memcontrol.c 146.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53
#include <net/sock.h>
M
Michal Hocko 已提交
54
#include <net/ip.h>
G
Glauber Costa 已提交
55
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
56

57 58
#include <asm/uaccess.h>

59 60
#include <trace/events/vmscan.h>

61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
62 63
EXPORT_SYMBOL(mem_cgroup_subsys);

64
#define MEM_CGROUP_RECLAIM_RETRIES	5
65
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
66

A
Andrew Morton 已提交
67
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
68
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
69
int do_swap_account __read_mostly;
70 71

/* for remember boot option*/
A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP_ENABLED
73 74 75 76 77
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

78
#else
79
#define do_swap_account		0
80 81 82
#endif


83 84 85 86 87 88 89 90
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
91
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
92
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
93
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
94 95 96
	MEM_CGROUP_STAT_NSTATS,
};

97 98 99 100 101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

104 105 106
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
107 108
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
109 110
	MEM_CGROUP_EVENTS_NSTATS,
};
111 112 113 114 115 116 117 118

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

119 120 121 122 123 124 125 126 127
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
128
	MEM_CGROUP_TARGET_NUMAINFO,
129 130
	MEM_CGROUP_NTARGETS,
};
131 132 133
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
134

135
struct mem_cgroup_stat_cpu {
136
	long count[MEM_CGROUP_STAT_NSTATS];
137
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
138
	unsigned long nr_page_events;
139
	unsigned long targets[MEM_CGROUP_NTARGETS];
140 141
};

142 143 144 145 146 147 148
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

149 150 151 152
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
153
	struct lruvec		lruvec;
154
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
155

156 157
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

158 159 160 161
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
162
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
163
						/* use container_of	   */
164 165 166 167 168 169 170 171 172 173
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

194 195 196 197 198
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
199
/* For threshold */
200
struct mem_cgroup_threshold_ary {
201
	/* An array index points to threshold just below or equal to usage. */
202
	int current_threshold;
203 204 205 206 207
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
208 209 210 211 212 213 214 215 216 217 218 219

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
220 221 222 223 224
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
225

226 227
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
228

B
Balbir Singh 已提交
229 230 231 232 233 234 235
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
236 237 238
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
239 240 241 242 243 244 245
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
264 265
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
266 267 268 269
		 */
		struct work_struct work_freeing;
	};

270 271 272 273
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
274
	struct mem_cgroup_lru_info info;
275 276 277
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
278 279
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
280
#endif
281 282 283 284
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
285 286 287 288

	bool		oom_lock;
	atomic_t	under_oom;

289
	atomic_t	refcnt;
290

291
	int	swappiness;
292 293
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
294

295 296 297
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

298 299 300 301
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
302
	struct mem_cgroup_thresholds thresholds;
303

304
	/* thresholds for mem+swap usage. RCU-protected */
305
	struct mem_cgroup_thresholds memsw_thresholds;
306

K
KAMEZAWA Hiroyuki 已提交
307 308
	/* For oom notifier event fd */
	struct list_head oom_notify;
309

310 311 312 313 314
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
315 316 317 318
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
319 320
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
321
	/*
322
	 * percpu counter.
323
	 */
324
	struct mem_cgroup_stat_cpu __percpu *stat;
325 326 327 328 329 330
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
331

M
Michal Hocko 已提交
332
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
333 334
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
335 336
};

337 338 339 340 341 342
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
343
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
344
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
345 346 347
	NR_MOVE_TYPE,
};

348 349
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
350
	spinlock_t	  lock; /* for from, to */
351 352 353
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
354
	unsigned long moved_charge;
355
	unsigned long moved_swap;
356 357 358
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
359
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
360 361
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
362

D
Daisuke Nishimura 已提交
363 364 365 366 367 368
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

369 370 371 372 373 374
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

375 376 377 378
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
379 380
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
381

382 383
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
384
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
385
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
386
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
387 388 389
	NR_CHARGE_TYPE,
};

390
/* for encoding cft->private value on file */
391 392 393
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
394 395
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
396
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
397 398
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
399

400 401 402 403 404 405 406 407
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

408 409
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
410

411 412 413 414 415 416
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

417 418 419 420 421
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
422
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
423
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
424 425 426

void sock_update_memcg(struct sock *sk)
{
427
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
428
		struct mem_cgroup *memcg;
429
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
430 431 432

		BUG_ON(!sk->sk_prot->proto_cgroup);

433 434 435 436 437 438 439 440 441 442 443 444 445 446
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
447 448
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
449 450
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
451
			mem_cgroup_get(memcg);
452
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
453 454 455 456 457 458 459 460
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
461
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
462 463 464 465 466 467
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
468 469 470 471 472 473 474 475 476

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
477

478 479 480 481 482 483 484 485 486 487 488 489
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

490
static void drain_all_stock_async(struct mem_cgroup *memcg);
491

492
static struct mem_cgroup_per_zone *
493
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
494
{
495
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
496 497
}

498
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
499
{
500
	return &memcg->css;
501 502
}

503
static struct mem_cgroup_per_zone *
504
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
505
{
506 507
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
508

509
	return mem_cgroup_zoneinfo(memcg, nid, zid);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
528
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
529
				struct mem_cgroup_per_zone *mz,
530 531
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
532 533 534 535 536 537 538 539
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

540 541 542
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
559 560 561
}

static void
562
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
563 564 565 566 567 568 569 570 571
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

572
static void
573
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
574 575 576 577
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
578
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
579 580 581 582
	spin_unlock(&mctz->lock);
}


583
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
584
{
585
	unsigned long long excess;
586 587
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
588 589
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
590 591 592
	mctz = soft_limit_tree_from_page(page);

	/*
593 594
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
595
	 */
596 597 598
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
599 600 601 602
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
603
		if (excess || mz->on_tree) {
604 605 606
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
607
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
608
			/*
609 610
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
611
			 */
612
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
613 614
			spin_unlock(&mctz->lock);
		}
615 616 617
	}
}

618
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
619 620 621 622 623
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
624
	for_each_node(node) {
625
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
626
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
627
			mctz = soft_limit_tree_node_zone(node, zone);
628
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
629 630 631 632
		}
	}
}

633 634 635 636
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
637
	struct mem_cgroup_per_zone *mz;
638 639

retry:
640
	mz = NULL;
641 642 643 644 645 646 647 648 649 650
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
651 652 653
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
689
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
690
				 enum mem_cgroup_stat_index idx)
691
{
692
	long val = 0;
693 694
	int cpu;

695 696
	get_online_cpus();
	for_each_online_cpu(cpu)
697
		val += per_cpu(memcg->stat->count[idx], cpu);
698
#ifdef CONFIG_HOTPLUG_CPU
699 700 701
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
702 703
#endif
	put_online_cpus();
704 705 706
	return val;
}

707
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
708 709 710
					 bool charge)
{
	int val = (charge) ? 1 : -1;
711
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
712 713
}

714
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
715 716 717 718 719 720
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
721
		val += per_cpu(memcg->stat->events[idx], cpu);
722
#ifdef CONFIG_HOTPLUG_CPU
723 724 725
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
726 727 728 729
#endif
	return val;
}

730
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
731
					 bool anon, int nr_pages)
732
{
733 734
	preempt_disable();

735 736 737 738 739 740
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
741
				nr_pages);
742
	else
743
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
744
				nr_pages);
745

746 747
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
748
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
749
	else {
750
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
751 752
		nr_pages = -nr_pages; /* for event */
	}
753

754
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
755

756
	preempt_enable();
757 758
}

759
unsigned long
760
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
761 762 763 764 765 766 767 768
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
769
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
770
			unsigned int lru_mask)
771 772
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
773
	enum lru_list lru;
774 775
	unsigned long ret = 0;

776
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
777

H
Hugh Dickins 已提交
778 779 780
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
781 782 783 784 785
	}
	return ret;
}

static unsigned long
786
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
787 788
			int nid, unsigned int lru_mask)
{
789 790 791
	u64 total = 0;
	int zid;

792
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
793 794
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
795

796 797
	return total;
}
798

799
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
800
			unsigned int lru_mask)
801
{
802
	int nid;
803 804
	u64 total = 0;

805
	for_each_node_state(nid, N_MEMORY)
806
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
807
	return total;
808 809
}

810 811
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
812 813 814
{
	unsigned long val, next;

815
	val = __this_cpu_read(memcg->stat->nr_page_events);
816
	next = __this_cpu_read(memcg->stat->targets[target]);
817
	/* from time_after() in jiffies.h */
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
834
	}
835
	return false;
836 837 838 839 840 841
}

/*
 * Check events in order.
 *
 */
842
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
843
{
844
	preempt_disable();
845
	/* threshold event is triggered in finer grain than soft limit */
846 847
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
848 849
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
850 851 852 853 854 855 856 857 858

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

859
		mem_cgroup_threshold(memcg);
860
		if (unlikely(do_softlimit))
861
			mem_cgroup_update_tree(memcg, page);
862
#if MAX_NUMNODES > 1
863
		if (unlikely(do_numainfo))
864
			atomic_inc(&memcg->numainfo_events);
865
#endif
866 867
	} else
		preempt_enable();
868 869
}

G
Glauber Costa 已提交
870
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
871
{
872 873
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
874 875
}

876
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
877
{
878 879 880 881 882 883 884 885
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

