memcontrol.c 185.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
95 96 97 98 99
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 101 102
	MEM_CGROUP_STAT_NSTATS,
};

103 104 105
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
106
	"rss_huge",
107 108 109 110
	"mapped_file",
	"swap",
};

111 112 113
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 115
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 117
	MEM_CGROUP_EVENTS_NSTATS,
};
118 119 120 121 122 123 124 125

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

126 127 128 129 130 131 132 133
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

134 135 136 137 138 139 140 141 142
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
143
	MEM_CGROUP_TARGET_NUMAINFO,
144 145
	MEM_CGROUP_NTARGETS,
};
146 147 148
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
149

150
struct mem_cgroup_stat_cpu {
151
	long count[MEM_CGROUP_STAT_NSTATS];
152
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153
	unsigned long nr_page_events;
154
	unsigned long targets[MEM_CGROUP_NTARGETS];
155 156
};

157
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
158 159 160 161
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
162
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
163 164
	unsigned long last_dead_count;

165 166 167 168
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

169 170 171 172
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
173
	struct lruvec		lruvec;
174
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
175

176 177
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

178 179 180 181
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
182
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183
						/* use container_of	   */
184 185 186 187 188 189
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

210 211 212 213 214
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
215
/* For threshold */
216
struct mem_cgroup_threshold_ary {
217
	/* An array index points to threshold just below or equal to usage. */
218
	int current_threshold;
219 220 221 222 223
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
224 225 226 227 228 229 230 231 232 233 234 235

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
236 237 238 239 240
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
241

242 243
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244

B
Balbir Singh 已提交
245 246 247 248 249 250 251
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 253 254
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
255 256 257 258 259 260 261
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
262

263 264 265
	/* vmpressure notifications */
	struct vmpressure vmpressure;

266 267 268 269
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
270

271 272 273 274
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
275 276 277 278
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
279
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
280 281 282 283

	bool		oom_lock;
	atomic_t	under_oom;

284
	int	swappiness;
285 286
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
287

288 289 290
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

291 292 293 294
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
295
	struct mem_cgroup_thresholds thresholds;
296

297
	/* thresholds for mem+swap usage. RCU-protected */
298
	struct mem_cgroup_thresholds memsw_thresholds;
299

K
KAMEZAWA Hiroyuki 已提交
300 301
	/* For oom notifier event fd */
	struct list_head oom_notify;
302

303 304 305 306 307
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
308 309 310 311
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
312 313
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
314
	/*
315
	 * percpu counter.
316
	 */
317
	struct mem_cgroup_stat_cpu __percpu *stat;
318 319 320 321 322 323
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
324

M
Michal Hocko 已提交
325
	atomic_t	dead_count;
M
Michal Hocko 已提交
326
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
327 328
	struct tcp_memcontrol tcp_mem;
#endif
329 330 331 332 333 334 335 336
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
337 338 339 340 341 342 343

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
344

345 346
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
347 348
};

349 350 351 352 353 354
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

355 356 357
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
358
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
359
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
360 361
};

362 363 364
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365 366 367 368 369 370

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
371 372 373 374 375 376

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

377 378 379 380 381
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

382 383 384 385 386
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

387 388
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
389 390 391 392 393
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
394 395 396 397 398 399 400 401 402
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
403 404
#endif

405 406
/* Stuffs for move charges at task migration. */
/*
407 408
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
409 410
 */
enum move_type {
411
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
412
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
413 414 415
	NR_MOVE_TYPE,
};

416 417
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
418
	spinlock_t	  lock; /* for from, to */
419 420
	struct mem_cgroup *from;
	struct mem_cgroup *to;
421
	unsigned long immigrate_flags;
422
	unsigned long precharge;
423
	unsigned long moved_charge;
424
	unsigned long moved_swap;
425 426 427
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
428
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
429 430
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
431

D
Daisuke Nishimura 已提交
432 433
static bool move_anon(void)
{
434
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
435 436
}

437 438
static bool move_file(void)
{
439
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
440 441
}

442 443 444 445
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
446 447
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
448

449 450
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
451
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
452
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
453
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
454 455 456
	NR_CHARGE_TYPE,
};

457
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
458 459 460 461
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
462
	_KMEM,
G
Glauber Costa 已提交
463 464
};

465 466
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
467
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
468 469
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
470

471 472 473 474 475 476 477 478
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

479 480 481 482 483 484 485
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

486 487
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
488
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
489 490
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

509 510 511 512 513
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
514
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
515
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
516 517 518

void sock_update_memcg(struct sock *sk)
{
519
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
520
		struct mem_cgroup *memcg;
521
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
522 523 524

		BUG_ON(!sk->sk_prot->proto_cgroup);

525 526 527 528 529 530 531 532 533 534
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
535
			css_get(&sk->sk_cgrp->memcg->css);
536 537 538
			return;
		}

G
Glauber Costa 已提交
539 540
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
541
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
542 543
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
544
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
545 546 547 548 549 550 551 552
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
553
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
554 555 556
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
557
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
558 559
	}
}
G
Glauber Costa 已提交
560 561 562 563 564 565 566 567 568

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
569

570 571 572 573 574 575 576 577 578 579 580 581
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

582
#ifdef CONFIG_MEMCG_KMEM
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
601 602
int memcg_limited_groups_array_size;

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

618 619 620 621 622 623
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
624
struct static_key memcg_kmem_enabled_key;
625
EXPORT_SYMBOL(memcg_kmem_enabled_key);
626 627 628

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
629
	if (memcg_kmem_is_active(memcg)) {
630
		static_key_slow_dec(&memcg_kmem_enabled_key);
631 632
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
633 634 635 636 637
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
638 639 640 641 642 643 644 645 646 647 648 649 650
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

651
static void drain_all_stock_async(struct mem_cgroup *memcg);
652

653
static struct mem_cgroup_per_zone *
654
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
655
{
656
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
657
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 659
}

660
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
661
{
662
	return &memcg->css;
663 664
}

665
static struct mem_cgroup_per_zone *
666
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
667
{
668 669
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
670

671
	return mem_cgroup_zoneinfo(memcg, nid, zid);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
690
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
691
				struct mem_cgroup_per_zone *mz,
692 693
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
694 695 696 697 698 699 700 701
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

702 703 704
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
721 722 723
}

static void
724
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
725 726 727 728 729 730 731 732 733
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

734
static void
735
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
736 737 738 739
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
740
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
741 742 743 744
	spin_unlock(&mctz->lock);
}


745
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
746
{
747
	unsigned long long excess;
748 749
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
750 751
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
752 753 754
	mctz = soft_limit_tree_from_page(page);

	/*
755 756
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
757
	 */
758 759 760
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
761 762 763 764
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
765
		if (excess || mz->on_tree) {
766 767 768
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
769
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
770
			/*
771 772
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
773
			 */
774
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
775 776
			spin_unlock(&mctz->lock);
		}
777 778 779
	}
}

780
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
781 782 783 784 785
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
786
	for_each_node(node) {
787
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
788
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
789
			mctz = soft_limit_tree_node_zone(node, zone);
790
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
791 792 793 794
		}
	}
}

795 796 797 798
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
799
	struct mem_cgroup_per_zone *mz;
800 801

retry:
802
	mz = NULL;
803 804 805 806 807 808 809 810 811 812
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
813 814 815
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
851
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
852
				 enum mem_cgroup_stat_index idx)
853
{
854
	long val = 0;
855 856
	int cpu;

857 858
	get_online_cpus();
	for_each_online_cpu(cpu)
859
		val += per_cpu(memcg->stat->count[idx], cpu);
860
#ifdef CONFIG_HOTPLUG_CPU
861 862 863
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
864 865
#endif
	put_online_cpus();
866 867 868
	return val;
}

869
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
870 871 872
					 bool charge)
{
	int val = (charge) ? 1 : -1;
873
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
874 875
}

876
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
877 878 879 880 881 882
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
883
		val += per_cpu(memcg->stat->events[idx], cpu);
884
#ifdef CONFIG_HOTPLUG_CPU
885 886 887
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
888 889 890 891
#endif
	return val;
}

892
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
893
					 struct page *page,
894
					 bool anon, int nr_pages)
895
{
896 897
	preempt_disable();

898 899 900 901 902 903
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
904
				nr_pages);
905
	else
906
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
907
				nr_pages);
908

909 910 911 912
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

913 914
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
915
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
916
	else {
917
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
918 919
		nr_pages = -nr_pages; /* for event */
	}
920

921
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
922

923
	preempt_enable();
924 925
}

926
unsigned long
927
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
928 929 930 931 932 933 934 935
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
936
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
937
			unsigned int lru_mask)
938 939
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
940
	enum lru_list lru;
941 942
	unsigned long ret = 0;

943
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
944

H
Hugh Dickins 已提交
945 946 947
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
948 949 950 951 952
	}
	return ret;
}

static unsigned long
953
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
954 955
			int nid, unsigned int lru_mask)
{
956 957 958
	u64 total = 0;
	int zid;

959
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
960 961
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
962

963 964
	return total;
}
965

966
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
967
			unsigned int lru_mask)
968
{
969
	int nid;
970 971
	u64 total = 0;

972
	for_each_node_state(nid, N_MEMORY)
973
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
974
	return total;
975 976
}

977 978
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
979 980 981
{
	unsigned long val, next;

982
	val = __this_cpu_read(memcg->stat->nr_page_events);
983
	next = __this_cpu_read(memcg->stat->targets[target]);
984
	/* from time_after() in jiffies.h */
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1001
	}
1002
	return false;
1003 1004 1005 1006 1007 1008
}

/*
 * Check events in order.
 *
 */
1009
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1010
{
1011
	preempt_disable();
1012
	/* threshold event is triggered in finer grain than soft limit */
1013 1014
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1015 1016
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1017 1018 1019 1020 1021 1022 1023 1024 1025

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1026
		mem_cgroup_threshold(memcg);
1027
		if (unlikely(do_softlimit))
1028
			mem_cgroup_update_tree(memcg, page);
1029
#if MAX_NUMNODES > 1
1030
		if (unlikely(do_numainfo))
1031
			atomic_inc(&memcg->numainfo_events);
1032
#endif
1033 1034
	} else
		preempt_enable();
1035 1036
}

1037
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1038
{
1039 1040 1041 1042 1043 1044 1045 1046
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1047
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1048 1049
}

1050
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1051
{
1052
	struct mem_cgroup *memcg = NULL;
1053 1054 1055

	if (!mm)
		return NULL;
1056 1057 1058 1059 1060 1061 1062
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1063 1064
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1065
			break;
1066
	} while (!css_tryget(&memcg->css));
1067
	rcu_read_unlock();
1068
	return memcg;
1069 1070
}

