 2647 2648 2649
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2650
				gfp_t gfp_mask, enum charge_type ctype)
2651
{
2652
	struct mem_cgroup *memcg = NULL;
2653
	unsigned int nr_pages = 1;
2654
	struct page_cgroup *pc;
2655
	bool oom = true;
2656
	int ret;
A
Andrea Arcangeli 已提交
2657

A
Andrea Arcangeli 已提交
2658
	if (PageTransHuge(page)) {
2659
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2660
		VM_BUG_ON(!PageTransHuge(page));
2661 2662 2663 2664 2665
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2666
	}
2667 2668

	pc = lookup_page_cgroup(page);
2669 2670
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
	if (ret || !memcg)
2671 2672
		return ret;

2673
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2674 2675 2676
	return 0;
}

2677 2678
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2679
{
2680
	if (mem_cgroup_disabled())
2681
		return 0;
2682 2683 2684
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2685
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2686
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2687 2688
}

D
Daisuke Nishimura 已提交
2689 2690 2691 2692
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2693
static void
2694
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2695 2696 2697
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
2698 2699 2700 2701
	struct zone *zone = page_zone(page);
	unsigned long flags;
	bool removed = false;

2702 2703 2704 2705 2706
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
2707 2708 2709 2710 2711 2712
	spin_lock_irqsave(&zone->lru_lock, flags);
	if (PageLRU(page)) {
		del_page_from_lru_list(zone, page, page_lru(page));
		ClearPageLRU(page);
		removed = true;
	}
2713
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2714 2715 2716 2717 2718
	if (removed) {
		add_page_to_lru_list(zone, page, page_lru(page));
		SetPageLRU(page);
	}
	spin_unlock_irqrestore(&zone->lru_lock, flags);
2719 2720 2721
	return;
}

2722 2723
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2724
{
2725
	struct mem_cgroup *memcg = NULL;
2726
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2727 2728
	int ret;

2729
	if (mem_cgroup_disabled())
2730
		return 0;
2731 2732
	if (PageCompound(page))
		return 0;
2733

2734
	if (unlikely(!mm))
2735
		mm = &init_mm;
2736 2737
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2738

2739 2740 2741 2742
	if (!PageSwapCache(page)) {
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
		WARN_ON_ONCE(PageLRU(page));
	} else { /* page is swapcache/shmem */
2743
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2744
		if (!ret)
2745 2746
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2747
	return ret;
2748 2749
}

2750 2751 2752
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2753
 * struct page_cgroup is acquired. This refcnt will be consumed by
2754 2755
 * "commit()" or removed by "cancel()"
 */
2756 2757
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2758
				 gfp_t mask, struct mem_cgroup **memcgp)
2759
{
2760
	struct mem_cgroup *memcg;
2761
	int ret;
2762

2763
	*memcgp = NULL;
2764

2765
	if (mem_cgroup_disabled())
2766 2767 2768 2769 2770 2771
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2772 2773 2774
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2775 2776
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2777
		goto charge_cur_mm;
2778 2779
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2780
		goto charge_cur_mm;
2781 2782
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2783
	css_put(&memcg->css);
2784
	return ret;
2785 2786 2787
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2788
	return __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2789 2790
}

D
Daisuke Nishimura 已提交
2791
static void
2792
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2793
					enum charge_type ctype)
2794
{
2795
	if (mem_cgroup_disabled())
2796
		return;
2797
	if (!memcg)
2798
		return;
2799
	cgroup_exclude_rmdir(&memcg->css);
2800

2801
	__mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2802 2803 2804
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2805 2806 2807
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2808
	 */
2809
	if (do_swap_account && PageSwapCache(page)) {
2810
		swp_entry_t ent = {.val = page_private(page)};
2811
		struct mem_cgroup *swap_memcg;
2812 2813 2814 2815
		unsigned short id;

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
2816 2817
		swap_memcg = mem_cgroup_lookup(id);
		if (swap_memcg) {
2818 2819 2820 2821
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2822 2823 2824 2825 2826
			if (!mem_cgroup_is_root(swap_memcg))
				res_counter_uncharge(&swap_memcg->memsw,
						     PAGE_SIZE);
			mem_cgroup_swap_statistics(swap_memcg, false);
			mem_cgroup_put(swap_memcg);
2827
		}
2828
		rcu_read_unlock();
2829
	}
2830 2831 2832 2833 2834
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2835
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2836 2837
}

2838 2839
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2840
{
2841 2842
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2843 2844
}

2845
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2846
{
2847
	if (mem_cgroup_disabled())
2848
		return;
2849
	if (!memcg)
2850
		return;
2851
	__mem_cgroup_cancel_charge(memcg, 1);
2852 2853
}

2854
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2855 2856
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2857 2858 2859
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2860

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2872
		batch->memcg = memcg;
2873 2874
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2875
	 * In those cases, all pages freed continuously can be expected to be in
2876 2877 2878 2879 2880 2881 2882 2883
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2884
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2885 2886
		goto direct_uncharge;