886
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
887 888
}

889
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
890
{
891
	struct mem_cgroup *memcg = NULL;
892 893 894

	if (!mm)
		return NULL;
895 896 897 898 899 900 901
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
902 903
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
904
			break;
905
	} while (!css_tryget(&memcg->css));
906
	rcu_read_unlock();
907
	return memcg;
908 909
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
930
{
931 932
	struct mem_cgroup *memcg = NULL;
	int id = 0;
933

934 935 936
	if (mem_cgroup_disabled())
		return NULL;

937 938
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
939

940 941
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
942

943 944
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
945

946 947 948 949 950
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
951

952
	while (!memcg) {
953
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
954
		struct cgroup_subsys_state *css;
955

956 957 958 959 960 961 962 963 964 965 966
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
967

968 969 970 971
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
972
				memcg = mem_cgroup_from_css(css);
973 974
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
975 976
		rcu_read_unlock();

977 978 979 980 981 982 983
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
984 985 986 987 988

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
989
}
K
KAMEZAWA Hiroyuki 已提交
990

991 992 993 994 995 996 997
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
998 999 1000 1001 1002 1003
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1004

1005 1006 1007 1008 1009 1010
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1011
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1012
	     iter != NULL;				\
1013
	     iter = mem_cgroup_iter(root, iter, NULL))
1014

1015
#define for_each_mem_cgroup(iter)			\
1016
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1017
	     iter != NULL;				\
1018
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1019

1020
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1021
{
1022
	struct mem_cgroup *memcg;
1023 1024

	rcu_read_lock();
1025 1026
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1027 1028 1029 1030
		goto out;

	switch (idx) {
	case PGFAULT:
1031 1032 1033 1034
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1035 1036 1037 1038 1039 1040 1041
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1042
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1043

1044 1045 1046
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1047
 * @memcg: memcg of the wanted lruvec
1048 1049 1050 1051 1052 1053 1054 1055 1056
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1057
	struct lruvec *lruvec;
1058

1059 1060 1061 1062
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1063 1064

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1075 1076
}

K
KAMEZAWA Hiroyuki 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1090

1091
/**
1092
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1093
 * @page: the page
1094
 * @zone: zone of the page
1095
 */
1096
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1097 1098
{
	struct mem_cgroup_per_zone *mz;
1099 1100
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1101
	struct lruvec *lruvec;
1102

1103 1104 1105 1106
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1107

K
KAMEZAWA Hiroyuki 已提交
1108
	pc = lookup_page_cgroup(page);
1109
	memcg = pc->mem_cgroup;
1110 1111

	/*
1112
	 * Surreptitiously switch any uncharged offlist page to root:
1113 1114 1115 1116 1117 1118 1119
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1120
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1121 1122
		pc->mem_cgroup = memcg = root_mem_cgroup;

1123
	mz = page_cgroup_zoneinfo(memcg, page);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1134
}
1135

1136
/**
1137 1138 1139 1140
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1141
 *
1142 1143
 * This function must be called when a page is added to or removed from an
 * lru list.
1144
 */
1145 1146
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1147 1148
{
	struct mem_cgroup_per_zone *mz;
1149
	unsigned long *lru_size;
1150 1151 1152 1153

	if (mem_cgroup_disabled())
		return;

1154 1155 1156 1157
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1158
}
1159

1160
/*
1161
 * Checks whether given mem is same or in the root_mem_cgroup's
1162 1163
 * hierarchy subtree
 */
1164 1165
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1166
{
1167 1168
	if (root_memcg == memcg)
		return true;
1169
	if (!root_memcg->use_hierarchy || !memcg)
1170
		return false;
1171 1172 1173 1174 1175 1176 1177 1178
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1179
	rcu_read_lock();
1180
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1181 1182
	rcu_read_unlock();
	return ret;
1183 1184
}

1185
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1186 1187
{
	int ret;
1188
	struct mem_cgroup *curr = NULL;
1189
	struct task_struct *p;
1190

1191
	p = find_lock_task_mm(task);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1207 1208
	if (!curr)
		return 0;
1209
	/*
1210
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1211
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1212 1213
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1214
	 */
1215
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1216
	css_put(&curr->css);
1217 1218 1219
	return ret;
}

1220
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1221
{
1222
	unsigned long inactive_ratio;
1223
	unsigned long inactive;
1224
	unsigned long active;
1225
	unsigned long gb;
1226

1227 1228
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1229

1230 1231 1232 1233 1234 1235
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1236
	return inactive * inactive_ratio < active;
1237 1238
}

1239
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1240 1241 1242 1243
{
	unsigned long active;
	unsigned long inactive;

1244 1245
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1246 1247 1248 1249

	return (active > inactive);
}

1250 1251 1252
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1253
/**
1254
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1255
 * @memcg: the memory cgroup
1256
 *
1257
 * Returns the maximum amount of memory @mem can be charged with, in
1258
 * pages.
1259
 */
1260
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1261
{
1262 1263
	unsigned long long margin;

1264
	margin = res_counter_margin(&memcg->res);
1265
	if (do_swap_account)
1266
		margin = min(margin, res_counter_margin(&memcg->memsw));
1267
	return margin >> PAGE_SHIFT;
1268 1269
}

1270
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1271 1272 1273 1274 1275 1276 1277
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1278
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1279 1280
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1295 1296 1297 1298

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1299
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1300
{
1301
	atomic_inc(&memcg_moving);
1302
	atomic_inc(&memcg->moving_account);
1303 1304 1305
	synchronize_rcu();
}

1306
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1307
{
1308 1309 1310 1311
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1312 1313
	if (memcg) {
		atomic_dec(&memcg_moving);
1314
		atomic_dec(&memcg->moving_account);
1315
	}
1316
}
1317

1318 1319 1320
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1321 1322
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1323 1324 1325 1326 1327 1328 1329
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1330
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1331 1332
{
	VM_BUG_ON(!rcu_read_lock_held());
1333
	return atomic_read(&memcg->moving_account) > 0;
1334
}
1335

1336
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1337
{
1338 1339
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1340
	bool ret = false;
1341 1342 1343 1344 1345 1346 1347 1348 1349
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1350

1351 1352
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1353 1354
unlock:
	spin_unlock(&mc.lock);
1355 1356 1357
	return ret;
}

1358
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1359 1360
{
	if (mc.moving_task && current != mc.moving_task) {
1361
		if (mem_cgroup_under_move(memcg)) {
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1374 1375 1376 1377
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1378
 * see mem_cgroup_stolen(), too.
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1392
/**
1393
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1412
	if (!memcg || !p)
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1458 1459 1460 1461
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1462
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1463 1464
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1465 1466
	struct mem_cgroup *iter;

1467
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1468
		num++;
1469 1470 1471
	return num;
}

D
David Rientjes 已提交
1472 1473 1474
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1475
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1476 1477 1478
{
	u64 limit;

1479 1480
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1481
	/*
1482
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1483
	 */
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1498 1499
}

1500 1501
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1502 1503 1504 1505 1506 1507 1508
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1603 1604
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1605
 * @memcg: the target memcg
1606 1607 1608 1609 1610 1611 1612
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1613
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1614 1615
		int nid, bool noswap)
{
1616
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1617 1618 1619
		return true;
	if (noswap || !total_swap_pages)
		return false;
1620
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1621 1622 1623 1624
		return true;
	return false;

}
1625 1626 1627 1628 1629 1630 1631 1632
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1633
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1634 1635
{
	int nid;
1636 1637 1638 1639
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1640
	if (!atomic_read(&memcg->numainfo_events))
1641
		return;
1642
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1643 1644 1645
		return;

	/* make a nodemask where this memcg uses memory from */
1646
	memcg->scan_nodes = node_states[N_MEMORY];
1647

1648
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1649

1650 1651
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1652
	}
1653

1654 1655
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1670
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1671 1672 1673
{
	int node;

1674 1675
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1676

1677
	node = next_node(node, memcg->scan_nodes);
1678
	if (node == MAX_NUMNODES)
1679
		node = first_node(memcg->scan_nodes);
1680 1681 1682 1683 1684 1685 1686 1687 1688
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1689
	memcg->last_scanned_node = node;
1690 1691 1692
	return node;
}

1693 1694 1695 1696 1697 1698
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1699
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1700 1701 1702 1703 1704 1705 1706
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1707 1708
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1709
		     nid < MAX_NUMNODES;
1710
		     nid = next_node(nid, memcg->scan_nodes)) {
1711

1712
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1713 1714 1715 1716 1717 1718
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1719
	for_each_node_state(nid, N_MEMORY) {
1720
		if (node_isset(nid, memcg->scan_nodes))
1721
			continue;
1722
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1723 1724 1725 1726 1727
			return true;
	}
	return false;
}

1728
#else
1729
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1730 1731 1732
{
	return 0;
}
1733

1734
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1735
{
1736
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1737
}
1738 1739
#endif

1740 1741 1742 1743
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1744
{
1745
	struct mem_cgroup *victim = NULL;
1746
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1747
	int loop = 0;
1748
	unsigned long excess;
1749
	unsigned long nr_scanned;
1750 1751 1752 1753
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1754

1755
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1756

1757
	while (1) {
1758
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1759
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1760
			loop++;
1761 1762 1763 1764 1765 1766
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1767
				if (!total)
1768 1769
					break;
				/*
L
Lucas De Marchi 已提交
1770
				 * We want to do more targeted reclaim.
1771 1772 1773 1774 1775
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1776
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1777 1778
					break;
			}
1779
			continue;
1780
		}
1781
		if (!mem_cgroup_reclaimable(victim, false))
1782
			continue;
1783 1784 1785 1786
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1787
			break;
1788
	}
1789
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1790
	return total;
1791 1792
}