1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
		struct mem_cgroup *last_visited)
{
1080
	struct cgroup_subsys_state *prev_css, *next_css;
1081 1082 1083 1084 1085 1086 1087 1088

	/*
	 * Root is not visited by cgroup iterators so it needs an
	 * explicit visit.
	 */
	if (!last_visited)
		return root;

1089
	prev_css = (last_visited == root) ? NULL : &last_visited->css;
1090
skip_node:
1091
	next_css = css_next_descendant_pre(prev_css, &root->css);
1092 1093 1094 1095 1096 1097 1098 1099

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1100 1101 1102
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1103 1104 1105
		if (css_tryget(&mem->css))
			return mem;
		else {
1106
			prev_css = next_css;
1107 1108 1109 1110 1111 1112 1113
			goto skip_node;
		}
	}

	return NULL;
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1186
{
1187
	struct mem_cgroup *memcg = NULL;
1188
	struct mem_cgroup *last_visited = NULL;
1189

1190 1191 1192
	if (mem_cgroup_disabled())
		return NULL;

1193 1194
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1195

1196
	if (prev && !reclaim)
1197
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1198

1199 1200
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1201
			goto out_css_put;
1202 1203
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1204

1205
	rcu_read_lock();
1206
	while (!memcg) {
1207
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1208
		int uninitialized_var(seq);
1209

1210 1211 1212 1213 1214 1215 1216
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1217
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1218
				iter->last_visited = NULL;
1219 1220
				goto out_unlock;
			}
M
Michal Hocko 已提交
1221

1222
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1223
		}
K
KAMEZAWA Hiroyuki 已提交
1224

1225
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1226

1227
		if (reclaim) {
1228
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1229

M
Michal Hocko 已提交
1230
			if (!memcg)
1231 1232 1233 1234
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1235

M
Michal Hocko 已提交
1236
		if (prev && !memcg)
1237
			goto out_unlock;
1238
	}
1239 1240
out_unlock:
	rcu_read_unlock();
1241 1242 1243 1244
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1245
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1246
}
K
KAMEZAWA Hiroyuki 已提交
1247

1248 1249 1250 1251 1252 1253 1254
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1255 1256 1257 1258 1259 1260
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1261

1262 1263 1264 1265 1266 1267
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1268
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1269
	     iter != NULL;				\
1270
	     iter = mem_cgroup_iter(root, iter, NULL))
1271

1272
#define for_each_mem_cgroup(iter)			\
1273
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1274
	     iter != NULL;				\
1275
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1276

1277
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1278
{
1279
	struct mem_cgroup *memcg;
1280 1281

	rcu_read_lock();
1282 1283
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1284 1285 1286 1287
		goto out;

	switch (idx) {
	case PGFAULT:
1288 1289 1290 1291
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1292 1293 1294 1295 1296 1297 1298
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1299
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1300

1301 1302 1303
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1304
 * @memcg: memcg of the wanted lruvec
1305 1306 1307 1308 1309 1310 1311 1312 1313
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1314
	struct lruvec *lruvec;
1315

1316 1317 1318 1319
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1320 1321

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1332 1333
}

K
KAMEZAWA Hiroyuki 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1347

1348
/**
1349
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1350
 * @page: the page
1351
 * @zone: zone of the page
1352
 */
1353
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1354 1355
{
	struct mem_cgroup_per_zone *mz;
1356 1357
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1358
	struct lruvec *lruvec;
1359

1360 1361 1362 1363
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1364

K
KAMEZAWA Hiroyuki 已提交
1365
	pc = lookup_page_cgroup(page);
1366
	memcg = pc->mem_cgroup;
1367 1368

	/*
1369
	 * Surreptitiously switch any uncharged offlist page to root:
1370 1371 1372 1373 1374 1375 1376
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1377
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1378 1379
		pc->mem_cgroup = memcg = root_mem_cgroup;

1380
	mz = page_cgroup_zoneinfo(memcg, page);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1391
}
1392

1393
/**
1394 1395 1396 1397
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1398
 *
1399 1400
 * This function must be called when a page is added to or removed from an
 * lru list.
1401
 */
1402 1403
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1404 1405
{
	struct mem_cgroup_per_zone *mz;
1406
	unsigned long *lru_size;
1407 1408 1409 1410

	if (mem_cgroup_disabled())
		return;

1411 1412 1413 1414
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1415
}
1416

1417
/*
1418
 * Checks whether given mem is same or in the root_mem_cgroup's
1419 1420
 * hierarchy subtree
 */
1421 1422
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1423
{
1424 1425
	if (root_memcg == memcg)
		return true;
1426
	if (!root_memcg->use_hierarchy || !memcg)
1427
		return false;
1428 1429 1430 1431 1432 1433 1434 1435
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1436
	rcu_read_lock();
1437
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1438 1439
	rcu_read_unlock();
	return ret;
1440 1441
}

1442 1443
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1444
{
1445
	struct mem_cgroup *curr = NULL;
1446
	struct task_struct *p;
1447
	bool ret;
1448

1449
	p = find_lock_task_mm(task);
1450 1451 1452 1453 1454 1455 1456 1457 1458
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1459
		rcu_read_lock();
1460 1461 1462
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1463
		rcu_read_unlock();
1464
	}
1465
	if (!curr)
1466
		return false;
1467
	/*
1468
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1469
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1470 1471
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1472
	 */
1473
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1474
	css_put(&curr->css);
1475 1476 1477
	return ret;
}

1478
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1479
{
1480
	unsigned long inactive_ratio;
1481
	unsigned long inactive;
1482
	unsigned long active;
1483
	unsigned long gb;
1484

1485 1486
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1487

1488 1489 1490 1491 1492 1493
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1494
	return inactive * inactive_ratio < active;
1495 1496
}

1497 1498 1499
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1500
/**
1501
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1502
 * @memcg: the memory cgroup
1503
 *
1504
 * Returns the maximum amount of memory @mem can be charged with, in
1505
 * pages.
1506
 */
1507
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1508
{
1509 1510
	unsigned long long margin;

1511
	margin = res_counter_margin(&memcg->res);
1512
	if (do_swap_account)
1513
		margin = min(margin, res_counter_margin(&memcg->memsw));
1514
	return margin >> PAGE_SHIFT;
1515 1516
}

1517
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1518 1519
{
	/* root ? */
T
Tejun Heo 已提交
1520
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1521 1522
		return vm_swappiness;

1523
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1524 1525
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1540 1541 1542 1543

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1544
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1545
{
1546
	atomic_inc(&memcg_moving);
1547
	atomic_inc(&memcg->moving_account);
1548 1549 1550
	synchronize_rcu();
}

1551
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1552
{
1553 1554 1555 1556
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1557 1558
	if (memcg) {
		atomic_dec(&memcg_moving);
1559
		atomic_dec(&memcg->moving_account);
1560
	}
1561
}
1562

1563 1564 1565
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1566 1567
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1568 1569 1570 1571 1572 1573 1574
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1575
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1576 1577
{
	VM_BUG_ON(!rcu_read_lock_held());
1578
	return atomic_read(&memcg->moving_account) > 0;
1579
}
1580

1581
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1582
{
1583 1584
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1585
	bool ret = false;
1586 1587 1588 1589 1590 1591 1592 1593 1594
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1595

1596 1597
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1598 1599
unlock:
	spin_unlock(&mc.lock);
1600 1601 1602
	return ret;
}

1603
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1604 1605
{
	if (mc.moving_task && current != mc.moving_task) {
1606
		if (mem_cgroup_under_move(memcg)) {
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1619 1620 1621 1622
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1623
 * see mem_cgroup_stolen(), too.
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1637
#define K(x) ((x) << (PAGE_SHIFT-10))
1638
/**
1639
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1657 1658
	struct mem_cgroup *iter;
	unsigned int i;
1659

1660
	if (!p)
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1679
	pr_info("Task in %s killed", memcg_name);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1692
	pr_cont(" as a result of limit of %s\n", memcg_name);
1693 1694
done:

1695
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1696 1697 1698
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1699
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1700 1701 1702
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1703
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1704 1705 1706
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1731 1732
}

1733 1734 1735 1736
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1737
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1738 1739
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1740 1741
	struct mem_cgroup *iter;

1742
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1743
		num++;
1744 1745 1746
	return num;
}

D
David Rientjes 已提交
1747 1748 1749
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1750
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1751 1752 1753
{
	u64 limit;

1754 1755
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1756
	/*
1757
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1758
	 */
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1773 1774
}

1775 1776
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1777 1778 1779 1780 1781 1782 1783
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1784
	/*
1785 1786 1787
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1788
	 */
1789
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1790 1791 1792 1793 1794
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1795 1796
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1797
		struct css_task_iter it;
1798 1799
		struct task_struct *task;

1800 1801
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1814
				css_task_iter_end(&it);
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1831
		css_task_iter_end(&it);
1832 1833 1834 1835 1836 1837 1838 1839 1840
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1877 1878
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1879
 * @memcg: the target memcg
1880 1881 1882 1883 1884 1885 1886
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1887
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1888 1889
		int nid, bool noswap)
{
1890
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1891 1892 1893
		return true;
	if (noswap || !total_swap_pages)
		return false;
1894
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1895 1896 1897 1898
		return true;
	return false;

}
1899 1900 1901 1902 1903 1904 1905 1906
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1907
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1908 1909
{
	int nid;
1910 1911 1912 1913
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1914
	if (!atomic_read(&memcg->numainfo_events))
1915
		return;
1916
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1917 1918 1919
		return;

	/* make a nodemask where this memcg uses memory from */
1920
	memcg->scan_nodes = node_states[N_MEMORY];
1921

1922
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1923

1924 1925
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1926
	}
1927

1928 1929
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1944
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1945 1946 1947
{
	int node;

1948 1949
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1950

1951
	node = next_node(node, memcg->scan_nodes);
1952
	if (node == MAX_NUMNODES)
1953
		node = first_node(memcg->scan_nodes);
1954 1955 1956 1957 1958 1959 1960 1961 1962
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1963
	memcg->last_scanned_node = node;
1964 1965 1966
	return node;
}

1967 1968 1969 1970 1971 1972
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1973
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1974 1975 1976 1977 1978 1979 1980
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1981 1982
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1983
		     nid < MAX_NUMNODES;
1984
		     nid = next_node(nid, memcg->scan_nodes)) {
1985

