memcontrol.c 145.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129 130 131 132
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

133 134 135 136
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
137
	struct lruvec		lruvec;
138
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139

140 141
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
142
	struct zone_reclaim_stat reclaim_stat;
143 144 145 146
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
147 148
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
149 150 151 152 153 154 155 156 157 158 159 160
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

181 182 183 184 185
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
186
/* For threshold */
187 188
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
189
	int current_threshold;
190 191 192 193 194
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
195 196 197 198 199 200 201 202 203 204 205 206

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
207 208 209 210 211
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
212

213 214
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215

B
Balbir Singh 已提交
216 217 218 219 220 221 222
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 224 225
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
226 227 228 229 230 231 232
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
233 234 235 236
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
237 238 239 240
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
241
	struct mem_cgroup_lru_info info;
242 243 244
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
245 246
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
247
#endif
248 249 250 251
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
252 253 254 255

	bool		oom_lock;
	atomic_t	under_oom;

256
	atomic_t	refcnt;
257

258
	int	swappiness;
259 260
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
261

262 263 264
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

265 266 267 268
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
269
	struct mem_cgroup_thresholds thresholds;
270

271
	/* thresholds for mem+swap usage. RCU-protected */
272
	struct mem_cgroup_thresholds memsw_thresholds;
273

K
KAMEZAWA Hiroyuki 已提交
274 275
	/* For oom notifier event fd */
	struct list_head oom_notify;
276

277 278 279 280 281
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
282
	/*
283
	 * percpu counter.
284
	 */
285
	struct mem_cgroup_stat_cpu *stat;
286 287 288 289 290 291
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
292 293 294 295

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
296 297
};

298 299 300 301 302 303
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
304
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306 307 308
	NR_MOVE_TYPE,
};

309 310
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
311
	spinlock_t	  lock; /* for from, to */
312 313 314
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
315
	unsigned long moved_charge;
316
	unsigned long moved_swap;
317 318 319
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
320
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 322
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
323

D
Daisuke Nishimura 已提交
324 325 326 327 328 329
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

330 331 332 333 334 335
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

336 337 338 339 340 341 342
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

343 344 345
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
348
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
349
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350 351 352
	NR_CHARGE_TYPE,
};

353
/* for encoding cft->private value on file */
354 355 356
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
357 358 359
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
360 361
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
362

363 364 365 366 367 368 369 370
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

371 372
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
373 374 375 376 377

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#ifdef CONFIG_INET
#include <net/sock.h>
G
Glauber Costa 已提交
378
#include <net/ip.h>
G
Glauber Costa 已提交
379 380 381 382 383 384 385 386 387

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled)) {
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

388 389 390 391 392 393 394 395 396 397 398 399 400 401
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
422 423 424 425 426 427 428 429 430

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
431 432 433
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

434
static void drain_all_stock_async(struct mem_cgroup *memcg);
435

436
static struct mem_cgroup_per_zone *
437
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438
{
439
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 441
}

442
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443
{
444
	return &memcg->css;
445 446
}

447
static struct mem_cgroup_per_zone *
448
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449
{
450 451
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
452

453
	return mem_cgroup_zoneinfo(memcg, nid, zid);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
472
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473
				struct mem_cgroup_per_zone *mz,
474 475
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
476 477 478 479 480 481 482 483
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

484 485 486
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
503 504 505
}

static void
506
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 508 509 510 511 512 513 514 515
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

516
static void
517
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 519 520 521
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
522
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 524 525 526
	spin_unlock(&mctz->lock);
}


527
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528
{
529
	unsigned long long excess;
530 531
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
532 533
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
534 535 536
	mctz = soft_limit_tree_from_page(page);

	/*
537 538
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
539
	 */
540 541 542
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
543 544 545 546
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
547
		if (excess || mz->on_tree) {
548 549 550
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
551
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552
			/*
553 554
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
555
			 */
556
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 558
			spin_unlock(&mctz->lock);
		}
559 560 561
	}
}

562
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 564 565 566 567 568 569
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571
			mctz = soft_limit_tree_node_zone(node, zone);
572
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
		}
	}
}

577 578 579 580
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
581
	struct mem_cgroup_per_zone *mz;
582 583

retry:
584
	mz = NULL;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
633
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634
				 enum mem_cgroup_stat_index idx)
635
{
636
	long val = 0;
637 638
	int cpu;

639 640
	get_online_cpus();
	for_each_online_cpu(cpu)
641
		val += per_cpu(memcg->stat->count[idx], cpu);
642
#ifdef CONFIG_HOTPLUG_CPU
643 644 645
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
646 647
#endif
	put_online_cpus();
648 649 650
	return val;
}

651
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 653 654
					 bool charge)
{
	int val = (charge) ? 1 : -1;
655
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 657
}

658
void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
659
{
660
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
661 662
}

663
void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
664
{
665
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
666 667
}

668
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
669 670 671 672 673 674
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
675
		val += per_cpu(memcg->stat->events[idx], cpu);
676
#ifdef CONFIG_HOTPLUG_CPU
677 678 679
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
680 681 682 683
#endif
	return val;
}

684
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
685
					 bool file, int nr_pages)
686
{
687 688
	preempt_disable();

689
	if (file)
690 691
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
692
	else
693 694
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
695

696 697
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
698
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
699
	else {
700
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
701 702
		nr_pages = -nr_pages; /* for event */
	}
703

704
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
705

706
	preempt_enable();
707 708
}

709
unsigned long
710
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
711
			unsigned int lru_mask)
712 713
{
	struct mem_cgroup_per_zone *mz;
714 715 716
	enum lru_list l;
	unsigned long ret = 0;

717
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
718 719 720 721 722 723 724 725 726

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
727
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 729
			int nid, unsigned int lru_mask)
{
730 731 732
	u64 total = 0;
	int zid;

733
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
734 735
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
736

737 738
	return total;
}
739

740
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
741
			unsigned int lru_mask)
742
{
743
	int nid;
744 745
	u64 total = 0;

746
	for_each_node_state(nid, N_HIGH_MEMORY)
747
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
748
	return total;
749 750
}

751 752
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
753 754 755
{
	unsigned long val, next;

756 757
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
758
	/* from time_after() in jiffies.h */
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
775
	}
776
	return false;
777 778 779 780 781 782
}

/*
 * Check events in order.
 *
 */
783
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
784
{
785
	preempt_disable();
786
	/* threshold event is triggered in finer grain than soft limit */
787 788 789 790 791 792 793 794 795 796 797 798
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
		bool do_softlimit, do_numainfo;

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

799
		mem_cgroup_threshold(memcg);
800
		if (unlikely(do_softlimit))
801
			mem_cgroup_update_tree(memcg, page);
802
#if MAX_NUMNODES > 1
803
		if (unlikely(do_numainfo))
804
			atomic_inc(&memcg->numainfo_events);
805
#endif
806 807
	} else
		preempt_enable();
808 809
}

G
Glauber Costa 已提交
810
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
811 812 813 814 815 816
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

817
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
818
{
819 820 821 822 823 824 825 826
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

827 828 829 830
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

831
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
832
{
833
	struct mem_cgroup *memcg = NULL;
834 835 836

	if (!mm)
		return NULL;
837 838 839 840 841 842 843
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
844 845
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
846
			break;
847
	} while (!css_tryget(&memcg->css));
848
	rcu_read_unlock();
849
	return memcg;
850 851
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
872
{
873 874
	struct mem_cgroup *memcg = NULL;
	int id = 0;
875

876 877 878
	if (mem_cgroup_disabled())
		return NULL;

879 880
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
881

882 883
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
884

885 886
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
887

888 889 890 891 892
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
893

894
	while (!memcg) {
895
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
896
		struct cgroup_subsys_state *css;
897

898 899 900 901 902 903 904 905 906 907 908
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
909

910 911 912 913 914 915 916 917
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
918 919
		rcu_read_unlock();

920 921 922 923 924 925 926
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
927 928 929 930 931

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
932
}
K
KAMEZAWA Hiroyuki 已提交
933

934 935 936 937 938 939 940
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
941 942 943 944 945 946
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
947

948 949 950 951 952 953
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
954
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
955
	     iter != NULL;				\
956
	     iter = mem_cgroup_iter(root, iter, NULL))
957

958
#define for_each_mem_cgroup(iter)			\
959
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
960
	     iter != NULL;				\
961
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
962

963
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
964
{
965
	return (memcg == root_mem_cgroup);
966 967
}

968 969
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
970
	struct mem_cgroup *memcg;
971 972 973 974 975

	if (!mm)
		return;

	rcu_read_lock();
976 977
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
978 979 980 981
		goto out;

	switch (idx) {
	case PGMAJFAULT:
982
		mem_cgroup_pgmajfault(memcg, 1);
983 984
		break;
	case PGFAULT:
985
		mem_cgroup_pgfault(memcg, 1);
986 987 988 989 990 991 992 993 994
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1044 1045
{
	struct mem_cgroup_per_zone *mz;
1046 1047
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1048