K
KAMEZAWA Hiroyuki 已提交
1793 1794 1795
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1796
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1797
 */
1798
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1799
{
1800
	struct mem_cgroup *iter, *failed = NULL;
1801

1802
	for_each_mem_cgroup_tree(iter, memcg) {
1803
		if (iter->oom_lock) {
1804 1805 1806 1807 1808
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1809 1810
			mem_cgroup_iter_break(memcg, iter);
			break;
1811 1812
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1813
	}
K
KAMEZAWA Hiroyuki 已提交
1814

1815
	if (!failed)
1816
		return true;
1817 1818 1819 1820 1821

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1822
	for_each_mem_cgroup_tree(iter, memcg) {
1823
		if (iter == failed) {
1824 1825
			mem_cgroup_iter_break(memcg, iter);
			break;
1826 1827 1828
		}
		iter->oom_lock = false;
	}
1829
	return false;
1830
}
1831

1832
/*
1833
 * Has to be called with memcg_oom_lock
1834
 */
1835
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1836
{
K
KAMEZAWA Hiroyuki 已提交
1837 1838
	struct mem_cgroup *iter;

1839
	for_each_mem_cgroup_tree(iter, memcg)
1840 1841 1842 1843
		iter->oom_lock = false;
	return 0;
}

1844
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1845 1846 1847
{
	struct mem_cgroup *iter;

1848
	for_each_mem_cgroup_tree(iter, memcg)
1849 1850 1851
		atomic_inc(&iter->under_oom);
}

1852
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1853 1854 1855
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1856 1857 1858 1859 1860
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1861
	for_each_mem_cgroup_tree(iter, memcg)
1862
		atomic_add_unless(&iter->under_oom, -1, 0);
1863 1864
}

1865
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1866 1867
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1868
struct oom_wait_info {
1869
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1870 1871 1872 1873 1874 1875
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1876 1877
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1878 1879 1880
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1881
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1882 1883

	/*
1884
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1885 1886
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1887 1888
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1889 1890 1891 1892
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1893
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1894
{
1895 1896
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1897 1898
}

1899
static void memcg_oom_recover(struct mem_cgroup *memcg)
1900
{
1901 1902
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1903 1904
}

K
KAMEZAWA Hiroyuki 已提交
1905 1906 1907
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1908 1909
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1910
{
K
KAMEZAWA Hiroyuki 已提交
1911
	struct oom_wait_info owait;
1912
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1913

1914
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1915 1916 1917 1918
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1919
	need_to_kill = true;
1920
	mem_cgroup_mark_under_oom(memcg);
1921

1922
	/* At first, try to OOM lock hierarchy under memcg.*/
1923
	spin_lock(&memcg_oom_lock);
1924
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1925 1926 1927 1928 1929
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1930
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1931
	if (!locked || memcg->oom_kill_disable)
1932 1933
		need_to_kill = false;
	if (locked)
1934
		mem_cgroup_oom_notify(memcg);
1935
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1936

1937 1938
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1939
		mem_cgroup_out_of_memory(memcg, mask, order);
1940
	} else {
K
KAMEZAWA Hiroyuki 已提交
1941
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1942
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1943
	}
1944
	spin_lock(&memcg_oom_lock);
1945
	if (locked)
1946 1947
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1948
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1949

1950
	mem_cgroup_unmark_under_oom(memcg);
1951

K
KAMEZAWA Hiroyuki 已提交
1952 1953 1954
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1955
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1956
	return true;
1957 1958
}

1959 1960 1961
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1979 1980
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1981
 */
1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
1996
	 * need to take move_lock_mem_cgroup(). Because we already hold
1997
	 * rcu_read_lock(), any calls to move_account will be delayed until
1998
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1999
	 */
2000
	if (!mem_cgroup_stolen(memcg))
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2018
	 * should take move_lock_mem_cgroup().
2019 2020 2021 2022
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2023 2024
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2025
{
2026
	struct mem_cgroup *memcg;
2027
	struct page_cgroup *pc = lookup_page_cgroup(page);
2028
	unsigned long uninitialized_var(flags);
2029

2030
	if (mem_cgroup_disabled())
2031
		return;
2032

2033 2034
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2035
		return;
2036 2037

	switch (idx) {
2038 2039
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2040 2041 2042
		break;
	default:
		BUG();
2043
	}
2044

2045
	this_cpu_add(memcg->stat->count[idx], val);
2046
}
2047

2048 2049 2050 2051
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2052
#define CHARGE_BATCH	32U
2053 2054
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2055
	unsigned int nr_pages;
2056
	struct work_struct work;
2057
	unsigned long flags;
2058
#define FLUSHING_CACHED_CHARGE	0
2059 2060
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2061
static DEFINE_MUTEX(percpu_charge_mutex);
2062 2063

/*
2064
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2065 2066 2067 2068
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2069
static bool consume_stock(struct mem_cgroup *memcg)
2070 2071 2072 2073 2074
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2075
	if (memcg == stock->cached && stock->nr_pages)
2076
		stock->nr_pages--;
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2090 2091 2092 2093
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2094
		if (do_swap_account)
2095 2096
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2109
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2110 2111 2112 2113
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2114
 * This will be consumed by consume_stock() function, later.
2115
 */
2116
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2117 2118 2119
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2120
	if (stock->cached != memcg) { /* reset if necessary */
2121
		drain_stock(stock);
2122
		stock->cached = memcg;
2123
	}
2124
	stock->nr_pages += nr_pages;
2125 2126 2127 2128
	put_cpu_var(memcg_stock);
}

/*
2129
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2130 2131
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2132
 */
2133
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2134
{
2135
	int cpu, curcpu;
2136

2137 2138
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2139
	curcpu = get_cpu();
2140 2141
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2142
		struct mem_cgroup *memcg;
2143

2144 2145
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2146
			continue;
2147
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2148
			continue;
2149 2150 2151 2152 2153 2154
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2155
	}
2156
	put_cpu();
2157 2158 2159 2160 2161 2162

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2163
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2164 2165 2166
			flush_work(&stock->work);
	}
out:
2167
 	put_online_cpus();
2168 2169 2170 2171 2172 2173 2174 2175
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2176
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2177
{
2178 2179 2180 2181 2182
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2183
	drain_all_stock(root_memcg, false);
2184
	mutex_unlock(&percpu_charge_mutex);
2185 2186 2187
}

/* This is a synchronous drain interface. */
2188
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2189 2190
{
	/* called when force_empty is called */
2191
	mutex_lock(&percpu_charge_mutex);
2192
	drain_all_stock(root_memcg, true);
2193
	mutex_unlock(&percpu_charge_mutex);
2194 2195
}

2196 2197 2198 2199
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2200
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2201 2202 2203
{
	int i;

2204
	spin_lock(&memcg->pcp_counter_lock);
2205
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2206
		long x = per_cpu(memcg->stat->count[i], cpu);
2207

2208 2209
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2210
	}
2211
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2212
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2213

2214 2215
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2216
	}
2217
	spin_unlock(&memcg->pcp_counter_lock);
2218 2219 2220
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2221 2222 2223 2224 2225
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2226
	struct mem_cgroup *iter;
2227

2228
	if (action == CPU_ONLINE)
2229 2230
		return NOTIFY_OK;

2231
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2232
		return NOTIFY_OK;
2233

2234
	for_each_mem_cgroup(iter)
2235 2236
		mem_cgroup_drain_pcp_counter(iter, cpu);

2237 2238 2239 2240 2241
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2252
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2253
				unsigned int nr_pages, bool oom_check)
2254
{
2255
	unsigned long csize = nr_pages * PAGE_SIZE;
2256 2257 2258 2259 2260
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2261
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2262 2263 2264 2265

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2266
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2267 2268 2269
		if (likely(!ret))
			return CHARGE_OK;

2270
		res_counter_uncharge(&memcg->res, csize);
2271 2272 2273 2274
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2275
	/*
2276 2277
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2278 2279 2280 2281
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2282
	if (nr_pages == CHARGE_BATCH)
2283 2284 2285 2286 2287
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2288
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2289
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2290
		return CHARGE_RETRY;
2291
	/*
2292 2293 2294 2295 2296 2297 2298
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2299
	 */
2300
	if (nr_pages == 1 && ret)
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2314
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2315 2316 2317 2318 2319
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2320
/*
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2340
 */
2341
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2342
				   gfp_t gfp_mask,
2343
				   unsigned int nr_pages,
2344
				   struct mem_cgroup **ptr,
2345
				   bool oom)
2346
{
2347
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2348
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2349
	struct mem_cgroup *memcg = NULL;
2350
	int ret;
2351

K
KAMEZAWA Hiroyuki 已提交
2352 2353 2354 2355 2356 2357 2358 2359
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2360

2361
	/*
2362 2363
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2364
	 * thread group leader migrates. It's possible that mm is not
2365
	 * set, if so charge the root memcg (happens for pagecache usage).
2366
	 */
2367
	if (!*ptr && !mm)
2368
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2369
again:
2370 2371 2372
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2373
			goto done;
2374
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2375
			goto done;
2376
		css_get(&memcg->css);
2377
	} else {
K
KAMEZAWA Hiroyuki 已提交
2378
		struct task_struct *p;
2379