1986
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1987 1988 1989 1990 1991 1992
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1993
	for_each_node_state(nid, N_MEMORY) {
1994
		if (node_isset(nid, memcg->scan_nodes))
1995
			continue;
1996
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1997 1998 1999 2000 2001
			return true;
	}
	return false;
}

2002
#else
2003
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2004 2005 2006
{
	return 0;
}
2007

2008
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2009
{
2010
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2011
}
2012 2013
#endif

2014 2015 2016 2017
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
2018
{
2019
	struct mem_cgroup *victim = NULL;
2020
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
2021
	int loop = 0;
2022
	unsigned long excess;
2023
	unsigned long nr_scanned;
2024 2025 2026 2027
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
2028

2029
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
2030

2031
	while (1) {
2032
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2033
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
2034
			loop++;
2035 2036 2037 2038 2039 2040
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
2041
				if (!total)
2042 2043
					break;
				/*
L
Lucas De Marchi 已提交
2044
				 * We want to do more targeted reclaim.
2045 2046 2047 2048 2049
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
2050
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2051 2052
					break;
			}
2053
			continue;
2054
		}
2055
		if (!mem_cgroup_reclaimable(victim, false))
2056
			continue;
2057 2058 2059 2060
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
2061
			break;
2062
	}
2063
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
2064
	return total;
2065 2066
}

K
KAMEZAWA Hiroyuki 已提交
2067 2068 2069
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2070
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2071
 */
2072
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2073
{
2074
	struct mem_cgroup *iter, *failed = NULL;
2075

2076
	for_each_mem_cgroup_tree(iter, memcg) {
2077
		if (iter->oom_lock) {
2078 2079 2080 2081 2082
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2083 2084
			mem_cgroup_iter_break(memcg, iter);
			break;
2085 2086
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2087
	}
K
KAMEZAWA Hiroyuki 已提交
2088

2089
	if (!failed)
2090
		return true;
2091 2092 2093 2094 2095

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2096
	for_each_mem_cgroup_tree(iter, memcg) {
2097
		if (iter == failed) {
2098 2099
			mem_cgroup_iter_break(memcg, iter);
			break;
2100 2101 2102
		}
		iter->oom_lock = false;
	}
2103
	return false;
2104
}
2105

2106
/*
2107
 * Has to be called with memcg_oom_lock
2108
 */
2109
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2110
{
K
KAMEZAWA Hiroyuki 已提交
2111 2112
	struct mem_cgroup *iter;

2113
	for_each_mem_cgroup_tree(iter, memcg)
2114 2115 2116 2117
		iter->oom_lock = false;
	return 0;
}

2118
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2119 2120 2121
{
	struct mem_cgroup *iter;

2122
	for_each_mem_cgroup_tree(iter, memcg)
2123 2124 2125
		atomic_inc(&iter->under_oom);
}

2126
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2127 2128 2129
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2130 2131 2132 2133 2134
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2135
	for_each_mem_cgroup_tree(iter, memcg)
2136
		atomic_add_unless(&iter->under_oom, -1, 0);
2137 2138
}

2139
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2140 2141
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2142
struct oom_wait_info {
2143
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2144 2145 2146 2147 2148 2149
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2150 2151
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2152 2153 2154
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2155
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2156 2157

	/*
2158
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2159 2160
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2161 2162
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2163 2164 2165 2166
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2167
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2168
{
2169 2170
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2171 2172
}

2173
static void memcg_oom_recover(struct mem_cgroup *memcg)
2174
{
2175 2176
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2177 2178
}

K
KAMEZAWA Hiroyuki 已提交
2179 2180 2181
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2182 2183
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2184
{
K
KAMEZAWA Hiroyuki 已提交
2185
	struct oom_wait_info owait;
2186
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2187

2188
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2189 2190 2191 2192
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2193
	need_to_kill = true;
2194
	mem_cgroup_mark_under_oom(memcg);
2195

2196
	/* At first, try to OOM lock hierarchy under memcg.*/
2197
	spin_lock(&memcg_oom_lock);
2198
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2199 2200 2201 2202 2203
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2204
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2205
	if (!locked || memcg->oom_kill_disable)
2206 2207
		need_to_kill = false;
	if (locked)
2208
		mem_cgroup_oom_notify(memcg);
2209
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2210

2211 2212
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2213
		mem_cgroup_out_of_memory(memcg, mask, order);
2214
	} else {
K
KAMEZAWA Hiroyuki 已提交
2215
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2216
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2217
	}
2218
	spin_lock(&memcg_oom_lock);
2219
	if (locked)
2220 2221
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2222
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2223

2224
	mem_cgroup_unmark_under_oom(memcg);
2225

K
KAMEZAWA Hiroyuki 已提交
2226 2227 2228
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2229
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2230
	return true;
2231 2232
}

2233 2234 2235
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2253 2254
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2255
 */
2256

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2270
	 * need to take move_lock_mem_cgroup(). Because we already hold
2271
	 * rcu_read_lock(), any calls to move_account will be delayed until
2272
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2273
	 */
2274
	if (!mem_cgroup_stolen(memcg))
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2292
	 * should take move_lock_mem_cgroup().
2293 2294 2295 2296
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2297 2298
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2299
{
2300
	struct mem_cgroup *memcg;
2301
	struct page_cgroup *pc = lookup_page_cgroup(page);
2302
	unsigned long uninitialized_var(flags);
2303

2304
	if (mem_cgroup_disabled())
2305
		return;
2306

2307 2308
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2309
		return;
2310 2311

	switch (idx) {
2312 2313
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2314 2315 2316
		break;
	default:
		BUG();
2317
	}
2318

2319
	this_cpu_add(memcg->stat->count[idx], val);
2320
}
2321

2322 2323 2324 2325
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2326
#define CHARGE_BATCH	32U
2327 2328
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2329
	unsigned int nr_pages;
2330
	struct work_struct work;
2331
	unsigned long flags;
2332
#define FLUSHING_CACHED_CHARGE	0
2333 2334
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2335
static DEFINE_MUTEX(percpu_charge_mutex);
2336

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2347
 */
2348
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2349 2350 2351 2352
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2353 2354 2355
	if (nr_pages > CHARGE_BATCH)
		return false;

2356
	stock = &get_cpu_var(memcg_stock);
2357 2358
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2372 2373 2374 2375
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2376
		if (do_swap_account)
2377 2378
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2391
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2392 2393
}

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2405 2406
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2407
 * This will be consumed by consume_stock() function, later.
2408
 */
2409
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2410 2411 2412
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2413
	if (stock->cached != memcg) { /* reset if necessary */
2414
		drain_stock(stock);
2415
		stock->cached = memcg;
2416
	}
2417
	stock->nr_pages += nr_pages;
2418 2419 2420 2421
	put_cpu_var(memcg_stock);
}

/*
2422
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2423 2424
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2425
 */
2426
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2427
{
2428
	int cpu, curcpu;
2429

2430 2431
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2432
	curcpu = get_cpu();
2433 2434
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2435
		struct mem_cgroup *memcg;
2436

2437 2438
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2439
			continue;
2440
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2441
			continue;
2442 2443 2444 2445 2446 2447
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2448
	}
2449
	put_cpu();
2450 2451 2452 2453 2454 2455

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2456
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2457 2458 2459
			flush_work(&stock->work);
	}
out:
2460
 	put_online_cpus();
2461 2462 2463 2464 2465 2466 2467 2468
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2469
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2470
{
2471 2472 2473 2474 2475
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2476
	drain_all_stock(root_memcg, false);
2477
	mutex_unlock(&percpu_charge_mutex);
2478 2479 2480
}

/* This is a synchronous drain interface. */
2481
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2482 2483
{
	/* called when force_empty is called */
2484
	mutex_lock(&percpu_charge_mutex);
2485
	drain_all_stock(root_memcg, true);
2486
	mutex_unlock(&percpu_charge_mutex);
2487 2488
}

2489 2490 2491 2492
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2493
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2494 2495 2496
{
	int i;

2497
	spin_lock(&memcg->pcp_counter_lock);
2498
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2499
		long x = per_cpu(memcg->stat->count[i], cpu);
2500

2501 2502
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2503
	}
2504
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2505
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2506

2507 2508
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2509
	}
2510
	spin_unlock(&memcg->pcp_counter_lock);
2511 2512 2513
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2514 2515 2516 2517 2518
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2519
	struct mem_cgroup *iter;
2520

2521
	if (action == CPU_ONLINE)
2522 2523
		return NOTIFY_OK;

2524
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2525
		return NOTIFY_OK;
2526

2527
	for_each_mem_cgroup(iter)
2528 2529
		mem_cgroup_drain_pcp_counter(iter, cpu);

2530 2531 2532 2533 2534
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2545
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2546 2547
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2548
{
2549
	unsigned long csize = nr_pages * PAGE_SIZE;
2550 2551 2552 2553 2554
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2555
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2556 2557 2558 2559

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2560
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2561 2562 2563
		if (likely(!ret))
			return CHARGE_OK;

2564
		res_counter_uncharge(&memcg->res, csize);
2565 2566 2567 2568
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2569 2570 2571 2572
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2573
	if (nr_pages > min_pages)
2574 2575 2576 2577 2578
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2579 2580 2581
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2582
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2583
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2584
		return CHARGE_RETRY;
2585
	/*
2586 2587 2588 2589 2590 2591 2592
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2593
	 */
2594
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2608
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2609 2610 2611 2612 2613
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2614
/*
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2634
 */
2635
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2636
				   gfp_t gfp_mask,
2637
				   unsigned int nr_pages,
2638
				   struct mem_cgroup **ptr,
2639
				   bool oom)
2640
{
2641
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2642
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2643
	struct mem_cgroup *memcg = NULL;
2644
	int ret;
2645

K
KAMEZAWA Hiroyuki 已提交
2646 2647 2648 2649 2650 2651 2652 2653
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2654

2655
	/*
2656 2657
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2658
	 * thread group leader migrates. It's possible that mm is not
2659
	 * set, if so charge the root memcg (happens for pagecache usage).
2660
	 */
2661
	if (!*ptr && !mm)
2662
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2663
again:
2664 2665 2666
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2667
			goto done;
2668
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2669
			goto done;
2670
		css_get(&memcg->css);
2671
	} else {
K
KAMEZAWA Hiroyuki 已提交
2672
		struct task_struct *p;
2673

K
KAMEZAWA Hiroyuki 已提交
2674 2675 2676
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2677
		 * Because we don't have task_lock(), "p" can exit.
2678
		 * In that case, "memcg" can point to root or p can be NULL with
2679 2680 2681 2682 2683 2684
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2685
		 */
2686
		memcg = mem_cgroup_from_task(p);
2687 2688 2689
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2690 2691 2692
			rcu_read_unlock();
			goto done;
		}
2693
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2706
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2707 2708 2709 2710 2711
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2712