1049
	if (mem_cgroup_disabled())
1050 1051
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1052
	pc = lookup_page_cgroup(page);
1053
	VM_BUG_ON(PageCgroupAcctLRU(pc));
1054
	/*
1055 1056 1057 1058 1059 1060 1061
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
1062
	 */
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	smp_mb();
	/*
	 * If the page is uncharged, it may be freed soon, but it
	 * could also be swap cache (readahead, swapoff) that needs to
	 * be reclaimable in the future.  root_mem_cgroup will babysit
	 * it for the time being.
	 */
	if (PageCgroupUsed(pc)) {
		/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
		smp_rmb();
		memcg = pc->mem_cgroup;
		SetPageCgroupAcctLRU(pc);
	} else
		memcg = root_mem_cgroup;
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1081
}
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1092
 */
1093
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1094 1095
{
	struct mem_cgroup_per_zone *mz;
1096
	struct mem_cgroup *memcg;
1097 1098 1099 1100 1101 1102
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	/*
	 * root_mem_cgroup babysits uncharged LRU pages, but
	 * PageCgroupUsed is cleared when the page is about to get
	 * freed.  PageCgroupAcctLRU remembers whether the
	 * LRU-accounting happened against pc->mem_cgroup or
	 * root_mem_cgroup.
	 */
	if (TestClearPageCgroupAcctLRU(pc)) {
		VM_BUG_ON(!pc->mem_cgroup);
		memcg = pc->mem_cgroup;
	} else
		memcg = root_mem_cgroup;
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1118 1119
}

1120
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1121
{
1122
	mem_cgroup_lru_del_list(page, page_lru(page));
1123 1124
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1143
{
1144 1145 1146
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1147
}
1148

K
KAMEZAWA Hiroyuki 已提交
1149
/*
1150 1151 1152 1153
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1154
 */
1155
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1156
{
1157
	enum lru_list lru;
1158 1159 1160 1161
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1173
	spin_lock_irqsave(&zone->lru_lock, flags);
1174
	lru = page_lru(page);
1175
	/*
1176 1177 1178 1179 1180 1181 1182 1183 1184
	 * The uncharged page could still be registered to the LRU of
	 * the stale pc->mem_cgroup.
	 *
	 * As pc->mem_cgroup is about to get overwritten, the old LRU
	 * accounting needs to be taken care of.  Let root_mem_cgroup
	 * babysit the page until the new memcg is responsible for it.
	 *
	 * The PCG_USED bit is guarded by lock_page() as the page is
	 * swapcache/pagecache.
1185
	 */
1186 1187 1188 1189
	if (PageLRU(page) && PageCgroupAcctLRU(pc) && !PageCgroupUsed(pc)) {
		del_page_from_lru_list(zone, page, lru);
		add_page_to_lru_list(zone, page, lru);
	}
1190
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1191 1192
}

1193
static void mem_cgroup_lru_add_after_commit(struct page *page)
1194
{
1195
	enum lru_list lru;
1196 1197 1198
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
1209 1210 1211
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1212
	spin_lock_irqsave(&zone->lru_lock, flags);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	lru = page_lru(page);
	/*
	 * If the page is not on the LRU, someone will soon put it
	 * there.  If it is, and also already accounted for on the
	 * memcg-side, it must be on the right lruvec as setting
	 * pc->mem_cgroup and PageCgroupUsed is properly ordered.
	 * Otherwise, root_mem_cgroup has been babysitting the page
	 * during the charge.  Move it to the new memcg now.
	 */
	if (PageLRU(page) && !PageCgroupAcctLRU(pc)) {
		del_page_from_lru_list(zone, page, lru);
		add_page_to_lru_list(zone, page, lru);
	}
1226 1227 1228
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}

1229
/*
1230
 * Checks whether given mem is same or in the root_mem_cgroup's
1231 1232
 * hierarchy subtree
 */
1233 1234
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1235
{
1236 1237 1238
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1239 1240 1241 1242 1243
	}

	return true;
}

1244
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1245 1246
{
	int ret;
1247
	struct mem_cgroup *curr = NULL;
1248
	struct task_struct *p;
1249

1250 1251 1252 1253 1254
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1255 1256
	if (!curr)
		return 0;
1257
	/*
1258
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1259
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1260 1261
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1262
	 */
1263
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1264
	css_put(&curr->css);
1265 1266 1267
	return ret;
}

1268
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1269
{
1270 1271 1272
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1273
	unsigned long inactive;
1274
	unsigned long active;
1275
	unsigned long gb;
1276

1277 1278 1279 1280
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1281

1282 1283 1284 1285 1286 1287
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1288
	return inactive * inactive_ratio < active;
1289 1290
}

1291
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1292 1293 1294
{
	unsigned long active;
	unsigned long inactive;
1295 1296
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1297

1298 1299 1300 1301
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1302 1303 1304 1305

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1306 1307 1308
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1309
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1326 1327
	if (!PageCgroupUsed(pc))
		return NULL;
1328 1329
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1330
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1331 1332 1333
	return &mz->reclaim_stat;
}

1334 1335 1336
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1337
/**
1338 1339
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1340
 *
1341
 * Returns the maximum amount of memory @mem can be charged with, in
1342
 * pages.
1343
 */
1344
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1345
{
1346 1347
	unsigned long long margin;

1348
	margin = res_counter_margin(&memcg->res);
1349
	if (do_swap_account)
1350
		margin = min(margin, res_counter_margin(&memcg->memsw));
1351
	return margin >> PAGE_SHIFT;
1352 1353
}

1354
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1355 1356 1357 1358 1359 1360 1361
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1362
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1363 1364
}

1365
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1366 1367
{
	int cpu;
1368 1369

	get_online_cpus();
1370
	spin_lock(&memcg->pcp_counter_lock);
1371
	for_each_online_cpu(cpu)
1372 1373 1374
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1375
	put_online_cpus();
1376 1377 1378 1379

	synchronize_rcu();
}

1380
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1381 1382 1383
{
	int cpu;

1384
	if (!memcg)
1385
		return;
1386
	get_online_cpus();
1387
	spin_lock(&memcg->pcp_counter_lock);
1388
	for_each_online_cpu(cpu)
1389 1390 1391
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1392
	put_online_cpus();
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1406
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1407 1408
{
	VM_BUG_ON(!rcu_read_lock_held());
1409
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1410
}
1411

1412
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1413
{
1414 1415
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1416
	bool ret = false;
1417 1418 1419 1420 1421 1422 1423 1424 1425
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1426

1427 1428
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1429 1430
unlock:
	spin_unlock(&mc.lock);
1431 1432 1433
	return ret;
}

1434
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1435 1436
{
	if (mc.moving_task && current != mc.moving_task) {
1437
		if (mem_cgroup_under_move(memcg)) {
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1450
/**
1451
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1470
	if (!memcg || !p)
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1517 1518 1519 1520
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1521
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1522 1523
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1524 1525
	struct mem_cgroup *iter;

1526
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1527
		num++;
1528 1529 1530
	return num;
}

D
David Rientjes 已提交
1531 1532 1533 1534 1535 1536 1537 1538
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1539 1540 1541
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1542 1543 1544 1545 1546 1547 1548 1549
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1596
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1597 1598
		int nid, bool noswap)
{
1599
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1600 1601 1602
		return true;
	if (noswap || !total_swap_pages)
		return false;
1603
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1604 1605 1606 1607
		return true;
	return false;

}
1608 1609 1610 1611 1612 1613 1614 1615
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1616
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1617 1618
{
	int nid;
1619 1620 1621 1622
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1623
	if (!atomic_read(&memcg->numainfo_events))
1624
		return;
1625
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1626 1627 1628
		return;

	/* make a nodemask where this memcg uses memory from */
1629
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1630 1631 1632

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1633 1634
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1635
	}
1636

1637 1638
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1653
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1654 1655 1656
{
	int node;

1657 1658
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1659

1660
	node = next_node(node, memcg->scan_nodes);
1661
	if (node == MAX_NUMNODES)
1662
		node = first_node(memcg->scan_nodes);
1663 1664 1665 1666 1667 1668 1669 1670 1671
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1672
	memcg->last_scanned_node = node;
1673 1674 1675
	return node;
}

1676 1677 1678 1679 1680 1681
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1682
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1683 1684 1685 1686 1687 1688 1689
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1690 1691
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1692
		     nid < MAX_NUMNODES;
1693
		     nid = next_node(nid, memcg->scan_nodes)) {
1694

1695
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1696 1697 1698 1699 1700 1701 1702
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1703
		if (node_isset(nid, memcg->scan_nodes))
1704
			continue;
1705
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1706 1707 1708 1709 1710
			return true;
	}
	return false;
}

1711
#else
1712
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1713 1714 1715
{
	return 0;
}
1716

1717
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1718
{
1719
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1720
}
1721 1722
#endif

1723 1724 1725 1726
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1727
{
1728
	struct mem_cgroup *victim = NULL;
1729
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1730
	int loop = 0;
1731
	unsigned long excess;
1732
	unsigned long nr_scanned;
1733 1734 1735 1736
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1737