K
KAMEZAWA Hiroyuki 已提交
2380 2381 2382
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2383
		 * Because we don't have task_lock(), "p" can exit.
2384
		 * In that case, "memcg" can point to root or p can be NULL with
2385 2386 2387 2388 2389 2390
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2391
		 */
2392
		memcg = mem_cgroup_from_task(p);
2393 2394 2395
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2396 2397 2398
			rcu_read_unlock();
			goto done;
		}
2399
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2412
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2413 2414 2415 2416 2417
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2418

2419 2420
	do {
		bool oom_check;
2421

2422
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2423
		if (fatal_signal_pending(current)) {
2424
			css_put(&memcg->css);
2425
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2426
		}
2427

2428 2429 2430 2431
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2432
		}
2433

2434
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2435 2436 2437 2438
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2439
			batch = nr_pages;
2440 2441
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2442
			goto again;
2443
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2444
			css_put(&memcg->css);
2445 2446
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2447
			if (!oom) {
2448
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2449
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2450
			}
2451 2452 2453 2454
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2455
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2456
			goto bypass;
2457
		}
2458 2459
	} while (ret != CHARGE_OK);

2460
	if (batch > nr_pages)
2461 2462
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2463
done:
2464
	*ptr = memcg;
2465 2466
	return 0;
nomem:
2467
	*ptr = NULL;
2468
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2469
bypass:
2470 2471
	*ptr = root_mem_cgroup;
	return -EINTR;
2472
}
2473

2474 2475 2476 2477 2478
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2479
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2480
				       unsigned int nr_pages)
2481
{
2482
	if (!mem_cgroup_is_root(memcg)) {
2483 2484
		unsigned long bytes = nr_pages * PAGE_SIZE;

2485
		res_counter_uncharge(&memcg->res, bytes);
2486
		if (do_swap_account)
2487
			res_counter_uncharge(&memcg->memsw, bytes);
2488
	}
2489 2490
}

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2509 2510
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2511 2512 2513
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2525
	return mem_cgroup_from_css(css);
2526 2527
}

2528
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2529
{
2530
	struct mem_cgroup *memcg = NULL;
2531
	struct page_cgroup *pc;
2532
	unsigned short id;
2533 2534
	swp_entry_t ent;

2535 2536 2537
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2538
	lock_page_cgroup(pc);
2539
	if (PageCgroupUsed(pc)) {
2540 2541 2542
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2543
	} else if (PageSwapCache(page)) {
2544
		ent.val = page_private(page);
2545
		id = lookup_swap_cgroup_id(ent);
2546
		rcu_read_lock();
2547 2548 2549
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2550
		rcu_read_unlock();
2551
	}
2552
	unlock_page_cgroup(pc);
2553
	return memcg;
2554 2555
}

2556
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2557
				       struct page *page,
2558
				       unsigned int nr_pages,
2559 2560
				       enum charge_type ctype,
				       bool lrucare)
2561
{
2562
	struct page_cgroup *pc = lookup_page_cgroup(page);
2563
	struct zone *uninitialized_var(zone);
2564
	struct lruvec *lruvec;
2565
	bool was_on_lru = false;
2566
	bool anon;
2567

2568
	lock_page_cgroup(pc);
2569
	VM_BUG_ON(PageCgroupUsed(pc));
2570 2571 2572 2573
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2574 2575 2576 2577 2578 2579 2580 2581 2582

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2583
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2584
			ClearPageLRU(page);
2585
			del_page_from_lru_list(page, lruvec, page_lru(page));
2586 2587 2588 2589
			was_on_lru = true;
		}
	}

2590
	pc->mem_cgroup = memcg;
2591 2592 2593 2594 2595 2596 2597
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2598
	smp_wmb();
2599
	SetPageCgroupUsed(pc);
2600

2601 2602
	if (lrucare) {
		if (was_on_lru) {
2603
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2604 2605
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2606
			add_page_to_lru_list(page, lruvec, page_lru(page));
2607 2608 2609 2610
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2611
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2612 2613 2614 2615 2616
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2617
	unlock_page_cgroup(pc);
2618

2619 2620 2621 2622 2623
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2624
	memcg_check_events(memcg, page);
2625
}
2626

2627 2628
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2629
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2630 2631
/*
 * Because tail pages are not marked as "used", set it. We're under
2632 2633 2634
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2635
 */
2636
void mem_cgroup_split_huge_fixup(struct page *head)
2637 2638
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2639 2640
	struct page_cgroup *pc;
	int i;
2641

2642 2643
	if (mem_cgroup_disabled())
		return;
2644 2645 2646 2647 2648 2649
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2650
}
2651
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2652

2653
/**
2654
 * mem_cgroup_move_account - move account of the page
2655
 * @page: the page
2656
 * @nr_pages: number of regular pages (>1 for huge pages)
2657 2658 2659 2660 2661
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2662
 * - page is not on LRU (isolate_page() is useful.)
2663
 * - compound_lock is held when nr_pages > 1
2664
 *
2665 2666
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2667
 */
2668 2669 2670 2671
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2672
				   struct mem_cgroup *to)
2673
{
2674 2675
	unsigned long flags;
	int ret;
2676
	bool anon = PageAnon(page);
2677

2678
	VM_BUG_ON(from == to);
2679
	VM_BUG_ON(PageLRU(page));
2680 2681 2682 2683 2684 2685 2686
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2687
	if (nr_pages > 1 && !PageTransHuge(page))
2688 2689 2690 2691 2692 2693 2694 2695
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2696
	move_lock_mem_cgroup(from, &flags);
2697

2698
	if (!anon && page_mapped(page)) {
2699 2700 2701 2702 2703
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2704
	}
2705
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2706

2707
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2708
	pc->mem_cgroup = to;
2709
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2710
	move_unlock_mem_cgroup(from, &flags);
2711 2712
	ret = 0;
unlock:
2713
	unlock_page_cgroup(pc);
2714 2715 2716
	/*
	 * check events
	 */
2717 2718
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2719
out:
2720 2721 2722
	return ret;
}

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
2743
 */
2744 2745
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2746
				  struct mem_cgroup *child)
2747 2748
{
	struct mem_cgroup *parent;
2749
	unsigned int nr_pages;
2750
	unsigned long uninitialized_var(flags);
2751 2752
	int ret;

2753
	VM_BUG_ON(mem_cgroup_is_root(child));
2754

2755 2756 2757 2758 2759
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2760

2761
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2762

2763 2764 2765 2766 2767 2768
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2769

2770 2771
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
2772
		flags = compound_lock_irqsave(page);
2773
	}
2774

2775
	ret = mem_cgroup_move_account(page, nr_pages,
2776
				pc, child, parent);
2777 2778
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2779

2780
	if (nr_pages > 1)
2781
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2782
	putback_lru_page(page);
2783
put:
2784
	put_page(page);
2785
out:
2786 2787 2788
	return ret;
}

2789 2790 2791 2792 2793 2794 2795
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2796
				gfp_t gfp_mask, enum charge_type ctype)
2797
{
2798
	struct mem_cgroup *memcg = NULL;
2799
	unsigned int nr_pages = 1;
2800
	bool oom = true;
2801
	int ret;
A
Andrea Arcangeli 已提交
2802

A
Andrea Arcangeli 已提交
2803
	if (PageTransHuge(page)) {
2804
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2805
		VM_BUG_ON(!PageTransHuge(page));
2806 2807 2808 2809 2810
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2811
	}
2812

2813
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2814
	if (ret == -ENOMEM)
2815
		return ret;
2816
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2817 2818 2819
	return 0;
}

2820 2821
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2822
{
2823
	if (mem_cgroup_disabled())
2824
		return 0;
2825 2826 2827
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2828
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2829
					MEM_CGROUP_CHARGE_TYPE_ANON);
2830 2831
}

2832 2833 2834
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2835
 * struct page_cgroup is acquired. This refcnt will be consumed by
2836 2837
 * "commit()" or removed by "cancel()"
 */
2838 2839 2840 2841
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
2842
{
2843
	struct mem_cgroup *memcg;
2844
	struct page_cgroup *pc;
2845
	int ret;
2846

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
2857 2858
	if (!do_swap_account)
		goto charge_cur_mm;
2859 2860
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2861
		goto charge_cur_mm;
2862 2863
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2864
	css_put(&memcg->css);
2865 2866
	if (ret == -EINTR)
		ret = 0;
2867
	return ret;
2868
charge_cur_mm:
2869 2870 2871 2872
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2873 2874
}

2875 2876 2877 2878 2879 2880
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
2895 2896 2897
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

2898 2899 2900 2901 2902 2903 2904 2905 2906
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
2907
static void
2908
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2909
					enum charge_type ctype)
2910
{
2911
	if (mem_cgroup_disabled())
2912
		return;
2913
	if (!memcg)
2914
		return;
2915

2916
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2917 2918 2919
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2920 2921 2922
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2923
	 */
2924
	if (do_swap_account && PageSwapCache(page)) {
2925
		swp_entry_t ent = {.val = page_private(page)};
2926
		mem_cgroup_uncharge_swap(ent);
2927
	}
2928 2929
}

2930 2931
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2932
{
2933
	__mem_cgroup_commit_charge_swapin(page, memcg,
2934
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
2935 2936
}

2937 2938
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2939
{
2940 2941 2942 2943
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

2944
	if (mem_cgroup_disabled())
2945 2946 2947 2948 2949 2950 2951
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
2952 2953
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
2954 2955 2956 2957
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
2958 2959
}