2713 2714
	do {
		bool oom_check;
2715

2716
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2717
		if (fatal_signal_pending(current)) {
2718
			css_put(&memcg->css);
2719
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2720
		}
2721

2722 2723 2724 2725
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2726
		}
2727

2728 2729
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2730 2731 2732 2733
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2734
			batch = nr_pages;
2735 2736
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2737
			goto again;
2738
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2739
			css_put(&memcg->css);
2740 2741
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2742
			if (!oom) {
2743
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2744
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2745
			}
2746 2747 2748 2749
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2750
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2751
			goto bypass;
2752
		}
2753 2754
	} while (ret != CHARGE_OK);

2755
	if (batch > nr_pages)
2756 2757
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2758
done:
2759
	*ptr = memcg;
2760 2761
	return 0;
nomem:
2762
	*ptr = NULL;
2763
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2764
bypass:
2765 2766
	*ptr = root_mem_cgroup;
	return -EINTR;
2767
}
2768

2769 2770 2771 2772 2773
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2774
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2775
				       unsigned int nr_pages)
2776
{
2777
	if (!mem_cgroup_is_root(memcg)) {
2778 2779
		unsigned long bytes = nr_pages * PAGE_SIZE;

2780
		res_counter_uncharge(&memcg->res, bytes);
2781
		if (do_swap_account)
2782
			res_counter_uncharge(&memcg->memsw, bytes);
2783
	}
2784 2785
}

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2804 2805
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2806 2807 2808
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2820
	return mem_cgroup_from_css(css);
2821 2822
}

2823
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2824
{
2825
	struct mem_cgroup *memcg = NULL;
2826
	struct page_cgroup *pc;
2827
	unsigned short id;
2828 2829
	swp_entry_t ent;

2830 2831 2832
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2833
	lock_page_cgroup(pc);
2834
	if (PageCgroupUsed(pc)) {
2835 2836 2837
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2838
	} else if (PageSwapCache(page)) {
2839
		ent.val = page_private(page);
2840
		id = lookup_swap_cgroup_id(ent);
2841
		rcu_read_lock();
2842 2843 2844
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2845
		rcu_read_unlock();
2846
	}
2847
	unlock_page_cgroup(pc);
2848
	return memcg;
2849 2850
}

2851
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2852
				       struct page *page,
2853
				       unsigned int nr_pages,
2854 2855
				       enum charge_type ctype,
				       bool lrucare)
2856
{
2857
	struct page_cgroup *pc = lookup_page_cgroup(page);
2858
	struct zone *uninitialized_var(zone);
2859
	struct lruvec *lruvec;
2860
	bool was_on_lru = false;
2861
	bool anon;
2862

2863
	lock_page_cgroup(pc);
2864
	VM_BUG_ON(PageCgroupUsed(pc));
2865 2866 2867 2868
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2869 2870 2871 2872 2873 2874 2875 2876 2877

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2878
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2879
			ClearPageLRU(page);
2880
			del_page_from_lru_list(page, lruvec, page_lru(page));
2881 2882 2883 2884
			was_on_lru = true;
		}
	}

2885
	pc->mem_cgroup = memcg;
2886 2887 2888 2889 2890 2891 2892
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2893
	smp_wmb();
2894
	SetPageCgroupUsed(pc);
2895

2896 2897
	if (lrucare) {
		if (was_on_lru) {
2898
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2899 2900
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2901
			add_page_to_lru_list(page, lruvec, page_lru(page));
2902 2903 2904 2905
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2906
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2907 2908 2909 2910
		anon = true;
	else
		anon = false;

2911
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2912
	unlock_page_cgroup(pc);
2913

2914 2915 2916 2917 2918
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2919
	memcg_check_events(memcg, page);
2920
}
2921

2922 2923
static DEFINE_MUTEX(set_limit_mutex);

2924 2925 2926 2927 2928 2929 2930
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2944
#ifdef CONFIG_SLABINFO
2945 2946
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2947
{
2948
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3018 3019 3020 3021 3022

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3023 3024 3025 3026 3027 3028 3029 3030
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3031
	if (memcg_kmem_test_and_clear_dead(memcg))
3032
		css_put(&memcg->css);
3033 3034
}

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3118 3119
static void kmem_cache_destroy_work_func(struct work_struct *w);

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3171 3172
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3173 3174 3175 3176 3177 3178
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3179 3180 3181
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3182 3183 3184 3185
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

3186 3187
	INIT_WORK(&s->memcg_params->destroy,
			kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3188
	if (memcg) {
3189
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3190
		s->memcg_params->root_cache = root_cache;
3191 3192 3193
	} else
		s->memcg_params->is_root_cache = true;

3194 3195 3196 3197 3198
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3223
	css_put(&memcg->css);
3224
out:
3225 3226 3227
	kfree(s->memcg_params);
}

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3259 3260 3261 3262 3263 3264 3265 3266 3267
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3289 3290 3291 3292 3293 3294 3295 3296
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3317 3318 3319 3320 3321 3322 3323
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3324 3325 3326 3327 3328 3329 3330 3331 3332
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3333

3334 3335 3336
/*
 * Called with memcg_cache_mutex held
 */
3337 3338 3339 3340
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3341
	static char *tmp_name = NULL;
3342

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3361

3362
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3363
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3364

3365 3366 3367
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3383 3384
	if (new_cachep) {
		css_put(&memcg->css);
3385
		goto out;
3386
	}
3387 3388 3389 3390

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3391
		css_put(&memcg->css);
3392 3393 3394
		goto out;
	}

G
Glauber Costa 已提交
3395
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3447
		cancel_work_sync(&c->memcg_params->destroy);
3448 3449 3450 3451 3452
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3453 3454 3455 3456 3457 3458
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3488 3489
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3490 3491 3492 3493
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3494 3495
	if (cw == NULL) {
		css_put(&memcg->css);
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3546 3547 3548
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3549 3550 3551 3552
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3553
		goto out;
3554 3555 3556 3557 3558 3559 3560 3561

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3562 3563 3564
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3565 3566
	}

3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3594 3595 3596
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
	 * 	memcg_stop_kmem_account();
	 * 	kmalloc(<large_number>)
	 * 	memcg_resume_kmem_account();
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3720 3721 3722 3723
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3724 3725
#endif /* CONFIG_MEMCG_KMEM */

3726 3727
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3728
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3729 3730
/*
 * Because tail pages are not marked as "used", set it. We're under
3731 3732 3733
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3734
 */
3735
void mem_cgroup_split_huge_fixup(struct page *head)
3736 3737
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3738
	struct page_cgroup *pc;
3739
	struct mem_cgroup *memcg;
3740
	int i;
3741

3742 3743
	if (mem_cgroup_disabled())
		return;
3744 3745

	memcg = head_pc->mem_cgroup;
3746 3747
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3748
		pc->mem_cgroup = memcg;
3749 3750 3751
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3752 3753
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3754
}
3755
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3756

3757
/**
3758
 * mem_cgroup_move_account - move account of the page
3759
 * @page: the page
3760
 * @nr_pages: number of regular pages (>1 for huge pages)
3761 3762 3763 3764 3765
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3766
 * - page is not on LRU (isolate_page() is useful.)
3767
 * - compound_lock is held when nr_pages > 1
3768
 *
3769 3770
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3771
 */
3772 3773 3774 3775
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3776
				   struct mem_cgroup *to)
3777
{
3778 3779
	unsigned long flags;
	int ret;
3780
	bool anon = PageAnon(page);
3781

3782
	VM_BUG_ON(from == to);
3783
	VM_BUG_ON(PageLRU(page));
3784 3785 3786 3787 3788 3789 3790
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3791
	if (nr_pages > 1 && !PageTransHuge(page))
3792 3793 3794 3795 3796 3797 3798 3799
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3800
	move_lock_mem_cgroup(from, &flags);
3801

3802
	if (!anon && page_mapped(page)) {
3803 3804 3805 3806 3807
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3808
	}
3809
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3810

3811
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3812
	pc->mem_cgroup = to;
3813
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3814
	move_unlock_mem_cgroup(from, &flags);
3815 3816
	ret = 0;
unlock:
3817
	unlock_page_cgroup(pc);
3818 3819 3820
	/*
	 * check events
	 */
3821 3822
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3823
out:
3824 3825 3826
	return ret;
}

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3847
 */
3848 3849
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3850
				  struct mem_cgroup *child)
3851 3852
{
	struct mem_cgroup *parent;
3853
	unsigned int nr_pages;
3854
	unsigned long uninitialized_var(flags);
3855 3856
	int ret;

3857
	VM_BUG_ON(mem_cgroup_is_root(child));
3858

3859 3860 3861 3862 3863
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3864

3865
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3866

3867 3868 3869 3870 3871 3872
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3873

3874 3875
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3876
		flags = compound_lock_irqsave(page);
3877
	}
3878

3879
	ret = mem_cgroup_move_account(page, nr_pages,
3880
				pc, child, parent);
3881 3882
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3883

3884
	if (nr_pages > 1)
3885
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3886
	putback_lru_page(page);
3887
put:
3888
	put_page(page);
3889
out:
3890 3891 3892
	return ret;
}

3893 3894 3895 3896 3897 3898 3899
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3900
				gfp_t gfp_mask, enum charge_type ctype)
3901
{
3902
	struct mem_cgroup *memcg = NULL;
3903
	unsigned int nr_pages = 1;
3904
	bool oom = true;
3905
	int ret;
A
Andrea Arcangeli 已提交
3906

A
Andrea Arcangeli 已提交
3907
	if (PageTransHuge(page)) {
3908
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3909
		VM_BUG_ON(!PageTransHuge(page));
3910 3911 3912 3913 3914
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3915
	}
3916

3917
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3918
	if (ret == -ENOMEM)
3919
		return ret;
3920
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3921 3922 3923
	return 0;
}

3924 3925
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3926
{
3927
	if (mem_cgroup_disabled())
3928
		return 0;
3929 3930 3931
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3932
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3933
					MEM_CGROUP_CHARGE_TYPE_ANON);
3934 3935
}

3936 3937 3938
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3939
 * struct page_cgroup is acquired. This refcnt will be consumed by
3940 3941
 * "commit()" or removed by "cancel()"
 */
3942 3943 3944 3945
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3946
{
3947
	struct mem_cgroup *memcg;
3948
	struct page_cgroup *pc;
3949
	int ret;
3950