1738
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1739

1740
	while (1) {
1741
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1742
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1743
			loop++;
1744 1745 1746 1747 1748 1749
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1750
				if (!total)
1751 1752
					break;
				/*
L
Lucas De Marchi 已提交
1753
				 * We want to do more targeted reclaim.
1754 1755 1756 1757 1758
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1759
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1760 1761
					break;
			}
1762
			continue;
1763
		}
1764
		if (!mem_cgroup_reclaimable(victim, false))
1765
			continue;
1766 1767 1768 1769
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1770
			break;
1771
	}
1772
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1773
	return total;
1774 1775
}

K
KAMEZAWA Hiroyuki 已提交
1776 1777 1778
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1779
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1780
 */
1781
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1782
{
1783
	struct mem_cgroup *iter, *failed = NULL;
1784

1785
	for_each_mem_cgroup_tree(iter, memcg) {
1786
		if (iter->oom_lock) {
1787 1788 1789 1790 1791
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1792 1793
			mem_cgroup_iter_break(memcg, iter);
			break;
1794 1795
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1796
	}
K
KAMEZAWA Hiroyuki 已提交
1797

1798
	if (!failed)
1799
		return true;
1800 1801 1802 1803 1804

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1805
	for_each_mem_cgroup_tree(iter, memcg) {
1806
		if (iter == failed) {
1807 1808
			mem_cgroup_iter_break(memcg, iter);
			break;
1809 1810 1811
		}
		iter->oom_lock = false;
	}
1812
	return false;
1813
}
1814

1815
/*
1816
 * Has to be called with memcg_oom_lock
1817
 */
1818
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1819
{
K
KAMEZAWA Hiroyuki 已提交
1820 1821
	struct mem_cgroup *iter;

1822
	for_each_mem_cgroup_tree(iter, memcg)
1823 1824 1825 1826
		iter->oom_lock = false;
	return 0;
}

1827
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1828 1829 1830
{
	struct mem_cgroup *iter;

1831
	for_each_mem_cgroup_tree(iter, memcg)
1832 1833 1834
		atomic_inc(&iter->under_oom);
}

1835
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1836 1837 1838
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1839 1840 1841 1842 1843
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1844
	for_each_mem_cgroup_tree(iter, memcg)
1845
		atomic_add_unless(&iter->under_oom, -1, 0);
1846 1847
}

1848
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1849 1850
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1851 1852 1853 1854 1855 1856 1857 1858
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1859 1860
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1861 1862 1863
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1864
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1865 1866 1867 1868 1869

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1870 1871
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1872 1873 1874 1875
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1876
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1877
{
1878 1879
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1880 1881
}

1882
static void memcg_oom_recover(struct mem_cgroup *memcg)
1883
{
1884 1885
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1886 1887
}

K
KAMEZAWA Hiroyuki 已提交
1888 1889 1890
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1891
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1892
{
K
KAMEZAWA Hiroyuki 已提交
1893
	struct oom_wait_info owait;
1894
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1895

1896
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1897 1898 1899 1900
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1901
	need_to_kill = true;
1902
	mem_cgroup_mark_under_oom(memcg);
1903

1904
	/* At first, try to OOM lock hierarchy under memcg.*/
1905
	spin_lock(&memcg_oom_lock);
1906
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1907 1908 1909 1910 1911
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1912
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1913
	if (!locked || memcg->oom_kill_disable)
1914 1915
		need_to_kill = false;
	if (locked)
1916
		mem_cgroup_oom_notify(memcg);
1917
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1918

1919 1920
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1921
		mem_cgroup_out_of_memory(memcg, mask);
1922
	} else {
K
KAMEZAWA Hiroyuki 已提交
1923
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1924
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1925
	}
1926
	spin_lock(&memcg_oom_lock);
1927
	if (locked)
1928 1929
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1930
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1931

1932
	mem_cgroup_unmark_under_oom(memcg);
1933

K
KAMEZAWA Hiroyuki 已提交
1934 1935 1936
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1937
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1938
	return true;
1939 1940
}

1941 1942 1943
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1963
 */
1964

1965 1966
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1967
{
1968
	struct mem_cgroup *memcg;
1969 1970
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1971
	unsigned long uninitialized_var(flags);
1972 1973 1974 1975

	if (unlikely(!pc))
		return;

1976
	rcu_read_lock();
1977 1978
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1979 1980
		goto out;
	/* pc->mem_cgroup is unstable ? */
1981
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1982
		/* take a lock against to access pc->mem_cgroup */
1983
		move_lock_page_cgroup(pc, &flags);
1984
		need_unlock = true;
1985 1986
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1987 1988
			goto out;
	}
1989 1990

	switch (idx) {
1991
	case MEMCG_NR_FILE_MAPPED:
1992 1993 1994
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1995
			ClearPageCgroupFileMapped(pc);
1996
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1997 1998 1999
		break;
	default:
		BUG();
2000
	}
2001

2002
	this_cpu_add(memcg->stat->count[idx], val);
2003

2004 2005
out:
	if (unlikely(need_unlock))
2006
		move_unlock_page_cgroup(pc, &flags);
2007 2008
	rcu_read_unlock();
	return;
2009
}
2010
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2011

2012 2013 2014 2015
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2016
#define CHARGE_BATCH	32U
2017 2018
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2019
	unsigned int nr_pages;
2020
	struct work_struct work;
2021 2022
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2023 2024
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2025
static DEFINE_MUTEX(percpu_charge_mutex);
2026 2027

/*
2028
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2029 2030 2031 2032
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2033
static bool consume_stock(struct mem_cgroup *memcg)
2034 2035 2036 2037 2038
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2039
	if (memcg == stock->cached && stock->nr_pages)
2040
		stock->nr_pages--;
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2054 2055 2056 2057
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2058
		if (do_swap_account)
2059 2060
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2073
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2074 2075 2076 2077
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2078
 * This will be consumed by consume_stock() function, later.
2079
 */
2080
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2081 2082 2083
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2084
	if (stock->cached != memcg) { /* reset if necessary */
2085
		drain_stock(stock);
2086
		stock->cached = memcg;
2087
	}
2088
	stock->nr_pages += nr_pages;
2089 2090 2091 2092
	put_cpu_var(memcg_stock);
}

/*
2093
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2094 2095
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2096
 */
2097
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2098
{
2099
	int cpu, curcpu;
2100

2101 2102
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2103
	curcpu = get_cpu();
2104 2105
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2106
		struct mem_cgroup *memcg;
2107

2108 2109
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2110
			continue;
2111
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2112
			continue;
2113 2114 2115 2116 2117 2118
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2119
	}
2120
	put_cpu();
2121 2122 2123 2124 2125 2126

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2127
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2128 2129 2130
			flush_work(&stock->work);
	}
out:
2131
 	put_online_cpus();
2132 2133 2134 2135 2136 2137 2138 2139
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2140
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2141
{
2142 2143 2144 2145 2146
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2147
	drain_all_stock(root_memcg, false);
2148
	mutex_unlock(&percpu_charge_mutex);
2149 2150 2151
}

/* This is a synchronous drain interface. */
2152
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2153 2154
{
	/* called when force_empty is called */
2155
	mutex_lock(&percpu_charge_mutex);
2156
	drain_all_stock(root_memcg, true);
2157
	mutex_unlock(&percpu_charge_mutex);
2158 2159
}

2160 2161 2162 2163
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2164
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2165 2166 2167
{
	int i;

2168
	spin_lock(&memcg->pcp_counter_lock);
2169
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2170
		long x = per_cpu(memcg->stat->count[i], cpu);
2171

2172 2173
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2174
	}
2175
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2176
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2177

2178 2179
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2180
	}
2181
	/* need to clear ON_MOVE value, works as a kind of lock. */
2182 2183
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2184 2185
}

2186
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2187 2188 2189
{
	int idx = MEM_CGROUP_ON_MOVE;

2190 2191 2192
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2193 2194 2195
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2196 2197 2198 2199 2200
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2201
	struct mem_cgroup *iter;
2202

2203
	if ((action == CPU_ONLINE)) {
2204
		for_each_mem_cgroup(iter)
2205 2206 2207 2208
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2209
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2210
		return NOTIFY_OK;
2211

2212
	for_each_mem_cgroup(iter)
2213 2214
		mem_cgroup_drain_pcp_counter(iter, cpu);

2215 2216 2217 2218 2219
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2230
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2231
				unsigned int nr_pages, bool oom_check)
2232
{
2233
	unsigned long csize = nr_pages * PAGE_SIZE;
2234 2235 2236 2237 2238
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2239
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2240 2241 2242 2243

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2244
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2245 2246 2247
		if (likely(!ret))
			return CHARGE_OK;

2248
		res_counter_uncharge(&memcg->res, csize);
2249 2250 2251 2252
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2253
	/*
2254 2255
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2256 2257 2258 2259
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2260
	if (nr_pages == CHARGE_BATCH)
2261 2262 2263 2264 2265
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2266
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2267
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2268
		return CHARGE_RETRY;
2269
	/*
2270 2271 2272 2273 2274 2275 2276
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2277
	 */
2278
	if (nr_pages == 1 && ret)
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2298 2299 2300
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2301
 */
2302
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2303
				   gfp_t gfp_mask,
2304
				   unsigned int nr_pages,
2305
				   struct mem_cgroup **ptr,
2306
				   bool oom)
2307
{
2308
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2309
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2310
	struct mem_cgroup *memcg = NULL;
2311
	int ret;
2312