2960
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2961 2962
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2963 2964 2965
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2966

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2978
		batch->memcg = memcg;
2979 2980
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2981
	 * In those cases, all pages freed continuously can be expected to be in
2982 2983 2984 2985 2986 2987 2988 2989
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2990
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2991 2992
		goto direct_uncharge;

2993 2994 2995 2996 2997
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2998
	if (batch->memcg != memcg)
2999 3000
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3001
	batch->nr_pages++;
3002
	if (uncharge_memsw)
3003
		batch->memsw_nr_pages++;
3004 3005
	return;
direct_uncharge:
3006
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3007
	if (uncharge_memsw)
3008 3009 3010
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3011
}
3012

3013
/*
3014
 * uncharge if !page_mapped(page)
3015
 */
3016
static struct mem_cgroup *
3017 3018
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3019
{
3020
	struct mem_cgroup *memcg = NULL;
3021 3022
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3023
	bool anon;
3024

3025
	if (mem_cgroup_disabled())
3026
		return NULL;
3027

3028
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3029

A
Andrea Arcangeli 已提交
3030
	if (PageTransHuge(page)) {
3031
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3032 3033
		VM_BUG_ON(!PageTransHuge(page));
	}
3034
	/*
3035
	 * Check if our page_cgroup is valid
3036
	 */
3037
	pc = lookup_page_cgroup(page);
3038
	if (unlikely(!PageCgroupUsed(pc)))
3039
		return NULL;
3040

3041
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3042

3043
	memcg = pc->mem_cgroup;
3044

K
KAMEZAWA Hiroyuki 已提交
3045 3046 3047
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3048 3049
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3050
	switch (ctype) {
3051
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3052 3053 3054 3055 3056
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3057 3058
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3059
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3060
		/* See mem_cgroup_prepare_migration() */
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3082
	}
K
KAMEZAWA Hiroyuki 已提交
3083

3084
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3085

3086
	ClearPageCgroupUsed(pc);
3087 3088 3089 3090 3091 3092
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3093

3094
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3095
	/*
3096
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3097 3098
	 * will never be freed.
	 */
3099
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3100
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3101 3102
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3103
	}
3104 3105 3106 3107 3108 3109
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3110
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3111

3112
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3113 3114 3115

unlock_out:
	unlock_page_cgroup(pc);
3116
	return NULL;
3117 3118
}

3119 3120
void mem_cgroup_uncharge_page(struct page *page)
{
3121 3122 3123
	/* early check. */
	if (page_mapped(page))
		return;
3124
	VM_BUG_ON(page->mapping && !PageAnon(page));
3125 3126
	if (PageSwapCache(page))
		return;
3127
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3128 3129 3130 3131 3132
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3133
	VM_BUG_ON(page->mapping);
3134
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3135 3136
}

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3151 3152
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3173 3174 3175 3176 3177 3178
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3179
	memcg_oom_recover(batch->memcg);
3180 3181 3182 3183
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3184
#ifdef CONFIG_SWAP
3185
/*
3186
 * called after __delete_from_swap_cache() and drop "page" account.
3187 3188
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3189 3190
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3191 3192
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3193 3194 3195 3196 3197
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3198
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3199

K
KAMEZAWA Hiroyuki 已提交
3200 3201 3202 3203 3204
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3205
		swap_cgroup_record(ent, css_id(&memcg->css));
3206
}
3207
#endif
3208

A
Andrew Morton 已提交
3209
#ifdef CONFIG_MEMCG_SWAP
3210 3211 3212 3213 3214
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3215
{
3216
	struct mem_cgroup *memcg;
3217
	unsigned short id;
3218 3219 3220 3221

	if (!do_swap_account)
		return;

3222 3223 3224
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3225
	if (memcg) {
3226 3227 3228 3229
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3230
		if (!mem_cgroup_is_root(memcg))
3231
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3232
		mem_cgroup_swap_statistics(memcg, false);
3233 3234
		mem_cgroup_put(memcg);
	}
3235
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3236
}
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3253
				struct mem_cgroup *from, struct mem_cgroup *to)
3254 3255 3256 3257 3258 3259 3260 3261
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3262
		mem_cgroup_swap_statistics(to, true);
3263
		/*
3264 3265 3266 3267 3268 3269
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3270 3271 3272 3273 3274 3275 3276 3277
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3278
				struct mem_cgroup *from, struct mem_cgroup *to)
3279 3280 3281
{
	return -EINVAL;
}
3282
#endif
K
KAMEZAWA Hiroyuki 已提交
3283

3284
/*
3285 3286
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3287
 */
3288 3289
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3290
{
3291
	struct mem_cgroup *memcg = NULL;
3292
	unsigned int nr_pages = 1;
3293
	struct page_cgroup *pc;
3294
	enum charge_type ctype;
3295

3296
	*memcgp = NULL;
3297

3298
	if (mem_cgroup_disabled())
3299
		return;
3300

3301 3302 3303
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

3304 3305 3306
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3307 3308
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3340
	}
3341
	unlock_page_cgroup(pc);
3342 3343 3344 3345
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3346
	if (!memcg)
3347
		return;
3348

3349
	*memcgp = memcg;
3350 3351 3352 3353 3354 3355 3356
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3357
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3358
	else
3359
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3360 3361 3362 3363 3364
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3365
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
3366
}
3367

3368
/* remove redundant charge if migration failed*/
3369
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3370
	struct page *oldpage, struct page *newpage, bool migration_ok)
3371
{
3372
	struct page *used, *unused;
3373
	struct page_cgroup *pc;
3374
	bool anon;
3375

3376
	if (!memcg)
3377
		return;
3378

3379
	if (!migration_ok) {
3380 3381
		used = oldpage;
		unused = newpage;
3382
	} else {
3383
		used = newpage;
3384 3385
		unused = oldpage;
	}
3386
	anon = PageAnon(used);
3387 3388 3389 3390
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3391
	css_put(&memcg->css);
3392
	/*
3393 3394 3395
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3396
	 */
3397 3398 3399 3400 3401
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3402
	/*
3403 3404 3405 3406 3407 3408
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3409
	 */
3410
	if (anon)
3411
		mem_cgroup_uncharge_page(used);
3412
}
3413

3414 3415 3416 3417 3418 3419 3420 3421
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3422
	struct mem_cgroup *memcg = NULL;
3423 3424 3425 3426 3427 3428 3429 3430 3431
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3432 3433 3434 3435 3436
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3437 3438
	unlock_page_cgroup(pc);

3439 3440 3441 3442 3443 3444
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
3445 3446 3447 3448 3449
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3450
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3451 3452
}

3453 3454 3455 3456 3457 3458
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3459 3460 3461 3462 3463
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3483
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3484 3485 3486 3487 3488
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3489 3490
static DEFINE_MUTEX(set_limit_mutex);

3491
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3492
				unsigned long long val)
3493
{
3494
	int retry_count;
3495
	u64 memswlimit, memlimit;
3496
	int ret = 0;
3497 3498
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3499
	int enlarge;
3500 3501 3502 3503 3504 3505 3506 3507 3508

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3509

3510
	enlarge = 0;
3511
	while (retry_count) {
3512 3513 3514 3515
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3516 3517 3518
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3519
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3520 3521 3522 3523 3524 3525
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3526 3527
			break;
		}
3528 3529 3530 3531 3532

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3533
		ret = res_counter_set_limit(&memcg->res, val);
3534 3535 3536 3537 3538 3539
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3540 3541 3542 3543 3544
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3545 3546
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3547 3548 3549 3550 3551 3552
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3553
	}
3554 3555
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3556

3557 3558 3559
	return ret;
}

L
Li Zefan 已提交
3560 3561
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3562
{
3563
	int retry_count;
3564
	u64 memlimit, memswlimit, oldusage, curusage;
3565 3566
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3567
	int enlarge = 0;
3568

3569 3570 3571
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3572 3573 3574 3575 3576 3577 3578 3579
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3580
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3581 3582 3583 3584 3585 3586 3587 3588
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3589 3590 3591
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3592
		ret = res_counter_set_limit(&memcg->memsw, val);
3593 3594 3595 3596 3597 3598
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3599 3600 3601 3602 3603
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3604 3605 3606
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3607
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3608
		/* Usage is reduced ? */
3609
		if (curusage >= oldusage)
3610
			retry_count--;
3611 3612
		else
			oldusage = curusage;
3613
	}
3614 3615
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3616 3617 3618
	return ret;
}

3619
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3620 3621
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3622 3623 3624 3625 3626 3627
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3628
	unsigned long long excess;
3629
	unsigned long nr_scanned;
3630 3631 3632 3633

	if (order > 0)
		return 0;

3634
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3648
		nr_scanned = 0;
3649
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3650
						    gfp_mask, &nr_scanned);
3651
		nr_reclaimed += reclaimed;
3652
		*total_scanned += nr_scanned;
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3675
				if (next_mz == mz)
3676
					css_put(&next_mz->memcg->css);
3677
				else /* next_mz == NULL or other memcg */
3678 3679 3680
					break;
			} while (1);
		}
3681 3682
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3683 3684 3685 3686 3687 3688 3689 3690
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3691
		/* If excess == 0, no tree ops */
3692
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3693
		spin_unlock(&mctz->lock);
3694
		css_put(&mz->memcg->css);
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3707
		css_put(&next_mz->memcg->css);
3708 3709 3710
	return nr_reclaimed;
}