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3961 3962
	if (!do_swap_account)
		goto charge_cur_mm;
3963 3964
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3965
		goto charge_cur_mm;
3966 3967
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3968
	css_put(&memcg->css);
3969 3970
	if (ret == -EINTR)
		ret = 0;
3971
	return ret;
3972
charge_cur_mm:
3973 3974 3975 3976
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3977 3978
}

3979 3980 3981 3982 3983 3984
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3999 4000 4001
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4002 4003 4004 4005 4006 4007 4008 4009 4010
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4011
static void
4012
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4013
					enum charge_type ctype)
4014
{
4015
	if (mem_cgroup_disabled())
4016
		return;
4017
	if (!memcg)
4018
		return;
4019

4020
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4021 4022 4023
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4024 4025 4026
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4027
	 */
4028
	if (do_swap_account && PageSwapCache(page)) {
4029
		swp_entry_t ent = {.val = page_private(page)};
4030
		mem_cgroup_uncharge_swap(ent);
4031
	}
4032 4033
}

4034 4035
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4036
{
4037
	__mem_cgroup_commit_charge_swapin(page, memcg,
4038
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4039 4040
}

4041 4042
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4043
{
4044 4045 4046 4047
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4048
	if (mem_cgroup_disabled())
4049 4050 4051 4052 4053 4054 4055
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4056 4057
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4058 4059 4060 4061
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4062 4063
}

4064
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4065 4066
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4067 4068 4069
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4070

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4082
		batch->memcg = memcg;
4083 4084
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4085
	 * In those cases, all pages freed continuously can be expected to be in
4086 4087 4088 4089 4090 4091 4092 4093
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4094
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4095 4096
		goto direct_uncharge;

4097 4098 4099 4100 4101
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4102
	if (batch->memcg != memcg)
4103 4104
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4105
	batch->nr_pages++;
4106
	if (uncharge_memsw)
4107
		batch->memsw_nr_pages++;
4108 4109
	return;
direct_uncharge:
4110
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4111
	if (uncharge_memsw)
4112 4113 4114
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4115
}
4116

4117
/*
4118
 * uncharge if !page_mapped(page)
4119
 */
4120
static struct mem_cgroup *
4121 4122
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4123
{
4124
	struct mem_cgroup *memcg = NULL;
4125 4126
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4127
	bool anon;
4128

4129
	if (mem_cgroup_disabled())
4130
		return NULL;
4131

A
Andrea Arcangeli 已提交
4132
	if (PageTransHuge(page)) {
4133
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4134 4135
		VM_BUG_ON(!PageTransHuge(page));
	}
4136
	/*
4137
	 * Check if our page_cgroup is valid
4138
	 */
4139
	pc = lookup_page_cgroup(page);
4140
	if (unlikely(!PageCgroupUsed(pc)))
4141
		return NULL;
4142

4143
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4144

4145
	memcg = pc->mem_cgroup;
4146

K
KAMEZAWA Hiroyuki 已提交
4147 4148 4149
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4150 4151
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4152
	switch (ctype) {
4153
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4154 4155 4156 4157 4158
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4159 4160
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4161
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4162
		/* See mem_cgroup_prepare_migration() */
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4184
	}
K
KAMEZAWA Hiroyuki 已提交
4185

4186
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4187

4188
	ClearPageCgroupUsed(pc);
4189 4190 4191 4192 4193 4194
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4195

4196
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4197
	/*
4198
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4199
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4200
	 */
4201
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4202
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4203
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4204
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4205
	}
4206 4207 4208 4209 4210 4211
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4212
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4213

4214
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4215 4216 4217

unlock_out:
	unlock_page_cgroup(pc);
4218
	return NULL;
4219 4220
}

4221 4222
void mem_cgroup_uncharge_page(struct page *page)
{
4223 4224 4225
	/* early check. */
	if (page_mapped(page))
		return;
4226
	VM_BUG_ON(page->mapping && !PageAnon(page));
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4239 4240
	if (PageSwapCache(page))
		return;
4241
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4242 4243 4244 4245 4246
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4247
	VM_BUG_ON(page->mapping);
4248
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4249 4250
}

4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4265 4266
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4287 4288 4289 4290 4291 4292
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4293
	memcg_oom_recover(batch->memcg);
4294 4295 4296 4297
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4298
#ifdef CONFIG_SWAP
4299
/*
4300
 * called after __delete_from_swap_cache() and drop "page" account.
4301 4302
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4303 4304
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4305 4306
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4307 4308 4309 4310 4311
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4312
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4313

K
KAMEZAWA Hiroyuki 已提交
4314 4315
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4316
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4317 4318
	 */
	if (do_swap_account && swapout && memcg)
4319
		swap_cgroup_record(ent, css_id(&memcg->css));
4320
}
4321
#endif
4322

A
Andrew Morton 已提交
4323
#ifdef CONFIG_MEMCG_SWAP
4324 4325 4326 4327 4328
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4329
{
4330
	struct mem_cgroup *memcg;
4331
	unsigned short id;
4332 4333 4334 4335

	if (!do_swap_account)
		return;

4336 4337 4338
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4339
	if (memcg) {
4340 4341 4342 4343
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4344
		if (!mem_cgroup_is_root(memcg))
4345
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4346
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4347
		css_put(&memcg->css);
4348
	}
4349
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4350
}
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4367
				struct mem_cgroup *from, struct mem_cgroup *to)
4368 4369 4370 4371 4372 4373 4374 4375
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4376
		mem_cgroup_swap_statistics(to, true);
4377
		/*
4378 4379 4380
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4381 4382 4383 4384 4385 4386
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4387
		 */
L
Li Zefan 已提交
4388
		css_get(&to->css);
4389 4390 4391 4392 4393 4394
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4395
				struct mem_cgroup *from, struct mem_cgroup *to)
4396 4397 4398
{
	return -EINVAL;
}
4399
#endif
K
KAMEZAWA Hiroyuki 已提交
4400

4401
/*
4402 4403
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4404
 */
4405 4406
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4407
{
4408
	struct mem_cgroup *memcg = NULL;
4409
	unsigned int nr_pages = 1;
4410
	struct page_cgroup *pc;
4411
	enum charge_type ctype;
4412

4413
	*memcgp = NULL;
4414

4415
	if (mem_cgroup_disabled())
4416
		return;
4417

4418 4419 4420
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4421 4422 4423
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4424 4425
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4457
	}
4458
	unlock_page_cgroup(pc);
4459 4460 4461 4462
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4463
	if (!memcg)
4464
		return;
4465

4466
	*memcgp = memcg;
4467 4468 4469 4470 4471 4472 4473
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4474
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4475
	else
4476
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4477 4478 4479 4480 4481
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4482
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4483
}
4484

4485
/* remove redundant charge if migration failed*/
4486
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4487
	struct page *oldpage, struct page *newpage, bool migration_ok)
4488
{
4489
	struct page *used, *unused;
4490
	struct page_cgroup *pc;
4491
	bool anon;
4492

4493
	if (!memcg)
4494
		return;
4495

4496
	if (!migration_ok) {
4497 4498
		used = oldpage;
		unused = newpage;
4499
	} else {
4500
		used = newpage;
4501 4502
		unused = oldpage;
	}
4503
	anon = PageAnon(used);
4504 4505 4506 4507
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4508
	css_put(&memcg->css);
4509
	/*
4510 4511 4512
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4513
	 */
4514 4515 4516 4517 4518
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4519
	/*
4520 4521 4522 4523 4524 4525
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4526
	 */
4527
	if (anon)
4528
		mem_cgroup_uncharge_page(used);
4529
}
4530

4531 4532 4533 4534 4535 4536 4537 4538
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4539
	struct mem_cgroup *memcg = NULL;
4540 4541 4542 4543 4544 4545 4546 4547 4548
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4549 4550
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4551
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4552 4553
		ClearPageCgroupUsed(pc);
	}
4554 4555
	unlock_page_cgroup(pc);

4556 4557 4558 4559 4560 4561
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4562 4563 4564 4565 4566
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4567
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4568 4569
}

4570 4571 4572 4573 4574 4575
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4576 4577 4578 4579 4580
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4600 4601
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4602 4603 4604 4605
	}
}
#endif

4606
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4607
				unsigned long long val)
4608
{
4609
	int retry_count;
4610
	u64 memswlimit, memlimit;
4611
	int ret = 0;
4612 4613
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4614
	int enlarge;
4615 4616 4617 4618 4619 4620 4621 4622 4623

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4624

4625
	enlarge = 0;
4626
	while (retry_count) {
4627 4628 4629 4630
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4631 4632 4633
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4634
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4635 4636 4637 4638 4639 4640
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4641 4642
			break;
		}
4643 4644 4645 4646 4647

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4648
		ret = res_counter_set_limit(&memcg->res, val);
4649 4650 4651 4652 4653 4654
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4655 4656 4657 4658 4659
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4660 4661
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4662 4663 4664 4665 4666 4667
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4668
	}
4669 4670
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4671

4672 4673 4674
	return ret;
}

L
Li Zefan 已提交
4675 4676
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4677
{
4678
	int retry_count;
4679
	u64 memlimit, memswlimit, oldusage, curusage;
4680 4681
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4682
	int enlarge = 0;
4683

4684 4685 4686
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4687 4688 4689 4690 4691 4692 4693 4694
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4695
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4696 4697 4698 4699 4700 4701 4702 4703
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4704 4705 4706
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4707
		ret = res_counter_set_limit(&memcg->memsw, val);
4708 4709 4710 4711 4712 4713
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4714 4715 4716 4717 4718
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4719 4720 4721
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4722
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4723
		/* Usage is reduced ? */
4724
		if (curusage >= oldusage)
4725
			retry_count--;
4726 4727
		else
			oldusage = curusage;
4728
	}
4729 4730
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4731 4732 4733
	return ret;
}

4734
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4735 4736
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4737 4738 4739 4740 4741 4742
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4743
	unsigned long long excess;
4744
	unsigned long nr_scanned;
4745 4746 4747 4748

	if (order > 0)
		return 0;

4749
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4763
		nr_scanned = 0;
4764
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4765
						    gfp_mask, &nr_scanned);
4766
		nr_reclaimed += reclaimed;
4767
		*total_scanned += nr_scanned;
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4790
				if (next_mz == mz)
4791
					css_put(&next_mz->memcg->css);
4792
				else /* next_mz == NULL or other memcg */
4793 4794 4795
					break;
			} while (1);
		}
4796 4797
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4798 4799 4800 4801 4802 4803 4804 4805
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4806
		/* If excess == 0, no tree ops */
4807
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4808
		spin_unlock(&mctz->lock);
4809
		css_put(&mz->memcg->css);
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4822
		css_put(&next_mz->memcg->css);
4823 4824 4825
	return nr_reclaimed;
}