2887 2888 2889 2890 2891
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2892
	if (batch->memcg != memcg)
2893 2894
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2895
	batch->nr_pages++;
2896
	if (uncharge_memsw)
2897
		batch->memsw_nr_pages++;
2898 2899
	return;
direct_uncharge:
2900
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2901
	if (uncharge_memsw)
2902 2903 2904
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2905 2906
	return;
}
2907

2908
/*
2909
 * uncharge if !page_mapped(page)
2910
 */
2911
static struct mem_cgroup *
2912
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2913
{
2914
	struct mem_cgroup *memcg = NULL;
2915 2916
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2917

2918
	if (mem_cgroup_disabled())
2919
		return NULL;
2920

K
KAMEZAWA Hiroyuki 已提交
2921
	if (PageSwapCache(page))
2922
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2923

A
Andrea Arcangeli 已提交
2924
	if (PageTransHuge(page)) {
2925
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2926 2927
		VM_BUG_ON(!PageTransHuge(page));
	}
2928
	/*
2929
	 * Check if our page_cgroup is valid
2930
	 */
2931
	pc = lookup_page_cgroup(page);
2932
	if (unlikely(!PageCgroupUsed(pc)))
2933
		return NULL;
2934

2935
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2936

2937
	memcg = pc->mem_cgroup;
2938

K
KAMEZAWA Hiroyuki 已提交
2939 2940 2941 2942 2943
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2944
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2945 2946
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2958
	}
K
KAMEZAWA Hiroyuki 已提交
2959

2960
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2961

2962
	ClearPageCgroupUsed(pc);
2963 2964 2965 2966 2967 2968
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2969

2970
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2971
	/*
2972
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
2973 2974
	 * will never be freed.
	 */
2975
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
2976
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2977 2978
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
2979
	}
2980 2981
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2982

2983
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
2984 2985 2986

unlock_out:
	unlock_page_cgroup(pc);
2987
	return NULL;
2988 2989
}

2990 2991
void mem_cgroup_uncharge_page(struct page *page)
{
2992 2993 2994
	/* early check. */
	if (page_mapped(page))
		return;
2995
	VM_BUG_ON(page->mapping && !PageAnon(page));
2996 2997 2998 2999 3000 3001
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3002
	VM_BUG_ON(page->mapping);
3003 3004 3005
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3020 3021
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3042 3043 3044 3045 3046 3047
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3048
	memcg_oom_recover(batch->memcg);
3049 3050 3051 3052
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
/*
 * A function for resetting pc->mem_cgroup for newly allocated pages.
 * This function should be called if the newpage will be added to LRU
 * before start accounting.
 */
void mem_cgroup_reset_owner(struct page *newpage)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(newpage);
	VM_BUG_ON(PageCgroupUsed(pc));
	pc->mem_cgroup = root_mem_cgroup;
}

3070
#ifdef CONFIG_SWAP
3071
/*
3072
 * called after __delete_from_swap_cache() and drop "page" account.
3073 3074
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3075 3076
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3077 3078
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3079 3080 3081 3082 3083 3084
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3085

K
KAMEZAWA Hiroyuki 已提交
3086 3087 3088 3089 3090
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3091
		swap_cgroup_record(ent, css_id(&memcg->css));
3092
}
3093
#endif
3094 3095 3096 3097 3098 3099 3100

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3101
{
3102
	struct mem_cgroup *memcg;
3103
	unsigned short id;
3104 3105 3106 3107

	if (!do_swap_account)
		return;

3108 3109 3110
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3111
	if (memcg) {
3112 3113 3114 3115
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3116
		if (!mem_cgroup_is_root(memcg))
3117
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3118
		mem_cgroup_swap_statistics(memcg, false);
3119 3120
		mem_cgroup_put(memcg);
	}
3121
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3122
}
3123 3124 3125 3126 3127 3128

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3129
 * @need_fixup: whether we should fixup res_counters and refcounts.
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3140
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3141 3142 3143 3144 3145 3146 3147 3148
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3149
		mem_cgroup_swap_statistics(to, true);
3150
		/*
3151 3152 3153 3154 3155 3156
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3157 3158
		 */
		mem_cgroup_get(to);
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3170 3171 3172 3173 3174 3175
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3176
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3177 3178 3179
{
	return -EINVAL;
}
3180
#endif
K
KAMEZAWA Hiroyuki 已提交
3181

3182
/*
3183 3184
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3185
 */
3186
int mem_cgroup_prepare_migration(struct page *page,
3187
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3188
{
3189
	struct mem_cgroup *memcg = NULL;
3190
	struct page_cgroup *pc;
3191
	enum charge_type ctype;
3192
	int ret = 0;
3193

3194
	*memcgp = NULL;
3195

A
Andrea Arcangeli 已提交
3196
	VM_BUG_ON(PageTransHuge(page));
3197
	if (mem_cgroup_disabled())
3198 3199
		return 0;