3711 3712 3713 3714 3715 3716 3717
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
3718
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3719 3720
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
3721
 */
3722
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3723
				int node, int zid, enum lru_list lru)
3724
{
3725
	struct lruvec *lruvec;
3726
	unsigned long flags;
3727
	struct list_head *list;
3728 3729
	struct page *busy;
	struct zone *zone;
3730

K
KAMEZAWA Hiroyuki 已提交
3731
	zone = &NODE_DATA(node)->node_zones[zid];
3732 3733
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3734

3735
	busy = NULL;
3736
	do {
3737
		struct page_cgroup *pc;
3738 3739
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3740
		spin_lock_irqsave(&zone->lru_lock, flags);
3741
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3742
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3743
			break;
3744
		}
3745 3746 3747
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3748
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3749
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3750 3751
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3752
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3753

3754
		pc = lookup_page_cgroup(page);
3755

3756
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3757
			/* found lock contention or "pc" is obsolete. */
3758
			busy = page;
3759 3760 3761
			cond_resched();
		} else
			busy = NULL;
3762
	} while (!list_empty(list));
3763 3764 3765
}

/*
3766 3767
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
3768
 * This enables deleting this mem_cgroup.
3769 3770
 *
 * Caller is responsible for holding css reference on the memcg.
3771
 */
3772
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3773
{
3774
	int node, zid;
3775

3776
	do {
3777 3778
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3779 3780
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
3781
		for_each_node_state(node, N_MEMORY) {
3782
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3783 3784
				enum lru_list lru;
				for_each_lru(lru) {
3785
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3786
							node, zid, lru);
3787
				}
3788
			}
3789
		}
3790 3791
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3792
		cond_resched();
3793

3794 3795 3796 3797 3798 3799 3800 3801
		/*
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
3814

3815
	/* returns EBUSY if there is a task or if we come here twice. */
3816 3817 3818
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

3819 3820
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3821
	/* try to free all pages in this cgroup */
3822
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3823
		int progress;
3824

3825 3826 3827
		if (signal_pending(current))
			return -EINTR;

3828
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3829
						false);
3830
		if (!progress) {
3831
			nr_retries--;
3832
			/* maybe some writeback is necessary */
3833
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3834
		}
3835 3836

	}
K
KAMEZAWA Hiroyuki 已提交
3837
	lru_add_drain();
3838 3839 3840
	mem_cgroup_reparent_charges(memcg);

	return 0;
3841 3842
}

3843
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3844
{
3845 3846 3847
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

3848 3849
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3850 3851 3852 3853 3854
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
3855 3856 3857
}


3858 3859 3860 3861 3862 3863 3864 3865 3866
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3867
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3868
	struct cgroup *parent = cont->parent;
3869
	struct mem_cgroup *parent_memcg = NULL;
3870 3871

	if (parent)
3872
		parent_memcg = mem_cgroup_from_cont(parent);
3873 3874

	cgroup_lock();
3875 3876 3877 3878

	if (memcg->use_hierarchy == val)
		goto out;

3879
	/*
3880
	 * If parent's use_hierarchy is set, we can't make any modifications
3881 3882 3883 3884 3885 3886
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3887
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3888 3889
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3890
			memcg->use_hierarchy = val;
3891 3892 3893 3894
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3895 3896

out:
3897 3898 3899 3900 3901
	cgroup_unlock();

	return retval;
}

3902

3903
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3904
					       enum mem_cgroup_stat_index idx)
3905
{
K
KAMEZAWA Hiroyuki 已提交
3906
	struct mem_cgroup *iter;
3907
	long val = 0;
3908

3909
	/* Per-cpu values can be negative, use a signed accumulator */
3910
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3911 3912 3913 3914 3915
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3916 3917
}

3918
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3919
{
K
KAMEZAWA Hiroyuki 已提交
3920
	u64 val;
3921

3922
	if (!mem_cgroup_is_root(memcg)) {
3923
		if (!swap)
3924
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3925
		else
3926
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3927 3928
	}

3929 3930
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3931

K
KAMEZAWA Hiroyuki 已提交
3932
	if (swap)
3933
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3934 3935 3936 3937

	return val << PAGE_SHIFT;
}

3938 3939 3940
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3941
{
3942
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3943
	char str[64];
3944
	u64 val;
3945
	int type, name, len;
3946 3947 3948

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3949 3950 3951 3952

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3953 3954
	switch (type) {
	case _MEM:
3955
		if (name == RES_USAGE)
3956
			val = mem_cgroup_usage(memcg, false);
3957
		else
3958
			val = res_counter_read_u64(&memcg->res, name);
3959 3960
		break;
	case _MEMSWAP:
3961
		if (name == RES_USAGE)
3962
			val = mem_cgroup_usage(memcg, true);
3963
		else
3964
			val = res_counter_read_u64(&memcg->memsw, name);
3965 3966 3967 3968
		break;
	default:
		BUG();
	}
3969 3970 3971

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3972
}
3973 3974 3975 3976
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3977 3978
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3979
{
3980
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3981
	int type, name;
3982 3983 3984
	unsigned long long val;
	int ret;

3985 3986
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3987 3988 3989 3990

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3991
	switch (name) {
3992
	case RES_LIMIT:
3993 3994 3995 3996
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3997 3998
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3999 4000 4001
		if (ret)
			break;
		if (type == _MEM)
4002
			ret = mem_cgroup_resize_limit(memcg, val);
4003 4004
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4005
		break;
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4020 4021 4022 4023 4024
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4025 4026
}

4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4054
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4055
{
4056
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4057
	int type, name;
4058

4059 4060
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4061 4062 4063 4064

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4065
	switch (name) {
4066
	case RES_MAX_USAGE:
4067
		if (type == _MEM)
4068
			res_counter_reset_max(&memcg->res);
4069
		else
4070
			res_counter_reset_max(&memcg->memsw);
4071 4072
		break;
	case RES_FAILCNT:
4073
		if (type == _MEM)
4074
			res_counter_reset_failcnt(&memcg->res);
4075
		else
4076
			res_counter_reset_failcnt(&memcg->memsw);
4077 4078
		break;
	}
4079

4080
	return 0;
4081 4082
}

4083 4084 4085 4086 4087 4088
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4089
#ifdef CONFIG_MMU
4090 4091 4092
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4093
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4094 4095 4096 4097 4098 4099 4100 4101 4102

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4103
	memcg->move_charge_at_immigrate = val;
4104 4105 4106 4107
	cgroup_unlock();

	return 0;
}
4108 4109 4110 4111 4112 4113 4114
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4115

4116
#ifdef CONFIG_NUMA
4117
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4118
				      struct seq_file *m)
4119 4120 4121 4122
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4123
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4124

4125
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4126
	seq_printf(m, "total=%lu", total_nr);
4127
	for_each_node_state(nid, N_MEMORY) {
4128
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4129 4130 4131 4132
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4133
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4134
	seq_printf(m, "file=%lu", file_nr);
4135
	for_each_node_state(nid, N_MEMORY) {
4136
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4137
				LRU_ALL_FILE);
4138 4139 4140 4141
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4142
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4143
	seq_printf(m, "anon=%lu", anon_nr);
4144
	for_each_node_state(nid, N_MEMORY) {
4145
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4146
				LRU_ALL_ANON);
4147 4148 4149 4150
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4151
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4152
	seq_printf(m, "unevictable=%lu", unevictable_nr);
4153
	for_each_node_state(nid, N_MEMORY) {
4154
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4155
				BIT(LRU_UNEVICTABLE));
4156 4157 4158 4159 4160 4161 4162
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4176
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4177
				 struct seq_file *m)
4178
{
4179
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4180 4181
	struct mem_cgroup *mi;
	unsigned int i;
4182

4183
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4184
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4185
			continue;
4186 4187
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4188
	}
L
Lee Schermerhorn 已提交
4189

4190 4191 4192 4193 4194 4195 4196 4197
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4198
	/* Hierarchical information */
4199 4200
	{
		unsigned long long limit, memsw_limit;
4201
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4202
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4203
		if (do_swap_account)
4204 4205
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4206
	}
K
KOSAKI Motohiro 已提交
4207

4208 4209 4210
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4211
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4212
			continue;
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4233
	}
K
KAMEZAWA Hiroyuki 已提交
4234

K
KOSAKI Motohiro 已提交
4235 4236 4237 4238
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4239
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4240 4241 4242 4243 4244
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4245
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4246
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4247

4248 4249 4250 4251
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4252
			}
4253 4254 4255 4256
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4257 4258 4259
	}
#endif

4260 4261 4262
	return 0;
}

K
KOSAKI Motohiro 已提交
4263 4264 4265 4266
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4267
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4268 4269 4270 4271 4272 4273 4274
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4275

K
KOSAKI Motohiro 已提交
4276 4277 4278 4279 4280 4281 4282
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4283 4284 4285

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4286 4287
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4288 4289
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4290
		return -EINVAL;
4291
	}
K
KOSAKI Motohiro 已提交
4292 4293 4294

	memcg->swappiness = val;

4295 4296
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4297 4298 4299
	return 0;
}

4300 4301 4302 4303 4304 4305 4306 4307
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4308
		t = rcu_dereference(memcg->thresholds.primary);
4309
	else
4310
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4311 4312 4313 4314 4315 4316 4317