4826 4827 4828 4829 4830 4831 4832
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4833
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4834 4835
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4836
 */
4837
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4838
				int node, int zid, enum lru_list lru)
4839
{
4840
	struct lruvec *lruvec;
4841
	unsigned long flags;
4842
	struct list_head *list;
4843 4844
	struct page *busy;
	struct zone *zone;
4845

K
KAMEZAWA Hiroyuki 已提交
4846
	zone = &NODE_DATA(node)->node_zones[zid];
4847 4848
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4849

4850
	busy = NULL;
4851
	do {
4852
		struct page_cgroup *pc;
4853 4854
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4855
		spin_lock_irqsave(&zone->lru_lock, flags);
4856
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4857
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4858
			break;
4859
		}
4860 4861 4862
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4863
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4864
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4865 4866
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4867
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4868

4869
		pc = lookup_page_cgroup(page);
4870

4871
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4872
			/* found lock contention or "pc" is obsolete. */
4873
			busy = page;
4874 4875 4876
			cond_resched();
		} else
			busy = NULL;
4877
	} while (!list_empty(list));
4878 4879 4880
}

/*
4881 4882
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4883
 * This enables deleting this mem_cgroup.
4884 4885
 *
 * Caller is responsible for holding css reference on the memcg.
4886
 */
4887
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4888
{
4889
	int node, zid;
4890
	u64 usage;
4891

4892
	do {
4893 4894
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4895 4896
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4897
		for_each_node_state(node, N_MEMORY) {
4898
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4899 4900
				enum lru_list lru;
				for_each_lru(lru) {
4901
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4902
							node, zid, lru);
4903
				}
4904
			}
4905
		}
4906 4907
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4908
		cond_resched();
4909

4910
		/*
4911 4912 4913 4914 4915
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4916 4917 4918 4919 4920 4921
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4922 4923 4924
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4925 4926
}

4927 4928 4929 4930 4931 4932 4933
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4934
	struct cgroup_subsys_state *pos;
4935 4936

	/* bounce at first found */
4937
	css_for_each_child(pos, &memcg->css)
4938 4939 4940 4941 4942
		return true;
	return false;
}

/*
4943 4944
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4945 4946 4947 4948 4949 4950 4951 4952 4953
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4964

4965
	/* returns EBUSY if there is a task or if we come here twice. */
4966 4967 4968
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4969 4970
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4971
	/* try to free all pages in this cgroup */
4972
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4973
		int progress;
4974

4975 4976 4977
		if (signal_pending(current))
			return -EINTR;

4978
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4979
						false);
4980
		if (!progress) {
4981
			nr_retries--;
4982
			/* maybe some writeback is necessary */
4983
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4984
		}
4985 4986

	}
K
KAMEZAWA Hiroyuki 已提交
4987
	lru_add_drain();
4988 4989 4990
	mem_cgroup_reparent_charges(memcg);

	return 0;
4991 4992
}

4993 4994
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4995
{
4996
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4997 4998
	int ret;

4999 5000
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5001 5002 5003 5004 5005
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
5006 5007 5008
}


5009 5010
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5011
{
5012
	return mem_cgroup_from_css(css)->use_hierarchy;
5013 5014
}

5015 5016
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5017 5018
{
	int retval = 0;
5019
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5020
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5021

5022
	mutex_lock(&memcg_create_mutex);
5023 5024 5025 5026

	if (memcg->use_hierarchy == val)
		goto out;

5027
	/*
5028
	 * If parent's use_hierarchy is set, we can't make any modifications
5029 5030 5031 5032 5033 5034
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5035
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5036
				(val == 1 || val == 0)) {
5037
		if (!__memcg_has_children(memcg))
5038
			memcg->use_hierarchy = val;
5039 5040 5041 5042
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5043 5044

out:
5045
	mutex_unlock(&memcg_create_mutex);
5046 5047 5048 5049

	return retval;
}

5050

5051
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5052
					       enum mem_cgroup_stat_index idx)
5053
{
K
KAMEZAWA Hiroyuki 已提交
5054
	struct mem_cgroup *iter;
5055
	long val = 0;
5056

5057
	/* Per-cpu values can be negative, use a signed accumulator */
5058
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5059 5060 5061 5062 5063
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5064 5065
}

5066
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5067
{
K
KAMEZAWA Hiroyuki 已提交
5068
	u64 val;
5069

5070
	if (!mem_cgroup_is_root(memcg)) {
5071
		if (!swap)
5072
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5073
		else
5074
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5075 5076
	}

5077 5078 5079 5080
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5081 5082
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5083

K
KAMEZAWA Hiroyuki 已提交
5084
	if (swap)
5085
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5086 5087 5088 5089

	return val << PAGE_SHIFT;
}

5090 5091 5092
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5093
{
5094
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5095
	char str[64];
5096
	u64 val;
G
Glauber Costa 已提交
5097 5098
	int name, len;
	enum res_type type;
5099 5100 5101

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5102

5103 5104
	switch (type) {
	case _MEM:
5105
		if (name == RES_USAGE)
5106
			val = mem_cgroup_usage(memcg, false);
5107
		else
5108
			val = res_counter_read_u64(&memcg->res, name);
5109 5110
		break;
	case _MEMSWAP:
5111
		if (name == RES_USAGE)
5112
			val = mem_cgroup_usage(memcg, true);
5113
		else
5114
			val = res_counter_read_u64(&memcg->memsw, name);
5115
		break;
5116 5117 5118
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5119 5120 5121
	default:
		BUG();
	}
5122 5123 5124

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5125
}
5126

5127
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5128 5129 5130
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5131
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5144
	mutex_lock(&memcg_create_mutex);
5145 5146
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5147
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5148 5149 5150 5151 5152 5153
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5154 5155 5156 5157 5158
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5159 5160 5161 5162 5163 5164
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5165 5166 5167 5168
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5169
	mutex_unlock(&memcg_create_mutex);
5170 5171 5172 5173
#endif
	return ret;
}

5174
#ifdef CONFIG_MEMCG_KMEM
5175
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5176
{
5177
	int ret = 0;
5178 5179
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5180 5181
		goto out;

5182
	memcg->kmem_account_flags = parent->kmem_account_flags;
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5193 5194 5195 5196
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5197 5198 5199
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5200 5201 5202 5203
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5204
	memcg_stop_kmem_account();
5205
	ret = memcg_update_cache_sizes(memcg);
5206
	memcg_resume_kmem_account();
5207 5208 5209
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5210
}
5211
#endif /* CONFIG_MEMCG_KMEM */
5212

5213 5214 5215 5216
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5217
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5218
			    const char *buffer)
B
Balbir Singh 已提交
5219
{
5220
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5221 5222
	enum res_type type;
	int name;
5223 5224 5225
	unsigned long long val;
	int ret;

5226 5227
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5228

5229
	switch (name) {
5230
	case RES_LIMIT:
5231 5232 5233 5234
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5235 5236
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5237 5238 5239
		if (ret)
			break;
		if (type == _MEM)
5240
			ret = mem_cgroup_resize_limit(memcg, val);
5241
		else if (type == _MEMSWAP)
5242
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5243
		else if (type == _KMEM)
5244
			ret = memcg_update_kmem_limit(css, val);
5245 5246
		else
			return -EINVAL;
5247
		break;
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5262 5263 5264 5265 5266
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5267 5268
}

5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5279 5280
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5293
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5294
{
5295
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5296 5297
	int name;
	enum res_type type;
5298

5299 5300
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5301

5302
	switch (name) {
5303
	case RES_MAX_USAGE:
5304
		if (type == _MEM)
5305
			res_counter_reset_max(&memcg->res);
5306
		else if (type == _MEMSWAP)
5307
			res_counter_reset_max(&memcg->memsw);
5308 5309 5310 5311
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5312 5313
		break;
	case RES_FAILCNT:
5314
		if (type == _MEM)
5315
			res_counter_reset_failcnt(&memcg->res);
5316
		else if (type == _MEMSWAP)
5317
			res_counter_reset_failcnt(&memcg->memsw);
5318 5319 5320 5321
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5322 5323
		break;
	}
5324

5325
	return 0;
5326 5327
}

5328
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5329 5330
					struct cftype *cft)
{
5331
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5332 5333
}

5334
#ifdef CONFIG_MMU
5335
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5336 5337
					struct cftype *cft, u64 val)
{
5338
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5339 5340 5341

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5342

5343
	/*
5344 5345 5346 5347
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5348
	 */
5349
	memcg->move_charge_at_immigrate = val;
5350 5351
	return 0;
}
5352
#else
5353
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5354 5355 5356 5357 5358
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5359

5360
#ifdef CONFIG_NUMA
5361 5362
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5363 5364 5365 5366
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5367
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5368

5369
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5370
	seq_printf(m, "total=%lu", total_nr);
5371
	for_each_node_state(nid, N_MEMORY) {
5372
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5373 5374 5375 5376
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5377
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5378
	seq_printf(m, "file=%lu", file_nr);
5379
	for_each_node_state(nid, N_MEMORY) {
5380
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5381
				LRU_ALL_FILE);
5382 5383 5384 5385
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5386
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5387
	seq_printf(m, "anon=%lu", anon_nr);
5388
	for_each_node_state(nid, N_MEMORY) {
5389
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5390
				LRU_ALL_ANON);
5391 5392 5393 5394
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5395
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5396
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5397
	for_each_node_state(nid, N_MEMORY) {
5398
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5399
				BIT(LRU_UNEVICTABLE));
5400 5401 5402 5403 5404 5405 5406
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5407 5408 5409 5410 5411
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5412
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5413
				 struct seq_file *m)
5414
{
5415
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5416 5417
	struct mem_cgroup *mi;
	unsigned int i;
5418

5419
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5420
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5421
			continue;
5422 5423
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5424
	}
L
Lee Schermerhorn 已提交
5425

5426 5427 5428 5429 5430 5431 5432 5433
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5434
	/* Hierarchical information */
5435 5436
	{
		unsigned long long limit, memsw_limit;
5437
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5438
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5439
		if (do_swap_account)
5440 5441
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5442
	}
K
KOSAKI Motohiro 已提交
5443

5444 5445 5446
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5447
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5448
			continue;
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5469
	}
K
KAMEZAWA Hiroyuki 已提交
5470

K
KOSAKI Motohiro 已提交
5471 5472 5473 5474
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5475
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5476 5477 5478 5479 5480
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5481
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5482
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5483

5484 5485 5486 5487
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5488
			}
5489 5490 5491 5492
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5493 5494 5495
	}
#endif