3200 3201 3202
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3203 3204
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3236
	}
3237
	unlock_page_cgroup(pc);
3238 3239 3240 3241
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3242
	if (!memcg)
3243
		return 0;
3244

3245 3246
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3247
	css_put(&memcg->css);/* drop extra refcnt */
3248
	if (ret || *memcgp == NULL) {
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3259
	}
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3273
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3274
	return ret;
3275
}
3276

3277
/* remove redundant charge if migration failed*/
3278
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3279
	struct page *oldpage, struct page *newpage, bool migration_ok)
3280
{
3281
	struct page *used, *unused;
3282 3283
	struct page_cgroup *pc;

3284
	if (!memcg)
3285
		return;
3286
	/* blocks rmdir() */
3287
	cgroup_exclude_rmdir(&memcg->css);
3288
	if (!migration_ok) {
3289 3290
		used = oldpage;
		unused = newpage;
3291
	} else {
3292
		used = newpage;
3293 3294
		unused = oldpage;
	}
3295
	/*
3296 3297 3298
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3299
	 */
3300 3301 3302 3303
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3304

3305 3306
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3307
	/*
3308 3309 3310 3311 3312 3313
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3314
	 */
3315 3316
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3317
	/*
3318 3319
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3320 3321 3322
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3323
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3324
}
3325

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3357
	__mem_cgroup_commit_charge_lrucare(newpage, memcg, type);
3358 3359
}

3360 3361 3362 3363 3364 3365
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3366 3367 3368 3369 3370
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3411 3412
static DEFINE_MUTEX(set_limit_mutex);

3413
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3414
				unsigned long long val)
3415
{
3416
	int retry_count;
3417
	u64 memswlimit, memlimit;
3418
	int ret = 0;
3419 3420
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3421
	int enlarge;
3422 3423 3424 3425 3426 3427 3428 3429 3430

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3431

3432
	enlarge = 0;
3433
	while (retry_count) {
3434 3435 3436 3437
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3438 3439 3440
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3441
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3442 3443 3444 3445 3446 3447
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3448 3449
			break;
		}
3450 3451 3452 3453 3454

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3455
		ret = res_counter_set_limit(&memcg->res, val);
3456 3457 3458 3459 3460 3461
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3462 3463 3464 3465 3466
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3467 3468
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3469 3470 3471 3472 3473 3474
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3475
	}
3476 3477
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3478

3479 3480 3481
	return ret;
}

L
Li Zefan 已提交
3482 3483
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3484
{
3485
	int retry_count;
3486
	u64 memlimit, memswlimit, oldusage, curusage;
3487 3488
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3489
	int enlarge = 0;
3490

3491 3492 3493
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3494 3495 3496 3497 3498 3499 3500 3501
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3502
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3503 3504 3505 3506 3507 3508 3509 3510
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3511 3512 3513
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3514
		ret = res_counter_set_limit(&memcg->memsw, val);
3515 3516 3517 3518 3519 3520
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3521 3522 3523 3524 3525
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3526 3527 3528
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3529
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3530
		/* Usage is reduced ? */
3531
		if (curusage >= oldusage)
3532
			retry_count--;
3533 3534
		else
			oldusage = curusage;
3535
	}
3536 3537
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3538 3539 3540
	return ret;
}

3541
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3542 3543
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3544 3545 3546 3547 3548 3549
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3550
	unsigned long long excess;
3551
	unsigned long nr_scanned;
3552 3553 3554 3555

	if (order > 0)
		return 0;

3556
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3570
		nr_scanned = 0;
3571 3572
		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
						    gfp_mask, &nr_scanned);
3573
		nr_reclaimed += reclaimed;
3574
		*total_scanned += nr_scanned;
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3597
				if (next_mz == mz)
3598
					css_put(&next_mz->mem->css);
3599
				else /* next_mz == NULL or other memcg */
3600 3601 3602 3603
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3604
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3605 3606 3607 3608 3609 3610 3611 3612
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3613 3614
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3633 3634 3635 3636
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3637
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3638
				int node, int zid, enum lru_list lru)
3639
{
K
KAMEZAWA Hiroyuki 已提交
3640 3641
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3642
	struct list_head *list;
3643 3644
	struct page *busy;
	struct zone *zone;
3645
	int ret = 0;
3646

K
KAMEZAWA Hiroyuki 已提交
3647
	zone = &NODE_DATA(node)->node_zones[zid];
3648
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3649
	list = &mz->lruvec.lists[lru];
3650

3651 3652 3653 3654 3655
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3656
		struct page_cgroup *pc;
3657 3658
		struct page *page;

3659
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3660
		spin_lock_irqsave(&zone->lru_lock, flags);
3661
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3662
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3663
			break;
3664
		}
3665 3666 3667
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3668
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3669
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3670 3671
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3672
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3673

3674
		pc = lookup_page_cgroup(page);
3675

3676
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3677
		if (ret == -ENOMEM)
3678
			break;
3679 3680 3681