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4318
	 * current_threshold points to threshold just below or equal to usage.
4319 4320 4321
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4322
	i = t->current_threshold;
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4346
	t->current_threshold = i - 1;
4347 4348 4349 4350 4351 4352
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4353 4354 4355 4356 4357 4358 4359
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4370
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4371 4372 4373
{
	struct mem_cgroup_eventfd_list *ev;

4374
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4375 4376 4377 4378
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4379
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4380
{
K
KAMEZAWA Hiroyuki 已提交
4381 4382
	struct mem_cgroup *iter;

4383
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4384
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4385 4386 4387 4388
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4389 4390
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4391 4392
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4393 4394
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4395
	int i, size, ret;
4396 4397 4398 4399 4400 4401

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4402

4403
	if (type == _MEM)
4404
		thresholds = &memcg->thresholds;
4405
	else if (type == _MEMSWAP)
4406
		thresholds = &memcg->memsw_thresholds;
4407 4408 4409 4410 4411 4412
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4413
	if (thresholds->primary)
4414 4415
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4416
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4417 4418

	/* Allocate memory for new array of thresholds */
4419
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4420
			GFP_KERNEL);
4421
	if (!new) {
4422 4423 4424
		ret = -ENOMEM;
		goto unlock;
	}
4425
	new->size = size;
4426 4427

	/* Copy thresholds (if any) to new array */
4428 4429
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4430
				sizeof(struct mem_cgroup_threshold));
4431 4432
	}

4433
	/* Add new threshold */
4434 4435
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4436 4437

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4438
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4439 4440 4441
			compare_thresholds, NULL);

	/* Find current threshold */
4442
	new->current_threshold = -1;
4443
	for (i = 0; i < size; i++) {
4444
		if (new->entries[i].threshold <= usage) {
4445
			/*
4446 4447
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4448 4449
			 * it here.
			 */
4450
			++new->current_threshold;
4451 4452
		} else
			break;
4453 4454
	}

4455 4456 4457 4458 4459
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4460

4461
	/* To be sure that nobody uses thresholds */
4462 4463 4464 4465 4466 4467 4468 4469
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4470
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4471
	struct cftype *cft, struct eventfd_ctx *eventfd)
4472 4473
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4474 4475
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4476 4477
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4478
	int i, j, size;
4479 4480 4481

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4482
		thresholds = &memcg->thresholds;
4483
	else if (type == _MEMSWAP)
4484
		thresholds = &memcg->memsw_thresholds;
4485 4486 4487
	else
		BUG();

4488 4489 4490
	if (!thresholds->primary)
		goto unlock;

4491 4492 4493 4494 4495 4496
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4497 4498 4499
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4500 4501 4502
			size++;
	}

4503
	new = thresholds->spare;
4504

4505 4506
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4507 4508
		kfree(new);
		new = NULL;
4509
		goto swap_buffers;
4510 4511
	}

4512
	new->size = size;
4513 4514

	/* Copy thresholds and find current threshold */
4515 4516 4517
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4518 4519
			continue;

4520
		new->entries[j] = thresholds->primary->entries[i];
4521
		if (new->entries[j].threshold <= usage) {
4522
			/*
4523
			 * new->current_threshold will not be used
4524 4525 4526
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4527
			++new->current_threshold;
4528 4529 4530 4531
		}
		j++;
	}

4532
swap_buffers:
4533 4534
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4535 4536 4537 4538 4539 4540
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4541
	rcu_assign_pointer(thresholds->primary, new);
4542

4543
	/* To be sure that nobody uses thresholds */
4544
	synchronize_rcu();
4545
unlock:
4546 4547
	mutex_unlock(&memcg->thresholds_lock);
}
4548

K
KAMEZAWA Hiroyuki 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4561
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4562 4563 4564 4565 4566

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4567
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4568
		eventfd_signal(eventfd, 1);
4569
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4570 4571 4572 4573

	return 0;
}

4574
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4575 4576
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4577
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4578 4579 4580 4581 4582
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4583
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4584

4585
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4586 4587 4588 4589 4590 4591
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4592
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4593 4594
}

4595 4596 4597
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4598
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4599

4600
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4601

4602
	if (atomic_read(&memcg->under_oom))
4603 4604 4605 4606 4607 4608 4609 4610 4611
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4612
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4624
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4625 4626 4627
		cgroup_unlock();
		return -EINVAL;
	}
4628
	memcg->oom_kill_disable = val;
4629
	if (!val)
4630
		memcg_oom_recover(memcg);
4631 4632 4633 4634
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
4635
#ifdef CONFIG_MEMCG_KMEM
4636
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4637
{
4638
	return mem_cgroup_sockets_init(memcg, ss);
4639 4640
};

4641
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4642
{
4643
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4644
}
4645
#else
4646
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4647 4648 4649
{
	return 0;
}
G
Glauber Costa 已提交
4650

4651
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4652 4653
{
}
4654 4655
#endif

B
Balbir Singh 已提交
4656 4657
static struct cftype mem_cgroup_files[] = {
	{
4658
		.name = "usage_in_bytes",
4659
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4660
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4661 4662
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4663
	},
4664 4665
	{
		.name = "max_usage_in_bytes",
4666
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4667
		.trigger = mem_cgroup_reset,
4668
		.read = mem_cgroup_read,
4669
	},
B
Balbir Singh 已提交
4670
	{
4671
		.name = "limit_in_bytes",
4672
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4673
		.write_string = mem_cgroup_write,
4674
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4675
	},
4676 4677 4678 4679
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4680
		.read = mem_cgroup_read,
4681
	},
B
Balbir Singh 已提交
4682 4683
	{
		.name = "failcnt",
4684
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4685
		.trigger = mem_cgroup_reset,
4686
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4687
	},
4688 4689
	{
		.name = "stat",
4690
		.read_seq_string = memcg_stat_show,
4691
	},
4692 4693 4694 4695
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4696 4697 4698 4699 4700
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4701 4702 4703 4704 4705
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4706 4707 4708 4709 4710
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4711 4712
	{
		.name = "oom_control",
4713 4714
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4715 4716 4717 4718
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4719 4720 4721
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4722
		.read_seq_string = memcg_numa_stat_show,
4723 4724
	},
#endif
A
Andrew Morton 已提交
4725
#ifdef CONFIG_MEMCG_SWAP
4726 4727 4728
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4729
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4730 4731
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4732 4733 4734 4735 4736
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4737
		.read = mem_cgroup_read,
4738 4739 4740 4741 4742
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4743
		.read = mem_cgroup_read,
4744 4745 4746 4747 4748
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4749
		.read = mem_cgroup_read,
4750 4751
	},
#endif
4752
	{ },	/* terminate */
4753
};
4754

4755
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4756 4757
{
	struct mem_cgroup_per_node *pn;
4758
	struct mem_cgroup_per_zone *mz;
4759
	int zone, tmp = node;
4760 4761 4762 4763 4764 4765 4766 4767
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4768 4769
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4770
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4771 4772
	if (!pn)
		return 1;
4773 4774 4775

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4776
		lruvec_init(&mz->lruvec);
4777
		mz->usage_in_excess = 0;
4778
		mz->on_tree = false;
4779
		mz->memcg = memcg;
4780
	}
4781
	memcg->info.nodeinfo[node] = pn;
4782 4783 4784
	return 0;
}

4785
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4786
{
4787
	kfree(memcg->info.nodeinfo[node]);
4788 4789
}

4790 4791
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4792
	struct mem_cgroup *memcg;
4793
	int size = sizeof(struct mem_cgroup);
4794

4795
	/* Can be very big if MAX_NUMNODES is very big */
4796
	if (size < PAGE_SIZE)
4797
		memcg = kzalloc(size, GFP_KERNEL);
4798
	else
4799
		memcg = vzalloc(size);
4800

4801
	if (!memcg)
4802 4803
		return NULL;

4804 4805
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4806
		goto out_free;
4807 4808
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4809 4810 4811

out_free:
	if (size < PAGE_SIZE)
4812
		kfree(memcg);
4813
	else
4814
		vfree(memcg);
4815
	return NULL;
4816 4817
}

4818
/*
4819
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4820 4821 4822
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
4823
static void free_work(struct work_struct *work)
4824 4825
{
	struct mem_cgroup *memcg;
4826
	int size = sizeof(struct mem_cgroup);
4827 4828

	memcg = container_of(work, struct mem_cgroup, work_freeing);
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
4841 4842 4843 4844
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
4845
}
4846 4847

static void free_rcu(struct rcu_head *rcu_head)
4848 4849 4850 4851
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4852
	INIT_WORK(&memcg->work_freeing, free_work);
4853 4854 4855
	schedule_work(&memcg->work_freeing);
}

4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4867
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4868
{
K
KAMEZAWA Hiroyuki 已提交
4869 4870
	int node;

4871 4872
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4873

B
Bob Liu 已提交
4874
	for_each_node(node)
4875
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4876

4877
	free_percpu(memcg->stat);
4878
	call_rcu(&memcg->rcu_freeing, free_rcu);
4879 4880
}

4881
static void mem_cgroup_get(struct mem_cgroup *memcg)
4882
{
4883
	atomic_inc(&memcg->refcnt);
4884 4885
}

4886
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4887
{
4888 4889 4890
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4891 4892 4893
		if (parent)
			mem_cgroup_put(parent);
	}
4894 4895
}

4896
static void mem_cgroup_put(struct mem_cgroup *memcg)
4897
{
4898
	__mem_cgroup_put(memcg, 1);
4899 4900
}