5496 5497 5498
	return 0;
}

5499 5500
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5501
{
5502
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5503

5504
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5505 5506
}

5507 5508
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5509
{
5510
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5511
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5512

T
Tejun Heo 已提交
5513
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5514 5515
		return -EINVAL;

5516
	mutex_lock(&memcg_create_mutex);
5517

K
KOSAKI Motohiro 已提交
5518
	/* If under hierarchy, only empty-root can set this value */
5519
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5520
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5521
		return -EINVAL;
5522
	}
K
KOSAKI Motohiro 已提交
5523 5524 5525

	memcg->swappiness = val;

5526
	mutex_unlock(&memcg_create_mutex);
5527

K
KOSAKI Motohiro 已提交
5528 5529 5530
	return 0;
}

5531 5532 5533 5534 5535 5536 5537 5538
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5539
		t = rcu_dereference(memcg->thresholds.primary);
5540
	else
5541
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5542 5543 5544 5545 5546 5547 5548

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5549
	 * current_threshold points to threshold just below or equal to usage.
5550 5551 5552
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5553
	i = t->current_threshold;
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5577
	t->current_threshold = i - 1;
5578 5579 5580 5581 5582 5583
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5584 5585 5586 5587 5588 5589 5590
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5601
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5602 5603 5604
{
	struct mem_cgroup_eventfd_list *ev;

5605
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5606 5607 5608 5609
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5610
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5611
{
K
KAMEZAWA Hiroyuki 已提交
5612 5613
	struct mem_cgroup *iter;

5614
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5615
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5616 5617
}

5618
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5619
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5620
{
5621
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5622 5623
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5624
	enum res_type type = MEMFILE_TYPE(cft->private);
5625
	u64 threshold, usage;
5626
	int i, size, ret;
5627 5628 5629 5630 5631 5632

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5633

5634
	if (type == _MEM)
5635
		thresholds = &memcg->thresholds;
5636
	else if (type == _MEMSWAP)
5637
		thresholds = &memcg->memsw_thresholds;
5638 5639 5640 5641 5642 5643
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5644
	if (thresholds->primary)
5645 5646
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5647
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5648 5649

	/* Allocate memory for new array of thresholds */
5650
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5651
			GFP_KERNEL);
5652
	if (!new) {
5653 5654 5655
		ret = -ENOMEM;
		goto unlock;
	}
5656
	new->size = size;
5657 5658

	/* Copy thresholds (if any) to new array */
5659 5660
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5661
				sizeof(struct mem_cgroup_threshold));
5662 5663
	}

5664
	/* Add new threshold */
5665 5666
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5667 5668

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5669
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5670 5671 5672
			compare_thresholds, NULL);

	/* Find current threshold */
5673
	new->current_threshold = -1;
5674
	for (i = 0; i < size; i++) {
5675
		if (new->entries[i].threshold <= usage) {
5676
			/*
5677 5678
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5679 5680
			 * it here.
			 */
5681
			++new->current_threshold;
5682 5683
		} else
			break;
5684 5685
	}

5686 5687 5688 5689 5690
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5691

5692
	/* To be sure that nobody uses thresholds */
5693 5694 5695 5696 5697 5698 5699 5700
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5701
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5702
	struct cftype *cft, struct eventfd_ctx *eventfd)
5703
{
5704
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5705 5706
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5707
	enum res_type type = MEMFILE_TYPE(cft->private);
5708
	u64 usage;
5709
	int i, j, size;
5710 5711 5712

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5713
		thresholds = &memcg->thresholds;
5714
	else if (type == _MEMSWAP)
5715
		thresholds = &memcg->memsw_thresholds;
5716 5717 5718
	else
		BUG();

5719 5720 5721
	if (!thresholds->primary)
		goto unlock;

5722 5723 5724 5725 5726 5727
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5728 5729 5730
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5731 5732 5733
			size++;
	}

5734
	new = thresholds->spare;
5735

5736 5737
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5738 5739
		kfree(new);
		new = NULL;
5740
		goto swap_buffers;
5741 5742
	}

5743
	new->size = size;
5744 5745

	/* Copy thresholds and find current threshold */
5746 5747 5748
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5749 5750
			continue;

5751
		new->entries[j] = thresholds->primary->entries[i];
5752
		if (new->entries[j].threshold <= usage) {
5753
			/*
5754
			 * new->current_threshold will not be used
5755 5756 5757
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5758
			++new->current_threshold;
5759 5760 5761 5762
		}
		j++;
	}

5763
swap_buffers:
5764 5765
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5766 5767 5768 5769 5770 5771
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5772
	rcu_assign_pointer(thresholds->primary, new);
5773

5774
	/* To be sure that nobody uses thresholds */
5775
	synchronize_rcu();
5776
unlock:
5777 5778
	mutex_unlock(&memcg->thresholds_lock);
}
5779

5780
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5781 5782
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5783
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5784
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5785
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5786 5787 5788 5789 5790 5791

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5792
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5793 5794 5795 5796 5797

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5798
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5799
		eventfd_signal(eventfd, 1);
5800
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5801 5802 5803 5804

	return 0;
}

5805
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5806 5807
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5808
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5809
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5810
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5811 5812 5813

	BUG_ON(type != _OOM_TYPE);

5814
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5815

5816
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5817 5818 5819 5820 5821 5822
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5823
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5824 5825
}

5826
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5827 5828
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5829
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5830

5831
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5832

5833
	if (atomic_read(&memcg->under_oom))
5834 5835 5836 5837 5838 5839
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5840
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5841 5842
	struct cftype *cft, u64 val)
{
5843
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5844
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5845 5846

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5847
	if (!parent || !((val == 0) || (val == 1)))
5848 5849
		return -EINVAL;

5850
	mutex_lock(&memcg_create_mutex);
5851
	/* oom-kill-disable is a flag for subhierarchy. */
5852
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5853
		mutex_unlock(&memcg_create_mutex);
5854 5855
		return -EINVAL;
	}
5856
	memcg->oom_kill_disable = val;
5857
	if (!val)
5858
		memcg_oom_recover(memcg);
5859
	mutex_unlock(&memcg_create_mutex);
5860 5861 5862
	return 0;
}

A
Andrew Morton 已提交
5863
#ifdef CONFIG_MEMCG_KMEM
5864
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5865
{
5866 5867
	int ret;

5868
	memcg->kmemcg_id = -1;
5869 5870 5871
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5872

5873
	return mem_cgroup_sockets_init(memcg, ss);
5874
}
5875

5876
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5877
{
5878
	mem_cgroup_sockets_destroy(memcg);
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5905 5906 5907 5908 5909 5910 5911

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5912
		css_put(&memcg->css);
G
Glauber Costa 已提交
5913
}
5914
#else
5915
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5916 5917 5918
{
	return 0;
}
G
Glauber Costa 已提交
5919

5920 5921 5922 5923 5924
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5925 5926
{
}
5927 5928
#endif

B
Balbir Singh 已提交
5929 5930
static struct cftype mem_cgroup_files[] = {
	{
5931
		.name = "usage_in_bytes",
5932
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5933
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5934 5935
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5936
	},
5937 5938
	{
		.name = "max_usage_in_bytes",
5939
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5940
		.trigger = mem_cgroup_reset,
5941
		.read = mem_cgroup_read,
5942
	},
B
Balbir Singh 已提交
5943
	{
5944
		.name = "limit_in_bytes",
5945
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5946
		.write_string = mem_cgroup_write,
5947
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5948
	},
5949 5950 5951 5952
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5953
		.read = mem_cgroup_read,
5954
	},
B
Balbir Singh 已提交
5955 5956
	{
		.name = "failcnt",
5957
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5958
		.trigger = mem_cgroup_reset,
5959
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5960
	},
5961 5962
	{
		.name = "stat",
5963
		.read_seq_string = memcg_stat_show,
5964
	},
5965 5966 5967 5968
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5969 5970
	{
		.name = "use_hierarchy",
5971
		.flags = CFTYPE_INSANE,
5972 5973 5974
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5975 5976 5977 5978 5979
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5980 5981 5982 5983 5984
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5985 5986
	{
		.name = "oom_control",
5987 5988
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5989 5990 5991 5992
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5993 5994 5995 5996 5997
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5998 5999 6000
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6001
		.read_seq_string = memcg_numa_stat_show,
6002 6003
	},
#endif
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6028 6029 6030 6031 6032 6033
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6034
#endif
6035
	{ },	/* terminate */
6036
};
6037

6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6068
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6069 6070
{
	struct mem_cgroup_per_node *pn;
6071
	struct mem_cgroup_per_zone *mz;
6072
	int zone, tmp = node;
6073 6074 6075 6076 6077 6078 6079 6080
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6081 6082
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6083
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6084 6085
	if (!pn)
		return 1;
6086 6087 6088

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6089
		lruvec_init(&mz->lruvec);
6090
		mz->usage_in_excess = 0;
6091
		mz->on_tree = false;
6092
		mz->memcg = memcg;
6093
	}
6094
	memcg->nodeinfo[node] = pn;
6095 6096 6097
	return 0;
}

6098
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6099
{
6100
	kfree(memcg->nodeinfo[node]);
6101 6102
}

6103 6104
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6105
	struct mem_cgroup *memcg;
6106
	size_t size = memcg_size();
6107

6108
	/* Can be very big if nr_node_ids is very big */
6109
	if (size < PAGE_SIZE)
6110
		memcg = kzalloc(size, GFP_KERNEL);
6111
	else
6112
		memcg = vzalloc(size);
6113

6114
	if (!memcg)
6115 6116
		return NULL;

6117 6118
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6119
		goto out_free;
6120 6121
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6122 6123 6124

out_free:
	if (size < PAGE_SIZE)
6125
		kfree(memcg);
6126
	else
6127
		vfree(memcg);
6128
	return NULL;
6129 6130
}

6131
/*
6132 6133 6134 6135 6136 6137 6138 6139
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6140
 */
6141 6142

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6143
{
6144
	int node;
6145
	size_t size = memcg_size();
6146

6147 6148 6149 6150 6151 6152 6153 6154
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6166
	disarm_static_keys(memcg);
6167 6168 6169 6170
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6171
}
6172

6173 6174 6175
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6176
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6177
{
6178
	if (!memcg->res.parent)
6179
		return NULL;
6180
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6181
}
G
Glauber Costa 已提交
6182
EXPORT_SYMBOL(parent_mem_cgroup);
6183