K
KAMEZAWA Hiroyuki 已提交
2313 2314 2315 2316 2317 2318 2319 2320
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2321

2322
	/*
2323 2324
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2325 2326 2327
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2328
	if (!*ptr && !mm)
K
KAMEZAWA Hiroyuki 已提交
2329 2330
		goto bypass;
again:
2331 2332 2333 2334
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2335
			goto done;
2336
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2337
			goto done;
2338
		css_get(&memcg->css);
2339
	} else {
K
KAMEZAWA Hiroyuki 已提交
2340
		struct task_struct *p;
2341

K
KAMEZAWA Hiroyuki 已提交
2342 2343 2344
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2345
		 * Because we don't have task_lock(), "p" can exit.
2346
		 * In that case, "memcg" can point to root or p can be NULL with
2347 2348 2349 2350 2351 2352
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2353
		 */
2354 2355
		memcg = mem_cgroup_from_task(p);
		if (!memcg || mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2356 2357 2358
			rcu_read_unlock();
			goto done;
		}
2359
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2372
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2373 2374 2375 2376 2377
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2378

2379 2380
	do {
		bool oom_check;
2381

2382
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2383
		if (fatal_signal_pending(current)) {
2384
			css_put(&memcg->css);
2385
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2386
		}
2387

2388 2389 2390 2391
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2392
		}
2393

2394
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2395 2396 2397 2398
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2399
			batch = nr_pages;
2400 2401
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2402
			goto again;
2403
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2404
			css_put(&memcg->css);
2405 2406
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2407
			if (!oom) {
2408
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2409
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2410
			}
2411 2412 2413 2414
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2415
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2416
			goto bypass;
2417
		}
2418 2419
	} while (ret != CHARGE_OK);

2420
	if (batch > nr_pages)
2421 2422
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2423
done:
2424
	*ptr = memcg;
2425 2426
	return 0;
nomem:
2427
	*ptr = NULL;
2428
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2429
bypass:
2430
	*ptr = NULL;
K
KAMEZAWA Hiroyuki 已提交
2431
	return 0;
2432
}
2433

2434 2435 2436 2437 2438
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2439
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2440
				       unsigned int nr_pages)
2441
{
2442
	if (!mem_cgroup_is_root(memcg)) {
2443 2444
		unsigned long bytes = nr_pages * PAGE_SIZE;

2445
		res_counter_uncharge(&memcg->res, bytes);
2446
		if (do_swap_account)
2447
			res_counter_uncharge(&memcg->memsw, bytes);
2448
	}
2449 2450
}

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2470
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2471
{
2472
	struct mem_cgroup *memcg = NULL;
2473
	struct page_cgroup *pc;
2474
	unsigned short id;
2475 2476
	swp_entry_t ent;

2477 2478 2479
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2480
	lock_page_cgroup(pc);
2481
	if (PageCgroupUsed(pc)) {
2482 2483 2484
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2485
	} else if (PageSwapCache(page)) {
2486
		ent.val = page_private(page);
2487 2488
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
2489 2490 2491
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2492
		rcu_read_unlock();
2493
	}
2494
	unlock_page_cgroup(pc);
2495
	return memcg;
2496 2497
}

2498
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2499
				       struct page *page,
2500
				       unsigned int nr_pages,
2501
				       struct page_cgroup *pc,
2502
				       enum charge_type ctype)
2503
{
2504 2505 2506
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2507
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2508 2509 2510 2511 2512 2513
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2514
	pc->mem_cgroup = memcg;
2515 2516 2517 2518 2519 2520 2521
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2522
	smp_wmb();
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2536

2537
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2538
	unlock_page_cgroup(pc);
2539 2540 2541 2542 2543
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2544
	memcg_check_events(memcg, page);
2545
}
2546

2547 2548 2549 2550 2551 2552
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
2553 2554 2555
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2556
 */
2557
void mem_cgroup_split_huge_fixup(struct page *head)
2558 2559
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2560 2561
	struct page_cgroup *pc;
	int i;
2562

2563 2564
	if (mem_cgroup_disabled())
		return;
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		/*
		 * LRU flags cannot be copied because we need to add tail
		 * page to LRU by generic call and our hooks will be called.
		 */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2575

2576 2577 2578 2579 2580 2581 2582
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;
		/*
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2583
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2584
		MEM_CGROUP_ZSTAT(mz, lru) -= HPAGE_PMD_NR - 1;
2585
	}
2586 2587 2588
}
#endif

2589
/**
2590
 * mem_cgroup_move_account - move account of the page
2591
 * @page: the page
2592
 * @nr_pages: number of regular pages (>1 for huge pages)
2593 2594 2595
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2596
 * @uncharge: whether we should call uncharge and css_put against @from.
2597 2598
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2599
 * - page is not on LRU (isolate_page() is useful.)
2600
 * - compound_lock is held when nr_pages > 1
2601
 *
2602
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2603
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2604 2605
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2606
 */
2607 2608 2609 2610 2611 2612
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2613
{
2614 2615
	unsigned long flags;
	int ret;
2616

2617
	VM_BUG_ON(from == to);
2618
	VM_BUG_ON(PageLRU(page));
2619 2620 2621 2622 2623 2624 2625
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2626
	if (nr_pages > 1 && !PageTransHuge(page))
2627 2628 2629 2630 2631 2632 2633 2634 2635
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2636

2637
	if (PageCgroupFileMapped(pc)) {
2638 2639 2640 2641 2642
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2643
	}
2644
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2645 2646
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2647
		__mem_cgroup_cancel_charge(from, nr_pages);
2648

2649
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2650
	pc->mem_cgroup = to;
2651
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2652 2653 2654
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2655
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2656
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2657
	 * status here.
2658
	 */
2659 2660 2661
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2662
	unlock_page_cgroup(pc);
2663 2664 2665
	/*
	 * check events
	 */
2666 2667
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2668
out:
2669 2670 2671 2672 2673 2674 2675
	return ret;
}

/*
 * move charges to its parent.
 */

2676 2677
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2678 2679 2680 2681 2682 2683
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2684
	unsigned int nr_pages;
2685
	unsigned long uninitialized_var(flags);
2686 2687 2688 2689 2690 2691
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2692 2693 2694 2695 2696
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2697

2698
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2699

2700
	parent = mem_cgroup_from_cont(pcg);
2701
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2702
	if (ret || !parent)
2703
		goto put_back;
2704

2705
	if (nr_pages > 1)
2706 2707
		flags = compound_lock_irqsave(page);

2708
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2709
	if (ret)
2710
		__mem_cgroup_cancel_charge(parent, nr_pages);
2711

2712
	if (nr_pages > 1)
2713
		compound_unlock_irqrestore(page, flags);
2714
put_back:
K
KAMEZAWA Hiroyuki 已提交
2715
	putback_lru_page(page);
2716
put:
2717
	put_page(page);
2718
out:
2719 2720 2721
	return ret;
}

2722 2723 2724 2725 2726 2727 2728
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2729
				gfp_t gfp_mask, enum charge_type ctype)
2730
{
2731
	struct mem_cgroup *memcg = NULL;
2732
	unsigned int nr_pages = 1;
2733
	struct page_cgroup *pc;
2734
	bool oom = true;
2735
	int ret;
A
Andrea Arcangeli 已提交
2736

A
Andrea Arcangeli 已提交
2737
	if (PageTransHuge(page)) {
2738
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2739
		VM_BUG_ON(!PageTransHuge(page));
2740 2741 2742 2743 2744
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2745
	}
2746 2747

	pc = lookup_page_cgroup(page);
2748
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2749

2750 2751
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
	if (ret || !memcg)
2752 2753
		return ret;

2754
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2755 2756 2757
	return 0;
}

2758 2759
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2760
{
2761
	if (mem_cgroup_disabled())
2762
		return 0;
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2774
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2775
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2776 2777
}

D
Daisuke Nishimura 已提交
2778 2779 2780 2781
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2782
static void
2783
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2784 2785 2786 2787 2788 2789 2790 2791 2792
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
2793
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2794 2795 2796 2797
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2798 2799
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2800
{
2801
	struct mem_cgroup *memcg = NULL;
2802 2803
	int ret;

2804
	if (mem_cgroup_disabled())
2805
		return 0;
2806 2807
	if (PageCompound(page))
		return 0;
2808

2809
	if (unlikely(!mm))
2810
		mm = &init_mm;
2811

2812
	if (page_is_file_cache(page)) {
2813 2814
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
		if (ret || !memcg)
2815
			return ret;
2816