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3682
			busy = page;
3683 3684 3685
			cond_resched();
		} else
			busy = NULL;
3686
	}
K
KAMEZAWA Hiroyuki 已提交
3687

3688 3689 3690
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3691 3692 3693 3694 3695 3696
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3697
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3698
{
3699 3700 3701
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3702
	struct cgroup *cgrp = memcg->css.cgroup;
3703

3704
	css_get(&memcg->css);
3705 3706

	shrink = 0;
3707 3708 3709
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3710
move_account:
3711
	do {
3712
		ret = -EBUSY;
3713 3714 3715 3716
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3717
			goto out;
3718 3719
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3720
		drain_all_stock_sync(memcg);
3721
		ret = 0;
3722
		mem_cgroup_start_move(memcg);
3723
		for_each_node_state(node, N_HIGH_MEMORY) {
3724
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3725
				enum lru_list l;
3726
				for_each_lru(l) {
3727
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3728
							node, zid, l);
3729 3730 3731
					if (ret)
						break;
				}
3732
			}
3733 3734 3735
			if (ret)
				break;
		}
3736 3737
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3738 3739 3740
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3741
		cond_resched();
3742
	/* "ret" should also be checked to ensure all lists are empty. */
3743
	} while (memcg->res.usage > 0 || ret);
3744
out:
3745
	css_put(&memcg->css);
3746
	return ret;
3747 3748

try_to_free:
3749 3750
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3751 3752 3753
		ret = -EBUSY;
		goto out;
	}
3754 3755
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3756 3757
	/* try to free all pages in this cgroup */
	shrink = 1;
3758
	while (nr_retries && memcg->res.usage > 0) {
3759
		int progress;
3760 3761 3762 3763 3764

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3765
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3766
						false);
3767
		if (!progress) {
3768
			nr_retries--;
3769
			/* maybe some writeback is necessary */
3770
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3771
		}
3772 3773

	}
K
KAMEZAWA Hiroyuki 已提交
3774
	lru_add_drain();
3775
	/* try move_account...there may be some *locked* pages. */
3776
	goto move_account;
3777 3778
}

3779 3780 3781 3782 3783 3784
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3785 3786 3787 3788 3789 3790 3791 3792 3793
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3794
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3795
	struct cgroup *parent = cont->parent;
3796
	struct mem_cgroup *parent_memcg = NULL;
3797 3798

	if (parent)
3799
		parent_memcg = mem_cgroup_from_cont(parent);
3800 3801 3802

	cgroup_lock();
	/*
3803
	 * If parent's use_hierarchy is set, we can't make any modifications
3804 3805 3806 3807 3808 3809
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3810
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3811 3812
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3813
			memcg->use_hierarchy = val;
3814 3815 3816 3817 3818 3819 3820 3821 3822
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3823

3824
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3825
					       enum mem_cgroup_stat_index idx)
3826
{
K
KAMEZAWA Hiroyuki 已提交
3827
	struct mem_cgroup *iter;
3828
	long val = 0;
3829

3830
	/* Per-cpu values can be negative, use a signed accumulator */
3831
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3832 3833 3834 3835 3836
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3837 3838
}

3839
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3840
{
K
KAMEZAWA Hiroyuki 已提交
3841
	u64 val;
3842

3843
	if (!mem_cgroup_is_root(memcg)) {
3844
		if (!swap)
3845
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3846
		else
3847
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3848 3849
	}

3850 3851
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3852

K
KAMEZAWA Hiroyuki 已提交
3853
	if (swap)
3854
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3855 3856 3857 3858

	return val << PAGE_SHIFT;
}

3859
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3860
{
3861
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3862
	u64 val;
3863 3864 3865 3866 3867 3868
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3869
		if (name == RES_USAGE)
3870
			val = mem_cgroup_usage(memcg, false);
3871
		else
3872
			val = res_counter_read_u64(&memcg->res, name);
3873 3874
		break;
	case _MEMSWAP:
3875
		if (name == RES_USAGE)
3876
			val = mem_cgroup_usage(memcg, true);
3877
		else
3878
			val = res_counter_read_u64(&memcg->memsw, name);
3879 3880 3881 3882 3883 3884
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3885
}
3886 3887 3888 3889
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3890 3891
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3892
{
3893
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3894
	int type, name;
3895 3896 3897
	unsigned long long val;
	int ret;

3898 3899 3900
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3901
	case RES_LIMIT:
3902 3903 3904 3905
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3906 3907
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3908 3909 3910
		if (ret)
			break;
		if (type == _MEM)
3911
			ret = mem_cgroup_resize_limit(memcg, val);
3912 3913
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3914
		break;
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3929 3930 3931 3932 3933
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3934 3935
}

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3964
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3965
{
3966
	struct mem_cgroup *memcg;
3967
	int type, name;
3968