4901 4902 4903
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4904
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4905
{
4906
	if (!memcg->res.parent)
4907
		return NULL;
4908
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4909
}
G
Glauber Costa 已提交
4910
EXPORT_SYMBOL(parent_mem_cgroup);
4911

A
Andrew Morton 已提交
4912
#ifdef CONFIG_MEMCG_SWAP
4913 4914
static void __init enable_swap_cgroup(void)
{
4915
	if (!mem_cgroup_disabled() && really_do_swap_account)
4916 4917 4918 4919 4920 4921 4922 4923
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4924 4925 4926 4927 4928 4929
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4930
	for_each_node(node) {
4931 4932 4933 4934 4935
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4936
			goto err_cleanup;
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4947 4948

err_cleanup:
B
Bob Liu 已提交
4949
	for_each_node(node) {
4950 4951 4952 4953 4954 4955 4956
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4957 4958
}

L
Li Zefan 已提交
4959
static struct cgroup_subsys_state * __ref
4960
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
4961
{
4962
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4963
	long error = -ENOMEM;
4964
	int node;
B
Balbir Singh 已提交
4965

4966 4967
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4968
		return ERR_PTR(error);
4969

B
Bob Liu 已提交
4970
	for_each_node(node)
4971
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4972
			goto free_out;
4973

4974
	/* root ? */
4975
	if (cont->parent == NULL) {
4976
		int cpu;
4977
		enable_swap_cgroup();
4978
		parent = NULL;
4979 4980
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4981
		root_mem_cgroup = memcg;
4982 4983 4984 4985 4986
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4987
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4988
	} else {
4989
		parent = mem_cgroup_from_cont(cont->parent);
4990 4991
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4992
	}
4993

4994
	if (parent && parent->use_hierarchy) {
4995 4996
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4997 4998 4999 5000 5001 5002 5003
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5004
	} else {
5005 5006
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5007 5008 5009 5010 5011 5012 5013
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
5014
	}
5015 5016
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5017

K
KOSAKI Motohiro 已提交
5018
	if (parent)
5019 5020 5021 5022
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5023
	spin_lock_init(&memcg->move_lock);
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5035
	return &memcg->css;
5036
free_out:
5037
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5038
	return ERR_PTR(error);
B
Balbir Singh 已提交
5039 5040
}

5041
static void mem_cgroup_css_offline(struct cgroup *cont)
5042
{
5043
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5044

5045
	mem_cgroup_reparent_charges(memcg);
5046 5047
}

5048
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
5049
{
5050
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5051

5052
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5053

5054
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5055 5056
}

5057
#ifdef CONFIG_MMU
5058
/* Handlers for move charge at task migration. */
5059 5060
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5061
{
5062 5063
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5064
	struct mem_cgroup *memcg = mc.to;
5065

5066
	if (mem_cgroup_is_root(memcg)) {
5067 5068 5069 5070 5071 5072 5073 5074
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5075
		 * "memcg" cannot be under rmdir() because we've already checked
5076 5077 5078 5079
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5080
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5081
			goto one_by_one;
5082
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5083
						PAGE_SIZE * count, &dummy)) {
5084
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5101 5102
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5103
		if (ret)
5104
			/* mem_cgroup_clear_mc() will do uncharge later */
5105
			return ret;
5106 5107
		mc.precharge++;
	}
5108 5109 5110 5111
	return ret;
}

/**
5112
 * get_mctgt_type - get target type of moving charge
5113 5114 5115
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5116
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5117 5118 5119 5120 5121 5122
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5123 5124 5125
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5126 5127 5128 5129 5130
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5131
	swp_entry_t	ent;
5132 5133 5134
};

enum mc_target_type {
5135
	MC_TARGET_NONE = 0,
5136
	MC_TARGET_PAGE,
5137
	MC_TARGET_SWAP,
5138 5139
};

D
Daisuke Nishimura 已提交
5140 5141
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5142
{
D
Daisuke Nishimura 已提交
5143
	struct page *page = vm_normal_page(vma, addr, ptent);
5144

D
Daisuke Nishimura 已提交
5145 5146 5147 5148
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5149
		if (!move_anon())
D
Daisuke Nishimura 已提交
5150
			return NULL;
5151 5152
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5153 5154 5155 5156 5157 5158 5159
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5160
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5161 5162 5163 5164 5165 5166 5167 5168
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5169 5170 5171 5172 5173
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5174 5175 5176 5177 5178
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5179 5180 5181 5182 5183 5184 5185
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5186

5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5206 5207 5208 5209 5210 5211
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5212
		if (do_swap_account)
5213 5214
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5215
	}
5216
#endif
5217 5218 5219
	return page;
}

5220
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5221 5222 5223 5224
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5225
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5226 5227 5228 5229 5230 5231
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5232 5233
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5234 5235

	if (!page && !ent.val)
5236
		return ret;
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5252 5253
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5254
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5255 5256 5257
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5258 5259 5260 5261
	}
	return ret;
}

5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5297 5298 5299 5300 5301 5302 5303 5304
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5305 5306 5307 5308
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5309
		return 0;
5310
	}
5311

5312 5313
	if (pmd_trans_unstable(pmd))
		return 0;
5314 5315
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5316
		if (get_mctgt_type(vma, addr, *pte, NULL))
5317 5318 5319 5320
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5321 5322 5323
	return 0;
}

5324 5325 5326 5327 5328
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5329
	down_read(&mm->mmap_sem);
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5341
	up_read(&mm->mmap_sem);
5342 5343 5344 5345 5346 5347 5348 5349 5350

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5351 5352 5353 5354 5355
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5356 5357
}

5358 5359
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5360
{
5361 5362 5363
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5364
	/* we must uncharge all the leftover precharges from mc.to */
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5376
	}
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5411
	spin_lock(&mc.lock);
5412 5413
	mc.from = NULL;
	mc.to = NULL;
5414
	spin_unlock(&mc.lock);
5415
	mem_cgroup_end_move(from);
5416 5417
}

5418 5419
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5420
{
5421
	struct task_struct *p = cgroup_taskset_first(tset);
5422
	int ret = 0;
5423
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5424

5425
	if (memcg->move_charge_at_immigrate) {
5426 5427 5428
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5429
		VM_BUG_ON(from == memcg);
5430 5431 5432 5433 5434

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5435 5436 5437 5438
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5439
			VM_BUG_ON(mc.moved_charge);
5440
			VM_BUG_ON(mc.moved_swap);
5441
			mem_cgroup_start_move(from);
5442
			spin_lock(&mc.lock);
5443
			mc.from = from;
5444
			mc.to = memcg;
5445
			spin_unlock(&mc.lock);
5446
			/* We set mc.moving_task later */
5447 5448 5449 5450

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5451 5452
		}
		mmput(mm);
5453 5454 5455 5456
	}
	return ret;
}

5457 5458
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5459
{
5460
	mem_cgroup_clear_mc();
5461 5462
}

5463 5464 5465
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5466
{
5467 5468 5469 5470
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5471 5472 5473 5474
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5475

5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5487
		if (mc.precharge < HPAGE_PMD_NR) {
5488 5489 5490 5491 5492 5493 5494 5495 5496
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5497
							pc, mc.from, mc.to)) {
5498 5499 5500 5501 5502 5503 5504 5505
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5506
		return 0;
5507 5508
	}

5509 5510
	if (pmd_trans_unstable(pmd))
		return 0;
5511 5512 5513 5514
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5515
		swp_entry_t ent;
5516 5517 5518 5519

		if (!mc.precharge)
			break;

5520
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5521 5522 5523 5524 5525
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5526
			if (!mem_cgroup_move_account(page, 1, pc,
5527
						     mc.from, mc.to)) {
5528
				mc.precharge--;
5529 5530
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5531 5532
			}
			putback_lru_page(page);
5533
put:			/* get_mctgt_type() gets the page */
5534 5535
			put_page(page);
			break;
5536 5537
		case MC_TARGET_SWAP:
			ent = target.ent;
5538
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5539
				mc.precharge--;
5540 5541 5542
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5543
			break;
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5558
		ret = mem_cgroup_do_precharge(1);
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5602
	up_read(&mm->mmap_sem);
5603 5604
}

5605 5606
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5607
{
5608
	struct task_struct *p = cgroup_taskset_first(tset);
5609
	struct mm_struct *mm = get_task_mm(p);
5610 5611

	if (mm) {
5612 5613
		if (mc.to)
			mem_cgroup_move_charge(mm);
5614 5615
		mmput(mm);
	}
5616 5617
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5618
}
5619
#else	/* !CONFIG_MMU */
5620 5621
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5622 5623 5624
{
	return 0;
}
5625 5626
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5627 5628
{
}
5629 5630
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5631 5632 5633
{
}
#endif
B
Balbir Singh 已提交
5634

B
Balbir Singh 已提交
5635 5636 5637
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
5638 5639 5640
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5641 5642
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5643
	.attach = mem_cgroup_move_task,
5644
	.base_cftypes = mem_cgroup_files,
5645
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5646
	.use_id = 1,
B
Balbir Singh 已提交
5647
};
5648

A
Andrew Morton 已提交
5649
#ifdef CONFIG_MEMCG_SWAP
5650 5651 5652
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5653
	if (!strcmp(s, "1"))
5654
		really_do_swap_account = 1;
5655
	else if (!strcmp(s, "0"))
5656 5657 5658
		really_do_swap_account = 0;
	return 1;
}
5659
__setup("swapaccount=", enable_swap_account);
5660 5661

#endif