2817 2818 2819 2820 2821
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
2822
		__mem_cgroup_commit_charge_lrucare(page, memcg,
2823 2824 2825
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2826 2827
	/* shmem */
	if (PageSwapCache(page)) {
2828
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2829
		if (!ret)
2830
			__mem_cgroup_commit_charge_swapin(page, memcg,
D
Daisuke Nishimura 已提交
2831 2832 2833
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2834
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2835 2836

	return ret;
2837 2838
}

2839 2840 2841
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2842
 * struct page_cgroup is acquired. This refcnt will be consumed by
2843 2844
 * "commit()" or removed by "cancel()"
 */
2845 2846
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2847
				 gfp_t mask, struct mem_cgroup **memcgp)
2848
{
2849
	struct mem_cgroup *memcg;
2850
	int ret;
2851

2852
	*memcgp = NULL;
2853

2854
	if (mem_cgroup_disabled())
2855 2856 2857 2858 2859 2860
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2861 2862 2863
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2864 2865
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2866
		goto charge_cur_mm;
2867 2868
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2869
		goto charge_cur_mm;
2870 2871
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2872
	css_put(&memcg->css);
2873
	return ret;
2874 2875 2876
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2877
	return __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2878 2879
}

D
Daisuke Nishimura 已提交
2880
static void
2881
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2882
					enum charge_type ctype)
2883
{
2884
	if (mem_cgroup_disabled())
2885
		return;
2886
	if (!memcg)
2887
		return;
2888
	cgroup_exclude_rmdir(&memcg->css);
2889

2890
	__mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2891 2892 2893
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2894 2895 2896
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2897
	 */
2898
	if (do_swap_account && PageSwapCache(page)) {
2899
		swp_entry_t ent = {.val = page_private(page)};
2900
		struct mem_cgroup *swap_memcg;
2901 2902 2903 2904
		unsigned short id;

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
2905 2906
		swap_memcg = mem_cgroup_lookup(id);
		if (swap_memcg) {
2907 2908 2909 2910
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2911 2912 2913 2914 2915
			if (!mem_cgroup_is_root(swap_memcg))
				res_counter_uncharge(&swap_memcg->memsw,
						     PAGE_SIZE);
			mem_cgroup_swap_statistics(swap_memcg, false);
			mem_cgroup_put(swap_memcg);
2916
		}
2917
		rcu_read_unlock();
2918
	}
2919 2920 2921 2922 2923
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2924
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2925 2926
}

2927 2928
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2929
{
2930 2931
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2932 2933
}

2934
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2935
{
2936
	if (mem_cgroup_disabled())
2937
		return;
2938
	if (!memcg)
2939
		return;
2940
	__mem_cgroup_cancel_charge(memcg, 1);
2941 2942
}

2943
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2944 2945
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2946 2947 2948
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2949

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2961
		batch->memcg = memcg;
2962 2963
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2964
	 * In those cases, all pages freed continuously can be expected to be in
2965 2966 2967 2968 2969 2970 2971 2972
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2973
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2974 2975
		goto direct_uncharge;

2976 2977 2978 2979 2980
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2981
	if (batch->memcg != memcg)
2982 2983
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2984
	batch->nr_pages++;
2985
	if (uncharge_memsw)
2986
		batch->memsw_nr_pages++;
2987 2988
	return;
direct_uncharge:
2989
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2990
	if (uncharge_memsw)
2991 2992 2993
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2994 2995
	return;
}
2996

2997
/*
2998
 * uncharge if !page_mapped(page)
2999
 */
3000
static struct mem_cgroup *
3001
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3002
{
3003
	struct mem_cgroup *memcg = NULL;
3004 3005
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3006

3007
	if (mem_cgroup_disabled())
3008
		return NULL;
3009

K
KAMEZAWA Hiroyuki 已提交
3010
	if (PageSwapCache(page))
3011
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
3012

A
Andrea Arcangeli 已提交
3013
	if (PageTransHuge(page)) {
3014
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3015 3016
		VM_BUG_ON(!PageTransHuge(page));
	}
3017
	/*
3018
	 * Check if our page_cgroup is valid
3019
	 */
3020 3021
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3022
		return NULL;
3023

3024
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3025

3026
	memcg = pc->mem_cgroup;
3027

K
KAMEZAWA Hiroyuki 已提交
3028 3029 3030 3031 3032
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3033
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3034 3035
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3047
	}
K
KAMEZAWA Hiroyuki 已提交
3048

3049
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3050

3051
	ClearPageCgroupUsed(pc);
3052 3053 3054 3055 3056 3057
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3058

3059
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3060
	/*
3061
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3062 3063
	 * will never be freed.
	 */
3064
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3065
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3066 3067
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3068
	}
3069 3070
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3071

3072
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3073 3074 3075

unlock_out:
	unlock_page_cgroup(pc);
3076
	return NULL;
3077 3078
}

3079 3080
void mem_cgroup_uncharge_page(struct page *page)
{
3081 3082 3083 3084 3085
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3086 3087 3088 3089 3090 3091
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3092
	VM_BUG_ON(page->mapping);
3093 3094 3095
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3110 3111
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3132 3133 3134 3135 3136 3137
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3138
	memcg_oom_recover(batch->memcg);
3139 3140 3141 3142
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3143
#ifdef CONFIG_SWAP
3144
/*
3145
 * called after __delete_from_swap_cache() and drop "page" account.
3146 3147
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3148 3149
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3150 3151
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3152 3153 3154 3155 3156 3157
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3158

K
KAMEZAWA Hiroyuki 已提交
3159 3160 3161 3162 3163
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3164
		swap_cgroup_record(ent, css_id(&memcg->css));
3165
}
3166
#endif
3167 3168 3169 3170 3171 3172 3173

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3174
{
3175
	struct mem_cgroup *memcg;
3176
	unsigned short id;
3177 3178 3179 3180

	if (!do_swap_account)
		return;

3181 3182 3183
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3184
	if (memcg) {
3185 3186 3187 3188
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3189
		if (!mem_cgroup_is_root(memcg))
3190
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3191
		mem_cgroup_swap_statistics(memcg, false);
3192 3193
		mem_cgroup_put(memcg);
	}
3194
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3195
}
3196 3197 3198 3199 3200 3201

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3202
 * @need_fixup: whether we should fixup res_counters and refcounts.
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3213
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3214 3215 3216 3217 3218 3219 3220 3221
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3222
		mem_cgroup_swap_statistics(to, true);
3223
		/*
3224 3225 3226 3227 3228 3229
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3230 3231
		 */
		mem_cgroup_get(to);
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3243 3244 3245 3246 3247 3248
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3249
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3250 3251 3252
{
	return -EINVAL;
}
3253
#endif
K
KAMEZAWA Hiroyuki 已提交
3254

3255
/*
3256 3257
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3258
 */
3259
int mem_cgroup_prepare_migration(struct page *page,
3260
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3261
{
3262
	struct mem_cgroup *memcg = NULL;
3263
	struct page_cgroup *pc;
3264
	enum charge_type ctype;
3265
	int ret = 0;
3266

3267
	*memcgp = NULL;
3268

A
Andrea Arcangeli 已提交
3269
	VM_BUG_ON(PageTransHuge(page));
3270
	if (mem_cgroup_disabled())
3271 3272
		return 0;

3273 3274 3275
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3276 3277
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3309
	}
3310
	unlock_page_cgroup(pc);
3311 3312 3313 3314
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3315
	if (!memcg)
3316
		return 0;
3317

3318 3319
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3320
	css_put(&memcg->css);/* drop extra refcnt */
3321
	if (ret || *memcgp == NULL) {
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3332
	}
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3346
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3347
	return ret;
3348
}
3349

3350
/* remove redundant charge if migration failed*/
3351
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3352
	struct page *oldpage, struct page *newpage, bool migration_ok)
3353
{
3354
	struct page *used, *unused;
3355 3356
	struct page_cgroup *pc;

3357
	if (!memcg)
3358
		return;
3359
	/* blocks rmdir() */
3360
	cgroup_exclude_rmdir(&memcg->css);
3361
	if (!migration_ok) {
3362 3363
		used = oldpage;
		unused = newpage;
3364
	} else {
3365
		used = newpage;
3366 3367
		unused = oldpage;
	}
3368
	/*
3369 3370 3371
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3372
	 */
3373 3374 3375 3376
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3377

3378 3379
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3380
	/*
3381 3382 3383 3384 3385 3386
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3387
	 */
3388 3389
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3390
	/*
3391 3392
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3393 3394 3395
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3396
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3397
}
3398

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	struct zone *zone;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	unsigned long flags;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	zone = page_zone(newpage);
	pc = lookup_page_cgroup(newpage);
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
	spin_lock_irqsave(&zone->lru_lock, flags);
	if (PageLRU(newpage))
		del_page_from_lru_list(zone, newpage, page_lru(newpage));
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
	if (PageLRU(newpage))
		add_page_to_lru_list(zone, newpage, page_lru(newpage));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3489 3490
static DEFINE_MUTEX(set_limit_mutex);

3491
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3492
				unsigned long long val)
3493
{
3494
	int retry_count;
3495
	u64 memswlimit, memlimit;
3496
	int ret = 0;
3497 3498
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3499
	int enlarge;
3500 3501 3502 3503 3504 3505 3506 3507 3508