3969
	memcg = mem_cgroup_from_cont(cont);
3970 3971 3972
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3973
	case RES_MAX_USAGE:
3974
		if (type == _MEM)
3975
			res_counter_reset_max(&memcg->res);
3976
		else
3977
			res_counter_reset_max(&memcg->memsw);
3978 3979
		break;
	case RES_FAILCNT:
3980
		if (type == _MEM)
3981
			res_counter_reset_failcnt(&memcg->res);
3982
		else
3983
			res_counter_reset_failcnt(&memcg->memsw);
3984 3985
		break;
	}
3986

3987
	return 0;
3988 3989
}

3990 3991 3992 3993 3994 3995
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3996
#ifdef CONFIG_MMU
3997 3998 3999
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4000
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4001 4002 4003 4004 4005 4006 4007 4008 4009

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4010
	memcg->move_charge_at_immigrate = val;
4011 4012 4013 4014
	cgroup_unlock();

	return 0;
}
4015 4016 4017 4018 4019 4020 4021
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4022

K
KAMEZAWA Hiroyuki 已提交
4023 4024 4025 4026 4027

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4028
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4029 4030
	MCS_PGPGIN,
	MCS_PGPGOUT,
4031
	MCS_SWAP,
4032 4033
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4044 4045
};

K
KAMEZAWA Hiroyuki 已提交
4046 4047 4048 4049 4050 4051
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4052
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4053 4054
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4055
	{"swap", "total_swap"},
4056 4057
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4058 4059 4060 4061 4062 4063 4064 4065
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4066
static void
4067
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4068 4069 4070 4071
{
	s64 val;

	/* per cpu stat */
4072
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4073
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4074
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4075
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4076
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4077
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4078
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4079
	s->stat[MCS_PGPGIN] += val;
4080
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4081
	s->stat[MCS_PGPGOUT] += val;
4082
	if (do_swap_account) {
4083
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4084 4085
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4086
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4087
	s->stat[MCS_PGFAULT] += val;
4088
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4089
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4090 4091

	/* per zone stat */
4092
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4093
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4094
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4095
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4096
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4097
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4098
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4099
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4100
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4101 4102 4103 4104
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4105
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4106
{
K
KAMEZAWA Hiroyuki 已提交
4107 4108
	struct mem_cgroup *iter;

4109
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4110
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4111 4112
}

4113 4114 4115 4116 4117 4118 4119 4120 4121
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4122
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4123 4124
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4125
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4126 4127 4128 4129
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4130
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4131 4132
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4133 4134
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4135 4136 4137 4138
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4139
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4140 4141
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4142 4143
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4144 4145 4146 4147
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4148
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4149 4150
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4151 4152
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4153 4154 4155 4156 4157 4158 4159
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4160 4161
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4162 4163
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4164
	struct mcs_total_stat mystat;
4165 4166
	int i;

K
KAMEZAWA Hiroyuki 已提交
4167 4168
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4169

4170

4171 4172 4173
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4174
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4175
	}
L
Lee Schermerhorn 已提交
4176

K
KAMEZAWA Hiroyuki 已提交
4177
	/* Hierarchical information */
4178 4179 4180 4181 4182 4183 4184
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4185

K
KAMEZAWA Hiroyuki 已提交
4186 4187
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4188 4189 4190
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4191
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4192
	}
K
KAMEZAWA Hiroyuki 已提交
4193

K
KOSAKI Motohiro 已提交
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4221 4222 4223
	return 0;
}

K
KOSAKI Motohiro 已提交
4224 4225 4226 4227
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4228
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4229 4230 4231 4232 4233 4234 4235
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4236

K
KOSAKI Motohiro 已提交
4237 4238 4239 4240 4241 4242 4243
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4244 4245 4246

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4247 4248
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4249 4250
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4251
		return -EINVAL;
4252
	}
K
KOSAKI Motohiro 已提交
4253 4254 4255

	memcg->swappiness = val;

4256 4257
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4258 4259 4260
	return 0;
}

4261 4262 4263 4264 4265 4266 4267 4268
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4269
		t = rcu_dereference(memcg->thresholds.primary);
4270
	else
4271
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4283
	i = t->current_threshold;
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4307
	t->current_threshold = i - 1;
4308 4309 4310 4311 4312 4313
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4314 4315 4316 4317 4318 4319 4320
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4331
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4332 4333 4334
{
	struct mem_cgroup_eventfd_list *ev;

4335
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4336 4337 4338 4339
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4340
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4341
{
K
KAMEZAWA Hiroyuki 已提交
4342 4343
	struct mem_cgroup *iter;

4344
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4345
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4346 4347 4348 4349
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4350 4351
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4352 4353
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4354 4355
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4356
	int i, size, ret;
4357 4358 4359 4360 4361 4362

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4363

4364
	if (type == _MEM)
4365
		thresholds = &memcg->thresholds;
4366
	else if (type == _MEMSWAP)
4367
		thresholds = &memcg->memsw_thresholds;
4368 4369 4370 4371 4372 4373
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4374
	if (thresholds->primary)
4375 4376
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4377
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4378 4379