6184
static void __init mem_cgroup_soft_limit_tree_init(void)
6185 6186 6187 6188 6189
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6190
	for_each_node(node) {
6191 6192 6193 6194
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6195
		BUG_ON(!rtpn);
6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6207
static struct cgroup_subsys_state * __ref
6208
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6209
{
6210
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6211
	long error = -ENOMEM;
6212
	int node;
B
Balbir Singh 已提交
6213

6214 6215
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6216
		return ERR_PTR(error);
6217

B
Bob Liu 已提交
6218
	for_each_node(node)
6219
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6220
			goto free_out;
6221

6222
	/* root ? */
6223
	if (parent_css == NULL) {
6224
		root_mem_cgroup = memcg;
6225 6226 6227
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6228
	}
6229

6230 6231 6232 6233 6234
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6235
	vmpressure_init(&memcg->vmpressure);
6236 6237 6238 6239 6240 6241 6242 6243 6244

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6245
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6246
{
6247 6248
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6249 6250
	int error = 0;

T
Tejun Heo 已提交
6251
	if (!parent)
6252 6253
		return 0;

6254
	mutex_lock(&memcg_create_mutex);
6255 6256 6257 6258 6259 6260

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6261 6262
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6263
		res_counter_init(&memcg->kmem, &parent->kmem);
6264

6265
		/*
6266 6267
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6268
		 */
6269
	} else {
6270 6271
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6272
		res_counter_init(&memcg->kmem, NULL);
6273 6274 6275 6276 6277
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6278
		if (parent != root_mem_cgroup)
6279
			mem_cgroup_subsys.broken_hierarchy = true;
6280
	}
6281 6282

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6283
	mutex_unlock(&memcg_create_mutex);
6284
	return error;
B
Balbir Singh 已提交
6285 6286
}

M
Michal Hocko 已提交
6287 6288 6289 6290 6291 6292 6293 6294
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6295
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6296 6297 6298 6299 6300 6301

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6302
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6303 6304
}

6305
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6306
{
6307
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6308

6309 6310
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6311
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6312
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6313
	mem_cgroup_destroy_all_caches(memcg);
6314 6315
}

6316
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6317
{
6318
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6319

6320
	memcg_destroy_kmem(memcg);
6321
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6322 6323
}

6324
#ifdef CONFIG_MMU
6325
/* Handlers for move charge at task migration. */
6326 6327
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6328
{
6329 6330
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6331
	struct mem_cgroup *memcg = mc.to;
6332

6333
	if (mem_cgroup_is_root(memcg)) {
6334 6335 6336 6337 6338 6339 6340 6341
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6342
		 * "memcg" cannot be under rmdir() because we've already checked
6343 6344 6345 6346
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6347
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6348
			goto one_by_one;
6349
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6350
						PAGE_SIZE * count, &dummy)) {
6351
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6368 6369
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6370
		if (ret)
6371
			/* mem_cgroup_clear_mc() will do uncharge later */
6372
			return ret;
6373 6374
		mc.precharge++;
	}
6375 6376 6377 6378
	return ret;
}

/**
6379
 * get_mctgt_type - get target type of moving charge
6380 6381 6382
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6383
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6384 6385 6386 6387 6388 6389
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6390 6391 6392
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6393 6394 6395 6396 6397
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6398
	swp_entry_t	ent;
6399 6400 6401
};

enum mc_target_type {
6402
	MC_TARGET_NONE = 0,
6403
	MC_TARGET_PAGE,
6404
	MC_TARGET_SWAP,
6405 6406
};

D
Daisuke Nishimura 已提交
6407 6408
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6409
{
D
Daisuke Nishimura 已提交
6410
	struct page *page = vm_normal_page(vma, addr, ptent);
6411

D
Daisuke Nishimura 已提交
6412 6413 6414 6415
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6416
		if (!move_anon())
D
Daisuke Nishimura 已提交
6417
			return NULL;
6418 6419
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6420 6421 6422 6423 6424 6425 6426
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6427
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6428 6429 6430 6431 6432 6433 6434 6435
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6436 6437 6438 6439
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6440
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6441 6442 6443 6444 6445
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6446 6447 6448 6449 6450 6451 6452
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6453

6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6473 6474 6475 6476 6477 6478
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6479
		if (do_swap_account)
6480
			*entry = swap;
6481
		page = find_get_page(swap_address_space(swap), swap.val);
6482
	}
6483
#endif
6484 6485 6486
	return page;
}

6487
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6488 6489 6490 6491
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6492
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6493 6494 6495 6496 6497 6498
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6499 6500
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6501 6502

	if (!page && !ent.val)
6503
		return ret;
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6519 6520
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6521
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6522 6523 6524
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6525 6526 6527 6528
	}
	return ret;
}

6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6564 6565 6566 6567 6568 6569 6570 6571
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6572 6573 6574 6575
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6576
		return 0;
6577
	}
6578

6579 6580
	if (pmd_trans_unstable(pmd))
		return 0;
6581 6582
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6583
		if (get_mctgt_type(vma, addr, *pte, NULL))
6584 6585 6586 6587
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6588 6589 6590
	return 0;
}

6591 6592 6593 6594 6595
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6596
	down_read(&mm->mmap_sem);
6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6608
	up_read(&mm->mmap_sem);
6609 6610 6611 6612 6613 6614 6615 6616 6617

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6618 6619 6620 6621 6622
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6623 6624
}

6625 6626
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6627
{
6628 6629
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6630
	int i;
6631

6632
	/* we must uncharge all the leftover precharges from mc.to */
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6644
	}
6645 6646 6647 6648 6649 6650
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6651 6652 6653

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6654 6655 6656 6657 6658 6659 6660 6661 6662

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6663
		/* we've already done css_get(mc.to) */
6664 6665
		mc.moved_swap = 0;
	}
6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6681
	spin_lock(&mc.lock);
6682 6683
	mc.from = NULL;
	mc.to = NULL;
6684
	spin_unlock(&mc.lock);
6685
	mem_cgroup_end_move(from);
6686 6687
}

6688
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6689
				 struct cgroup_taskset *tset)
6690
{
6691
	struct task_struct *p = cgroup_taskset_first(tset);
6692
	int ret = 0;
6693
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6694
	unsigned long move_charge_at_immigrate;
6695

6696 6697 6698 6699 6700 6701 6702
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6703 6704 6705
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6706
		VM_BUG_ON(from == memcg);
6707 6708 6709 6710 6711

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6712 6713 6714 6715
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6716
			VM_BUG_ON(mc.moved_charge);
6717
			VM_BUG_ON(mc.moved_swap);
6718
			mem_cgroup_start_move(from);
6719
			spin_lock(&mc.lock);
6720
			mc.from = from;
6721
			mc.to = memcg;
6722
			mc.immigrate_flags = move_charge_at_immigrate;
6723
			spin_unlock(&mc.lock);
6724
			/* We set mc.moving_task later */
6725 6726 6727 6728

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6729 6730
		}
		mmput(mm);
6731 6732 6733 6734
	}
	return ret;
}

6735
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6736
				     struct cgroup_taskset *tset)
6737
{
6738
	mem_cgroup_clear_mc();
6739 6740
}

6741 6742 6743
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6744
{
6745 6746 6747 6748
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6749 6750 6751 6752
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6753

6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6765
		if (mc.precharge < HPAGE_PMD_NR) {
6766 6767 6768 6769 6770 6771 6772 6773 6774
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6775
							pc, mc.from, mc.to)) {
6776 6777 6778 6779 6780 6781 6782 6783
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6784
		return 0;
6785 6786
	}

6787 6788
	if (pmd_trans_unstable(pmd))
		return 0;
6789 6790 6791 6792
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6793
		swp_entry_t ent;
6794 6795 6796 6797

		if (!mc.precharge)
			break;

6798
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6799 6800 6801 6802 6803
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6804
			if (!mem_cgroup_move_account(page, 1, pc,
6805
						     mc.from, mc.to)) {
6806
				mc.precharge--;
6807 6808
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6809 6810
			}
			putback_lru_page(page);
6811
put:			/* get_mctgt_type() gets the page */
6812 6813
			put_page(page);
			break;
6814 6815
		case MC_TARGET_SWAP:
			ent = target.ent;
6816
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6817
				mc.precharge--;
6818 6819 6820
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6821
			break;
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6836
		ret = mem_cgroup_do_precharge(1);
6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6880
	up_read(&mm->mmap_sem);
6881 6882
}

6883
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6884
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6885
{
6886
	struct task_struct *p = cgroup_taskset_first(tset);
6887
	struct mm_struct *mm = get_task_mm(p);
6888 6889

	if (mm) {
6890 6891
		if (mc.to)
			mem_cgroup_move_charge(mm);
6892 6893
		mmput(mm);
	}
6894 6895
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6896
}
6897
#else	/* !CONFIG_MMU */
6898
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6899
				 struct cgroup_taskset *tset)
6900 6901 6902
{
	return 0;
}
6903
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6904
				     struct cgroup_taskset *tset)
6905 6906
{
}
6907
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6908
				 struct cgroup_taskset *tset)
6909 6910 6911
{
}
#endif
B
Balbir Singh 已提交
6912

6913 6914 6915 6916
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6917
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6918 6919 6920 6921 6922 6923
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6924 6925
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6926 6927
}

B
Balbir Singh 已提交
6928 6929 6930
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6931
	.css_alloc = mem_cgroup_css_alloc,
6932
	.css_online = mem_cgroup_css_online,
6933 6934
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6935 6936
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6937
	.attach = mem_cgroup_move_task,
6938
	.bind = mem_cgroup_bind,
6939
	.base_cftypes = mem_cgroup_files,
6940
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6941
	.use_id = 1,
B
Balbir Singh 已提交
6942
};
6943

A
Andrew Morton 已提交
6944
#ifdef CONFIG_MEMCG_SWAP
6945 6946 6947
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6948
	if (!strcmp(s, "1"))
6949
		really_do_swap_account = 1;
6950
	else if (!strcmp(s, "0"))
6951 6952 6953
		really_do_swap_account = 0;
	return 1;
}
6954
__setup("swapaccount=", enable_swap_account);
6955

6956 6957
static void __init memsw_file_init(void)
{
6958 6959 6960 6961 6962 6963 6964 6965 6966
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6967
}
6968

6969
#else
6970
static void __init enable_swap_cgroup(void)
6971 6972
{
}
6973
#endif
6974 6975

/*
6976 6977 6978 6979 6980 6981
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6982 6983 6984 6985
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6986
	enable_swap_cgroup();
6987
	mem_cgroup_soft_limit_tree_init();
6988
	memcg_stock_init();
6989 6990 6991
	return 0;
}
subsys_initcall(mem_cgroup_init);