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3509

3510
	enlarge = 0;
3511
	while (retry_count) {
3512 3513 3514 3515
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3516 3517 3518
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3519
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3520 3521 3522 3523 3524 3525
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3526 3527
			break;
		}
3528 3529 3530 3531 3532

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3533
		ret = res_counter_set_limit(&memcg->res, val);
3534 3535 3536 3537 3538 3539
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3540 3541 3542 3543 3544
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3545 3546
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3547 3548 3549 3550 3551 3552
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3553
	}
3554 3555
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3556

3557 3558 3559
	return ret;
}

L
Li Zefan 已提交
3560 3561
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3562
{
3563
	int retry_count;
3564
	u64 memlimit, memswlimit, oldusage, curusage;
3565 3566
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3567
	int enlarge = 0;
3568

3569 3570 3571
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3572 3573 3574 3575 3576 3577 3578 3579
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3580
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3581 3582 3583 3584 3585 3586 3587 3588
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3589 3590 3591
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3592
		ret = res_counter_set_limit(&memcg->memsw, val);
3593 3594 3595 3596 3597 3598
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3599 3600 3601 3602 3603
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3604 3605 3606
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3607
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3608
		/* Usage is reduced ? */
3609
		if (curusage >= oldusage)
3610
			retry_count--;
3611 3612
		else
			oldusage = curusage;
3613
	}
3614 3615
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3616 3617 3618
	return ret;
}

3619
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3620 3621
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3622 3623 3624 3625 3626 3627
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3628
	unsigned long long excess;
3629
	unsigned long nr_scanned;
3630 3631 3632 3633

	if (order > 0)
		return 0;

3634
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3648
		nr_scanned = 0;
3649 3650
		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
						    gfp_mask, &nr_scanned);
3651
		nr_reclaimed += reclaimed;
3652
		*total_scanned += nr_scanned;
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3675
				if (next_mz == mz)
3676
					css_put(&next_mz->mem->css);
3677
				else /* next_mz == NULL or other memcg */
3678 3679 3680 3681
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3682
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3683 3684 3685 3686 3687 3688 3689 3690
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3691 3692
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3711 3712 3713 3714
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3715
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3716
				int node, int zid, enum lru_list lru)
3717
{
K
KAMEZAWA Hiroyuki 已提交
3718 3719
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3720
	struct list_head *list;
3721 3722
	struct page *busy;
	struct zone *zone;
3723
	int ret = 0;
3724

K
KAMEZAWA Hiroyuki 已提交
3725
	zone = &NODE_DATA(node)->node_zones[zid];
3726
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3727
	list = &mz->lruvec.lists[lru];
3728

3729 3730 3731 3732 3733
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3734
		struct page_cgroup *pc;
3735 3736
		struct page *page;

3737
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3738
		spin_lock_irqsave(&zone->lru_lock, flags);
3739
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3740
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3741
			break;
3742
		}
3743 3744 3745
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3746
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3747
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3748 3749
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3750
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3751

3752
		pc = lookup_page_cgroup(page);
3753

3754
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3755
		if (ret == -ENOMEM)
3756
			break;
3757 3758 3759

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3760
			busy = page;
3761 3762 3763
			cond_resched();
		} else
			busy = NULL;
3764
	}
K
KAMEZAWA Hiroyuki 已提交
3765

3766 3767 3768
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3769 3770 3771 3772 3773 3774
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3775
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3776
{
3777 3778 3779
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3780
	struct cgroup *cgrp = memcg->css.cgroup;
3781

3782
	css_get(&memcg->css);
3783 3784

	shrink = 0;
3785 3786 3787
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3788
move_account:
3789
	do {
3790
		ret = -EBUSY;
3791 3792 3793 3794
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3795
			goto out;
3796 3797
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3798
		drain_all_stock_sync(memcg);
3799
		ret = 0;
3800
		mem_cgroup_start_move(memcg);
3801
		for_each_node_state(node, N_HIGH_MEMORY) {
3802
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3803
				enum lru_list l;
3804
				for_each_lru(l) {
3805
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3806
							node, zid, l);
3807 3808 3809
					if (ret)
						break;
				}
3810
			}
3811 3812 3813
			if (ret)
				break;
		}
3814 3815
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3816 3817 3818
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3819
		cond_resched();
3820
	/* "ret" should also be checked to ensure all lists are empty. */
3821
	} while (memcg->res.usage > 0 || ret);
3822
out:
3823
	css_put(&memcg->css);
3824
	return ret;
3825 3826

try_to_free:
3827 3828
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3829 3830 3831
		ret = -EBUSY;
		goto out;
	}
3832 3833
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3834 3835
	/* try to free all pages in this cgroup */
	shrink = 1;
3836
	while (nr_retries && memcg->res.usage > 0) {
3837
		int progress;
3838 3839 3840 3841 3842

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3843
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3844
						false);
3845
		if (!progress) {
3846
			nr_retries--;
3847
			/* maybe some writeback is necessary */
3848
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3849
		}
3850 3851

	}
K
KAMEZAWA Hiroyuki 已提交
3852
	lru_add_drain();
3853
	/* try move_account...there may be some *locked* pages. */
3854
	goto move_account;
3855 3856
}

3857 3858 3859 3860 3861 3862
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3863 3864 3865 3866 3867 3868 3869 3870 3871
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3872
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3873
	struct cgroup *parent = cont->parent;
3874
	struct mem_cgroup *parent_memcg = NULL;
3875 3876

	if (parent)
3877
		parent_memcg = mem_cgroup_from_cont(parent);
3878 3879 3880

	cgroup_lock();
	/*
3881
	 * If parent's use_hierarchy is set, we can't make any modifications
3882 3883 3884 3885 3886 3887
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3888
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3889 3890
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3891
			memcg->use_hierarchy = val;
3892 3893 3894 3895 3896 3897 3898 3899 3900
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3901

3902
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3903
					       enum mem_cgroup_stat_index idx)
3904
{
K
KAMEZAWA Hiroyuki 已提交
3905
	struct mem_cgroup *iter;
3906
	long val = 0;
3907

3908
	/* Per-cpu values can be negative, use a signed accumulator */
3909
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3910 3911 3912 3913 3914
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3915 3916
}

3917
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3918
{
K
KAMEZAWA Hiroyuki 已提交
3919
	u64 val;
3920

3921
	if (!mem_cgroup_is_root(memcg)) {
3922
		if (!swap)
3923
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3924
		else
3925
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3926 3927
	}

3928 3929
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3930

K
KAMEZAWA Hiroyuki 已提交
3931
	if (swap)
3932
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3933 3934 3935 3936

	return val << PAGE_SHIFT;
}

3937
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3938
{
3939
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3940
	u64 val;
3941 3942 3943 3944 3945 3946
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3947
		if (name == RES_USAGE)
3948
			val = mem_cgroup_usage(memcg, false);
3949
		else
3950
			val = res_counter_read_u64(&memcg->res, name);
3951 3952
		break;
	case _MEMSWAP:
3953
		if (name == RES_USAGE)
3954
			val = mem_cgroup_usage(memcg, true);
3955
		else
3956
			val = res_counter_read_u64(&memcg->memsw, name);
3957 3958 3959 3960 3961 3962
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3963
}
3964 3965 3966 3967
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3968 3969
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3970
{
3971
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3972
	int type, name;
3973 3974 3975
	unsigned long long val;
	int ret;

3976 3977 3978
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3979
	case RES_LIMIT:
3980 3981 3982 3983
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3984 3985
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3986 3987 3988
		if (ret)
			break;
		if (type == _MEM)
3989
			ret = mem_cgroup_resize_limit(memcg, val);
3990 3991
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3992
		break;
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4007 4008 4009 4010 4011
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4012 4013
}

4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4042
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4043
{
4044
	struct mem_cgroup *memcg;
4045
	int type, name;
4046

4047
	memcg = mem_cgroup_from_cont(cont);
4048 4049 4050
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4051
	case RES_MAX_USAGE:
4052
		if (type == _MEM)
4053
			res_counter_reset_max(&memcg->res);
4054
		else
4055
			res_counter_reset_max(&memcg->memsw);
4056 4057
		break;
	case RES_FAILCNT:
4058
		if (type == _MEM)
4059
			res_counter_reset_failcnt(&memcg->res);
4060
		else
4061
			res_counter_reset_failcnt(&memcg->memsw);
4062 4063
		break;
	}
4064

4065
	return 0;
4066 4067
}

4068 4069 4070 4071 4072 4073
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4074
#ifdef CONFIG_MMU
4075 4076 4077
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4078
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4079 4080 4081 4082 4083 4084 4085 4086 4087

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4088
	memcg->move_charge_at_immigrate = val;
4089 4090 4091 4092
	cgroup_unlock();

	return 0;
}
4093 4094 4095 4096 4097 4098 4099
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4100

K
KAMEZAWA Hiroyuki 已提交
4101 4102 4103 4104 4105

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4106
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4107 4108
	MCS_PGPGIN,
	MCS_PGPGOUT,
4109
	MCS_SWAP,
4110 4111
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4122 4123
};