	/* Allocate memory for new array of thresholds */
4380
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4381
			GFP_KERNEL);
4382
	if (!new) {
4383 4384 4385
		ret = -ENOMEM;
		goto unlock;
	}
4386
	new->size = size;
4387 4388

	/* Copy thresholds (if any) to new array */
4389 4390
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4391
				sizeof(struct mem_cgroup_threshold));
4392 4393
	}

4394
	/* Add new threshold */
4395 4396
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4397 4398

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4399
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4400 4401 4402
			compare_thresholds, NULL);

	/* Find current threshold */
4403
	new->current_threshold = -1;
4404
	for (i = 0; i < size; i++) {
4405
		if (new->entries[i].threshold < usage) {
4406
			/*
4407 4408
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4409 4410
			 * it here.
			 */
4411
			++new->current_threshold;
4412 4413 4414
		}
	}

4415 4416 4417 4418 4419
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4420

4421
	/* To be sure that nobody uses thresholds */
4422 4423 4424 4425 4426 4427 4428 4429
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4430
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4431
	struct cftype *cft, struct eventfd_ctx *eventfd)
4432 4433
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4434 4435
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4436 4437
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4438
	int i, j, size;
4439 4440 4441

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4442
		thresholds = &memcg->thresholds;
4443
	else if (type == _MEMSWAP)
4444
		thresholds = &memcg->memsw_thresholds;
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4460 4461 4462
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4463 4464 4465
			size++;
	}

4466
	new = thresholds->spare;
4467

4468 4469
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4470 4471
		kfree(new);
		new = NULL;
4472
		goto swap_buffers;
4473 4474
	}

4475
	new->size = size;
4476 4477

	/* Copy thresholds and find current threshold */
4478 4479 4480
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4481 4482
			continue;

4483 4484
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4485
			/*
4486
			 * new->current_threshold will not be used
4487 4488 4489
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4490
			++new->current_threshold;
4491 4492 4493 4494
		}
		j++;
	}

4495
swap_buffers:
4496 4497 4498
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4499

4500
	/* To be sure that nobody uses thresholds */
4501 4502 4503 4504
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4505

K
KAMEZAWA Hiroyuki 已提交
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4518
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4519 4520 4521 4522 4523

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4524
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4525
		eventfd_signal(eventfd, 1);
4526
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4527 4528 4529 4530

	return 0;
}

4531
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4532 4533
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4534
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4535 4536 4537 4538 4539
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4540
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4541

4542
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4543 4544 4545 4546 4547 4548
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4549
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4550 4551
}

4552 4553 4554
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4555
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4556

4557
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4558

4559
	if (atomic_read(&memcg->under_oom))
4560 4561 4562 4563 4564 4565 4566 4567 4568
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4569
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4581
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4582 4583 4584
		cgroup_unlock();
		return -EINVAL;
	}
4585
	memcg->oom_kill_disable = val;
4586
	if (!val)
4587
		memcg_oom_recover(memcg);
4588 4589 4590 4591
	cgroup_unlock();
	return 0;
}

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4608 4609 4610
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4611 4612 4613 4614 4615 4616 4617
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4618
	return mem_cgroup_sockets_init(cont, ss);
4619 4620
};

G
Glauber Costa 已提交
4621 4622 4623 4624 4625
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4626 4627 4628 4629 4630
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4631 4632 4633 4634 4635

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4636 4637
#endif

B
Balbir Singh 已提交
4638 4639
static struct cftype mem_cgroup_files[] = {
	{
4640
		.name = "usage_in_bytes",
4641
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4642
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4643 4644
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4645
	},
4646 4647
	{
		.name = "max_usage_in_bytes",
4648
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4649
		.trigger = mem_cgroup_reset,
4650 4651
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4652
	{
4653
		.name = "limit_in_bytes",
4654
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4655
		.write_string = mem_cgroup_write,
4656
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4657
	},
4658 4659 4660 4661 4662 4663
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4664 4665
	{
		.name = "failcnt",
4666
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4667
		.trigger = mem_cgroup_reset,
4668
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4669
	},
4670 4671
	{
		.name = "stat",
4672
		.read_map = mem_control_stat_show,
4673
	},
4674 4675 4676 4677
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4678 4679 4680 4681 4682
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4683 4684 4685 4686 4687
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4688 4689 4690 4691 4692
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4693 4694
	{
		.name = "oom_control",
4695 4696
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4697 4698 4699 4700
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4701 4702 4703 4704
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4705
		.mode = S_IRUGO,
4706 4707
	},
#endif
B
Balbir Singh 已提交
4708 4709
};

4710 4711 4712 4713 4714 4715
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4716 4717
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4753
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4754 4755
{
	struct mem_cgroup_per_node *pn;
4756
	struct mem_cgroup_per_zone *mz;
4757
	enum lru_list l;
4758
	int zone, tmp = node;
4759 4760 4761 4762 4763 4764 4765 4766
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4767 4768
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4769
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4770 4771
	if (!pn)
		return 1;
4772 4773 4774

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4775
		for_each_lru(l)
4776
			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4777
		mz->usage_in_excess = 0;
4778
		mz->on_tree = false;
4779
		mz->mem = memcg;
4780
	}
4781
	memcg->info.nodeinfo[node] = pn;
4782 4783 4784
	return 0;
}

4785
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4786
{
4787
	kfree(memcg->info.nodeinfo[node]);
4788 4789
}

4790 4791 4792
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4793
	int size = sizeof(struct mem_cgroup);
4794

4795
	/* Can be very big if MAX_NUMNODES is very big */
4796
	if (size < PAGE_SIZE)
4797
		mem = kzalloc(size, GFP_KERNEL);
4798
	else
4799
		mem = vzalloc(size);
4800

4801 4802 4803
	if (!mem)
		return NULL;

4804
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4805 4806
	if (!mem->stat)
		goto out_free;
4807
	spin_lock_init(&mem->pcp_counter_lock);
4808
	return mem;
4809 4810 4811 4812 4813 4814 4815

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4816 4817
}

4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4829
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4830
{
K
KAMEZAWA Hiroyuki 已提交
4831 4832
	int node;

4833 4834
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4835

K
KAMEZAWA Hiroyuki 已提交
4836
	for_each_node_state(node, N_POSSIBLE)
4837
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4838

4839
	free_percpu(memcg->stat);
4840
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4841
		kfree(memcg);
4842
	else
4843
		vfree(memcg);
4844 4845
}

4846
static void mem_cgroup_get(struct mem_cgroup *memcg)
4847
{
4848
	atomic_inc(&memcg->refcnt);
4849 4850
}

4851
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4852
{
4853 4854 4855
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4856 4857 4858
		if (parent)
			mem_cgroup_put(parent);
	}
4859 4860
}

4861
static void mem_cgroup_put(struct mem_cgroup *memcg)
4862
{
4863
	__mem_cgroup_put(memcg, 1);
4864 4865
}

4866 4867 4868
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4869
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4870
{
4871
	if (!memcg->res.parent)
4872
		return NULL;
4873
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4874
}
G
Glauber Costa 已提交
4875
EXPORT_SYMBOL(parent_mem_cgroup);
4876

4877 4878 4879
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4880
	if (!mem_cgroup_disabled() && really_do_swap_account)
4881 4882 4883 4884 4885 4886 4887 4888
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4901
			goto err_cleanup;
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921

err_cleanup:
	for_each_node_state(node, N_POSSIBLE) {
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4922 4923
}

L
Li Zefan 已提交
4924
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4925 4926
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4927
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4928
	long error = -ENOMEM;
4929
	int node;
B
Balbir Singh 已提交
4930

4931 4932
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4933
		return ERR_PTR(error);
4934

4935
	for_each_node_state(node, N_POSSIBLE)
4936
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4937
			goto free_out;
4938

4939
	/* root ? */
4940
	if (cont->parent == NULL) {
4941
		int cpu;
4942
		enable_swap_cgroup();
4943
		parent = NULL;
4944 4945
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4946
		root_mem_cgroup = memcg;
4947 4948 4949 4950 4951
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4952
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4953
	} else {
4954
		parent = mem_cgroup_from_cont(cont->parent);
4955 4956
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4957
	}
4958

4959
	if (parent && parent->use_hierarchy) {
4960 4961
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4962 4963 4964 4965 4966 4967 4968
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4969
	} else {
4970 4971
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4972
	}
4973 4974
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4975

K
KOSAKI Motohiro 已提交
4976
	if (parent)
4977 4978 4979 4980 4981
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
4982
free_out:
4983
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4984
	return ERR_PTR(error);
B
Balbir Singh 已提交
4985 4986
}

4987
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4988 4989
					struct cgroup *cont)
{
4990
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4991

4992
	return mem_cgroup_force_empty(memcg, false);
4993 4994
}

B
Balbir Singh 已提交
4995 4996 4997
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4998
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4999

G
Glauber Costa 已提交
5000 5001
	kmem_cgroup_destroy(ss, cont);

5002
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5003 5004 5005 5006 5007
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5008 5009 5010 5011 5012 5013 5014
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
5015 5016 5017 5018

	if (!ret)
		ret = register_kmem_files(cont, ss);

5019
	return ret;
B
Balbir Singh 已提交
5020 5021
}

5022
#ifdef CONFIG_MMU
5023
/* Handlers for move charge at task migration. */
5024 5025
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5026
{
5027 5028
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5029
	struct mem_cgroup *memcg = mc.to;
5030

5031
	if (mem_cgroup_is_root(memcg)) {
5032 5033 5034 5035 5036 5037 5038 5039
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5040
		 * "memcg" cannot be under rmdir() because we've already checked
5041 5042 5043 5044
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5045
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5046
			goto one_by_one;
5047
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5048
						PAGE_SIZE * count, &dummy)) {
5049
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5066 5067 5068
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
		if (ret || !memcg)
5069 5070 5071 5072
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5073 5074 5075 5076 5077 5078 5079 5080
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5081
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5082 5083 5084 5085 5086 5087
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5088 5089 5090
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5091 5092 5093 5094 5095
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5096
	swp_entry_t	ent;
5097 5098 5099 5100 5101
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5102
	MC_TARGET_SWAP,
5103 5104
};