K
KAMEZAWA Hiroyuki 已提交
4124 4125 4126 4127 4128 4129
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4130
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4131 4132
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4133
	{"swap", "total_swap"},
4134 4135
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4136 4137 4138 4139 4140 4141 4142 4143
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4144
static void
4145
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4146 4147 4148 4149
{
	s64 val;

	/* per cpu stat */
4150
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4151
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4152
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4153
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4154
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4155
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4156
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4157
	s->stat[MCS_PGPGIN] += val;
4158
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4159
	s->stat[MCS_PGPGOUT] += val;
4160
	if (do_swap_account) {
4161
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4162 4163
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4164
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4165
	s->stat[MCS_PGFAULT] += val;
4166
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4167
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4168 4169

	/* per zone stat */
4170
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4171
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4172
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4173
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4174
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4175
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4176
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4177
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4178
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4179 4180 4181 4182
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4183
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4184
{
K
KAMEZAWA Hiroyuki 已提交
4185 4186
	struct mem_cgroup *iter;

4187
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4188
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4189 4190
}

4191 4192 4193 4194 4195 4196 4197 4198 4199
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4200
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4201 4202
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4203
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4204 4205 4206 4207
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4208
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4209 4210
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4211 4212
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4213 4214 4215 4216
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4217
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4218 4219
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4220 4221
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4222 4223 4224 4225
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4226
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4227 4228
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4229 4230
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4231 4232 4233 4234 4235 4236 4237
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4238 4239
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4240 4241
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4242
	struct mcs_total_stat mystat;
4243 4244
	int i;

K
KAMEZAWA Hiroyuki 已提交
4245 4246
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4247

4248

4249 4250 4251
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4252
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4253
	}
L
Lee Schermerhorn 已提交
4254

K
KAMEZAWA Hiroyuki 已提交
4255
	/* Hierarchical information */
4256 4257 4258 4259 4260 4261 4262
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4263

K
KAMEZAWA Hiroyuki 已提交
4264 4265
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4266 4267 4268
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4269
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4270
	}
K
KAMEZAWA Hiroyuki 已提交
4271

K
KOSAKI Motohiro 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4299 4300 4301
	return 0;
}

K
KOSAKI Motohiro 已提交
4302 4303 4304 4305
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4306
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4307 4308 4309 4310 4311 4312 4313
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4314

K
KOSAKI Motohiro 已提交
4315 4316 4317 4318 4319 4320 4321
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4322 4323 4324

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4325 4326
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4327 4328
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4329
		return -EINVAL;
4330
	}
K
KOSAKI Motohiro 已提交
4331 4332 4333

	memcg->swappiness = val;

4334 4335
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4336 4337 4338
	return 0;
}

4339 4340 4341 4342 4343 4344 4345 4346
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4347
		t = rcu_dereference(memcg->thresholds.primary);
4348
	else
4349
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4361
	i = t->current_threshold;
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4385
	t->current_threshold = i - 1;
4386 4387 4388 4389 4390 4391
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4392 4393 4394 4395 4396 4397 4398
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4409
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4410 4411 4412
{
	struct mem_cgroup_eventfd_list *ev;

4413
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4414 4415 4416 4417
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4418
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4419
{
K
KAMEZAWA Hiroyuki 已提交
4420 4421
	struct mem_cgroup *iter;

4422
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4423
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4424 4425 4426 4427
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4428 4429
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4430 4431
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4432 4433
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4434
	int i, size, ret;
4435 4436 4437 4438 4439 4440

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4441

4442
	if (type == _MEM)
4443
		thresholds = &memcg->thresholds;
4444
	else if (type == _MEMSWAP)
4445
		thresholds = &memcg->memsw_thresholds;
4446 4447 4448 4449 4450 4451
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4452
	if (thresholds->primary)
4453 4454
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4455
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4456 4457

	/* Allocate memory for new array of thresholds */
4458
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4459
			GFP_KERNEL);
4460
	if (!new) {
4461 4462 4463
		ret = -ENOMEM;
		goto unlock;
	}
4464
	new->size = size;
4465 4466

	/* Copy thresholds (if any) to new array */
4467 4468
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4469
				sizeof(struct mem_cgroup_threshold));
4470 4471
	}

4472
	/* Add new threshold */
4473 4474
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4475 4476

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4477
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4478 4479 4480
			compare_thresholds, NULL);

	/* Find current threshold */
4481
	new->current_threshold = -1;
4482
	for (i = 0; i < size; i++) {
4483
		if (new->entries[i].threshold < usage) {
4484
			/*
4485 4486
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4487 4488
			 * it here.
			 */
4489
			++new->current_threshold;
4490 4491 4492
		}
	}

4493 4494 4495 4496 4497
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4498

4499
	/* To be sure that nobody uses thresholds */
4500 4501 4502 4503 4504 4505 4506 4507
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4508
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4509
	struct cftype *cft, struct eventfd_ctx *eventfd)
4510 4511
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4512 4513
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4514 4515
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4516
	int i, j, size;
4517 4518 4519

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4520
		thresholds = &memcg->thresholds;
4521
	else if (type == _MEMSWAP)
4522
		thresholds = &memcg->memsw_thresholds;
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4538 4539 4540
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4541 4542 4543
			size++;
	}

4544
	new = thresholds->spare;
4545

4546 4547
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4548 4549
		kfree(new);
		new = NULL;
4550
		goto swap_buffers;
4551 4552
	}

4553
	new->size = size;
4554 4555

	/* Copy thresholds and find current threshold */
4556 4557 4558
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4559 4560
			continue;

4561 4562
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4563
			/*
4564
			 * new->current_threshold will not be used
4565 4566 4567
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4568
			++new->current_threshold;
4569 4570 4571 4572
		}
		j++;
	}

4573
swap_buffers:
4574 4575 4576
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4577

4578
	/* To be sure that nobody uses thresholds */
4579 4580 4581 4582
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4583

K
KAMEZAWA Hiroyuki 已提交
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4596
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4597 4598 4599 4600 4601

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4602
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4603
		eventfd_signal(eventfd, 1);
4604
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4605 4606 4607 4608

	return 0;
}

4609
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4610 4611
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4612
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4613 4614 4615 4616 4617
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4618
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4619

4620
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4621 4622 4623 4624 4625 4626
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4627
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4628 4629
}

4630 4631 4632
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4633
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4634

4635
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4636

4637
	if (atomic_read(&memcg->under_oom))
4638 4639 4640 4641 4642 4643 4644 4645 4646
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4647
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4659
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4660 4661 4662
		cgroup_unlock();
		return -EINVAL;
	}
4663
	memcg->oom_kill_disable = val;
4664
	if (!val)
4665
		memcg_oom_recover(memcg);
4666 4667 4668 4669
	cgroup_unlock();
	return 0;
}

4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4686 4687 4688
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4689 4690 4691 4692 4693 4694 4695
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4696
	return mem_cgroup_sockets_init(cont, ss);
4697 4698
};

G
Glauber Costa 已提交
4699 4700 4701 4702 4703
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4704 4705 4706 4707 4708
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4709 4710 4711 4712 4713

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4714 4715
#endif

B
Balbir Singh 已提交
4716 4717
static struct cftype mem_cgroup_files[] = {
	{
4718
		.name = "usage_in_bytes",
4719
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4720
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4721 4722
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4723
	},
4724 4725
	{
		.name = "max_usage_in_bytes",
4726
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4727
		.trigger = mem_cgroup_reset,
4728 4729
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4730
	{
4731
		.name = "limit_in_bytes",
4732
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4733
		.write_string = mem_cgroup_write,
4734
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4735
	},
4736 4737 4738 4739 4740 4741
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4742 4743
	{
		.name = "failcnt",
4744
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4745
		.trigger = mem_cgroup_reset,
4746
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4747
	},
4748 4749
	{
		.name = "stat",
4750
		.read_map = mem_control_stat_show,
4751
	},
4752 4753 4754 4755
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4756 4757 4758 4759 4760
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4761 4762 4763 4764 4765
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4766 4767 4768 4769 4770
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4771 4772
	{
		.name = "oom_control",
4773 4774
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4775 4776 4777 4778
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4779 4780 4781 4782
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4783
		.mode = S_IRUGO,
4784 4785
	},
#endif
B
Balbir Singh 已提交
4786 4787
};

4788 4789 4790 4791 4792 4793
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4794 4795
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4831
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4832 4833
{
	struct mem_cgroup_per_node *pn;
4834
	struct mem_cgroup_per_zone *mz;
4835
	enum lru_list l;
4836
	int zone, tmp = node;
4837 4838 4839 4840 4841 4842 4843 4844
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4845 4846
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4847
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4848 4849
	if (!pn)
		return 1;
4850 4851 4852

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4853
		for_each_lru(l)
4854
			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4855
		mz->usage_in_excess = 0;
4856
		mz->on_tree = false;
4857
		mz->mem = memcg;
4858
	}
4859
	memcg->info.nodeinfo[node] = pn;
4860 4861 4862
	return 0;
}

4863
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4864
{
4865
	kfree(memcg->info.nodeinfo[node]);
4866 4867
}

4868 4869 4870
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4871
	int size = sizeof(struct mem_cgroup);
4872

4873
	/* Can be very big if MAX_NUMNODES is very big */
4874
	if (size < PAGE_SIZE)
4875
		mem = kzalloc(size, GFP_KERNEL);
4876
	else
4877
		mem = vzalloc(size);
4878

4879 4880 4881
	if (!mem)
		return NULL;

4882
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4883 4884
	if (!mem->stat)
		goto out_free;
4885
	spin_lock_init(&mem->pcp_counter_lock);
4886
	return mem;
4887 4888 4889 4890 4891 4892 4893

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4894 4895
}

4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4907
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4908
{
K
KAMEZAWA Hiroyuki 已提交
4909 4910
	int node;

4911 4912
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4913

K
KAMEZAWA Hiroyuki 已提交
4914
	for_each_node_state(node, N_POSSIBLE)
4915
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4916

4917
	free_percpu(memcg->stat);
4918
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4919
		kfree(memcg);
4920
	else
4921
		vfree(memcg);
4922 4923
}

4924
static void mem_cgroup_get(struct mem_cgroup *memcg)
4925
{
4926
	atomic_inc(&memcg->refcnt);
4927 4928
}

4929
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4930
{
4931 4932 4933
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4934 4935 4936
		if (parent)
			mem_cgroup_put(parent);
	}
4937 4938
}

4939
static void mem_cgroup_put(struct mem_cgroup *memcg)
4940
{
4941
	__mem_cgroup_put(memcg, 1);
4942 4943
}

4944 4945 4946
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4947
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4948
{
4949
	if (!memcg->res.parent)
4950
		return NULL;
4951
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4952
}
G
Glauber Costa 已提交
4953
EXPORT_SYMBOL(parent_mem_cgroup);
4954

4955 4956 4957
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4958
	if (!mem_cgroup_disabled() && really_do_swap_account)
4959 4960 4961 4962 4963 4964 4965 4966
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4992
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4993 4994
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4995
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4996
	long error = -ENOMEM;
4997
	int node;
B
Balbir Singh 已提交
4998

4999 5000
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5001
		return ERR_PTR(error);
5002

5003
	for_each_node_state(node, N_POSSIBLE)
5004
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5005
			goto free_out;
5006

5007
	/* root ? */
5008
	if (cont->parent == NULL) {
5009
		int cpu;
5010
		enable_swap_cgroup();
5011
		parent = NULL;
5012 5013
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5014
		root_mem_cgroup = memcg;
5015 5016 5017 5018 5019
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5020
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5021
	} else {
5022
		parent = mem_cgroup_from_cont(cont->parent);
5023 5024
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5025
	}
5026

5027
	if (parent && parent->use_hierarchy) {
5028 5029
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5030 5031 5032 5033 5034 5035 5036
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5037
	} else {
5038 5039
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5040
	}
5041 5042
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5043

K
KOSAKI Motohiro 已提交
5044
	if (parent)
5045 5046 5047 5048 5049
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
5050
free_out:
5051
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5052
	return ERR_PTR(error);
B
Balbir Singh 已提交
5053 5054
}

5055
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5056 5057
					struct cgroup *cont)
{
5058
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5059

5060
	return mem_cgroup_force_empty(memcg, false);
5061 5062
}

B
Balbir Singh 已提交
5063 5064 5065
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5066
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5067

G
Glauber Costa 已提交
5068 5069
	kmem_cgroup_destroy(ss, cont);

5070
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5071 5072 5073 5074 5075
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5076 5077 5078 5079 5080 5081 5082
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
5083 5084 5085 5086

	if (!ret)
		ret = register_kmem_files(cont, ss);

5087
	return ret;
B
Balbir Singh 已提交
5088 5089
}

5090
#ifdef CONFIG_MMU
5091
/* Handlers for move charge at task migration. */
5092 5093
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5094
{
5095 5096
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5097
	struct mem_cgroup *memcg = mc.to;
5098

5099
	if (mem_cgroup_is_root(memcg)) {
5100 5101 5102 5103 5104 5105 5106 5107
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5108
		 * "memcg" cannot be under rmdir() because we've already checked
5109 5110 5111 5112
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5113
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5114
			goto one_by_one;
5115
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5116
						PAGE_SIZE * count, &dummy)) {
5117
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5134 5135 5136
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
		if (ret || !memcg)
5137 5138 5139 5140
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5141 5142 5143 5144 5145 5146 5147 5148
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5149
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5150 5151 5152 5153 5154 5155
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5156 5157 5158
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5159 5160 5161 5162 5163
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5164
	swp_entry_t	ent;
5165 5166 5167 5168 5169
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5170
	MC_TARGET_SWAP,
5171 5172
};

D
Daisuke Nishimura 已提交
5173 5174
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5175
{
D
Daisuke Nishimura 已提交
5176
	struct page *page = vm_normal_page(vma, addr, ptent);
5177

D
Daisuke Nishimura 已提交
5178 5179 5180 5181 5182 5183
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5184 5185
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5204 5205
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5206
		return NULL;
5207
	}
D
Daisuke Nishimura 已提交
5208 5209 5210 5211 5212 5213
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5235 5236 5237 5238 5239 5240
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5241
		if (do_swap_account)
5242 5243
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5244
	}
5245
#endif
5246 5247 5248
	return page;
}

D
Daisuke Nishimura 已提交
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5261 5262
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5263 5264 5265

	if (!page && !ent.val)
		return 0;
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5281 5282
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5283 5284 5285 5286
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5299 5300
	split_huge_page_pmd(walk->mm, pmd);

5301 5302 5303 5304 5305 5306 5307
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5308 5309 5310
	return 0;
}

5311 5312 5313 5314 5315
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5316
	down_read(&mm->mmap_sem);
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5328
	up_read(&mm->mmap_sem);
5329 5330 5331 5332 5333 5334 5335 5336 5337

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5338 5339 5340 5341 5342
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5343 5344
}

5345 5346
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5347
{
5348 5349 5350
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5351
	/* we must uncharge all the leftover precharges from mc.to */
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5363
	}
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5398
	spin_lock(&mc.lock);
5399 5400
	mc.from = NULL;
	mc.to = NULL;
5401
	spin_unlock(&mc.lock);
5402
	mem_cgroup_end_move(from);
5403 5404
}

5405 5406
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5407
				struct cgroup_taskset *tset)
5408
{
5409
	struct task_struct *p = cgroup_taskset_first(tset);
5410
	int ret = 0;
5411
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5412

5413
	if (memcg->move_charge_at_immigrate) {
5414 5415 5416
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5417
		VM_BUG_ON(from == memcg);
5418 5419 5420 5421 5422

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5423 5424 5425 5426
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5427
			VM_BUG_ON(mc.moved_charge);
5428
			VM_BUG_ON(mc.moved_swap);
5429
			mem_cgroup_start_move(from);
5430
			spin_lock(&mc.lock);
5431
			mc.from = from;
5432
			mc.to = memcg;
5433
			spin_unlock(&mc.lock);
5434
			/* We set mc.moving_task later */
5435 5436 5437 5438

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5439 5440
		}
		mmput(mm);
5441 5442 5443 5444 5445 5446
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5447
				struct cgroup_taskset *tset)
5448
{
5449
	mem_cgroup_clear_mc();
5450 5451
}

5452 5453 5454
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5455
{
5456 5457 5458 5459 5460
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5461
	split_huge_page_pmd(walk->mm, pmd);
5462 5463 5464 5465 5466 5467 5468 5469
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5470
		swp_entry_t ent;
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5482 5483
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5484
				mc.precharge--;
5485 5486
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5487 5488 5489 5490 5491
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5492 5493
		case MC_TARGET_SWAP:
			ent = target.ent;
5494 5495
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5496
				mc.precharge--;
5497 5498 5499
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5500
			break;
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5515
		ret = mem_cgroup_do_precharge(1);
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5559
	up_read(&mm->mmap_sem);
5560 5561
}

B
Balbir Singh 已提交
5562 5563
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5564
				struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5565
{
5566
	struct task_struct *p = cgroup_taskset_first(tset);
5567
	struct mm_struct *mm = get_task_mm(p);
5568 5569

	if (mm) {
5570 5571 5572
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5573 5574
		mmput(mm);
	}
5575 5576
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5577
}
5578 5579 5580
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5581
				struct cgroup_taskset *tset)
5582 5583 5584 5585 5586
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5587
				struct cgroup_taskset *tset)
5588 5589 5590 5591
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5592
				struct cgroup_taskset *tset)
5593 5594 5595
{
}
#endif
B
Balbir Singh 已提交
5596

B
Balbir Singh 已提交
5597 5598 5599 5600
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5601
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5602 5603
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5604 5605
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5606
	.attach = mem_cgroup_move_task,
5607
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5608
	.use_id = 1,
B
Balbir Singh 已提交
5609
};
5610 5611

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5612 5613 5614
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5615
	if (!strcmp(s, "1"))
5616
		really_do_swap_account = 1;
5617
	else if (!strcmp(s, "0"))
5618 5619 5620
		really_do_swap_account = 0;
	return 1;
}
5621
__setup("swapaccount=", enable_swap_account);
5622 5623

#endif