D
Daisuke Nishimura 已提交
5105 5106
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5107
{
D
Daisuke Nishimura 已提交
5108
	struct page *page = vm_normal_page(vma, addr, ptent);
5109

D
Daisuke Nishimura 已提交
5110 5111 5112 5113 5114 5115
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5116 5117
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5136 5137
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5138
		return NULL;
5139
	}
D
Daisuke Nishimura 已提交
5140 5141 5142 5143 5144 5145
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5167 5168 5169 5170 5171 5172
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5173
		if (do_swap_account)
5174 5175
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5176
	}
5177
#endif
5178 5179 5180
	return page;
}

D
Daisuke Nishimura 已提交
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5193 5194
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5195 5196 5197

	if (!page && !ent.val)
		return 0;
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5213 5214
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5215
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5216 5217 5218
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5231 5232
	split_huge_page_pmd(walk->mm, pmd);

5233 5234 5235 5236 5237 5238 5239
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5240 5241 5242
	return 0;
}

5243 5244 5245 5246 5247
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5248
	down_read(&mm->mmap_sem);
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5260
	up_read(&mm->mmap_sem);
5261 5262 5263 5264 5265 5266 5267 5268 5269

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5270 5271 5272 5273 5274
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5275 5276
}

5277 5278
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5279
{
5280 5281 5282
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5283
	/* we must uncharge all the leftover precharges from mc.to */
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5295
	}
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5330
	spin_lock(&mc.lock);
5331 5332
	mc.from = NULL;
	mc.to = NULL;
5333
	spin_unlock(&mc.lock);
5334
	mem_cgroup_end_move(from);
5335 5336
}

5337 5338
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5339
				struct cgroup_taskset *tset)
5340
{
5341
	struct task_struct *p = cgroup_taskset_first(tset);
5342
	int ret = 0;
5343
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5344

5345
	if (memcg->move_charge_at_immigrate) {
5346 5347 5348
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5349
		VM_BUG_ON(from == memcg);
5350 5351 5352 5353 5354

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5355 5356 5357 5358
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5359
			VM_BUG_ON(mc.moved_charge);
5360
			VM_BUG_ON(mc.moved_swap);
5361
			mem_cgroup_start_move(from);
5362
			spin_lock(&mc.lock);
5363
			mc.from = from;
5364
			mc.to = memcg;
5365
			spin_unlock(&mc.lock);
5366
			/* We set mc.moving_task later */
5367 5368 5369 5370

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5371 5372
		}
		mmput(mm);
5373 5374 5375 5376 5377 5378
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5379
				struct cgroup_taskset *tset)
5380
{
5381
	mem_cgroup_clear_mc();
5382 5383
}

5384 5385 5386
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5387
{
5388 5389 5390 5391 5392
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5393
	split_huge_page_pmd(walk->mm, pmd);
5394 5395 5396 5397 5398 5399 5400 5401
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5402
		swp_entry_t ent;
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5414 5415
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5416
				mc.precharge--;
5417 5418
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5419 5420 5421 5422 5423
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5424 5425
		case MC_TARGET_SWAP:
			ent = target.ent;
5426 5427
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5428
				mc.precharge--;
5429 5430 5431
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5432
			break;
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5447
		ret = mem_cgroup_do_precharge(1);
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5491
	up_read(&mm->mmap_sem);
5492 5493
}

B
Balbir Singh 已提交
5494 5495
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5496
				struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5497
{
5498
	struct task_struct *p = cgroup_taskset_first(tset);
5499
	struct mm_struct *mm = get_task_mm(p);
5500 5501

	if (mm) {
5502 5503 5504
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5505 5506
		mmput(mm);
	}
5507 5508
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5509
}
5510 5511 5512
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5513
				struct cgroup_taskset *tset)
5514 5515 5516 5517 5518
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5519
				struct cgroup_taskset *tset)
5520 5521 5522 5523
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5524
				struct cgroup_taskset *tset)
5525 5526 5527
{
}
#endif
B
Balbir Singh 已提交
5528

B
Balbir Singh 已提交
5529 5530 5531 5532
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5533
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5534 5535
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5536 5537
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5538
	.attach = mem_cgroup_move_task,
5539
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5540
	.use_id = 1,
B
Balbir Singh 已提交
5541
};
5542 5543

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5544 5545 5546
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5547
	if (!strcmp(s, "1"))
5548
		really_do_swap_account = 1;
5549
	else if (!strcmp(s, "0"))
5550 5551 5552
		really_do_swap_account = 0;
	return 1;
}
5553
__setup("swapaccount=", enable_swap_account);
5554 5555

#endif